Khatri, V., Jafari, M., Gaudreault, R., Beauregard, M., Siaj, M., Archambault, D., Loranger, E. et Bourgault, S. (2023). Bionanocomposites with enhanced physical properties from curli amyloid assemblies and cellulose nanofibrils. Biomacromolecules, 24 (11). pp. 5290-5302. ISSN 1525-7797 1526-4602 DOI 10.1021/acs.biomac.3c00786
Prévisualisation |
PDF
Télécharger (4MB) | Prévisualisation |
Résumé
Abstract
Proteinaceous amyloid fibrils are one of the stiffest biopolymers due to their extensive cross-β-sheet quaternary structure, whereas cellulose nanofibrils (CNFs) exhibit interesting properties associated with their nanoscale size, morphology, large surface area, and biodegradability. Herein, CNFs were supplemented with amyloid fibrils assembled from the Curli-specific gene A (CsgA) protein, the main component of bacterial biofilms. The resulting composites showed superior mechanical properties, up to a 7-fold increase compared to unmodified CNF films. Wettability and thermogravimetric analyses demonstrated high surface hydrophobicity and robust thermal tolerance. Bulk spectroscopic characterization of CNF-CsgA films revealed key insights into the molecular organization within the bionanocomposites. Atomic force microscopy and photoinduced force microscopy revealed the high-resolution location of curli assemblies into the CNF films. This novel sustainable and cost-effective CNF-based bionanocomposites supplemented with intertwined bacterial amyloid fibrils opens novel directions for environmentally friendly applications demanding high mechanical, water-repelling properties, and thermal resistance.
| Type de document: | Article |
|---|---|
| Mots-clés libres: | Amyloid Amyloidogenic proteins Biopolymers Cellulose Microscopy Atomic force Nanofibers Cost effectiveness Glycoproteins Morphology Thermogravimetric analysis Amyloid protein Biopolymer Nanofiber Amyloid fibril Bacterial biofilm Bio-nanocomposite Cellulose nanofibrils Large surface area Nanoscale size Property Quaternary structure Surface hydrophobicity Thermo-gravimetric Atomic force microscopy Chemistry Biodegradability |
| Date de dépôt: | 22 mai 2025 13:11 |
| Dernière modification: | 22 mai 2025 13:11 |
| Version du document déposé: | Post-print (version corrigée et acceptée) |
| URI: | https://depot-e.uqtr.ca/id/eprint/11959 |
Actions (administrateurs uniquement)
![]() |
Éditer la notice |


Statistiques de téléchargement
Statistiques de téléchargement