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Abstrncl- The new strin gent standards laid down for 
rf'ducing poUutiOD and greenhou.5t ga eDl15S10nS iD 
.r-.. nspo.otation !!cctor compd the vehiclc mnnufacturcn to use 
difftrent ttchoologies to dee,nrbonize tbe v('h icles and reduce 
th cir cnergy consumptiun . Powcrtruin contro l �n �p�t �i�m�i�z�.�~�t �i �o�n �,� 

cspcdnll y bnscd on instantancou nccural e informati on, bas nn 
impurta nt rult .' in imprO\ 'ing th e rud ecunumy uf "c hide. 
Howcvcr, its successful implcmcnhltion requins an occunte 
�p�l�.�t�r�n�m �e �t�~�r� estim l.tio n method. T he m:lÎn pu r pose ort his :.rticle 
is to propose an Recura te adaptive method for estimariog tbe 
rolUng resÏ5tance .and auodynamic drô.g, which are hvu 
important cacton in powertraÎD optimization of a vebic1e. l n tbis 
rt'gard , two onlin !' adaptive metbods, namety l'ecursive �l �e �~�u�t� 

squares (RLS) and Kalman flller (KF), are formul. l ecl for the 
parnmtttrs estimation of tht powtru 'ain by UJing th !' 
cxperimcntal data from a rcal dri vi ng cycle 1tnd thelr 
perfol'mnnct s are compnred with an offii ne tl'nined al'tifida l 
neural nctwork., (A N1\'). T he �c�x�~�r�i �m�c �n�t �a�l� and simulati on 
result s show that KF iJ more lICCuflite tb'ID RL S in terms of 
prcdicting th e nmd l'ulHnl( rcsistuncc and :lcrod ynllmi c �d�n�l�~� 

and il performance is very Deôtl' to the developed AN , 

Kt!)I , .. 'ortls- Aerody"amic �f�o�r �c�~ �,� �o�l�l�l�i�,�, �~� �~ �.�\�t�i�m�a�t�i �o �"�,� mlling 
rl! sisfan ce, recll rsive itlentifi cation, " Id.icle (Iy lltlmi e mot/el. 

1. INTROlJuc.-nO, 

The energy eonsumption of eonventional vehieles depends 
on several paramcters, sueh as vehiele's weight, engine 
emeieney, and dynamie parameters like roll in)l resistanee and 
vehiele aerodynamie dral( r I l and the �~ �l �o �b�.�1� fuel savinl( in 
slich systems is thoroughly related to the power flow control 
between each eoergy source and the powertrain L2J,[3] . Online 
estimation of vehicle parameters has been an acti ve area of 
researeh in rceent dee.des [4]. Duc to the diO"erencc in the size 
oful e vehieles, the form of the bodywork and the number of 
wheel .xles, the roll ing resistanee and air resistance vaill es 
vary From one vehicle to another [5]. However, lhese factors 
are normally a sumed the same in the lit erature regardless of 
tbe vehicle configuration. The rolli ng �r �e�s�i�s�~�1 �n �c�e� eoemcient 
may vary depending on lhc Iype of li re and the road surface 
[6],[7] ,[8]. Moreover, vehicle mass and aerodynamie drag 
coefficient can signifi eantly change when a trail er or anolher 
unpowered vehiele is attachcd to the car. Therefore, onli ne 
parameler esl imation is necessary in the formulation of 
powcrtra in co ntrol in co mmercial vc hi clcs si ncc il rcduccs the 
initial calib rati on cO"ort. Furthermore, it helps tl le powertrain 
controll er to quickly adapt to di fferent vehicle configurations, 

resulting in a better fuel economy. Therefore, the fuel 
eonsumption of the vehicle and the relea e of C0 2 in the 
almOsphere signifi eantly depends on lhe resistanee forces of 
the vchicle [9]. The drivi ng resistanee comprises roll ing 
resistanee, air drag and mass. Aerodyoamic drag arises from 
the action of air in the opposite direction to the motion of lhe 
vehicle [ 10]. It is the main source of resistanee and 
proportional to the square of the vehiele's specd. At highway 
conditions, over 50% of the power ofa car is uscd to overcome 
air drag. For instance, when the specd of the vehicle is 50 
km/h, the aerodynamic drag represents less than 50% of the 
total resistance while it inereases to more lhan 80% at 130 
km/h. Vehicle control systems requi re lateral and longitudinal 
conditions (vclocit ies and forces) to control wheel spin, 
vehicle yaw raIeS, and lateral slip angles. Among these states, 
the estimati on of longi tudinal states makes a major 
contribution to vehic1e stabilit y and traction control [I I J,[ 12]. 

Accurdte real-ti me estimation of vehicle loads, such as 
vehicle mass and pavement conditions, aerodynamic drag and 
rolling reSiSlanCe, can improve safety, effieieney and 
performance [ 13]. The aerodynamie drag estimate has not 
been fu ll y explored yet in the li terature and requires extensive 
investigations. Somc tesls have becn carri ed ouI in \Vi nd 
tunnels to simulate the rond conditions for aerodynamie drag 
ealculation. Since aerodynamics has become essential in 
automoti ve design, the main development tool is the large­
seale wind tunnel. Unfortunalcly, for a reali st ie simulation of 
road conditions. the conventional large-scale wind tunnels 
have some l imitations [1 4]. The ground is fixed relali ve to the 
vehicle, which all ows a boundary layer to develop and the 
wheels of the development mule not to rotate [1 5]. ln addition, 
the aerodynamie data obtained From di fTerent wi nd tunnels 
show a signi fieant degree of di . persion. Not only there arc 
variati ons in the absolute dmg and the rollin g resistance 
values, but ulere is also a dispersion due to Ihe change of 
config umtion [1 6]. In this regard, an independent and 
inexpensive method for identifying di lIerences in 
aerodynamic dmg resulting from various confi gurations 
should be devcloped. Online estimaI ion of vehiele parameters 
has bec n an ac ti ve area of research in recent years 
[11], [1 7],[ 18]. The model-based approach (using lhe 
longitudinal dynamie model of the vehicle and the CA bus 
signais) is the preferrcd method for estimating parameters duc 
to the minimal additional sensors requirements. The 
estimaI ion of the.e parameters has been the center of 
attenti ons as they remarkably eOlltr ibute to fuel consumption 
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[19J . The obtained infonnalion from sensors, sueh as OPS, 
aceeleromeler. and baromeler, is usuaUy noisy. Model-based 
tillcrs arc onen eombined wilh sensor mcasurcmcnls 10 
improve Ihe aeeuraey of the eSlimale. 

ln this work, Ihe aerndynamie and friction eoeffieienls are 
estimaled simuhaneously by using Ihe experimemal dala 
aequired from a vehiele over seveml route conditions. To do 
so, three methods are employed for the aerodynamie and 
fri ction coefficients estimation. The tirst and the second 
melhods arc adaptive, based on the longitudinal model using 
reeursive least squares (RLS) and Kalman tilter (KF) melhods 
while the third one uses arlitieial neural networks (ANN). 

The rest of the doeument is organized as follows. The 
utilizcd methods for eSlimating the parameters arc diseussed 
in section il. The experimental proeedure is detailed in seetioll 
III. Section IV presems the obtained results of this work. 
Finally, lhe conclusion is given in section V. 

II. ESTIMATION METIlODS 

A. Vehicle longitudinal dynamic muc/el 

Fig. 1 represents the resistive forces acting on the 
longitudinal dynamies of a vehicle. These forces arc 
eomposed of vehicle traction force (F.), vehicle resistanee 
forces, ineluding the rolling resistance (Fr.u) and aerodynamic 
dmg (F ..... ), grading resistanee (Fgr• d .), and aeeeleralion force 
(Fa«). The dynamie equation of vehicle motion along the 
longitudinal direction to overcome ofthese forces is expressed 
by( I): 

{ 
Fx = Frou + Fa.ra + FRrad• + Face 

r;"; MgltCosll + i pA C ..... (V)2 + Mgsln6+ Mil (1) 

Wherc T is lhe engine lorque, w is lhe engine speed, '1 is 
the overall driveline effieieney, v is the vehicle speed, M is the 
vehicle mass, x is the distance, x is the aeceleration, g is the 
gravitational acceleration, a is the road grade, ~ is the rolling 
resislanee eoefficienl, C •• ro is the drag coefficienl, p is the 
density of air, and A is the front surface of lhe vehiele. 

Fig. 1. The resist ive forces influeneing the longitudinal 
dynamics of the vehicle 

B. Propused eslimalion melhod 

For the purpose of this slUdy, three model-based 
approaches are used for the estin13tion of the aerodynamie and 
rolling resistance coefficients and olhcr unkno,," parametcrs 
affeeting the vehicle's longitudinal motion. The three methuds 
are discussed in delails in the following sections. 

1) RLS 
RLS is an adaptive tilter that reeursively estimates certain 

paramelcrs for minimizing a weighted linear least squares eost 
function. This eosl function is associaled with lhe input 
signais. RLS gives quality performance when operaling in 
time-varying conditions [20] . 

ln this approach. unknown parJmeter veetor is updated 
ileratively at each lime step by using the previous input and 
oUlput measured data. The RLS algorithm can be fonnulaled 
as foUows: 

Where y is the outpul signal, <f> is the input vector, and a is 
the unknown parameler veetor. 

2) Kalman Filler 
KF is perceived as an optimal estimator, whieh works in a 

two-step proeess to estimate the paramelers of interes!. This 
mler fo rst eSlimates the CUffent state variables and then 
updates lhem upon lhe receipt of the next measurement [2 1J. 
The structure orthe utilized KF in this work is as follows: 

1 
x(k) = F x(k - 1) + w(k - 1) 

y(k) ; H(k) x(k) + v(k) 

y; 17 - M.I: -Mgsln61 

H ; lipA(v)2 Mgcos 61 

x = lCaero ~lf 

(3) 

Where v(k) is the measurement noise, k is the time step, f 
is the transition matrix, and w(k) is the process noise. 

The idenlification algorithms (KF and RLS) extmets the 
aerodynamie dmg and the rolling resistance coefficients of the 
vehicle longitudinal dynamie model as lhey reeeive the 
mcasured dala regarding lhe engine torque and specd of lhe 
vehicle. 

3) Neural neMark-hased melhad 
The ANN-bascd model is utilized to coneurrcntly estimate 

the aerodynamie and roliing resishmce coefficiellls. The ANN 
model is eomposed of two inputs (engine torque and speed 
values), two outputs (aerodynamie drag and rolling resislance 
coefficients) and tive layers ofinlerconnccled neurons. In Ihis 
work, a set of experimental dala are arranged in arrays lO 
providcd the ANN wilh lhe required input and OUlput data for 
the train ing slep. Once the lraining slep is complete, û,e ANN 
is used to estimate the vehicle acrodynamic dmg and rolling 
resistance eoefficiellls for two diJTerent palhs. Il shou ld be 
noted Ihal 70% of the rncasurcd data is utilized in the lmining 
stage, 15% of the data is used for the validation and the rest is 
employed for testing the tmined ANN. 

III. EXPERIMENTAL PROCEDURE 

A. Valida/ioll sellip 

1) Veltic/e parame/ers 
Experimenlal data arc acquired Ihrough using the Can­

Bus-OBD module and OBDWiz software from real world 
driving teslS. Fig. 2 shows the lesting vehicle (Dodge Caliber 
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2012) and measurement tools. The main paramelers of the 
vehicle are lisled in Table 1 according to manufacturer 
catalog. 

Firstly, the real world driving pararneters, such as engine 
torque and speed, are measured. Tben, the coUected data are 
employed to estimatc the aerodynamic drag and roUing 
rcsistance coefficients by using the thrce prcviously dcseribcd 
estimation melhods. Finally. the estimation methods are 
validatcd by pcrforming a series of simulations. 

(a) (b) 

Fig. 2. al The tesling vebicle and bl Can-Bus-OBD 

T ABLE 1. PARAMHERSOFTH E TESTING VEHICLE [22]. 

Panlmetu uni. Value 
Wld.h mm 1 747 
H<!ah. mm 1533 
.,. .. k' 1547 
C 0.375 

~ ln "Dllalt O.OIR 
Tire size P205170RI5 

p kg/m' 1.200 

2) Experimental tests analyses 
Fig. 3 presents the vehicle speed and engine torque values 

during the real world shon distance test. 
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Fig. 3. The shon distance measurcd data profile (a) vehicle 
speed and (b) engine torque. 

Fig. 4 shows the vehic le speed and the engine torque 
values during the real world long distance tests. 
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Fig. 4 . The long distance measurcd data profile (a) 
vehiele specd and (b) engine torque. 

These measured engine torque and vehicle speed values 
arc applied to the vchicle model to estimate rolling resistance 
and aerodynamic drag coefficients by using the tbree proposed 
methods. 

To test the robustness, each method has bccn applicd using 
several reallife driving cycles for the long and shon distances 
including the highway and urban driving context. 

B. Experimental rest/lts 

Fig. 5 represents the simulation results obtained from the 
sbon distance test. As it cao he seen in this figure, the 
cstimatcd coefficients by difTcrcnt approaches are converging 
to the real values of the acrodynamie drag coefficient (Cu .... = 
0.375) [22] and the roUing resistance coefficient for an asphall 
road (II = 0.018). The value of ~I is assurned to bc the truc 
measured value of the tire rol ling resistance coefficient on the 
asphalt). These results iIIustrate thatthe cstimated coefficients 
by aU the methods are almost within the same range. However, 
the estimated values by KF and ANN are more accurale than 
RLS. 

Time (s) 
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(b) 
ë 
~ 0.0181 1 ~ 
E 1 - Reference 

~0018051 A~N 
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1l r!(' -- KF a 0018 • .l.~~~. __ . __ ._----
~ ... ~ .. ' '.; \, ." .. -._ ..... - .... _ ..... _.,. - ; .. 
~ 0.01795 j 
.5 i 
~ 0.0179 J 
~ 0 50 100 150 200 250 

Time (5) 
Fig. 5. Est imated coefficients during the short distance test, 

a) aerodynamic drag and b) rolling resistance. 

Fig. 6 shows the estimated values ofaerodynamic drag and 
rolling resistance coefficients for the long distance lest. 
According to this figure, the estimated coefficients of this test 
by Ihe Ibree method5 are more accurate than the short test. Il 
implies lhat during the long distance test, est imation errors are 
decreased. Furthermore, these results indicate that the 
estimation of rolling resislance coefficient is more accurate 
than the aerodynamic drag coefficient. This might be due 10 
the variation of unknown factors such as wind during the 
joumey. Table 2 and 3 compare the obtained error rate and 
mean values by different est imation methods. 
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Timc( O\) 

Fig. 6. Estimatcd coefficients during long distance test. al 
aerodynamic drag and bl ro lling resistance . 

TAULe II. 

( ·~mdent.ll 

Mdhod'4 

RMSE 

A\'enls,:e 
value 

TARLF III . 

CnefTidentli 

Method~ 

ERROR RAT[ AND MEAN Of ESTIMM1!O VAllJ[S DURINO 
SHORT OIST A~CE T~"S 

Aerody .... mlc drllg RuUine rl.~lsbtnc~ 

ANN RLS KF ANN RLS KF 

0.0065 0.0246 0.0341 1.8310<; 0.0011 0.0011 

0.3750 03745 03753 0.0180 0.0179 O.ot81 

ERROR RATF. AND MEAN OF F.STIMATEU VA U JF.S n URING 
LONG DISTANCE TESTS 

Aerodym.mlc:: drll~ Rollin~ rnl~-t.nce 

ANN RLS KF ANN RlS KF 

83 

RMSt: 73011J.1! 0.018 0.0076 1.9310<; 0.0013 25610<; 

Anrftie 0.3750 0.3758 0.3752 0.0180 0.Ot80 0.0180 values 

IV. DtSCUSS10NS 

ln this article, tbrce methods for est ima ling the 
aerodynamic drag and rolling rcsistance coefficients arc 
compared under two tests. ln the firstlest (short distance test), 
the cstimatcd acrodynamic drag coefficient by RLS is highcr 
than the aClUal value while the ro lling resistance coefficient is 
lower than the actual value. In addition, it can be observed that 
the results obtained by RLS have more fluctuaùons compared 
to the KF snd ANN kecping in mind that KF shows more 
estimation precision than RLS. Regarding the second test 
(long distance test), it is c lear that the RLS pcrfomlance has 
cxperienccd sorne improvements comparcd to the short test. 

The results of the performed simulation show that the 
parameters vary wi th time but nOl significant ly according to 
the tbree methods on each driving cycle. By linearizing the 
identi fication modcl, thc evaluated mcthods can reasonably 
converge loward their nominal va lues. The accuracy of the 
RLS and KF est imations is strongly dependcnt on the torque 
values. However, the accuracy of the ANN high ly dcpends on 
the vehiele spccd and thc cngine torque. Since the 
measuremeOlS of these values are always prone to the 
oecurrence of error, they have a signi fi cant efTect on the 
estimation results. The comparison of the results between RLS 
and KF methods shows that the KF quality of estimations is 
better than RLS. Moreover, the convergence oflhe KF method 
is fas ter than the RLS. Regarding the error mte, the ANN 
shows a lower value than the other two methods, followed by 
KF . 

ln brief, the accuracy of the estimation depends on the 
measuring instruments and the configuration of the methods. 
ln addition. RLS and KF methods are more suitable fo r real· 
time monitoring than neural nctwork s ince they can easily 
adapt to the d rills owing the variation of the conditions. 
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V . CONCLUSION 

ln tbis work, tbree methods, namely RLS, KF, and ANN, 
are uscd 10 simullancously es timate the aerodynamic drag and 
rolling resistance coefficients under normal conditions. RLS 
and KF conduct lhe eslim.1lion based on Ihe longiludinal 
model oflhe vehicle while ANN is independenl Of lhis mode!. 
The eSlimalion results of lhe melhods arc compared wilh 
respect to the attained precision, convergence speed, and error 
rate. The final oulcomes of Ihis paper ind ic'Ie lhal the 
cstimated values of the aerodynamic drag and rolling 
resistance coefficients by these mcthods arc similar to those of 
lhe nominal values. ln fact, the results of the tbree methods 
show an acceptable error. However, KF, as an online 
estimutor, has been more accu raIe and pcrformed more 
approprialely under the normal road conditions. 

Usually, manufaclure gives these values for the nonnal 
opcraling condilion (no snow, no ice, sunny days, ClC.). The 
proposed melhods can allow 10 eSlnTh1le these parameler under 
difTcrenle opcraling including winter conditions. 

ln addition, for eleclrieal vchic1e, those methods could bc 
applied to esti mate energy usage and also to predict the 
required energy to rcach a des tination. 
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Annexe C - Utilisation du OBD Link et Torque Pro 

(a) (b) 

Figure 26: a) module OBD Link MX, b) logiciel Torque Pro 

Étape d'installation: 

1. Télécharger et installer Torque Pro sur un appareil Android 

2. Télécharger les PIDS pour le KIA Soul Ev dans : 

https://github.com/JejuSoul/OBD-PIDs-for-HKMC-EVs 
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3. Après avoir téléchargé les fichiers, transférer sur l'appareil Android dans le 

répertoire de Torque situé généralement dans: /sdcard/.torque/extendedpids/. 

Pour ajouter les PIDs dont on aura besoin comme suit: 

4. Aller dans « Settings » puis sélectionner « Manage extra PIDs/Sensors » 

5. Cliquer sur l'icône avec les 3 points en haut à droite après sur « Add predefined 

set ». On peut voir alors la liste des fichiers ajoutés précédemment. 

6. Cliquer sur un fichier et répéter l'opération pour ajouter tous les fichiers voulus. 

Étape d'utilisation: 
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l. Cliquer sur « Real time information» 

2. Aller dans Setting ou menu 

3. Cliquer sur « Démarrer Log» pour commencer à enregistrer les données 

4. Cliquer sur « Arrêter Log» pour arrêter l'enregistrement les données 


