A multi-objective framework for power-aware scheduling in kubernetes

Téléchargements

Téléchargements par mois depuis la dernière année

Gouaouri, M. D. E., Ouahouah, S., Bagaa, M., Ouameur, M. A. et Ksentini, A. (2025). A multi-objective framework for power-aware scheduling in kubernetes. IEEE Transactions on Network and Service Management . DOI 10.1109/TNSM.2025.3630045

[thumbnail of BAGAA_M_173_POST.pdf]
Prévisualisation
PDF
Disponible sous licence Creative Commons Attribution.

Télécharger (5MB) | Prévisualisation

Résumé

Efficient workload scheduling in Kubernetes is crucial for optimizing energy consumption and resource utilization in large-scale and heterogeneous clusters. However, existing Kubernetes schedulers either ignore power-awareness or rely on simplified, static power models, which limit their effectiveness in managing energy efficiency under dynamic workloads. To address these shortcomings, we present a multi-objective scheduling framework for online Kubernetes pod placement that jointly considers power consumption, resource utilization, and load balancing. The framework follows a two-stage design: (i) a node power–profiling component trains a machine–learning model from real power measurements to predict per-node consumption under varying utilizations; and (ii) an online scheduler uses these predictions within a multi-objective optimization formulation. We implement scheduling optimization using two algorithms, TOPSIS and NSGA-II, adapting them to the Kubernetes context, and also propose a distributed variant of the NSGA-II algorithm that parallelizes fitness evaluation with controlled migration between workers. Experimental results show that the proposed framework outperforms baseline schedulers, achieving a 40% reduction in power consumption and improvements of 74% and 68% in CPU and memory utilization, respectively, while sustaining scalability under high workloads. To the best of our knowledge, this is the first work to integrate learned power models and distributed multi-objective optimization into Kubernetes for power-aware pod scheduling.

Type de document: Article
Mots-clés libres: Kubernetes Multi-Objective Optimization NSGA-II Power-Aware Scheduling Scheduling TOPSIS
Date de dépôt: 18 déc. 2025 15:54
Dernière modification: 18 déc. 2025 15:54
Version du document déposé: Post-print (version corrigée et acceptée)
URI: https://depot-e.uqtr.ca/id/eprint/12494

Actions (administrateurs uniquement)

Éditer la notice Éditer la notice