











119]. The obtained information from sensors, such as GPS,
accelerometer, and barometer. is usually noisy. Model-based
filters arc often combined with sensor measurements to
improve the accuracy of the estimate.

[n this work, the aerodynamic and friction coefficients are
estimated simultaneously hy using the experimental data
acquired from a vehicle over several route conditions. To do
so, three methods are employed for the aerodynamic and
friction coefficients estimation. The first and the second
methods arc adaptive, based on the longitudinal model using
recursive least squares (RLS) and Kalman filter (KF) methods
while the third one uses artificial neural networks (ANN).

The rest of the document is organized as follows. The
utilized methods for estimating the parameters are discussed
in section L1. The experimental procedure is detailed in section
. Section 1V presents the obtained results of this work,
Finally, the conclusion is given in section V.

IL. ESTIMATION METHODS

A. Vehicle longitudinal dynamic model

Fig. | represents the resistive forces acting on the
longitudinal dynamics of a vehicle. These forces are
composed of vehicle traction force (F,), vehicle resistance
forces, including the rolling resistance (F, ;) and acrodynamic
drag (F,.ro). grading resistance (Fy,q4, ), and aceeleration force
(Fyee ). The dynamic equation of vehicle motion along the
longitudinal dircction to avercome of these forces is expressed
by (1):

Fe = Front + Faero + Fyrade + Face
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Where T is the engine torque, w is the engine speed, 1 is
the overall driveline efficiency. v is the vehicle speed. M is the
vehicle mass, x is the distance, ¥ is the acceleration, g is the
gravitational acceleration, 8 is the road grade, p is the rolling
resistance coefficient, €, 18 the drag coefficient, p is the
density of air, and A is the front surface of the vehicle.

Fig. I. The resistive forces influencing the longitudinal
dynamics of the vehicle

B. Proposed estimation method

For the purpose of this study, three model-based
approaches are used for the estimation of' the acrodynamic and
rolling resistance coeflicients and other unknown parameters
affecting the vehicle's longiludinal motion. The three methods
are discussed in details in the [ollowing sections.

1) RLS

RLS is an adaptive filter that recursively estimates certain
parameters for minimizing a weighted linear least squares cost
function. This cost function s associated with the ioput
signals. RLS gives quality performance when operating in
time-varying conditions [20).

In this approach. unknown parameter vecior is updated
iteratively at each time step by using the previous input and
output measured data. The RLS algorithm can be formulated
as follows:

y=¢9
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Where y is the output signal. ¢ is the input vector, and 8 is
the unknown parameter vector.

2) Kalman Filter

KF is perceived as an optimal estimator, which works in a
two-step process to estimate the parameters of interest. This
filter first cstimates the current state variables and then
updates them upon the receipt of the next measurement [21].
The structure of the utilized KF in this work is as follows:

(k) = Fx(tk—1) + wk~1)

y(k) = H(K) x(k) + v(k)
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Where v(k) is the measurement noise, k is the time step. F
is the transition matrix, and w(k) is the process noise.

The identification algorithms (KF and RLS) extracts the
acrodynamic drag and the rolling resistance coefficients of the
vehicle longitudinal dynamic model as they receive the
mcasured data regarding the engine torque and speed of the
vchicle.

3 Nearal network-hased method

The ANN-based model 1s utilized 1o concurrently estimate
the aerodynamic and roiling resistance coefficients. The ANN
model is composed of two inputs (engine torque and speed
values), two outputs (aerodynamic drag and rolling resistance
coeflicients) and five layers of interconnected neurons. In this
work, a set of experimental data are arranged in arrays to
provided the ANN with the required input and output data for
the training step. Once the training step is complete, the ANN
is used to estimate the vehicle acrodynamic drag and rolling
resistance coeflicients for two different paths. It should be
noted that 70% of the measured data is utilized in the training
stage, 5% ofthe data is used for the validation and the rest is
employed for testing the rained ANN.

[II. EXPERIMENTAL PROCEDURE

A. Validation setup

1) Vehicle parameters

Cxperimental data are acquired through using the Can-
Bus-OBD module and OBDWiz software from real world
driving tests. Fig. 2 shows the lesting vehicle (Dodge Caliber

Authorized licensed use imiled to Universite du Quetec a Tros-Rivieres. Downloaded on Saplember 30,2020 a1 14:17:48 UTC from IEEE Xplare Resiricbons apply

81



2012) and measurement [ools. The main parameicrs of the
vehicle are listed in Table 1 according to manufacturer
catalog.

Firstly, the real world driving parameters, such as engine
torque and speed, are measured. Then, the collected data are
employed to estimatc the acrodynamic drag and rolling
resistance coefficients by using the three previously described
estimation methods. Finally, the estimation methods are
validated by performing a scries of simulations.

(a) (b)
Fig. 2. a) The testing vehicle and b) Can-Bus-OBD

TABLE 1. PARAMETERS OF THE TESTING VEHICLE [22].
Parameter unit Value
Width mm 1747
Helght mm 1533
mass kg 1547
G - 0.375
w in asphalt 0.018

Tire size - P205/70R15

p kg/m* 1.200

2) Experimental tests analyses
Fig. 3 presents the vehicle speed and engine torque values
during the real world short distance test.
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Fig. 3. The short distance measured data profile (a) vchicle
speed and (b) engine torque.

Fig. 4 shows the vehiclc speed and the engine torque
values during the rcal world long distance tests.
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Fig. 4. The long distance measured data profile (a)
vchicle speed and (b) engine torque.

These measured engine torque and vehicle speed values
are applied to the vehicle model to cstimate rolling resistance
and aerodynamic drag coeflicients by using the three proposed
methods.

To test the robustness, cach mcthod has been applied using
several real life driving cycles for the long and short distances
including the highway and urban driving context.

B. Experimental resulls

Fig. 5 represents the simulation results oblained from the
short distance test. As it can be seen in this figure, the
cstimated cocfficients by different approaches are converging
to the real values of the acrodynamic drag cocfficient (Cpgp=
0.373) [22] and the rolling resistance cocfTicient for an asphalt
road (n = 0.018). The value of p is assumed to be the true
measured value of the tire rolling resistance coefficient on the
asphalt). These results illustrate that the estimated coefficicnts
by all the methods are almost within the same range. However,
the estimated values by KF and ANN arc more accurate than
RLS.
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Fig. 5. Estimated coefficients during the short distance test,
a) aerodynamic drag and b) rolling resistance.

Fig. 6 shows the estimated values of acrodynamic drag and
rolling resistance coefficients for the long distance test.
According to this figure, the estimated coefficients of this test
by the three methods are more accurate than the short test. It
implies that during the long distance test, estimation errors are
decreased.  Furthermore, these results indicate that the
estimation of rolling resistance coefficient is more accurate
than the aerodynamic drag coeflicient. This might be due 1o
the variation of unknown factors such as wind during the
joumey. Table 2 and 3 compare the obtained error rate and
mean values by different estimation methods.
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Fig. 6. Estimated coetficients during long distance test, a)
aerodynamic drag and b) rolling resistance.
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TapLr IL ERROR RATE AND MEAN OF ESTIMATED VALULS DURING
SHORT DISTANCE TESTS
Cocfficients Aerodynamie drag Rolling resixtance
Methodx ANN RLS KF ANN RLS | KF |
] s — 4 {
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IV. DISCUSSIONS
In this article. three methods for estimating the

acrodynamic drag and rolling resistance coeflicients are
compared under two tests. In the first test (short distance test),
the estimated acrodynamic drag coefficient by RLS is higher
than the actual value while the rolling resistance coefficient is
lower than the actual value. In addition, it can be observed that
the results obtained by RLS have more fluctuations compared
to the KF snd ANN keeping in mind that KIF shows more
estimation precision than RLS. Regarding the second test
(long distance test), it is clear that the RLS performance has
experienced some improvements compared to the short test.

The results of the performed simulation show that the
parameters vary with time but not significantly according to
the three methods on each driving cycle. By linearizing the
identification model, the evaluated methods can reasonably
converge toward their nominal values. The accuracy of the
RLS and KF estimations is strongly dependent on the torque
values. However, the accuracy of the ANN highly depends on
the vehicle speed and the engine torque. Since the
measurements of these values are always prone to the
occurrence of error. they have a significant effect on the
estimation results. The comparison of the results between RLS
and KF methods shows that the KF quality of estimations is
better than RLS. Moreover, the convergence of the KF method
is faster than the RLS. Regarding the crror rate, the ANN
shows a lower value than the other two methods, followed by
KF.

In brief, the accuracy of the estimation depends on the
measuring instruments and the configuration of the methods.
In addition, RLS and KF methods are more suitable for real-
time monitoring than neural network since they can casily
adapt to the drifts owing the variation of the conditions.
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V. CONCLUSION

In this work, three methods, namely RLS, KF, and ANN,
are used to simultancously estimate the acrodynamic drag and
rolling resistance coefficients under normal conditions. RLS
and KF conduct the estimation based on the longitudinal
model of the vehicle while ANN is independent of this model.
The estimation results of the methods are compared with
respect to the attained precision, convergence speed, and crror
rate. The final outcomes of this paper indicate that the
estimated values of the acrodynamic drag and rolling
resistance coefficients by these methods are similar to those of
the nominal values. In fact, the results of the three methods
show an acceptable error. However, KF. as an online
estimator, has becen more accurate and performed more
appropriately under the normal road conditions.

Usually, manufacture gives these values for the normal
operating condition (no snow, no ice, sunny days, etc.). The
proposed methods can allow to estimate these parameter under
diffcrente operating including winter conditions.

In addition, for electrical vehicle, those methods could be
applied to estimate energy usage and also to predict the
required energy to reach a destination.
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Annexe C — Utilisation du OBD Link et Torque Pro

(@ (b)
TORQUE

Figure 26: a) module OBD Link MX, b) logiciel Torque Pro

Etape d’installation :

1. Télécharger et installer Torque Pro sur un appareil Android
2. Télécharger les PIDS pour le KIA Soul Ev dans :

https://github.com/JejuSoul/OBD-PIDs-for-HKMC-EVs

3. Apres avoir téléchargé les fichiers, transférer sur I’appareil Android dans le

répertoire de Torque situé généralement dans : /sdcard/.torque/extendedpids/.
Pour ajouter les PIDs dont on aura besoin comme suit :
4. Aller dans « Settings » puis sélectionner « Manage extra PIDs/Sensors »

5. Cliquer sur I’icdne avec les 3 points en haut a droite apres sur « Add predefined

set ». On peut voir alors la liste des fichiers ajoutés précédemment.
6. Cliquer sur un fichier et répéter 1’opération pour ajouter tous les fichiers voulus.

Etape d’utilisation :




Cliquer sur « Real time information »

Aller dans Setting ou menu

Cliquer sur « Démarrer Log » pour commencer a enregistrer les données

Cliquer sur « Arréter Log » pour arréter I’enregistrement les données
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