Performance evaluation and implementation complexity analysis framework for ZF based linear massive MIMO detection

Téléchargements

Téléchargements par mois depuis la dernière année

Ahmed Ouameur, M., Massicotte, D., Akhtar, A. M. et Girard, R. (2020). Performance evaluation and implementation complexity analysis framework for ZF based linear massive MIMO detection. Wireless Networks, 26 (6). pp. 4079-4093. ISSN 1572-8196 DOI 10.1007/s11276-020-02318-y

[thumbnail of MASSICOTTE_D_16_POST.pdf]
Prévisualisation
PDF
Télécharger (754kB) | Prévisualisation

Résumé

This paper discusses a framework for algorithm-architecture synergy for (1) performance evaluation and (2) FPGA implementation complexity analysis of linear massive MIMO detection techniques. Three low complexity implementation techniques of the zero-forcing (ZF) based linear detection are evaluated, namely, Neumann series expansion (NSE), Gauss–Seidel (GS) and a proposed recursive Gram matrix inversion update (RGMIU) techniques. The performance analysis framework is based on software-defined radio platform. By extrapolating the real data measured average error vector magnitude versus a number of served single-antenna user terminals, GS and RGMIU are showing no performance degradation with respect to ZF with direct matrix inversion. It is shown that under high load regime NSE and GS require more processing iterations at the expense of increased processing latency. We, therefore, consider a unified approach for field-programmable gate array based implementation complexity analysis and discuss the required baseband processing resources for real-time transmission. Due to the wide differences of NSE, GS and RGMIU in terms of performance, processing complexity and latency, practical deployment and real-time implementation insights are derived.

Type de document: Article
Mots-clés libres: Massive MIMO Zero-forcing (ZF) Maximum ratio combining (MRC) Receiver combining Detection Matrix inversion update Neumann series expansion (NSE) Gauss–Seidel (GS) FPGA implementation Real data detection Real-time transmission
Date de dépôt: 09 mai 2022 17:57
Dernière modification: 09 mai 2022 17:57
Version du document déposé: Post-print (version corrigée et acceptée)
URI: https://depot-e.uqtr.ca/id/eprint/10132

Actions (administrateurs uniquement)

Éditer la notice Éditer la notice