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Abstract 

Together, neck pain and back pain are the first cause of disability worldwide, 

accounting for more than 10% of the total years lived with disability. In this context, 

chiropractic care provides a safe and effective option for the management of a large 

proportion of these patients. Chiropractic is a healthcare profession mainly focused on the 

spine and the treatment of spinal disorders, including spine pain. Basic studies have examined 

the influence of chiropractic spinal manipulation on a variety of peripheral, spinal, and 

supraspinal mechanisms involved in spine pain. While spinal cord mechanisms of pain 

inhibition contribute at least partly to the pain-relieving effects of chiropractic treatments, the 

evidence is weaker regarding peripheral and supraspinal mechanisms, which are important 

components of acute and chronic pain. This narrative review highlights the most relevant 

mechanisms of pain relief by spinal manipulation and provides a perspective for future 

research on spinal manipulation and spine pain, including the validation of placebo 

interventions that control for placebo effects and other non-specific effects that may be 

induced by spinal manipulation. 

Keywords : Low back pain; neck pain; pain inhibition; placebo; spinal manipulative therapy;

manual therapy.  
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Introduction

 Spine pain of musculoskeletal origin can affect the cervical, thoracic, or lumbar 

regions. Its duration may range from an acute episode of a few days or weeks to chronicity 

over several years (Borghouts et al., 1998; Urits et al., 2019). Low back pain (LBP) is the 

leading contributor to disability, followed closely by neck pain (NP) (James et al., 2018; Urits 

et al., 2019). Together, back pain and neck pain are responsible for more than 10% of the 

total years lived with disability worldwide (James et al., 2018). Spine pain can originate from 

myofascial tissues, facet joints, intervertebral discs, spinal ligaments, and other less common 

causes (Urits et al., 2019; Vlaeyen et al., 2018). However, it remains challenging to identify 

the source of pain in individual cases (Hartvigsen et al., 2018; Vlaeyen et al., 2018).

Accordingly, chronic low back and neck pain are considered non-specific in a large majority 

of cases, meaning the pain cannot be attributed to a specific origin or to a pathology 

detectable with imaging methods (Borghouts et al., 1998; Vlaeyen et al., 2018). Recently, 

both chronic non-specific low back and neck pain have been classified as chronic primary 

pain syndromes under the new International Association for the Study of Pain (IASP) 

classification of chronic pain for the latest revision of the International Classification of 

Diseases (ICD-11) (Nicholas et al., 2019; Treede et al., 2019; Vlaeyen et al., 2018). Due to 

the dramatic impact of acute spine pain and chronic primary spine pain on individuals and 

society (Hartvigsen et al., 2018; James et al., 2018; Urits et al., 2019; Vlaeyen et al., 2018),

safer and more effective interventions are needed. Among conservative approaches, 

chiropractic spinal manipulative therapy (SMT) is one of the potentially effective 

interventions for these conditions.  

Chiropractic is a healthcare profession in the field of musculoskeletal health. Its main 

focus is on spine function and disorders, including spine pain (Brown, 2016; Murphy et al., 

2011). Chiropractors use a variety of conservative approaches, including SMT as the most 

common intervention (Beliveau et al., 2017). SMT involves the application of spinal 

manipulation (SM; also referred to as chiropractic adjustment in the field of chiropractic)  

over several sessions (W.H.O., 2005). During a chiropractic SM, clinicians apply a controlled 

force of a specific magnitude and orientation to a targeted spinal segment (Herzog, 2010).

The concept of SM specificity has been challenged by research showing that forces cannot be 

effectively directed to a single target segment and in a precise direction (Bereznick et al., 

2002; Herzog et al., 2001; Ross et al., 2004). Nonetheless, the contact site may influence the 

neurophysiological responses to SM (Nim et al., 2020; Reed et al., 2015; Reed and Pickar, 

2015). Whether biomechanical characteristics or neurophysiological mechanisms of SM 
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differ when applied by different providers remains unknown. Here, the neurophysiological 

mechanisms of SM are reviewed from a chiropractic perspective (Henderson, 2012), although 

informed by studies where SM was performed by chiropractors and other practitioners. 

SM generally consists in the application of a mechanical force on spinal joints in the 

form of a high velocity and low amplitude (HVLA) thrust preceded by a slower preload 

phase (Pickar and Bolton, 2012; Reed et al., 2014). Both the preload and thrust phases impact 

paraspinal muscle responses (Nougarou et al., 2013; Reed et al., 2014) and load articular 

tissues, including the intervertebral discs, joint capsules, and ligaments (Funabashi et al., 

2017). Previous studies suggest that the mechanical force applied during SM alters spinal 

biomechanics and activates paraspinal sensory terminals (Bialosky et al., 2009a; Gyer et al., 

2019; Pickar and Bolton, 2012). It has been proposed that this afferent fiber stimulation 

initiates a cascade of peripheral and central neurophysiological effects (Bialosky et al., 

2009a; Pickar and Bolton, 2012). In turn, these effects may underlie some of the clinical 

outcomes observed with SMT (Bialosky et al., 2009a; Pickar and Bolton, 2012). A

comprehensive model including biomechanical and neurophysiological mechanisms for pain 

relief induced by manual therapy has been proposed (Bialosky et al., 2018; Bialosky et al., 

2009a). Nonetheless, the exact neurophysiological mechanisms by which SM relieves pain 

remain unclear (Gyer et al., 2019).  This is particularly important for pain affecting the spine, 

as most of the current Clinical Practice Guidelines (CPG) recommend the use of SMT for the 

management of LBP and NP (Bussieres et al., 2018; Cote et al., 2016; Foster et al., 2018; 

Kjaer et al., 2017; Qaseem et al., 2017).  

The aim of this review is to discuss the pain-relieving mechanisms of SM for spine 

pain. In addition, a perspective on challenges and future directions for research on 

chiropractic SM and spine pain will be presented. 

Mechanisms of pain relief by spinal manipulation 

 Previous studies on pain relief by SM have reported effects on the peripheral nervous 

system, spinal cord mechanisms, and supraspinal processes (Bialosky et al., 2009a; Gyer et 

al., 2019). In this section, the mechanisms of pain inhibition by SM will be reviewed 

critically, based on the location of the effect within the nociceptive system. A schematic 

summary of these potential mechanisms is presented in Figure 1. A summary of the most 

relevant mechanisms with supporting evidence is also presented in Table 1.  
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1. Peripheral mechanisms 

Spine pain may be caused by an injury to musculoskeletal tissues of the spine 

(Vlaeyen et al., 2018) through direct activation of nociceptive afferents. In acute and chronic 

inflammatory states, spine pain may be modulated by sensitization and desensitization of 

nociceptors by pro- and anti- inflammatory mediators. Here we will discuss how SM may 

produce pain relief by modulating inflammatory processes and sensitization in peripheral 

tissues.

1.1. Cortisol release 

Pain may be inhibited by hormones with a known anti- inflammatory function on the 

periphery, such as cortisol (Hannibal and Bishop, 2014; Hench et al., 1950; Saldanha et al., 

1986). Cortisol levels rise in anticipation and as a response to acute stressful situations 

(Hannibal and Bishop, 2014; Mason et al., 1973). It has been proposed that stress induced by 

SM or its anticipation, particularly when applied to the cervical spine, may partially underlie 

its pain inhibitory effects (Kovanur-Sampath et al., 2017a; Plaza-Manzano et al., 2014; 

Valera-Calero et al., 2019; Whelan et al., 2002). However, the studies reported inconsistent 

changes in plasma or salivary cortisol levels after SM. Up to five minutes after SM, cortisol 

levels either increased (Plaza-Manzano et al., 2014; Valera-Calero et al., 2019), decreased 

(Kovanur-Sampath et al., 2017a) or remained unchanged (Lohman et al., 2019; Whelan et al., 

2002) in healthy participants and patients with NP. Moreover, the short-term effects of SM 

were not significantly different from those observed with mobilization techniques (Valera-

Calero et al., 2019). These conflicting results may be due to methodological discrepancies, 

patients with acute pain vs. patients with chronic pain), the site of SM (cervical vs. thoracic), 

cortisol sampling methodology (serum vs. saliva) and its collection (immediately following 

the intervention vs. 5 minutes or longer after SM). These inconsistencies prevent drawing any 

conclusion on the effect of SM on cortisol. This does not rule out the effect, but more high-

quality studies with standardized methodology are needed to reach a conclusion. Thus far, the 

conflicting findings do not support the release of cortisol as a specific pain-relieving 

mechanism of SM. 

1.2. Peripheral inflammation and sensitization 

Following cervical SM, an increase in plasmatic substance  P was reported, while 

pressure-pain sensitivity decreased (Kovanur-Sampath et al., 2017b; Molina-Ortega et al., 
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2014). The authors proposed that augmented substance P may underlie the hypoalgesic 

effects of SM, based on previous reports showing that substance P can inhibit nociceptive 

transmission in the spinal cord via feedforward mechanisms (Nakatsuka et al., 2005; Wu et 

al., 2005). However, this contrasts with the large body of evidence that describes substance P 

as a pro-nociceptive neuromodulator (Dickenson, 1995; Hackel et al., 2010; Van Der Kleij 

and Bienenstock, 2007). Peripheral inflammation and tissue injury are associated with a 

release of substance P (Dickenson, 1995; Hackel et al., 2010; Van Der Kleij and Bienenstock, 

2007). In turn, substance P is involved in neurogenic inflammation, hyperalgesia, and 

allodynia (Hackel et al., 2010). Both its peripheral and central release by primary afferents 

seems to be essential to experience moderate to intense pain (Cao et al., 1998). Also, elevated 

cerebrospinal fluid levels of substance P were observed in patients with chronic pain, likely 

reflecting levels in the spinal cord (Almay et al., 1988; Russell et al., 1994). Rather than a 

hypoalgesic mechanism, the increase in plasmatic substance P levels following SM may thus 

reflect a pro- inflammatory response due to spine tissue deformation, which has been shown 

to activate integrins, and in turn up-regulate substance P expression (Zhang et al., 2017). On 

the basis of the well-established pro-nociceptive and pro- inflammatory role of substance P, 

the hypothesis that it may contribute to pain relief by SM is unlikely. 

Nociceptive fibers may be sensitized by reactive oxygen species (ROS) in tissues 

under oxidative stress resulting from acute injury (Westlund et al., 2010). In animal models, 

ROS such as hydrogen peroxide or nitric oxide have been shown to activate TRP (transient 

receptor potential nociceptor) channels, mediating pain and inflammatory changes (Westlund 

et al., 2010). In a rat model of immobilization- induced tactile allodynia, SM applied with a 

hand-held mechanical device prevented an increase in plasmatic ROS while improving 

indices of nerve function and allodynia (Duarte et al., 2019). In line with these findings, an 

increase in serum levels of antioxidant enzymes was reported after a 5-week treatment that 

included SM in patients with chronic spine pain (Kolberg et al., 2015). Future research is 

needed to examine whether these mechanisms contribute specifically to the pain-relieving 

effects of SM in patients with acute and chronic spine pain.  

Cytokines and chemokines are immune regulatory substances that can induce 

inflammation and contribute to nociception (Abbadie et al., 2003; Marchand et al., 2005; 

Sommer and Kress, 2004). In patients with LBP, pro- inflammatory mediators are involved in 

the sensitization of nociceptors and their inflammatory profiles vary depending on pain 

duration (Teodorczyk-Injeyan et al., 2018; Teodorczyk-Injeyan et al., 2019). Preliminary 
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results suggest that SM may reduce pro-inflammatory responses (Roy et al., 2010; 

Teodorczyk-Injeyan et al., 2006; Teodorczyk-Injeyan et al., 2018), which in turn may 

produce pain relief through changes in peripheral inflammation and nociceptor sensitization.

The current literature suggests that SM may reduce pro-nociceptive or pro-

inflammatory mediators that are increased during spine pain (Duarte et al., 2019; Roy et al., 

2010; Teodorczyk-Injeyan et al., 2006). This may limit peripheral sensitization and produce 

pain relief (Kolberg et al., 2015; Teodorczyk-Injeyan et al., 2018). Although the quality of 

the evidence on the influence of SM on biological markers was considered to be moderate 

(Kovanur-Sampath et al., 2017b), the current available results are not consistent and their 

interpretation does not always provide plausible pain-relieving mechanisms that are specific 

to SM. Future high-quality and well-controlled studies including mechanistic trials are 

needed to provide support to this line of research. 

2. Spinal cord mechanisms 

Behavioral studies indicate that SM can decrease pain sensitivity in tissues linked 

anatomically to the spinal cord segment influenced by SM  (Alonso-Perez et al., 2017; 

Bialosky et al., 2008; Bialosky et al., 2009b; de Camargo et al., 2011; Dorron et al., 2016; 

Fernandez-Carnero et al., 2008; Fernandez-de-las-Penas et al., 2007; Fryer et al., 2004;

George et al., 2006; Laframboise et al., 2016). This suggests that the pain inhibitory effect of 

SM may rely, at least in part, on segmental mechanisms. This hypothesis was examined in 

several studies that will be discussed in the following sections. 

2.1. Segmental inhibition of nociceptive processes by spinal manipulation 

The hypothesis that SM modulates pain thresholds and sensitivity in body regions 

related to the spinal segment influenced by SM is supported by systematic reviews and meta-

analyses (Coronado et al., 2012; Honore et al., 2018; M. Millan et al., 2012). The duration 

and size of these effects are still unclear, although the available evidence suggests that they 

are transient, lasting less than ten minutes (Honore et al., 2019). A consistent finding is that 

SM has a more favorable and significant effect on segmental pain thresholds in comparison to 

inactive control or sham SM. Similar effects were observed with interventions such as non-

thrust SM or mobilization (Alonso-Perez et al., 2017; Fryer et al., 2004; Honore et al., 2018; 

M. Millan et al., 2012; Salom-Moreno et al., 2014; Thomson et al., 2009). In healthy 

results suggest that SM may reduce pro-inflammatory responses (Roy et al., 2010; 

Teodorczyk-Injeyan et al., 2006; Teodorczyk-Injeyan et al., 2018), which in turn may Teodorczyk-Injeyan et al., 2006; Teodorczyk-Injeyan et al., 2018), which in turn may 

produce pain relief through changes in peripheral inflammation and nociceptor sensitization.
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(Kovanur-Sampath et al., 2017b), the current available results are not consistent and their 

interpretation does not always provide plausible pain-relieving mechanisms that are specific 

to SM. Future high-quality and well-controlled studies including mechanistic trials are 

needed to provide support to this line of research. 
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and size of these effects are still unclear, although the available evidence suggests that they 

are transient, lasting less than ten minutes (Honore et al., 2019). A consistent finding is that are transient, lasting less than ten minutes (Honore et al., 2019). A consistent finding is that 

SM has a more favorable and significant effect on segmental pain thresholds in comparison to 

inactive control or sham SM. Similar effects were observed with interventions such as non-

thrust SM or mobilization (Alonso-Perez et al., 2017; Fryer et al., 2004; Honore et al., 2018; 

M. Millan et al., 2012; Salom-Moreno et al., 2014; Thomson et al., 2009). In healthy 
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volunteers, no significant differences were observed before and after applying cervical, 

thoracic or lumbar SM compared with mobilization on pressure pain thresholds (PPTs) 

(Alonso-Perez et al., 2017; Fryer et al., 2004; Thomson et al., 2009). Moreover, in patients 

with chronic NP, Salom-Moreno et al. reported similar small effects of thoracic SM and 

mobilization on PPTs (Salom-Moreno et al., 2014). The evidence comparing SM and 

mobilization is still scarce. Yet, it suggests that both interventions have comparable effects on 

segmental pressure pain sensitivity. It remains to be determined how they compare on other 

effects and mechanisms described below. 

The effects of SM on PPTs around the SM application site or in a related dermatome 

have been assessed in several studies (Alonso-Perez et al., 2017; de Camargo et al., 2011; 

Dorron et al., 2016; Fernandez-Carnero et al., 2008; Fernandez-de- las-Penas et al., 2007; 

Laframboise et al., 2016). Following a single cervical SM in healthy volunteers, PPTs were 

increased (i.e. pain sensitivity was decreased) in the dermatome corresponding to the level of 

application of SM (Alonso-Perez et al., 2017; Fernandez-de-las-Penas et al., 2007). Similar 

findings were observed in patients with musculoskeletal pain (Fernandez-Carnero et al., 

2008). Regional effects have also been reported for PPTs of myofascial tissues innervated by 

a spinal segment (myotome) related to the spinal level on which SM was applied (de 

Camargo et al., 2011; Dorron et al., 2016; Laframboise et al., 2016).

In spite of this consensus on segmental effects of SM, it should be noted that two 

recent studies using a single-blinded placebo-controlled design obtained conflicting results 

(Aspinall et al., 2019a; Honore et al., 2020). The quality of studies on segmental hypoalgesia 

resulting from SM is variable. For musculoskeletal pain conditions, the quality was 

considered to be low (Aspinall et al., 2019b) and for healthy volunteers, the quality was rated 

as moderate to high (Coronado et al., 2012; Honore et al., 2018). Most studies showed a 

higher risk of bias due to the lack of appropriate blinding of participants, care providers 

and/or experimenters (Coronado et al., 2012). Future systematic reviews including high-

quality studies may thus change the current conclusions.  

A recent study indicates that the effects of SM depend on its application site (Nim et 

al., 2020). In this trial, patients with chronic LBP were randomly allocated to one of two 

groups, receiving SMT targeted either at the stiffest segment or at the segment with the 

highest mechanical pain sensitivity. Stiffness and LBP intensity were not significantly 

different between groups. However, PPTs were significantly increased immediately after SM 

volunteers, no significant differences were observed before and after applying cervical, 

thoracic or lumbar SM compared with mobilization on pressure pain thresholds (PPTs) thoracic or lumbar SM compared with mobilization on pressure pain thresholds (PPTs) 
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effects and mechanisms described below. effects and mechanisms described below. 
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groups, receiving SMT targeted either at the stiffest segment or at the segment with the 

highest mechanical pain sensitivity. Stiffness and LBP intensity were not significantly 

different between groups. However, PPTs were significantly increased immediately after SM 
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at the most sensitive segment (Nim et al., 2020). This supports the segmental effects of SM 

on pain-related processes, which may rely on the modulation of central sensitization (Jordon 

et al., 2017), as discussed below.  

Animal models allow the use of invasive methods that provide insight on specific 

mechanisms that influence nociceptive processes and pain behaviors. They also provide high-

quality data on the dose-response relationship of a specific intervention (Hackam and 

Redelmeier, 2006). These data are still scarce in SM research (Pasquier et al., 2019), but can 

be obtained with mechanical devices that deliver SM-like forces. Mechanically-assisted SM 

allows for regulation of the applied forces or force-time profiles (Descarreaux et al., 2013),

(Reed et al., 2013). In a study by Reed and 

colleagues, a mechanical device was applied with different forces ranging from 25% to 85% 

78% of an average human body weight) (Reed et al., 2013).

Animal data have also shown that SM-like procedures could increase mechanical pain 

thresholds in limb dermatomes related to the spine segments on which SM was applied 

(Duarte et al., 2019; Grayson et al., 2012; Onifer et al., 2015; Onifer et al., 2018). Also, 

segmental changes in mechanical pain thresholds were observed after sensitization via 

inflammatory mediators (Grayson et al., 2012; Onifer et al., 2015) or peripheral neuropathic 

pain (Duarte et al., 2019; Onifer et al., 2018). However, thermal pain thresholds remained 

unchanged by SM (Grayson et al., 2012; Onifer et al., 2018), in accordance with reports in 

humans. Altogether, these findings from animal studies are consistent with the segmental 

effects of SM. It remains to be clarified whether SM can decrease temporal summation and 

whether this depends on its effects on nociceptive transmission by specific afferent fibers 

(e.g., C fibers) or on central amplification processes such as wind-up.  

2.2. Effects of spinal manipulation on temporal summation of pain 

Sustained or repeated activation of afferent nociceptive fibers induces temporal 

summation of pain, the perceptual correlate of windup in the spinal cord (Price et al., 1977). 

More specifically, stimulation at constant C-fiber strength at or above 0.3 Hz elicits a

progressive increase in action potential firing over the course of the stimulus, reflected in 

enhanced pain (Mendell and Wall, 1965; Price, 1972; Price et al., 1977). Temporal 

summation of pain is increased in patients with chronic pain, suggesting that C-fiber activity 

is abnormally maintained in these cases (Staud et al., 2004; Staud et al., 2001). It has been 

at the most sensitive segment (Nim et al., 2020). This supports the segmental effects of SM 

on pain-related processes, which may rely on the modulation of central sensitization (Jordon on pain-related processes, which may rely on the modulation of central sensitization (Jordon 

et al., 2017), as discussed below.  
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suggested that the enhancement of these spinal responses could be critical to the development 

of chronic LBP (Roussel et al., 2013; Woolf, 2011).  

Evidence from behavioral studies suggests that SM may exert its hypoalgesic effects 

through an attenuation of spinal processes related to temporal summation (Aspinall et al., 

2019b; Bialosky et al., 2008; Bialosky et al., 2009b; Bialosky et al., 2014; Bishop et al., 

2011a; George et al., 2006; Randoll et al., 2017). Accordingly, it was reported that SM 

inhibits pain evoked by a pulse train or repeated thermal and electrical stimuli associated with 

C-fiber activation, but not pain evoked by a single stimulus (George et al., 2006; Randoll et 

al., 2017). In contrast, no difference in temporal summation induced by repetitive pinprick 

stimulation was observed after SM compared with a validated sham in patients with LBP 

(Aspinall et al., 2019a). This study successfully achieved blinding, although the authors 

acknowledge that the sham SM may not be inert. A potential explanation for the lack of 

effect reported by this study is that pinprick pain is primarily mediated by larger myelinated 

A  fibers (Magerl et al., 2001). Taken together, these findings suggest that SM inhibits 

temporal summation by modulating C-fiber activity selectively; however, this remains to be 

confirmed with neurophysiological methods.  

2.3. Effects of spinal manipulation on central sensitization 

Sustained or repeated noxious stimulation that activate C-fibers may induce synaptic 

plasticity in the spinal cord  (Woolf, 1983). These changes 

persist beyond the duration of the noxious stimulation and are associated with the 

development of secondary hyperalgesia (pain hypersensitivity beyond the site of injury) and 

allodynia (pain evoked by stimuli that are usually not painful) (Woolf, 1983, 2011). Central 

sensitization has been linked to the development of chronic pain syndromes (Woolf, 2011) 

and is considered a useful concept to describe some of the mechanisms underlying chronic 

primary pain (Nicholas et al., 2019; Treede et al., 2019).  

A preliminary study found that SM could reduce spontaneous pain, secondary 

hyperalgesia and allodynia induced by topical capsaicin (Mohammadian et al., 2004), which 

is known to evoke central sensitization through C-fiber activation (Woolf, 2011). 

Interestingly, ROS in the spinal cord were found to contribute to central sensitization induced 

by capsaicin (Lee et al., 2007; Schwartz et al., 2008) and peripheral nerve injury (Kim et al., 

2010). This effect may be mediated by the expression of pro- inflammatory cytokines in the 

suggested that the 

of chronic LBP (Roussel et al., 2013; Woolf, 2011).  of chronic LBP (Roussel et al., 2013; Woolf, 2011).  
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spinal cord (Kim et al., 2010; Willemen et al., 2018) leading to central sensitization and 

chronic pain (Ji et al., 2018; Kawasaki et al., 2008).

Experimental studies have shown a modulation of peripheral ROS (Duarte et al., 

2019) and cytokines (Teodorczyk-Injeyan et al., 2006) after SM. To our knowledge, only one 

study has assessed these changes in nervous tissue (Song et al., 2016). In this experiment, ten 

sessions of mechanically-assisted SM were applied to rats with neuropathic pain induced by 

compression of the dorsal root ganglia. Hyperalgesia and nociceptive primary afferent 

activity were decreased after SM (Song et al., 2016). In addition, a reduction of the pro-

inflammatory cytokine IL-1  in the dorsal root ganglia and an increase of the anti-

inflammatory IL-10 were observed (Song et al., 2016). This warrants further research in order 

to determine whether SM influences these and other markers of central sensitization in the 

spinal cord.

2.4 Potential propiospinal effects of spinal manipulation 

Experimental studies have reported heterosegmental changes in pain sensitivity after 

the application of SM for chronic primary NP (Aspinall et al., 2019b; Bishop et al., 2011a; 

Casanova-Mendez et al., 2014; Martinez-Segura et al., 2012; Salom-Moreno et al., 2014). In 

these studies, pain sensitivity was reduced in somatic tissues not directly innervated by the 

spinal segment influenced by SM. It has been proposed that remote hypoalgesic effects may 

be produced by propriospinal pathways (Bishop et al., 2011a). Animal experiments have 

provided evidence for propriospinal inhibition of wide-dynamic range neurons by noxious 

conditioning stimuli (Cadden et al., 1983). Consistent with this, it has been proposed that SM 

could act as a conditioning stimulus to inhibit nociceptive activity (Bialosky et al., 2009a; 

George et al., 2006), although evidence supporting this hypothesis is lacking. Alternatively, 

widespread hypoalgesic effects may be produced by supraspinal mechanisms, including non-

specific contextual effects and specific effects that can be attributed to SM (Aspinall et al., 

2019b; Dorron et al., 2016; Martinez-Segura et al., 2012; Salom-Moreno et al., 2014).  

3. Supraspinal mechanisms 

Widespread reduction in mechanical pain sensitivity has been reported after SM or 

mobilization in patients with chronic primary NP (Martinez-Segura et al., 2012; Salom-

Moreno et al., 2014). These results are limited by the lack of a control group, so inferring 

mechanisms or effects that are caused by SM is not possible (Martinez-Segura et al., 2012; 

spinal cord (Kim et al., 2010; Willemen et al., 2018) leading to central sensitization and 

chronic pain (Ji et al., 2018; Kawasaki et al., 2008).chronic pain (Ji et al., 2018; Kawasaki et al., 2008).
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Salom-Moreno et al., 2014). Widespread hypoalgesia may be attributed to placebo or other 

non-specific effects (Aspinall et al., 2019b), but it may also reflect specific hypoalgesic 

mechanisms of SM involving cerebral structures and supraspinal mechanisms (M. J. Millan, 

2002). However, some of the same brain areas, endogenous substances, and top-down 

mechanisms have also been associated with placebo analgesia (L. Colloca and Barsky, 2020; 

Eippert et al., 2009). Placebo effects are mainly the consequence of patients  expectations 

concerning their health or condition (L. Colloca and Barsky, 2020). They are not specific to 

one intervention and can contribute to the therapeutic effects of any treatment, including 

SMT (Bialosky et al., 2014; Martinez-Segura et al., 2012). As both non-specific and specific 

effects likely share some cerebral mechanisms, placebo-controlled neuroimaging studies may 

be useful to elucidate their specific contribution to hypoalgesia (L. Colloca and Barsky, 2020; 

Gyer et al., 2019).

The perception of pain undergoes substantial process ing at supraspinal levels, where 

multiple brain areas contribute to its representation and modulation (Apkarian et al., 2005; M. 

J. Millan, 2002). The  describes the functional imaging 

correlate of pain, including the most relevant areas involved in pain perception and 

modulation (Wager et al., 2013). Although the mechanisms are still under debate, it has been 

proposed that brain plasticity in areas linked to that neurologic signature could underlie the 

transition from acute to chronic pain, which has been studied in patients with LBP (Apkarian 

et al., 2011; Vlaeyen et al., 2018; Wager et al., 2013). Nonetheless, the details of the 

mechanisms across the brain network involved in chronic pain remain to be clarified 

(Apkarian et al., 2011; Baliki et al., 2014).

As an explanation for widespread hypoalgesia detected after SM, it has been proposed 

that SM may influence supraspinal mechanisms by activating the periaqueductal gray matter 

(Bialosky et al., 2009a; Gyer et al., 2019; Kovanur-Sampath et al., 2015; M. Millan et al., 

2012; Savva et al., 2014). In an attempt to identify specific changes in pain-related brain 

activity, two studies reported that thoracic SM but not a validated sham treatment modifies 

the activation of pain-related regions (Sparks et al., 2017; Weber II et al., 2019). A previous 

study used light touch sustained for 5 minutes as a control procedure. In this study, some 

changes in functional connectivity between pain processing regions were specific to SM, but 

others were observed for both SM and the control procedure (Gay et al., 2014). However, the 

effects observed in the brain may reflect changes in nociceptive transmission before 

nociceptive inputs reach the brain and may be unrelated to descending inhibition. With a

similar approach, fMRI was used to measure the neural correlates of fear of movement and 

Salom-Moreno et al., 2014). Widespread hypoalgesia may be attributed to placebo or other 
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2012; Savva et al., 2014).

activity, two studies reported that thoracic SM but not a validated sham treatment modifies activity, two studies reported that thoracic SM but not a validated sham treatment modifies 

the activati

study used light touch sustained for 5 minutes as a control procedure.study used light touch sustained for 5 minutes as a control procedure.

changes in functional connectivity between pain processing regions were specific to SM, but 

others were observed for both SM and the control procedure 

effects observed

nociceptive inputs reach the brain
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anticipated pain from visualized exercises in chronic LBP patients, before and after SM 

(Ellingsen et al., 2018). Two SM sessions reduced clinical pain, fear of movement, and 

expected pain, and the two latter correlated with decreased brain responses evoked by 

observation of the back-straining exercises (Ellingsen et al., 2018). The authors posit that 

these findings could be driven by proprioceptive (non-conditioned) input arising from the 

painful area, but also by the reduction in clinical pain (Ellingsen et al., 2018). In both cases, it 

is difficult to conclude that any of the changes in brain activity are the direct consequence of 

SM and not an indirect effect of altering nociceptive transmission in the spinal cord.

Accordingly, a recent systematic review suggests that most brain changes reported likely 

result from a change in ascending information rather than a specific supraspinal mechanism 

(Meyer et al., 2019). This review reported that studies on SM mechanisms potentially 

involving the brain were generally of low to moderate methodological quality, for which the 

main caveat was the credibility of the sham maneuvers (Meyer et al., 2019). With the current 

available data, it is not possible to draw any conclusion regarding the potential supraspinal 

mechanisms of SM. 

4. Placebo effects in spinal manipulative therapy 

 In experimental and clinical studies, non-specific effects on pain perception include 

non-specific temporal changes (e.g., habituation), regression to the mean (when pain is 

measured at several time points), the natural course of the disease or spontaneous 

improvement (Kaptchuk et al., 2020). In a meta-analysis it was reported that pain reduction 

after SMT (96 and 67 % of the total variance in acute and chronic LBP, respectively) could 

not be solely attributed to the specific effects of treatment (Menke, 2014). According to this 

analysis, the evidence for SMT is superior to sham only for chronic LBP. Consistent with 

this, the level of evidence supporting SMT over sham for musculoskeletal pain is considered 

to be low at short-term follow-up (< 3 months) (Scholten-Peeters et al., 2013). However, this 

is not unique to SMT (Menke, 2014). Indeed, 50 to 75 % of responses to pharmacological 

treatments for chronic pain can be attributed to non-specific effects (Kaptchuk et al., 2020).

These non-specific effects can be measured and controlled for by including no-treatment 

groups (Hancock et al., 2006; Kaptchuk et al., 2020). When comparing sham to active 

treatment, oral medication does not largely outperform the placebo in patients with LBP  

(Machado et al., 2009; Puhl et al., 2011). The placebo effect is a non-specific effect that is 
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more challenging to measure and control for in studies on SM (Hancock et al., 2006), which 

warrants further discussion.

4.1 Placebo effect in studies on pain reduction by spinal manipulation 

Placebo analgesia is produced, in part, by expectations of pain reduction by a 

particular intervention (Benedetti et al., 1999; L. Colloca and Barsky, 2020; Kaptchuk et al., 

2020). To measure and control for placebo analgesia, expectations can be measured with 

subjective rating scales (Cormier et al., 2013; Kaptchuk et al., 2020; Puhl et al., 2017). 

The contribution of placebo effects induced by expectations to pain relief by SM was 

investigated in a few studies (Bialosky et al., 2008; Bialosky et al., 2014; Bishop et al., 

2011b; Bishop et al., 2017). In healthy volunteers, it was reported that pain relief by SM is

influenced by expectations, where negative expectations produce region-specific pain 

increases (Bialosky et al., 2008). In this study, however, SM-induced hypoalgesia was 

independent of positive expectations (Bialosky et al., 2008). In patients with LBP, it was also 

shown that SMT produces pain relief that cannot be attributed to expectations (Bialosky et 

al., 2014). In addition, it was shown that treating LBP with SM in patients that meet the 

clinical prediction rule of good prognosis is more important than patient , and 

expectations (Bishop et al., 2011b; Bishop et al., 2017). Together, these results indicate that 

SM hypoalgesia and pain relief by SMT rely on specific mechanisms that are independent of 

expectations. This does not rule out the modulation of these effects by expectat ions or the 

influence of other non-specific effects that should also be measured and controlled for with 

appropriate placebo interventions.

4.2 Placebo interventions for studies on spinal manipulation  

Every intervention induces non-specific effects related to the clinical or experimental 

context (Kaptchuk et al., 2020). Thus, a group receiving a placebo intervention is required to 

determine the specific therapeutic effects of an intervention. To achieve blinding, an 

appropriate placebo intervention must be structurally equivalent to (same context, 

positioning, duration and number of sessions) and indistinguishable from the studied 

intervention. In addition, the placebo intervention must not produce any therapeutic effect 

(inertness) (Hancock et al., 2006; Puhl et al., 2017). Currently, there is no consensus on what 

constitutes an appropriate placebo intervention for SM and SMT (Hancock et al., 2006).

Developing an appropriate placebo remains challenging due to the lack of knowledge on

more challenging to measure and control for in studies on SM (Hancock et al., 2006), which 

warrants further discussion.warrants further discussion.
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what are the active components of SM (Hancock et al., 2006; Hawk et al., 2002; Koes, 2004; 

Puhl et al., 2017). Systematic reviews have reported that the placebo interventions used for 

SMT frequently lack at least one important element to be indistinguishable from SM (Puhl et 

al., 2017; Vernon et al., 2011). The concern regarding inadequate placebo interventions in 

spine pain research is not limited to SMT (Machado et al., 2008). A systematic review 

reported that only 20% of the trials on LBP used placebo interventions that were 

indistinguishable and equivalent to the active treatment, while blinding success was assessed 

in only 13% of the trials (Machado et al., 2008).

Inadequate blinding has been highlighted as one of the main weaknesses of research 

on manual therapies (Koes, 2004; Puhl et al., 2017; Vernon et al., 2011). As opposed to 

pharmacological research in which the patients and experimenters cannot distinguish active 

or placebo (inert) medication, single blinding remains challenging in SM research and double 

blinding is essentially impossible (Koes, 2004). Indeed, participants may not be aware of the 

intervention that they are receiving (real or placebo SM), but the force and cavitation 

associated with most SM requires that participants are naïve to SM to increase the odds of 

successful blinding (Puhl et al., 2017). In addition, the experimenter is always aware of the 

intervention that is provided in the case of SM. To partially compensate for the lack of 

experimenter blinding, the placebo SM must be delivered in the most convincing way, which 

requires extensive practice (Hawk et al., 2002; Hawk et al., 1999; Koes, 2004; Vernon et al., 

2011). Despite these limitations, high quality research on SM and SMT is not impossible and 

some approaches to reduce the impact of these limitations will now be discussed.  

Instrument-assisted SM has been used in previous studies with the idea that the 

placebo intervention would be indistinguishable from SM (Hawk et al., 2002; Hawk et al., 

1999). In these studies, the placebo intervention consisted in doing the same preparation 

(instructions, palpation of the spine, and instrument application with an associated sound), 

but no force was applied (Hawk et al., 2002; Hawk et al., 1999). This was effective in 

blinding participants (50% in each group correctly guessed their group assignment). Yet, a

major limitation is that the placebo intervention was not equivalent and that it might not be 

inert (Hawk et al., 2002; Hawk et al., 1999). Mechanically-assisted and manual SM do not 

have identical force-time profiles (C. J. Colloca et al., 2005; Herzog, 2010; Pickar and 

Bolton, 2012). Yet, mechanical instruments are commonly used by chiropractors as a clinical 

intervention (Huggins et al., 2012). These techniques offer the advantage of standardizing 

forces applied during SM, with a lesser degree of variability compared with manually-applied 

SM (Kawchuk et al., 2006). In the laboratory setting, further standardization of SM 

what are the active components 

Puhl et al., 2017). Systematic reviews have reported that the placebo interventions used for Puhl et al., 2017). Systematic reviews have reported that the placebo interventions used for 
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parameters can be reached by using linear motors, which mimic the force-time profiles 

measured during manually delivered SM. This allows determining the dose-physiological 

response characteristics of SM (Descarreaux et al., 2013). By adjusting the biomechanical 

parameters of SM, it may be possible to determine the therapeutic thresholds, as well as the 

sub-therapeutic doses that may constitute a placebo SM. Indeed, the biomechanical dosage 

parameters of SM to effectively induce analgesia are still unknown (Pasquier et al., 2019; 

Puhl et al., 2017). This remains to be explored and the validation of the appropriate placebo 

remains to be demonstrated.  

Only a few studies examined the validity of placebo SM by assessing the degree of 

blinding (Chaibi et al., 2015; Vernon et al., 2012). To determine if blinding was successful, 

participants were asked whether they had received the real/active treatment or the placebo 

(Chaibi et al., 2015; Vernon et al., 2012). In one of these studies, participants reported their 

treatment group correctly in 50 % and 47 % for the active and placebo interventions, 

respectively, indicating that blinding was successful (Vernon et al., 2012). In the placebo 

intervention, the joint preload and thrust phases were not performed and the maneuver 

consisted in a rapid motion through the drop a -piece mechanism. The 

drop mechanism and the associated sound may be important factors that made blinding 

effective (Vernon et al., 2012). In the other study, the placebo intervention consisted in non-

specific contacts with lower force delivered on the gluteal and scapular regions instead of the 

spine, which did not produce cavitation (Chaibi et al., 2015). This placebo intervention was 

effective at blinding participants throughout 12 treatment sessions over three months. For 

each session, more than 80% reported that they had received the active treatment, irrespective 

of group allocation (Chaibi et al., 2015). Both studies seem to provide structurally equivalent 

and indistinguishable placebo interventions, even in patients with previous experience with 

SMT. Notwithstanding, it should be confirmed that the placebo interventions did not induce 

therapeutic effects (Chaibi et al., 2015; Vernon et al., 2012). Vernon et el. showed that the 

loads applied during the placebo intervention were lower compared with SM (10 to 50%), but 

this does not ascertain the lack of a therapeutic effect, particularly considering that pain 

intensity reductions were no different between both groups (Vernon et al., 2012).

A unique study showed that true blinding is possible for SM (Kawchuk et al., 2009).

In this experiment, SM was administered under short propofol/remifentanil anesthesia in the 

experimental group while the control group did not receive any intervention other than the 

anesthesia. In both groups, standardized visual and auditory cues were delivered before the 

parameters can be reached by using linear motors, which mimic the force-time profiles 

measured during manually delivered SM. This allows determining the dose-physiological measured during manually delivered SM. This allows determining the dose-physiological 

response characteristics of SM (Descarreaux et al., 2013). By adjusting the biomechanical 
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sub-therapeutic doses that may constitute a placebo SM. Indeed, the biomechanical dosage sub-therapeutic doses that may constitute a placebo SM. Indeed, the biomechanical dosage 

parameters of SM to effectively induce analgesia are still unknown (Pasquier et al., 2019; 

Puhl et al., 2017). This remains to be explored and the validation of the appropriate placebo 

remains to be demonstrated.  remains to be demonstrated.  
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participants recovered from anesthesia. Participants did not recall any memory from the 

anesthesia period, including the visual and auditory cues, indicating effective blinding 

(Kawchuk et al., 2009). Although the method is conceptually appealing, its applicability is 

limited and may be ethically questionable. In addition, the inertness of the anesthetics utilized 

must still be confirmed (Kawchuk et al., 2009). This may explain why this placebo 

intervention has not been used in subsequent studies.  

Table 2 summarizes the placebo and control groups from studies presented in this 

review. In order to improve basic and clinical research on pain relief by SM, the quality of 

control and placebo interventions must be improved. This will further our understanding of 

the SM mechanisms and clinical effectiveness, by ruling out non-specific effects. In addition,

more research on the dosage parameters of an effective SM is needed to determine what are 

the therapeutic or active components of SM, including the biomechanical loads and forces, 

the peripheral afferent and central processes as well as other variables. 

Future perspectives and conclusion 

Research on the mechanisms of SM has progressed significantly in recent years. 

Some of the mechanisms underlying treatment outcomes are becoming clearer and the 

advancement of pain research is contributing to this development. The new classification 

recently provided by the pain research community should allow a better understanding of 

chronic primary pain conditions, including those affecting the spine (Treede et al., 2019). The 

adoption of these changes by the spine pain research community should improve evidence on 

the use of SMT in the management of acute, subacute, and chronic NP and LBP. 

 Future basic research can contribute to improving the recommendations for the 

management of spine pain. Gaining a better understanding of the mechanisms by which SM 

can attenuate pain may help guiding clinical research by determining the specific mechanisms 

on which SM may act and in which conditions this may translate into clinical benefits. The 

use of appropriate, standardized placebo interventions and blinding strategies in both 

mechanistic and clinical trials is deemed essential to improving the quality of research.  

The evidence presented in this review suggests that SM produces neurophysiological 

effects mainly via spinal cord mechanisms. These include segmental mechanisms of pain 

inhibition involving a reduction in temporal summation of pain. These mechanisms could 

participants recovered from anesthesia. Participants did not recall any memory from the 

anesthesia period, including the visual and auditory cues, indicating effective blinding anesthesia period, including the visual and auditory cues, indicating effective blinding 

(Kawchuk et al., 2009). Although the method is conceptually appealing, its applicability is 

limited and may be ethically questionable. 
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partially explain some of the effects of SM observed locally and regionally. However, the 

reason why certain modalities seem to be more affected than others remains to be clarified.

This could be due to SM influencing a specific group of nociceptive fibers. Modulation of C-

fibers may influence the development of secondary hyperalgesia, which is characterized by 

increased sensitivity to mechanical but not thermal painful stimuli (Ali et al., 1996; Simone et 

al., 1989; Torebjork et al., 1992). Future research should explore potential anti-hyperalgesic 

effects of SM that are particularly relevant to chronic pain. 

Some of the hypoalgesic effects cannot be explained by segmental mechanisms. In 

order to better understand these effects, measuring variables related to peripheral pain 

mechanisms should be considered (e.g., ROS and cytokines). Regarding supraspinal 

mechanisms, showing that brain activity changes after SM is not sufficient to conclude on the 

underlying mechanisms, so it remains to be determined how and whether SM may induce 

changes in brain activity, which in turn produce pain inhibition. 

Recent experiments have provided insight into changes induced by SM in peripheral 

tissues that are most likely mediated by local growth factors and not by the nervous system 

(Conesa-Buendia et al., 2020; Lopez-Herradon et al., 2017). These effects provide a new

avenue for investigating peripheral mechanisms involved in tissue damage and inflammation, 

likely influencing musculoskeletal pain. It has also been suggested that SM might regulate the 

activity of the sympathetic nervous system, which in turn could modulate inflammation (Gyer 

et al., 2019; Kovanur-Sampath et al., 2015). However, most mechanistic experiments have 

failed to identify clinically relevant changes induced by SMT (Honore et al., 2019). In order 

to close the gap between basic and clinical research, translational research is needed. 

Randomized controlled trials on the effectiveness of SMT on spine pain in which 

neurophysiological variables are measured are one possibility that could link experimental 

and clinical research findings (Clark et al., 2018). Further exploration of mechanistic trial 

designs will improve our understanding of the biological mechanisms underlying the efficacy 

(or physiological and clinical effects) of SM while optimizing the clinical management of 

spine pain with SMT and other conservative approaches (Karanicolas et al., 2009). 

Besides the limitations related to the difficulties in translating evidence from basic 

science studies to the clinical realm, another important limitation comes from the quality of 

the placebo interventions and controls. The use of validated placebo interventions is not 

universal in SM research, which dramatically impacts the quality of studies. Therefore, the 

data from the studies presented need to be interpreted with caution. Designing an appropriate 

placebo for SM is challenging but is essential for future research on the mechanisms and 

partially explain some of the effects of SM observed locally and regionally. However, the 

reason why certain modalities seem to be more affected than others remains to be clarifiedreason why certain modalities seem to be more affected than others remains to be clarified

This could be due to SM influencing a specific group 
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clinical effectiveness of SMT. Meanwhile, the available findings from animal studies provide 

support to a specific effect of SM, particularly influencing segmental mechanisms of pain 

inhibition (Duarte et al., 2019; Grayson et al., 2012; Onifer et al., 2015; Onifer et al., 2018).

Additionally, human data suggests that SM hypoalgesia relies, at least partially, on specific 

mechanisms independent of expectations (Bialosky et al., 2008; Bialosky et al., 2014; Bishop 

et al., 2011b; Bishop et al., 2017). Validation studies have demonstrated that it is possible to 

design credible placebo interventions that are structurally equivalent to and indistinguishable 

from SM, even for multiple sessions in patients previously exposed to SM (Chaibi et al., 

2015; Vernon et al., 2012). Nevertheless, a question that remains unanswered is whether 

these placebo interventions lack any therapeutic effects (Chaibi et al., 2015; Vernon et al., 

2012). Indeed, these placebo interventions allowed successful blinding, but reported no 

significant group difference (Aspinall et al., 2019a; Honore et al., 2020). This was interpreted 

as a lack of therapeutic effect of SMT, but it could be argued that the placebo intervention 

may not be inert and may have masked therapeutic effects. 

Research on placebo analgesia has shown that deceptive experiments (in which the 

participant receives the instruction that the placebo is in fact effective) achieve greater 

placebo effects compared with trials in which group allocation is uncertain (Kaptchuk et al., 

2020; Vase et al., 2002). Open- label placebo experiments have shown that the placebo effect 

can be used to influence treatment outcomes effectively (Kaptchuk et al., 2020). In clinical 

practice, this could be attained by, for example, providing realistic but positive information 

about the prognosis (L. Colloca and Barsky, 2020), or by avoiding messages that could 

influence patients beliefs negatively, resulting in increased vigilance, worry, or frustration (L. 

Colloca and Barsky, 2020; Darlow et al., 2013).

The gaps identified in research on pain mechanisms of SM should guide future 

investigations. Although basic and clinical research on SMT provide some converging 

results, it remains a constant challenge to design basic studies that provide results that inform 

clinical research. Mechanistic trials in which basic research measures are implemented in 

clinical trials offer an interesting possibility to bridge this gap. Improving our understanding 

of how SM mediates pain relief through specific and non-specific mechanisms should 

translate into more homogenous recommendations on its use for specific patients, conditions, 

and pain states.
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Figure Legend 

Figure 1. Pain mechanisms likely influenced by spinal manipulation (SM).

(a). In the periphery, SM may decrease pro-inflammatory cytokine responses (Roy et al., 

2010; Teodorczyk-Injeyan et al., 2006, 2018) and oxidative stress (Duarte et al., 2019; 

Kolberg et al., 2015). (b) At the spinal segmental level, SM may induce segmental inhibition 

(Alonso-Perez et al., 2017; de Camargo et al., 2011; Dorron et al., 2016; Fernandez-Carnero 

et al., 2008; Fernandez-de-las-Penas et al., 2007; Fryer et al., 2004; Laframboise et al., 2016; 

Coronado et al., 2012; Honore et al., 2018; Millan et al., 2012, decrease temporal summation 

of pain (George et al., 2006; Bialosky et al., 2008, 2009, 2014; Bishop et al., 2011; Aspinall 

et al., 2019; Randoll et al. 2017), and inhibit central sensitization (Mohammadian et al., 2004; 

Song et al., 2016). (c) At the supraspinal level, no specific mechanism has been reported 

(Meyer et al., 2019), although widespread pain inhibition suggests cerebrospinal mechanisms 

involving the descending inhibitory system (Dorron et al., 2016; Salom-Moreno et al., 2014; 

Aspinall et al., 2019; Martinez-Segura et al., 2012). Changes in pain-related brain activity 

may reflect modulation of nociceptive activity at the spinal or supraspinal levels (Gay et al., 

2014; Sparks et al., 2017; Weber II et al., 2019; Ellingsen et al., 2018).
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Table 1. Hypoalgesic mechanisms of spinal manipulation

Mechanisms Effects on measured outcomes Supporting evidence 

Decreased peripheral 

oxydative stress

Reduction in plasmatic levels of 

ROS.
Duarte 2019; Kolberg 2015.

Decreased pro-

inflammatory cytokine 

response

Decline in production of CCL3 

and CCL4 chemokines, TNF-

and IL-1 .

Teodorczyk-Injeyan 2006, 2018;

Roy 2010.

Segmental inhibition of 

nociceptive processes 

Segmental (dermatomal and 

myotomal) increase of pressure 

pain thresholds.

Coronado 2012; Honore 2018; Millan 

2012; Alonso-Perez 2017; Fryer 

2004; de Camargo 2011; Dorron 

2016; Fernandez-Carnero 2008; 

Fernandez-de-las-Penas 2007; 

Laframboise 2016; Duarte 2019; 

Grayson 2012; Onifer 2015; Onifer

2018; Nim 2020.

Inhibition of temporal

summation

Reduction in pain evoked by 

repeated thermal and electrical 

stimuli.

Aspinall 2019b; Bialosky 2008, 

2009b, 2014; Bishop 2011a; George 

2006; Randoll 2017.

Inhibition of central 

sensitization

Reduction of spontaneous pain, 

secondary hyperalgesia, and 

allodynia induced by topical 

capsaicin. Increased spinal levels 

of IL-10.

Mohammadian 2004; Song 2016.
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