S-Convnet: A shallow convolutional neural network architecture for neuromuscular activity recognition using instantaneous high-density surface EMG images

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Islam, M. R., Massicotte, D., Nougarou, F., Massicotte, P. et Zhu, W. P. (2020, July 20-24). S-Convnet: A shallow convolutional neural network architecture for neuromuscular activity recognition using instantaneous high-density surface EMG images. Dans 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, Canada DOI 10.1109/EMBC44109.2020.9175266.

[thumbnail of MASSICOTTE_D_17_POST.pdf]
Prévisualisation
PDF
Télécharger (411kB) | Prévisualisation

Résumé

The recent progress in recognizing low-resolution instantaneous high-density surface electromyography (HD-sEMG) images opens up new avenues for the development of more fluid and natural muscle-computer interfaces. However, the existing approaches employed a very large deep convolutional neural network (ConvNet) architecture and complex training schemes for HD-sEMG image recognition, which requires learning of ˃5.63 million(M) training parameters only during fine-tuning and pre-trained on a very large-scale labeled HD-sEMG training dataset, as a result, it makes high-end resource-bounded and computationally expensive. To overcome this problem, we propose S-ConvNet models, a simple yet efficient framework for learning instantaneous HD-sEMG images from scratch using random-initialization. Without using any pre-trained models, our proposed S-ConvNet demonstrate very competitive recognition accuracy to the more complex state of the art, while reducing learning parameters to only ≈ 2M and using ≈ 12 × smaller dataset. The experimental results proved that the proposed S-ConvNet is highly effective for learning discriminative features for instantaneous HD-sEMG image recognition, especially in the data and high-end resource-constrained scenarios.

Type de document: Document issu d'une conférence ou d'un atelier
Mots-clés libres: Neuromuscular activity recognition Shallow convolutional neural networks Feature learning HD-sEMG Gesture recognition Muscle-computer interface Deep neural networks
Date de dépôt: 09 mai 2022 18:12
Dernière modification: 09 mai 2022 18:12
URI: https://depot-e.uqtr.ca/id/eprint/10133

Actions (administrateurs uniquement)

Éditer la notice Éditer la notice