Global photosynthetic capacity is optimized to the environment

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Smith, N. G., Keenan, T. F., Colin Prentice, I., Wang, H., Wright, I. J., Niinemets, Ü, Crous, K. Y., Domingues, T. F., Guerrieri, R., Yoko Ishida, F., Kattge, J., Kruger, E. L., Maire, V., Rogers, A., Serbin, S. P., Tarvainen, L., Togashi, H. F., Townsend, P. A., Wang, M., Weerasinghe, L. K. et Zhou, S. X. (2019). Global photosynthetic capacity is optimized to the environment. Ecology Letters, 22 (3). pp. 506-517. ISSN 1461-023X DOI 10.1111/ele.13210

[thumbnail of MAIRE_V_119_ED.pdf]
Prévisualisation
PDF
Télécharger (1MB) | Prévisualisation

Résumé

Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco carboxylation rate (V cmax ), to simulate carbon assimilation and typically rely on empirical estimates, including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new theory, based on biochemical coordination and co-optimization of carboxylation and water costs for photosynthesis, suggests that optimal V cmax can be predicted from climate alone, irrespective of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a global, field-measured V cmax dataset for C 3 plants. Soil fertility indices explained substantially less variation (32%). These results indicate that environmentally regulated biophysical constraints and light availability are the first-order drivers of global photosynthetic capacity. Through acclimation and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential resource use for growth and reproduction. Our theory offers a robust strategy for dynamically predicting photosynthetic capacity in ESMs. © 2019 John Wiley & Sons Ltd/CNRS

Type de document: Article
Mots-clés libres: Carbon cycle Carboxylation Coordination Ecophysiology Electron transport Jmax Light availability Nitrogen availability Temperature V cmax Carbon dioxide Nitrogen Ribulosebisphosphate carboxylase Acclimatization Adaptation Photosynthesis Plant leaf Adaptation, Physiological Plant Leaves Ribulose-Bisphosphate Carboxylase
Date de dépôt: 01 août 2022 14:03
Dernière modification: 01 août 2022 14:03
Version du document déposé: Version officielle de l'éditeur
URI: https://depot-e.uqtr.ca/id/eprint/10228

Actions (administrateurs uniquement)

Éditer la notice Éditer la notice