Toward synthetic data generation to enhance skidding detection in winter conditions

Téléchargements

Téléchargements par mois depuis la dernière année

McKenzie, B., Kelouwani, S. et Gaudreau, M.-A. (2022). Toward synthetic data generation to enhance skidding detection in winter conditions. World Electric Vehicle Journal, 13 (12). p. 231. ISSN 2032-6653 DOI 10.3390/wevj13120231

[thumbnail of KELOUWANI_S_80_ED.pdf]
Prévisualisation
PDF
Télécharger (1MB) | Prévisualisation

Résumé

In this paper, we propose the use of a neural network to identify lateral skidding events of road vehicles used during winter driving conditions. Firstly, data from a simulation model was used to identify the essential vehicle dynamics variables needed and to create the network structure. Then this network was retrained to classify real-world vehicle skidding events. The final network consists of a 3 layer network with 10, 5 and 1 output neurons 13 inputs, 4 outputs and a 5 step time delay. The retrained network was used on a limited set of real vehicle data and confirmed the effectiveness of the network classifying lateral skidding events.

Type de document: Article
Mots-clés libres: Side-slip Winter driving Artificial neural network
Date de dépôt: 22 mai 2024 18:38
Dernière modification: 22 mai 2024 18:38
Version du document déposé: Version officielle de l'éditeur
URI: https://depot-e.uqtr.ca/id/eprint/11320

Actions (administrateurs uniquement)

Éditer la notice Éditer la notice