UNIVERSITE DU QUEBEC A TROIS-RIVIERES

MEMOIRE PRESENTE A UNIVERSITE DU QUEBEC A TROIS-RIVIERES

COMME EXIGENCE PARTIELLE

DE LA MAITRISE EN PHYSIQUE

PAR

ROBERT CARON

CALCUL DES BANDES FONDAMENTALES DU SPECTRE INFRAROUGE
D'UNE HOLECULE POLYATOHIQUE

SEPTEMBRE 1987

Université du Québec à Trois-Rivières Service de la bibliothèque

Avertissement

L'auteur de ce mémoire ou de cette thèse a autorisé l'Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse.

Cette diffusion n'entraîne pas une renonciation de la part de l'auteur à ses droits de propriété intellectuelle, incluant le droit d'auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d'une partie importante de ce mémoire ou de cette thèse requiert son autorisation.

RESUME

Les spectres infrarouges des molécules polyatomiques contiennent de nombreuses bandes et plusieurs d'entre elles sont difficiles à attribuer. Les russes Gribov et Dement'ev ont construit un programme en FORTRAN IV qui permet de calculer les fréquences et les intensités des bandes fondamentales d'un spectre infrarouge d'une molécule polyatomique à partir des paramètres moléculaires et des paramètres électro-optiques. La tâche d'attribution des bandes est donc facilité. Les paramètres moléculaires d'une molécule sont la masse des atomes, les distances interatomiques et les constantes de force des liaisons. Les paramètres électro-optiques sont les moments dipolaires des liaisons et la variation des moments dipolaires par rapport aux coordonnées internes.

Dans une molécule polyatomique il y a 3N-6 vibrations, où N est le nombre d'atomes. La fréquence de ces vibrations est déterminée en solutionnant l'équation séculaire vibrationnelle. L'intensité des bandes infrarouges est déterminé en calculant l'équation vibrationnelle. Pour des molécules polyatomiques, ces équations sont exprimées sous forme matricielle d'ordre très élevé et sont résolues d'une façon numérique par ordinateur.

Un programme informatique a été conçu en FORTRAN IV par les russes Gribov et Dement'ev. Nous avons étudié la théorie à la base de ce programme et l'avons traduit en FORTRAN V. Pour vérifier le bon fonctionnement du programme nous avons calculé le spectre infrarouge des molécules suivantes : éthane, butane et benzène. Par la suite nous avons calculé le spectre infrarouge de la

cyclopentanone en empruntant certains paramètres électro-optiques au butane et à l'acétone. Nous avons comparé le spectre calculé avec le spectre expérimental et les résultats que nous avons obtenus sont très bons.

Dans la forme actuelle du programme il est impossible de calculer le spectre d'une grosse molécule comme la chlorophylle. C'est la raison pour laquelle nous avons choisi la cyclopentanone qui est un des cinq anneaux constituant le macrocycle chlorine de la molécule de chlorophylle. Le groupe carbonyle de cet anneau joue un rôle important dans l'agrégation de la chlorophylle avec les autres molécules.

Avec cette nouvelle avenue de la spectroscopie moléculaire théorique nous pouvons entrevoir d'immenses possibilités pour l'étude des molécules à caractères biologiques comme la chlorophylle et autres porphyrines.

REMERCIEMENTS

J'exprime ma gratitude envers le Professeur Camille Chapados, qui a dirigé ce projet d'étude.

Je remercie le Professeur John Miletic, co-directeur de mémoire, pour ses conseils en mathématiques.

Je remercie monsieur Michel Trudel pour ses conseils utiles en informatique.

Je remercie le Professeur Julian Gruda, pour l'aide qu'il m'a donné dans la traduction de plusieurs parties du volume de Gribov.

Je tiens à remercier mon épouse Sylvie pour la compréhension soutenue qu'elle m'a apportée.

TABLE DES MATIERES

	Page
RESUME	í
REMERCIEMENTS	111
LISTE DES TABLEAUX	vi
LISTE DES FIGURES	viii
CHAPITRES	
1. INTRODUCTION	1
2. METHODOLOGIE	
2.1. Théorie	
2.1.1. Présentation de l'équation séculaire	4
2.1.2. Présentation de l'équation vibrationnelle	14
2.2. Contribution informatique	
2.2.1. Adaptation du programme de Gribov-Dement'ev à l'ordinateur central de l'université	26
2.3. Application théorique	
2.3.1. Choix et description de l'eau	27
2.3.2. Choix des unitées pour les matrices G et F	30
2.3.3. Méthode de calcul théorique des fréquences	32
2.4. Cas particulier traité	
2.4.1. Choix et description de la cyclopentanone	34
2.4.2. Sélection des coordonnées internes	36
2.4.3. Formation de la matrice G	39
2.4.4. Formation de la matrice F	44
2.4.5. Formation des matrices { μ_k } et $\$\mu_k/\R_i	47
2.4.6. Méthode de calcul des fréquences et des intensités	56

LISTE DES TABLEAUX

Tableaux

1.	Constantes de force de la cyclopentanone46
2.	Paramètres électro-optiques sélectionnés48
3.	Fréquences harmoniques de H ₂ 092
4.	Caractéristiques moléculaires de l'éthane94
5.	Coordonnées internes de l'éthane95
6.	Constantes de force de l'éthane95
7.	Paramètres électo-optiques de l'éthane96
8.	Résultats de l'éthane (D _{3d})97
9.	Caractéristiques moléculaires du butane
10.	Coordonnées internes du butane
11.	Constantes de force du butane104
12.	Paramètres électro-optiques du butane
13.	Résultats du butane (C _{2h}) (forme trans)107
14.	Caractéristiques moléculaires du benzène113
15.	Coordonnées internes du benzène
16.	Constantes de force du benzène

17.	Paramètres électro-optiques du benzène
18.	Résultats du benzène (D _{6h})117
19.	Caractéristiques moléculaires de la cyclopentanone122
20.	Coordonnées internes de la cyclopentanone
21.	Constantes de force de la cyclopentanone
22.	Paramètres électro-optiques de la cyclopentanone127
23.	Résultats de la cyclopentanone (C ₂) (infrarouge)128
24.	ຽມ _{ດນ} /SR _{Cu} du butane et de l'acétone

LISTE DES FIGURES

Figures

1.	Molécule polyatomique composée de N atomes
2.	Les coordonnées internes des élongations
3.	Les coordonnées internes des déformations angulaires8
4.	Les éléments de symétrie de l'eau, C _{2v}
5.	Les coordonnées internes de H ₂ 029
6.	La chlorophylle
7.	La cyclopentanone
8.	Numérotation des atomes de la cyclopentanone38
9.	Les vecteurs $\vec{s}_{i\alpha}$ de la coordonnée d'élongation R_i 41
10.	Les vecteurs $\vec{s}_{i\alpha}$ de la coordonnée angulaire R_i 42
11.	Les coordonnées internes de la cyclopentanone (C ₂)45
12.	Distribution des charges de la cyclopentanone49
13.	L'acétone
14.	Schéma pour la convention de signe des paramètres
	électro-optiques53
15.	Schéma pour le calcul du vecteur 3

16.	Schéma pour le calcul du vecteur e ₂ 65
17.	Les vecteurs $\vec{s}_{i\alpha}$ de la molécule d'eau80
18.	Les modes de vibrations normales de H ₂ O91
19.	La molécule d'éthane93
20.	Spectre ir de l'éthane, A : expérimental,
	B : bandes calculées98
21.	La molécule du butane
22.	Spectre ir du butane, A : expérimental,
	B : bandes calculées
23.	Spectre ir du butane, A : exp.,
	B : calculé (nor. à 1471 cm ⁻¹)110
24.	La molécule du benzène112
25.	Spectre ir du benzène, A : expérimental,
	B : bandes calculées
26.	Spectre ir du benzène, A : exp.,
	B : calculé (nor. à 1484 cm ⁻¹)
27.	La molécule de la cyclopentanone

28.	Spectre ir du cyclopentanone, A : expérimental,
	B : bandes calculées
29.	Spectre ir du cyclopentanone, A : exp.,
	B : calculé (nor. à 2951 cm ⁻¹)130

Chapitre 1

INTRODUCTION

Dans la nature, les molécules sont toujours en état de vibrations. Il n'existe pas d'état d'énergie vibrationnelle nulle. Lorsqu'une molécule absorbe une quantité discrète d'énergie électromagnétique, elle passe d'un état vibrationnel inférieur à un état vibrationnel supérieur.

Dans l'approximation harmonique où la règle de sélection est $\Delta v = \pm 1$, une molécule peut avoir plusieurs transitions vibrationnelles. La transition engendrée par l'absorption du quantum d'énergie du niveau fondamental au premier niveau excité est appelé transition fondamentale. Nous retrouvons les bandes fondamentales dans les spectres infrarouges et Raman. A cause de l'anharmonicité des systèmes vibrationnels les spectres ont habituellement, outre les bandes fondamentales, des bandes de combinaisons, des harmoniques et des raies rotationnelles. Nous limitons notre étude aux bandes fondamentales présentes dans les spectres d'absorptions infrarouges.

Notre projet d'étude consiste à calculer les fréquences et les intensités des bandes vibrationnelles fondamentales d'une molécule polyatomique à l'état gazeux.

Nous avons calculé le spectre infrarouge de la cyclopentanone à partir des constantes de force de la molécule et des paramètres électro-optiques que nous avons sélectionnés. Pour réaliser ce projet nous avons adapté le programme de Gribov-Dement'ev. Pour

s'assurer de la fiabilité de ce programme, nous avons traité les molécules d'éthane, de butane et de benzène. Pour ces systèmes, la fréquence et l'intensité des bandes fondamentales à l'état gazeux ont été obtenus.

Dans notre cheminement scientifique, il est bon de mentionner que nous avons maîtrisé la théorie en calculant les fréquences de vibration de la molécule d'eau. Nous n'avons pas calculé l'intensité des bandes infrarouges puisque les paramètres électro-optiques de cette molécule n'ont pas été déterminés.

Au laboratoire de spectroscopie moléculaire, nous avons un intérêt particulier pour la chlorophylle qui a fait l'objet de nombreux travaux en spectroscopie moléculaire. Actuellement le programme que nous avons adapté ne permet pas de calculer le spectre de la chlorophylle puisque cette molécule possède 137 atomes. Aussi nous avons choisi la cyclopentanone puisque cet anneau constitu un des cinq anneaux du macrocycle de la chlorophylle et qu'il joue un rôle stratégique lors de l'association de la chlorophylle avec son environnement moléculaire.

En 1963, Gribov. [1], a présenté une méthode théorique pour calculer l'intensité absolue des bandes fondamentales des spectres infrarouges. L'intensité des bandes fondamentales est proportionnelle à la variation du moment dipolaire totale de la molécule par rapport aux coordonnées normales Q_i . Dans le cadre de la théorie de la valence optique, nous développons une expression de $(S\vec{\mu}/SQ_i)_O$ en fonction des paramètres électro-optiques de la molécule. Les paramètres électro-optiques sont les moments

dipolaires des liaisons chimiques, μ_{k} , et les dérivées de ces moments dipolaires par rapport aux coordonnées internes, $\mu_{k}/\Re i$. L'expression paramétrique des bandes fondamentales infrarouges est appellée l'équation vibrationnelle de la molécule.

Plus tard, dans les années 70, Gribov et Dement'ev, [2,3], ont développé des programmes FORTRAN qui calculent les fréquences et les intensités des bandes vibrationnelles fondamentales des spectres infrarouges.

Pour cette raison, nous avons choisi le programme de GribovDement'ev. La version la plus récente de ce programme date de 1981.

Nous avons utilisé le programme en FORTRAN IV qui est donné dans le
livre de Gribov-Dement'ev et qui est écrit en russe [4]. Nous avons

adapté ce programme aux conditions de l'ordinateur central de
l'université, un Cyber 825 de Control Data Corp. Nous avons traduit
le programme en FORTRAN V et plusieurs modifications ont été

effectuées afin de rendre ce programme plus efficace.

Chapitre 2

METHODOLOGIE

2.1. Théorie

On calcul la fréquence et l'intensité des bandes fondamentales du spectre infrarouge d'une molécule polyatomique à partir de l'équation séculaire et de l'équation vibrationnelle que nous allons présenter.

2.1.1. Présentation de l'équation séculaire

Considérons une molécule polyatomique, composée de N > 2 atomes de masses m_1 , m_2 , ..., m_n . Cette molécule est ilustrée sur la figure 1. Notre intérêt porte sur le calcul de la fréquence propre des oscillations de la molécule. Afin de simplifier l'étude mathématique de notre problème, nous travaillons dans l'espace des coordonnées internes de la molécule et l'influence des translations et des rotations de la molécule est ignorée [5]. C'est-à-dire :

$$\sum_{\alpha = 1}^{N} \left(y_{\alpha} z_{\alpha} - z_{\alpha} y_{\alpha} \right) = 0$$
(2.2)

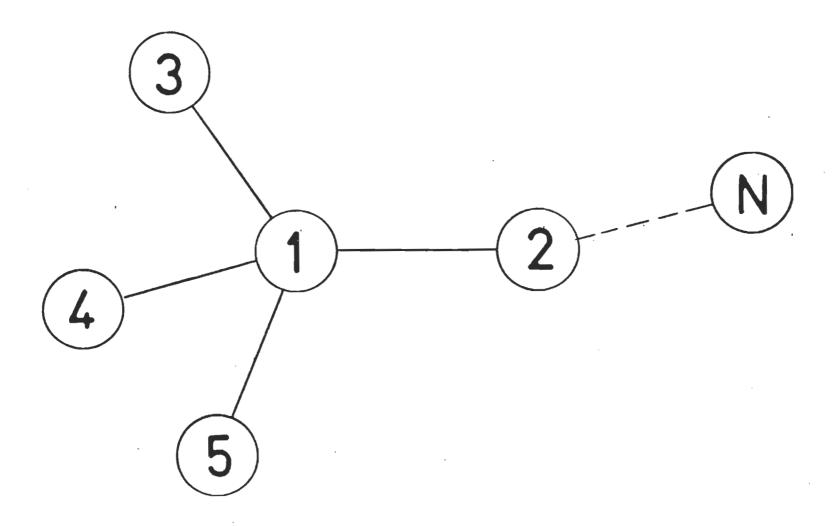


Figure 1. Molécule polyatomique composée de N atomes

$$\sum_{\alpha = 1}^{N} (z_{\alpha} \times_{\alpha} - x_{\alpha} z_{\alpha}) = 0$$
 (2.3)

$$\Sigma \underset{\alpha = 1}{\text{m}} (x_{\alpha} y_{\alpha} - y_{\alpha} x_{\alpha}) = 0$$
(2.4)

où x_{α} , y_{α} , z_{α} sont les coordonnées cartésiennes du α - ième atome et x_{α} = dx_{α}/dt , etc; t est le temps.

Nous travaillerons avec un potentiel harmonique de tel sorte que les harmoniques et les bandes de combinaisons ne seront pas calculées. Il y a 3N-6 coordonnées internes R_i et celles-ci se divisent en variation des liaisons de valence et en variation des angles de valence. Les coordonnées internes sont illustrées sur les figures 2 et 3.

Dans l'espace des coordonnées internes, lorsqu'on développe la fonction potentielle, V, de la molécule en série de Taylor autour de la position d'équilibre, on a :

$$V(R) = V_0 + \sum_{i}^{3N-6} (SV/SR_i)_0 R_i + 1/2 \sum_{i}^{5} \sum_{j}^{5} (S^2V/SR_jSR_j)_0 R_i R_j$$

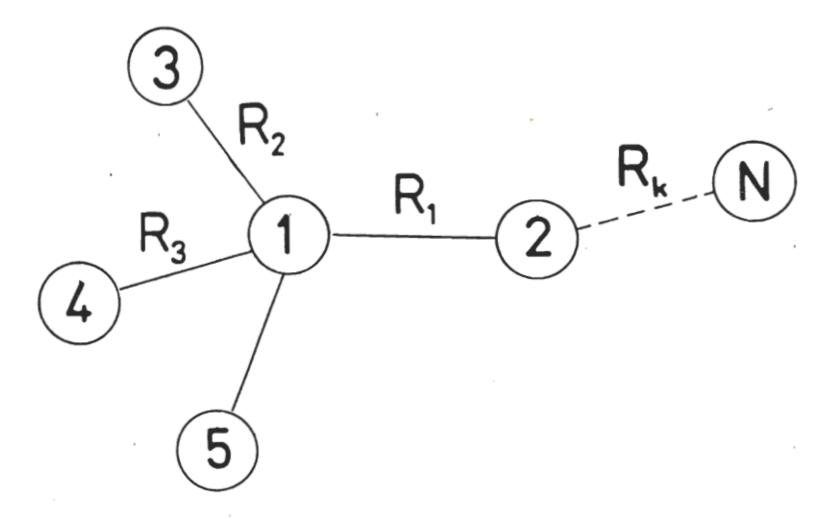


Figure 2. Les coordonnées internes des élongations

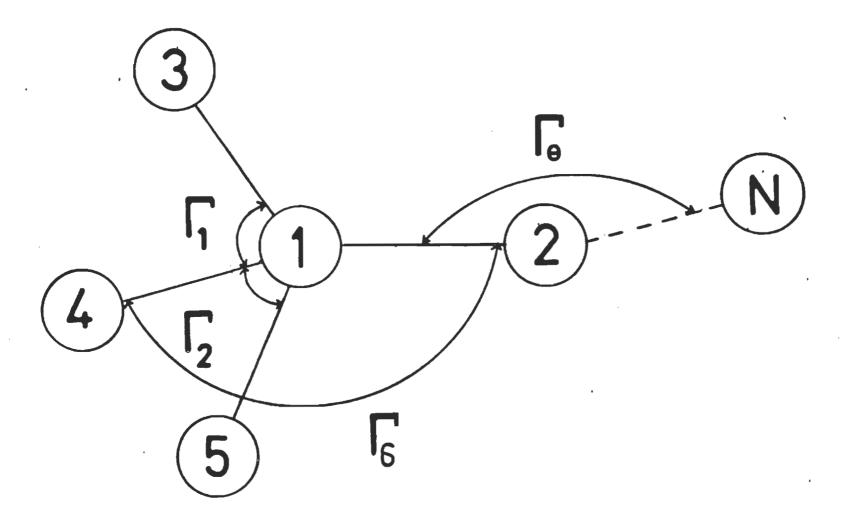


Figure 3. Les coordonnées internes des déformations angulaires

L'indice o indique que les termes de la série sont évalués pour la position d'équilibre de la molécule. Si V_o représente l'origine de l'échelle de la fonction potentielle, alors $V_o=0$ à l'équilibre. La fonction potentielle a un minimum à l'équilibre (théorème de Lejeune-Dirichlet), c'est-à-dire : $(\$V/\$R_i)_o=0$. Le troisième terme du second membre de l'équation (2.5) est la fonction potentielle des intéractions entres les coordonnées internes R_i . Les coefficients des R_i R_j sont les constantes de force de la molécule.

Ces coefficients sont symétriques :

$$F_{ij} = s^2 v / SR_i SR_j = s^2 v / SR_j SR_i = F_{ji}$$
 (2.6)

L'ensemble de ces coefficients forment une matrice F de 3N-6 lignes et de 3N-6 colonnes. Les coefficients des termes en R^3 et d'ordre supérieur de la série (2.5) définissent les constantes de force anharmoniques de la molécule [6]. Ces termes sont négligés, puisque les coefficients sont petits par rapport aux coefficients des termes en R^2 . Nous travaillons uniquement avec les approximations du deuxième ordre. Sous forme matricielle, la fonction potentielle devient :

$$2V = R'FR$$
 (2.7)

où R' est la transposée de la matrice des coordonnées internes R et F est la matrice des constantes de force d'ordre 3N-6 X 3N-6, [7].

L'énergie cinétique de la molécule exprimée en fonction des coordonnées internes $R_{\rm i}$ est :

$$2T = R' G^{-1} R$$
 (2.8)

où G^{-1} est l'inverse de la matrice des coefficients cinématiques G, d'ordre (3N-6) X (3N-6) [7]. La matrice R est un vecteur-colonne d'ordre (3N-6) qui est composé des éléments :

$$R_i = (SR_i/St)$$
 (2.9)

Les expressions (2.7) et (2.8) sont les équations fondamentales qui définissent les vibrations autour de la position d'équilibre de la molécule.

Pour passer des coordonnées internes aux coordonnées normales on utilise [8] la matrice de transformation L :

$$Q = L^{-1} R$$
 (2.10)

Cette transformation permet d'exprimer la fonction potentielle et l'énergie cinétique en fonction des coordonnées normales de la molécule. Avec les équations (2.7), (2.8), (2.10) et quelques identités matricielles [6], on formule l'expression :

$$|\mathbf{G} \mathbf{F} - \lambda \mathbf{I}| = 0 \tag{2.11}$$

laquelle est le déterminant séculaire exprimée en fonction des coordonnées internes. I représente la matrice identité.

L'équation (2.11) permet d'obtenir la fréquence des modes fondamentaux du spectre vibrationnel infrarouge et Raman d'une molécule polyatomique.

L'expression du déterminant (2.11) est un polynôme de degré 3N-6 en λ , c'est-à-dire:

$$(-\lambda)^{3N-6} + c_1 (-\lambda)^{3N-5} + c_2 (-\lambda)^{3N-4} + \dots$$

$$+ c_{3N-5} (- \lambda) + c_{3N-6} = 0$$
 (2.12)

où $c_1, c_2, \ldots, c_{3N-6}$ sont des coefficients qui sont définis à l'annexe A.

Les racines du polynôme sont liées aux fréquences d'oscillations par la relation :

$$\lambda_i = f_i^2 \tag{2.13}$$

où f_i est la fréquence d'oscillation [4]. En général, le degré de ce polynôme est très élevé. L'équation séculaire est donc une équation très difficile à résoudre. C'est un problème de calcul numérique.

Lorsque la molécule possède des éléments de symétrie, il est possible de réduire partiellement le degré de cette difficulté en utilisant les coordonnées de symétrie. Les coordonnées de symétrie sont des combinaisons linéaires des coordonnées internes. Pour obtenir ces coordonnées, il faut établir la matrice des coefficients de symétrie U. Cette pratique a pour avantage de décomposer l'équation séculaire des coordonnées symétriques en plusieurs déterminants séculaires indépendants et d'ordre inférieur à 3N-6 X 3N-6. Pour chaque type de symétrie, il y a un déterminant séculaire à résoudre. L'ordre des déterminants est toutefois élevé et il faut faire appel à l'ordinateur pour les résoudre.

Si la matrice \cup caractérise les coordonnées de symétrie en fonction des coordonnées internes [9] :

$$R^{5} = U R \tag{2.14}$$

de force exprimées en fonction des coordonnées de symétrie sont :

$$G^{S} = U \quad G \quad U' \tag{2.15}$$

$$F^{S} = U F U' \qquad (2.16)$$

et l'équation séculaire en coordonnées de symétrie est [8] :

$$G^{S} F^{S} L^{S} = L^{S} A \qquad (2.17)$$

La matrice L^S caractérise les coordonnées de symétrie en fonction des coordonnées normales, $R^S = L^S$ Q, et la matrice diagonale A est composée des racines caractéristiques λ_i .

L'équation (2.17) est celle qu'il faut résoudre en λ pour obtenir les fréquences des bandes fondamentales du spectre infrarouge d'une molécule polyatomique.

2.1.2. Présentation de l'équation vibrationnelle

Considérons à nouveau la molécule illustrée sur la figure 1.

Notre intérêt porte à présent sur le calcul de l'intensité des bandes fondamentales du spectre infrarouge d'une molécule polyatomique.

Lorsqu'une onde électromagnétique interagit avec le système moléculaire, elle perd un quantum d'énergie $\mathrm{hf}_{\mathrm{V'V'}}$, qui est absorbé par la molécule. La transition vibrationnelle se fait de l'état v'' à l'état supérieur v'. Lorsque l'absorption des quanta d'énergies rotationnelles $\mathrm{hf}_{\mathrm{R'R'}}$, est négligé, l'intensité absolue d'une bande vibrationnelle en infrarouge est :

$$\int_{\text{Bande v'v''}} K (f) df = (8\pi^3/3hc)(N_{v''}, -N_{v'}) f_{v'v''} \sum_{g} \langle \Phi_{v'} | \mu_{g} | \Phi_{v''} \rangle^{2}$$
(2.18)

où K (f) est le coefficient d'absorption

h : la constante de Planck

c : la vitesse de la lumière

μ: le moment dipolaire

 $N_{v'}$, et $N_{v'}$ sont les populations moléculaires relatives des états vibrationnels v'' et v', et g est l'indice identifiant la composante cartésienne x, y ou z, de l'élément de matrice du moment dipolaire μ [10].

C'est grâce à la variation du moment dipolaire par rapport aux coordonnées normales, $(S_{\mu}^{-}/SQ_{\frac{1}{2}})_{0}$, qu'il est possible d'observer les bandes fondamentales dans l'infrarouge. En développant le moment dipolaire (voir Annexe B) en série de Taylor autour de la position d'équilibre stable :

$$\vec{\mu} = \vec{\mu}_0 + \sum_i (S\vec{\mu}/SQ_i)_0 Q_i + \text{termes d'ordre supérieur.} \quad (2.19)$$

où $\vec{\mu}_{0}$ est le moment dipolaire permanent.

nous obtenons une expression où l'intensité absolue, G_i , d'une bande non-dégénérée est directement proportionnelle à la variation du moment dipolaire total par rapport à la coordonnée normale Q_i :

$$G_{i} = \int_{g} K(f) df = (N\pi/3c) \sum_{g} (S\mu_{g}/SQ_{i})_{o}^{2}$$
bende
$$\Delta v_{i=1}$$
(2.20)

Il y a 3N-6 modes fondamentaux qui peuvent donner une activité dans l'infrarouge et le Raman. Dans l'infrarouge, les bandes actives ont une valeur de $(S\vec{\mu}/SQ_{i})_{O}$ différente de zéro, les bandes inactives sont celles où $(S\vec{\mu}/SQ_{i})_{O}=0$.

Le défi consiste à trouver les valeurs de $(S\vec{\mu}/SQ_i)_o$ pour calculer l'intensité absolue des bandes fondamentales qui sont actives dans l'infrarouge.

Gribov a développé une méthode qui permet de trouver ces valeurs [1]. Il faut exprimer $(\$\vec{\mu}/\$Q_i)_0$ en fonction des paramètres électro-optiques de la molécule. Ces paramètres sont les moments dipolaires μ_k des liaisons chimiques et leurs dérivées par rapport aux coordonnées internes, c'est-à-dire : $\$\mu_k/\R_i .

Le développement de $(S\vec{\mu}/SQ_i)_0$ se fait dans le cadre de la théorie de la valence optique. La théorie ne s'applique qu'aux molécules à l'état gazeux. Elle donne quand même une bonne approximation pour les liquides mais elle n'est pas valable pour les solides [1].

Pour obtenir l'expression paramétrique de $(S\vec{\mu}/SQ_i)_0$, nous avons reconstitué chacune des étapes mathématiques nécessaires à la formation de cette équation.

La molécule illustrée sur les figures 2 et 3 possède k coordonnées d'élongations R et θ coordonnées angulaires Γ . Cette molécule possède $i = k + \theta = 3N-6$ coordonnées internes liées à autant de coordonnées normales Q_i .

A l'état d'équilibre :

$$R_1 = R_2 = \dots = R_k = \Gamma_1 = \Gamma_2 = \dots = \Gamma_{\Theta} = 0$$
 (2.21)

D'après l'équation (2.10), si la matrice L est une matrice qui est d'ordre k + 0 X k + 0 et qui caractérise les coordonnées internes en fonction des coordonnées normales :

$$\begin{vmatrix} R \\ \Gamma \end{vmatrix} = L \begin{vmatrix} Q \\ \end{vmatrix}$$
 (2.22)

alors les coordonnées d'élongations et de déformations sont :

$$R_L = \sum_{m}^{k} L_{Lm} Q_m + \sum_{p}^{\Theta} L_{L \ K+p} Q_{k+p}$$
 $L = 1, 2, ..., k.$ (2.23)

$$\Gamma_{n} = \sum_{m}^{k} L_{k+n} \, m \, Q_{m} + \sum_{p}^{e} L_{k+n} \, k+p \, Q_{k+p}$$
 $n = 1, 2, ..., \Theta.$ (2.24)

Le moment dipolaire total, $\vec{\mu}$, dépend des cordonnées internes [1] :

$$\vec{\mu} = \vec{\mu} (R_1, R_2, \dots, R_k, \Gamma_1, \Gamma_2, \dots, \Gamma_{\Theta})$$
 (2.25)

Selon l'équation (2.22) les coordonnées internes dépendent des coordonnées normales. Le moment dipolaire total est donc une fonction composée dont les dérivées par rapport aux coordonnées normales, $Q_{\bf i}$, sont données par les relations suivantes :

$$(\vec{S}\vec{\mu}/\vec{S}\vec{Q}_i)_0 = (\vec{S}\vec{\mu}/\vec{S}\vec{R}_1)(\vec{S}\vec{R}_1/\vec{S}\vec{Q}_i) + (\vec{S}\vec{\mu}/\vec{S}\vec{R}_2)(\vec{S}\vec{R}_2/\vec{S}\vec{Q}_i) + \dots +$$

$$(\vec{su}/\vec{sr}_k)(\vec{sr}_k/\vec{sQ}_i) + (\vec{su}/\vec{sr}_1)(\vec{sr}_1/\vec{sQ}_i) + (\vec{su}/\vec{sr}_2)(\vec{sr}_2/\vec{sQ}_i) + \dots +$$

$$(S\vec{\mu}/S\Gamma_{\Theta})(S\Gamma_{\Theta}/SQ_{\frac{1}{2}})$$
 $i = 1, 2, ..., (k+\Theta = 3N-6).$ (2.26)

En dérivant les équations (2.23) et (2.24) :

$$SR_1/SQ_1 = (S/SQ_1) (L_{1 1} Q_1 + L_{12} Q_2 + ... + L_{1 k} Q_k) +$$

$$(s/sQ_1)$$
 (L_1 $k+1$ Q_{k+1} + L_1 $k+2$ Q_{k+2} + ... L_1 $k+\Theta$ $Q_{k+\Theta}$)

$$= L_{1 \ 1}$$
 (2.27)

$$SR_2/SQ_1 = (S/SQ_1) (L_{2 1} Q_1 + L_{2 2} Q_2 + ... + L_{2 k} Q_k) +$$

$$(8/8Q_1)$$
 $(L_{2 k+1} Q_{k+1} + L_{2k+2} Q_{k+2} + ... + L_{2 k+0} Q_{k+0})$

$$= L_{2}$$
 (2.28)

•

.

$$SR_{k}/SQ_{1} = (S/SQ_{1}) (L_{k} Q_{1} + L_{k} Q_{2} + ... + L_{k} Q_{k}) +$$

$$(S/SQ_1)$$
 $(L_{k k+1} Q_{k+1} + L_{k k+2} Q_{k+2} + ... + L_{k k+0} Q_{k+0})$

$$= L_{k-1}$$
 (2.29)

$$S\Gamma_1/SQ_1 = (S/SQ_1) (L_{k+1} Q_1 + L_{k+1} Q_2 + ... + L_{k+1} + L_{k+1} + ... + L_{k+1} + ... + L_{k+1} + ... + ... + ...$$

$$(S/SQ_1)$$
 (L_{k+1} $k+1$ Q_{K+1} + L_{k+1} $k+2$ Q_{K+2} + ... +

$$= L_{k+1}$$
 (2.30)

.

•

$$S\Gamma_{\Theta}/SQ_1 = (S/SQ_1) (L_{k+\Theta} 1 Q_1 + L_{k+\Theta} 2 + ... + L_{k+\Theta} k Q_k) +$$

(\$/\$Q
$$_1$$
) ($L_{k+\theta \ k+1}$ Q $_{k+1}$ + ... + $L_{k+\theta \ k+\theta}$ Q $_{k+\theta}$)

$$= L_{k+\Theta \ 1}$$
 (2.31)

$$SR_1/SQ_2 = L_{1/2}$$
 (2.32)

·
.

$$SR_{k}/SQ_{2} = L_{k} 2 \qquad (2.33)$$

$$S\Gamma_1/SQ_2 = L_{k+1} 2 \tag{2.34}$$

• •

$$S\Gamma_{\Theta}/SQ_2 = L_{k+\Theta} 2 \tag{2.35}$$

$$SR_{1}/SQ_{k+\Theta} = L_{1 k+\Theta}$$
 (2.36)

·
·
·

$$S\Gamma_{\Theta}/SQ_{k+\Theta} = L_{k+\Theta}$$
 (2.37)

et en portant les relations (2.27 à 2.37) dans (2.26) nous avons :

$$(\vec{s\mu}/\vec{sQ_i})_0 = (\vec{s\mu}/\vec{sR_1}) L_{1i} + (\vec{s\mu}/\vec{sR_2}) L_{2i} + ... + (\vec{s\mu}/\vec{sR_k}) L_{ki} +$$

$$(\vec{s}\vec{\mu}/\vec{s}\vec{r}_1) \perp_{k+1} + (\vec{s}\vec{\mu}/\vec{s}\vec{r}_2) \perp_{k+2} + \dots + (\vec{s}\vec{\mu}/\vec{s}\vec{r}_{\Theta}) \perp_{k+\Theta}$$
 (2.38)

En utilisant la notation des sommations, l'expression (2.38) prend la forme :

$$(\vec{S}\vec{\mu}/\vec{S}\vec{Q}_{i})_{o} = \sum_{k=1}^{k} (\vec{S}\vec{\mu}/\vec{S}\vec{R}_{k}) L_{i} + \sum_{n=1}^{k} (\vec{S}\vec{\mu}/\vec{S}\vec{\Gamma}_{n}) L_{k+n} i$$
 (2.39)

Si pour les termes d'élongations nous posons :

$$L_{Li} \equiv R_{iL} \tag{2.40}$$

et pour les termes des déformations nous posons :

$$L_{k+n \ i} \equiv R_{i \ k+n} \equiv \Gamma_{in}$$
 (2.41)

alors l'équation (2.39) devient :

$$(\vec{S}\vec{\mu}/\vec{S}\vec{Q}_{i})_{o} = \sum_{L=1}^{k} (\vec{S}\vec{\mu}/\vec{S}\vec{R}_{L}) R_{iL} + \sum_{n=1}^{\Theta} (\vec{S}\vec{\mu}/\vec{S}\vec{\Gamma}_{n}) \Gamma_{in}$$
 (2.42)

Pour reflèter la structure électrique interne de la molécule, on exprime le moment dipolaire total, $\vec{\mu}$, comme une somme des moments dipolaires μ_k de chaque liaisons k, c'est-à-dire [1] :

$$\vec{\mu} = \sum_{k} \vec{\mu}_{k} = \sum_{k} \mu_{k} \vec{e}_{k}$$
 (2.43)

L'indice k représente le nombre de liaisons de la molécule et \vec{e}_k est un vecteur unitaire dans la direction de la k-ième liaison. Le vecteur $\vec{\mu}_k$ est le moment dipolaire de la k-ième liaison. Nous désignerons également le paramètre μ_k , comme le moment dipolaire de cette liaison.

L'expression (2.42) prend alors la forme :

$$(\hat{s}_{\mu}/\hat{s}\hat{Q}_{i})_{o} = \sum_{L=1}^{k} (\hat{s}/\hat{s}\hat{R}_{L}) (\hat{\Sigma}_{\mu_{k}} \vec{e}_{k}) \hat{R}_{iL} + \sum_{n=1}^{\Theta} (\hat{s}/\hat{s}\hat{\Gamma}_{n}) (\hat{\Sigma}_{\mu_{k}} \vec{e}_{k}) \hat{\Gamma}_{in}$$

$$(2.44)$$

La vibration peut modifier μ_k et \vec{e}_k et donc $\vec{\mu}_k$. Ces valeurs dépendent des coordonnées internes. En dérivant ces fonctions par rapport aux coordonnées internes [1] et en regroupant les termes de sommations, nous trouvons :

$$(s\vec{\mu}/sQ_i)_o = [\vec{e}] s\mu/sR , s\mu/s\Gamma + \{\mu\} s\vec{e}/sR , s\vec{e}/s\Gamma] | R |$$

$$(2.45)$$

- (e) est la matrice rangée dont les éléments sont les vecteurs unitaires des liaisons de valences de la molécule.
- {µ} est la matrice rangée des moments dipolaires des liaisons de valences k.

 $\S\mu/\S R$, $\S\mu/\S \Gamma$ = $|\S\mu/\S R|$ est la matrice des dérivées partielles des moments dipolaires des liaisons par rapport aux coordonnées internes de la molécule. Cette matrice est d'ordre k X k+0 .

Se/SR, Se/SC est la matrice k X k+0 des dérivées partielles des vecteurs unitaires des liaisons k par rapport aux coordonnées internes.

La matrice des dérivées des vecteurs unitaires \vec{e}_k par rapport aux coordonnées internes et qui apparaît dans l'équation (2.45) est équivalente à, [1] :

$$|\vec{se}/SR, \vec{se}/S\Gamma| | |\vec{i}|_i = S^{-1} \triangle W \vec{B}'G^{-1} - |\vec{E}, 0| |\vec{i}|_i$$
(2.46)

 S^{-1} est la matrice diagonale des longeurs inverses. \triangle est la matrice dont le nombre de rangées est égal au nombre de liaisons et le nombre de colonnes est égal au nombre d'atomes de la molécule. Dans chaque rangée il y a un nombre + 1 pour représenter l'atome final et un nombre - 1 pour représenter l'atome initial d'une liaison. Les autres éléments ont des valeurs de zéro. W est la matrice diagonale dont les éléments sont les masses inverses sans dimension. \overrightarrow{B} est la matrice de transformation pour passer des coordonnées vectorielles aux coordonnées internes. G^{-1} est la matrice inverse de la matrice des coefficients cinématiques G. \overrightarrow{E} est la matrice carrée dont la diagonale est composée des vecteurs \overrightarrow{e}_k . Les autres éléments de cette matrice sont nuls.

En portant (2.46) dans (2.45) on a :

$$(S\vec{\mu}/SQ_{i})_{O} = \{\vec{e}\} | S\mu/SR | || 1 ||_{i}$$

+ {
$$\mu$$
 } S⁻¹(\triangle **W** \overrightarrow{B}' G⁻¹ - | \overrightarrow{E} ,0 | | 1 | $_{i}$ (2.47)

$$\triangle W \overrightarrow{B}'G^{-1}|| | | | | | = || \triangle \overrightarrow{r}||_{i}$$
 (2.48)

 $\Delta \vec{r}$ est la différence entre les vecteurs-positions des atomes. D'après [4], l'expression (2.47) se réduit à :

$$(SJ/SQ_i)_0 = \{\vec{e}\} | S\mu/SR | || 1 ||_i$$

$$- \{ \mu \} || | | \vec{e} / s ||_{i} + \{ \mu \} || \Delta \vec{r} / s ||_{i}$$
 (2.49)

L'équation vibrationnelle (2.49) est l'expression utilisée pour calculer, en coordonnées internes, l'intensité des bandes fondamentales infrarouges (éq. 2.20) d'une molécule polyatomique à l'état gazeux.

- 2.2. Contribution informatique
- 2.2.1. Adaptation du programme de Gribov-Dement'ev à l'ordinateur central de l'université

Sachant que Gribov-Dement'ev avait déjà construit un programme FORTRAN IV qui calcule les fréquences et les intensités des spectres infrarouges [4], notre intérêt s'est porté sur l'adaptation de ce programme à l'ordinateur de l'U.Q.T.R., un Cyber 825 de Control Data Corp.

Il nous a été impossible d'obtenir une traduction anglaise du manuel "Metody i algoritmy vichislenii v teorii kolebatelnikh spektrov molekul "[4]. Avec la collaboration de Michel Trudel du laboratoire de spectroscopie moléculaire, nous avons procédé à une traduction textuelle en interchangeant les mots russes par des mots anglais équivalents à l'aide d'un traitement de texte. Cette méthode s'est avèrée utile mais lourde et de compréhension difficile. Nous avons consulté Julian Gruda, professeur au département de chimiebiologie pour la traduction de certaines parties du volume.

Au laboratoire de spectroscopie moléculaire, les chercheurs travaillent en FORTRAN V sur l'ordinateur central de l'U.Q.T.R. et nous avons adapté le programme de Gribov-Dement'ev dans ce langage. A l'analyse du programme, nous avons constaté que leur ordinateur compilait ce programme en librairies alors que le Cyber peut compiler le programme en entier. Des modifications ont alors été apportées aux entrées et aux sorties du programme et nous avons traduit les formats d'édition qui était écrit en russe.

Le défi, finalement, consistait à maîtriser la technique et la théorie afin d'utiliser le programme de Gribov-Dement'ev pour l'étude des molécules qui nous intéressent.

2.3. Application théorique

2.3.1. Choix et description de l'eau

En général, pour les molécules polyatomiques avec plus de cinq atomes, le degré en λ (éq. 2.12) de l'expression du déterminant séculaire est trop élevé pour effectuer un calcul manuel. Nous avons donc procédé à l'analyse d'une molécule de trois atomes dont le degré en λ permet de faire un calcul manuel.

L'eau est une molécule qui est composée de deux atomes d'hydrogène de masses identiques m_1 et m_2 liés à un atome d'oxygène de masse m_3 . Cette molécule est illustrée sur la figure 4. La molécule d'eau est de symétrie C_{2v} et possède quatre éléments de symétrie : l'identité E, l'axe C_2 , le plan vertical σ_v et le plan vertical σ_v' . La molécule possède trois coordonnées internes: R_1 , R_2 et $R_3 \equiv \Gamma_1$. Ces coordonnées sont illustrées sur la figure 5. Les coordonnées R_1 et R_2 représentent la variation des longeurs r des liaisons O-H, c'est-à-dire : $R_1 = \Delta r_{31}$ et $R_2 = \Delta r_{32}$. La

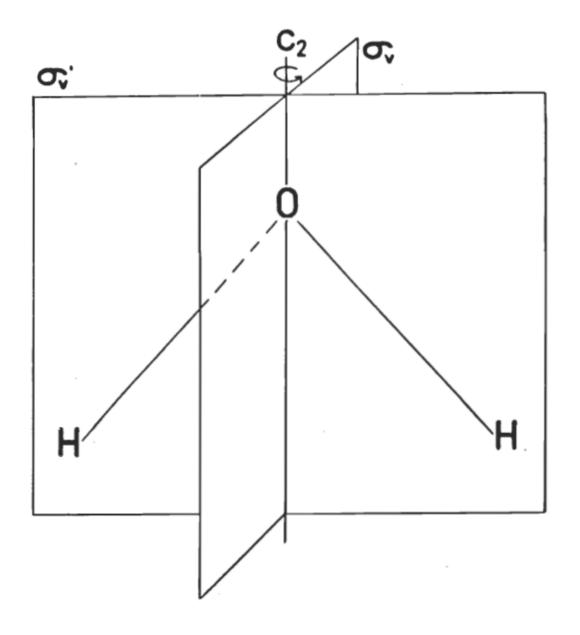
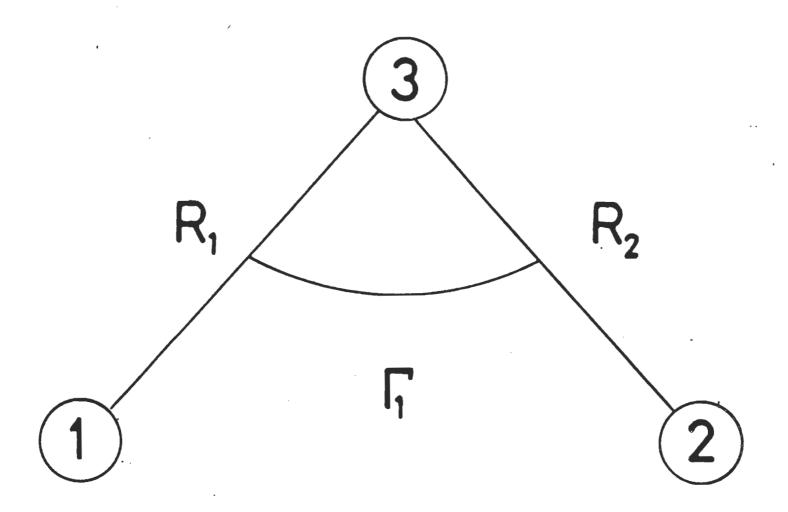


Figure 4. Les éléments de symétrie de l'eau, C_{2v}



5

coordonnée Γ_l représente la variation de l'angle θ entre les liaisons O-H, c'est-à-dire Γ_l = Δ θ . Si la molécule est en équilibre, alors :

$$\triangle \Gamma_{31} = \triangle \Gamma_{32} = \triangle \Theta = 0$$

et
$$R_1 = R_2 = \Gamma_1 = 0$$
 (2.50)

L'énergie cinétique exprimée en fonction des coordonnées internes est de la forme donnée par l'équation (2.8) :

et d'après l'équation (2.7) la fonction potentielle est :

$$2V = | R_{1} R_{2} \Gamma_{1} | | F_{12} F_{13} | | R_{1} | | R_{2} | | R_{2} | | R_{2} | | R_{2} | | R_{31} F_{32} F_{33} | | \Gamma_{1} | | R_{2} | | R_{2} | | R_{31} F_{32} F_{33} | | \Gamma_{1} | R_{2} | | R_{32} F_{33} | | \Gamma_{1} | R_{2} | | R_{33} | R_{34} | R_{3$$

2.3.2. Choix des unités pour les matrices G et F

La formation des matrices G et F est l'étape la plus importante pour la formation de l'équation séculaire. Le programme de Gribov-Dement'ev utilise les constantes de force en unités de 10⁶

cm⁻². Aussi nous avons exprimé les éléments de la matrice F dans ces unités en utilisant des facteurs de conversions.

Habituellement, nous utilisons l'expression :

$$\lambda_i = 4 \pi^2 c^2 f_i^2$$
 (2.53)

où c est la vitesse de la lumière

pour évaluer les fréquences f_i à partir des racines λ_i de l'équation séculaire [10]. Par conséquent, l'expression (2.13) est utilisée et la matrice G devient une matrice sans dimension. Pour obtenir les constantes de force F exprimées en 10^6 cm $^{-2}$ à partir des constantes de force K, K et K, trois facteurs de conversion d'unités sont utilisés.

Pour les élongations, la constante de force est :

$$F = (N_{O} k) / (4 \pi^{2} c^{2} m_{H})$$

$$où N_{O} = 6.0225 \times 10^{23} \text{ mol}^{-1}$$

$$m_{H} = 1.088 \text{ u.m.a.}$$

k est la constante de force en mdyn-A⁻¹

et m_{H} =1.088 u.m.a. est la masse spectroscopique de l'hydrogène [4]. Cette valeur est utilisée au lieu de 1.008 u.m.a. pour tenir compte de l'anharmonicité de la molécule.

Pour les déformations angulaires, la constante de force est :

$$F = (N_0 H) / (4 \pi^2 c^2 m_H r^2_{CH})$$
où $r_{CH} = 1.09 A$ (2.55)

H est la constante de force en mdyn-A

Et pour les constantes de force F', des intéractions d'élongations-déformations :

$$F = (N_O F') / (4 \pi^2 c^2 m_H r_{CH})$$
 (2.56)

où F' est la constante de force en mdyn

2.3.3. Méthode de calcul théorique des fréquences

Pour calculer les fréquences d'oscillation de la molécule, les matrice G et F sont exprimées en fonction des coordonnées de symétrie (voir les équations 2.15 et 2.16).

Pour H_2^0 les coordonnées de symétrie C_{2v} sont :

$$R^{A} = (1 / \sqrt{2}) R_{1} + (1 / \sqrt{2}) R_{2}$$
 (2.57)

$$\Gamma^{A} = \Gamma_{1} \tag{2.58}$$

$$R^{B} = (1 / \sqrt{2}) R_{1} - (1 / \sqrt{2}) R_{1}$$
 (2.59)

Il y a 3 X 3 - 6 = 3 modes de vibrations normales. Ces modes sont du type :

$$\Gamma_{\text{vib}} = 2 A_1 + B_2$$
 (2.60)

Il y a deux vibrations du type de symétrie A_1 et une vibration du type de symétrie B_2 . Nous calculons les fréquences des modes de vibration normale. Pour cela, les équations séculaires sont formées avec les matrices G^S et F^S , pour chaque type de symétrie :

$$|GF - \lambda I|_{A1} = 0$$
 (2.61)

et:

$$|GF - \lambda I|_{B2} = 0$$
 (2.62)

où
$$\lambda_i = f_i^2$$

On présente les étapes de ces calculs au chapitre 4.

Le spectre expérimental de l'eau à l'état gazeux montre des bandes fondamentales avec une structure rotationnelle compliquée qui couvre une gamme de fréquences très grande. Pour cette raison, les paramètres électro-optiques de cette molécule n'ont pas été déterminés par la méthode des moindres carrés dans le problème

inverse proposé par Gribov. Le problème inverse [4,11,12] consiste à déterminer les matrices { μ_k } et | $\$\mu_k/\R_i | à partir de l'intensité des bandes fondamentales du spectre infrarouge. L'objet de notre étude consiste à obtenir l'intensité infrarouge des bandes fondamentales à partir de paramètres électro-optiques connues. C'est le problème direct. Pour ces raisons nous n'avons pas présenté un calcul théorique de l'intensité des bandes d'eau. Le calcul du spectre de fréquences de l'eau fait avec le programme de Gribov-Dement'ev apparait à l'annexe D.

2.4-Cas particulier traité

2.4.1-Choix et description de la cyclopentanone

Les chercheurs du laboratoire de spectroscopie moléculaire ont un intérêt pour la chlorophylle [13,14]. Le spectre infrarouge de cette molécule n'a pas encore été élucidé complètement.

Cette molécule qui est illustrée sur la figure 6 [13], possède 137 atomes et le programme de Gribov-Dement'ev n'accepte que des molécules qui ont 52 atomes où moins. Il faut choisir une molécule plus petite et maîtriser la méthode de Gribov avant d'attaquer une molécule de cette dimension.

Dans la nature, la chlorophylle est en intéraction avec son environnement moléculaire. Cette intéraction se fait par les groupes carbonyles qui sont des groupes fonctionnels actifs. Les

Figure 6. La chlorophylle

états d'aggrégations ont une influence sur la molécule et les constantes de force sont modifiées. Nous observons sur le spectre expérimental un déplacement des bandes des goupes carbonyles dont le plus important est le groupe cétone. Il y a donc beaucoup d'intérêt pour cette région. Dans cette région stratégique, l'anneau formé par les atomes (C₂₉, C₁₅, C₁₄, C₁₃ et C₂₈) possède le groupe cétone. La molécule la plus proche de cet anneau est la cyclopentanone. Le nombre d'atomes de cette molécule est inférieur à 52 et le spectre de cette molécule peut être calculé avec le programme de Gribov-Dement'ev. Nous avons donc choisi cette molécule comme objet de notre étude.

Le modèle de la cyclopentanone est illustré sur la figure 7. C'est une molécule qui se compose de 14 atomes : 5 carbones, 8 hydrogènes et un oxygène doublement lié au carbone. Nous étudions cette molécule dans la configuration ${\bf C}_2$.

2.4.2-Sélection des coordonnées internes

La cyclopentanone a k = 14 liaisons. Durant la vibration moléculaire, la longeur des liaisons change. Il y a donc 14 coordonnées internes pour décrire l'élongation de ces liaisons. Pour sélectionner ces coordonnées, les atomes de la molécule sont numérotés comme nous l'avons illustré sur la figure 8. Chaque paire d'atomes forme une liaison. Les coordonnées d'élongations sont :

2

coordonnées d'élongations liaisons

R 1

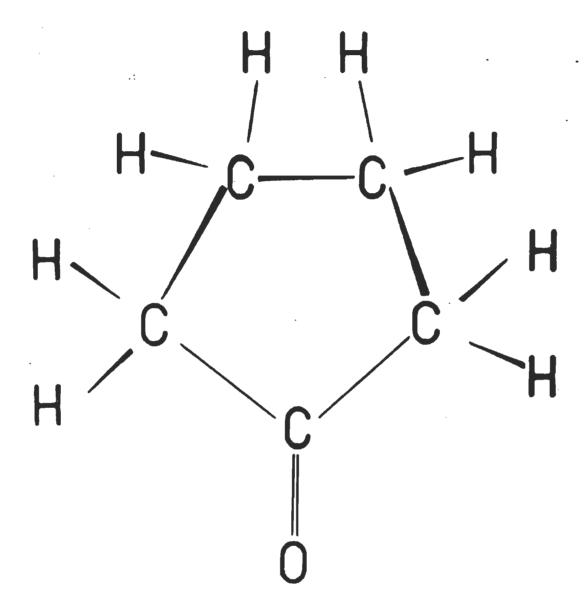


Figure 7. La cyclopentanone

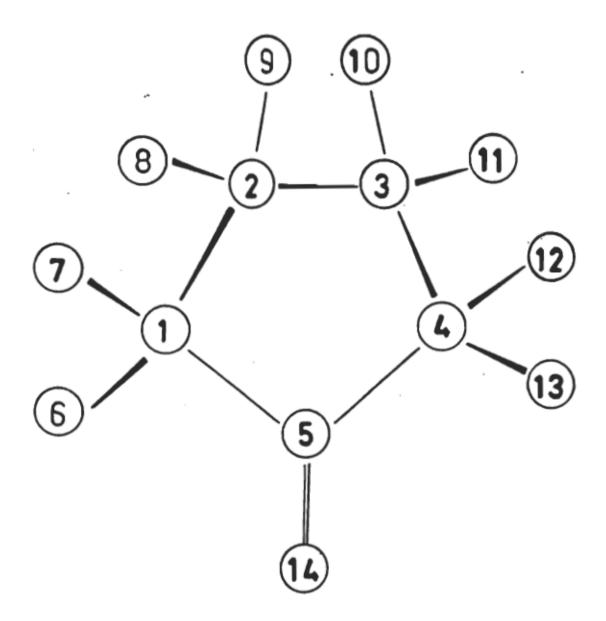


Figure 8. Numérotation des atomes de la cyclopentamone

Ensuite les coordonnées angulaires Γ_Θ sont sélectionnées en prenant tous les angles de valence et suivant notre convention initiale nous obtenons :

coordonnées	angulaires	ar	ng l	es
R ₁₅	≡ r ₁	l	2	3
R ₁₆	≡ r ₂	2	3	4
R ₁₇	≡ Γ ₃	3	4	5
_	•	_	•	
R ₄₁	= r ₂₇	/	1	2

finalement une coordonnée non-planaire est sélectionnée :

$$R_{42} \equiv H_1$$
 1 5 14 14 5 4

Les coordonnées non-planaires représentent la variation de l'angle entre des plans de la molécule. Nous présentons la série complète des coordonnées internes au chapitre 5.

2.4.3. Formation de la matrice G

Pour construire la matrice G, les vecteurs $\vec{s}_{i\alpha}$ sont calculés pour les coordonnées R_i de la molécule. Les vecteurs $\vec{s}_{i\alpha}$ sont des

vecteurs dont la valeur absolue $|\vec{s}_{i\alpha}|$ est égale à l'accroissement de la coordonnée R_i et dont la direction est celle où il y a un accroissement maximum de R_i . Les vecteurs $\vec{s}_{i\alpha}$ sont fixés à des atomes qui portent des numéros α comme ceux que nous avons défini à la section 2.4.2. L'avantage de cette méthode est qu'il n'est pas nécessaire de définir d'axes de référence de la molécule.

La cyclopentanone a donc 14 coordonnées internes d'élongations qui représentent l'accroissement de la longeur des liaisons. Pour chaque coordonnée, les vecteurs $\vec{s}_{i\alpha}$ sont calculés d'après le modèle illustré sur la figure 9. Pour les liaisons de valence de la molécule, les vecteurs $\vec{s}_{i\alpha}$ sont de la forme [10] :

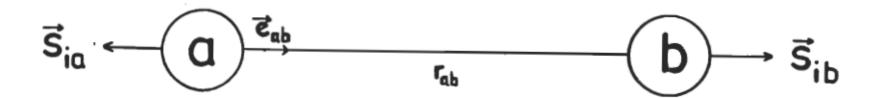
$$\vec{s}_{ia} = -\vec{e}_{ab}$$
 (2.63)

$$\vec{s}_{ib} = \vec{e}_{ab}$$
 (2.64)

où \vec{e}_{ab} est le vecteur unitaire défini sur la figure 9.

La cyclopentanone a 27 coordonnées internes angulaires qui représentent l'accroissement de l'angle de valence entre les liaisons chimiques. Pour chaque coordonnée angulaire, les vecteurs $\vec{s}_{i\alpha}$ sont calculés d'après le modèle illustré sur la figure 10 . Pour tous les angles de valence, les vecteurs $\vec{s}_{i\alpha}$ sont de la forme :

$$\vec{s}_{ia} = (\cos \tau) (\vec{e}_{ca} - \vec{e}_{cb}) / r_{ca} \sin \tau$$
 (2.65)



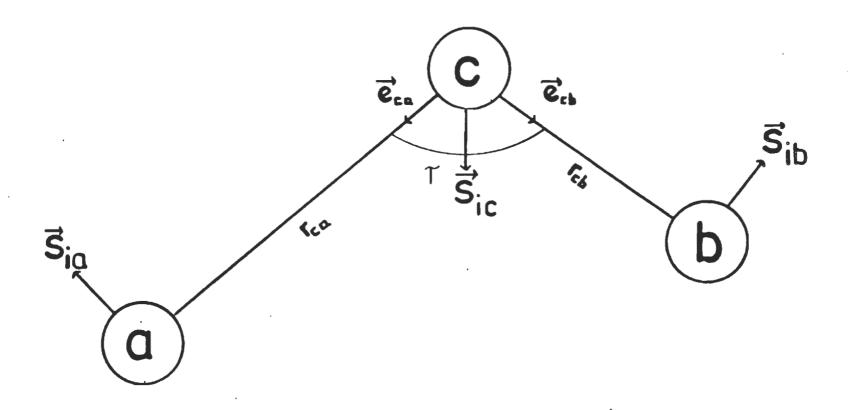


Figure 10. Les vecteurs $\vec{s}_{i\alpha}$ de la coordonnée angulaire \mathbf{R}_i

$$\vec{s}_{ib} = (\cos \tau) (\vec{e}_{cb} - \vec{e}_{ca}) / r_{ca} \sin \tau$$
 (2.66)

$$\vec{s}_{ic} = -(\vec{s}_{ia} + \vec{s}_{ib})$$
 (2.67)

Il y a 28 vecteurs $\vec{s}_{i\alpha}$ pour les coordonnées d'élongation et 81 vecteurs $\vec{s}_{i\alpha}$ pour les coordonnées de déformation angulaire de la molécule.

Les éléments de la matrice G sont calculés à partir de :

$$G_{ij} = \sum_{\alpha=1}^{N} w_{\alpha} \vec{s}_{i\alpha} \cdot \vec{s}_{j\alpha}$$
 (2.68)

i,j = 1, 2, ..., 3N-6. α est le numéro d'atome N est le nombre d'atomes/molécule w_{α} = 1.088 / m_{α} , m étant la masse de l'atome α

Les indices i et j sont les indices des coordonnées internes qui sont définis à la section 4.2.2. Les éléments de la diagonale G_{11} , G_{22} , ..., G_{ij} sont les éléments des coordonnées R_i , les éléments : G_{12} , G_{13} , ..., G_{ij} sont les éléments des coordonnées R_i et R_j . Les éléments de la partie triangulaire inférieure sont calculés directement. En effet :

$$G_{ij} = G_{ji} \tag{2.69}$$

D'après l'équation (2.68) on remarque que la matrice **G** reflète la structure interne de la molécule. On utilise le programme de Gribov-Dement'ev pour construire la matrice **G**.

2.4.4. Formation de la matrice F

La cyclopentanone possède 42 coordonnées internes. La matrice F exprimée en fonction des coordonnées internes est une matrice d'ordre 42 X 42. Les constantes de force proviennent de la littérature [15] et elles sont exprimées en unités de $10^6~{\rm cm}^{-2}$ en utilisant les équations (2.54 à 2.56). Les éléments de la matrice F sont conformes à la convention établie à la section 2.4.2 en utilisant la figure 11. Les éléments qui sont physiquement équivalents sont pris en considération. La diagonale est formée à partir des constantes de force des liaisons de valence et des constantes de force des déformations angulaires. La partie triangulaire supérieure est formée avec les constantes de force des intéractions des élongations-déformations. La partie triangulaire inférieure est formée directement puisque $F_{i,i} = F_{ji}$.

Les constantes de force de la cyclopentanone sont données au tableau !.

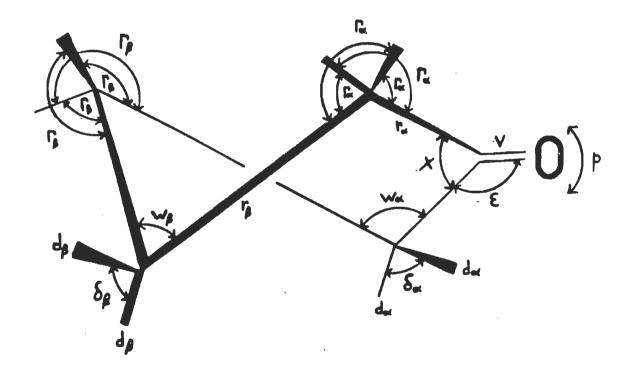


Figure 11. Les coordonnées internes de la cyclopentanone (C_2)

Tableau ! : Constantes de force de la cyclopentanone l

F _Γ (β,Γ)	= 6.4651	F_{Γ} (α) =	6.6336
F _d (ß)	= 7.2467	F_d (α) =	7.3231
F_V	= 15.8335	F _W (B) =	1.1529
F _₩ (α)	= 1.3289	F _X =	1.4589
F _∈	= 1.1884	F ₈ (B) =	0.6828
F _δ (α)	= 0.6500	F _r (B) =	0.8889
F _Γ (α)	= 0.7892	F _p =	0.4477
$F_{f,r(\alpha)}$	= 0.0000	F _{d,d} =	0.0094
F _{r,r}	= 0.1576	$F_{r,\Gamma}^2 =$	0.4695
F _{r,Γ} ³	= 0.1131	F _{r,w} =	0.5968
F _{r(α),∈}	= 0.5968	F _{r,r} =	-0.0276
F _{r,w}	= -0.0407		
• • •			

1 : voir référence 15, F en $10^6\ \mathrm{cm}^{-2}$

2 : atomes communs : C-C

3 : atome commun : C

2.4.5-Formation des matrices { $\mu_{\mathbf{k}}$ } et | $\mathrm{S}\mu_{\mathbf{k}}/\mathrm{SR}_{\dot{1}}$ |

Les paramètres électro-optiques de la cyclopentanone ne sont pas donnés dans la littérature. Pour former les matrices { μ_k } et $| \S\mu_k / \S R_i |$, les valeurs sont prises parmi celles qui sont disponibles. Les paramètres électro-optiques utilisés proviennent de molécules qui ont des arrangements atomiques qui s'apparentent avec la cyclopentanone. Les molécules que nous avons chosies sont l'acétone [16] et le butane [17].

La cyclopentanone a k = 14 liaisons chimiques et la matrice $\{\mu_k\}$ est un vecteur ligne composé de 14 éléments qui sont les moments dipolaires des liaisons chimiques. Il y a 42 coordonnées internes et la matrice $\|\S\mu_k/\S R_i\|$ est d'ordre 14 X 42 dont les éléments sont les dérivées des moments dipolaires des liaisons chimiques par rapport aux coordonnées internes. Les paramètres électro-optiques de l'acétone et du butane sont données au tableau 2.

Les paramètres électro-optiques du butane sont transférés dans la partie 1 de la cyclopentanone (fig. 12). Pour la partie 2 nous prenons les paramètres de l'acétone (fig.13).

$$\mu_{\text{CO}}$$
 = 1.84 μ_{CC} = -0.66 μ_{CH} = -0.25 $\mu_{\text{CH}}/\kappa_{\text{CH}}$ = -0.52 $\mu_{\text{CH}}/\kappa_{\text{CH}}$ = -0.21 $\mu_{\text{CC}}/\kappa_{\text{CH}}$ = 0.12 $\mu_{\text{CH}}/\kappa_{\text{HCH}}$ = -0.29 $\mu_{\text{CO}}/\kappa_{\text{CO}}$ = 5.21

butane (CH₂)

$$\mu_{CH} = 0.250$$
 $\mu_{CC} = 0.000$ $8\mu_{CH}/8R_{CH} = 0.920$ $8\mu_{CH}/8R_{CH}' = 0.050$ $8\mu_{CH}/8R_{CCH}' = -0.378$ $8\mu_{CH}/8R_{CCH}' = -0.475$ $8\mu_{CH}/8R_{HCH}' = -0.370$ $8\mu_{CH}/8R_{CCC}' = -0.884$

cyclopentanone

partie l

$$\mu_{\text{CH}} = 0.250$$
 $\mu_{\text{CC}} = 0.000$ $8\mu_{\text{CH}}/8R_{\text{CH}} = 0.920$ $8\mu_{\text{CH}}/8R_{\text{CH}}' = 0.050$ $8\mu_{\text{CH}}/8R_{\text{CCH}} = -0.378$ $8\mu_{\text{CH}}/8R_{\text{CCH}}' = -0.475$ $8\mu_{\text{CH}}/8R_{\text{HCH}}' = -0.370$ $8\mu_{\text{CH}}/8R_{\text{CCC}}' = -0.884$

partie 2

$$\mu_{CO} = -1.840$$
 $\mu_{CC} = 0.660$ $\mu'_{CC} = -0.660$ $\mu_{CH} = 0.250$ $\mu_{CH}/\kappa_{CH} = 0.520$ $\mu_{CH}/\kappa_{CH} = 0.210$ $\mu_{CC}/\kappa_{CH} = 0.120$ $\mu_{CH}/\kappa_{CH} = -0.290$ $\mu_{CO}/\kappa_{CO} = -5.210$

l : voir références 16 et 17, μ en debyes, μ_k/R en D/A

partie1

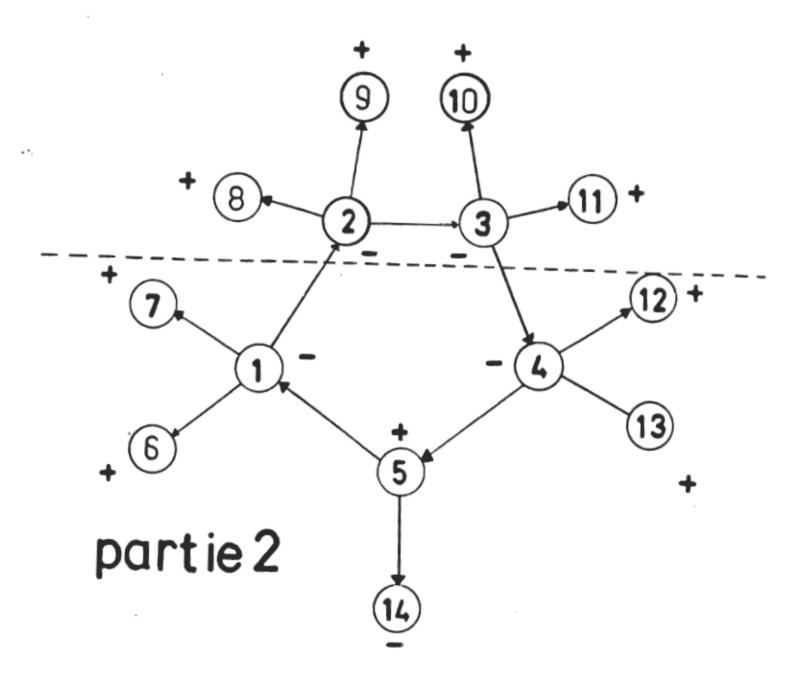


Figure 12. Distribution des charges de la cyclopentanone

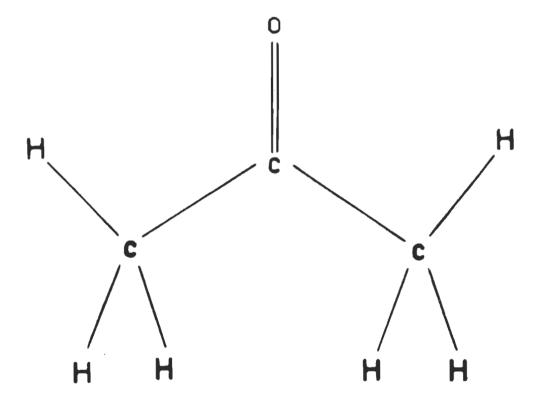


Figure 13. L'acétone

Le signe des paramètres électro-optiques [16] de l'acétone suit la convention des chimistes pour définir le vecteur moment dipolaire. Cette convention est basée sur la déficience et le surplus de densité électronique, + et - respectivement. Dans ce cas le moment dipolaire est un vecteur qui va de la charge positive à la charge négative. Le signe des paramètres électro-optiques du butane suit la convention que nous allons présenter. Cette molécule est illustrée au chapitre 5.

Pour déterminer le signe des u_k , la distribution des charges de la cyclopentanone est fixée (fig. 12). Le moment dipolaire selon une liaison k est défini de la façon suivante :

$$\vec{\mu}_{k} = \mu_{k} \vec{e}_{k} = \pm |q| r \vec{e}_{k}$$
 (2.70)

C'est un vecteur dont la direction est définie par la droite joignant les deux charges et le sens va de la charge négative à la charge positive. Le module est égal au produit de la charge q, positive ou négative, par la distance r entre les deux charges.

Le signe des μ_k dépend du sens des vecteurs unitaires \vec{e}_k [1]. Les coordonnées R_i sont considérées positives pour l'extension des liaisons et des angles entre les liaisons. Le signe d'une dérivée, $S\mu_k/SR_i$, est déterminé en notant si le module du moment dipolaire total, $|\vec{\mu}|$, de la molécule, augmente ou diminue par rapport à la

coordonnée R [1]. Pour vérifier le signe de $\S\mu_k/\S R_i$ il faut calculer $(\S|\vec{\mu}|/\S R_i)$.

Lorsque R_i représente une coordonnée d'élongation [1,18] :

$$\mu_k/R_k > 0$$
, si $\mu_k > 0$

$$8\mu_k/8R_k < 0$$
, si $\mu_k < 0$

En général, pour établir le signe de $S\mu_k/SR_i$, il faut suivre le modèle illustré sur la figure 14, avec la convention que nous avons pris dans la référence 18.

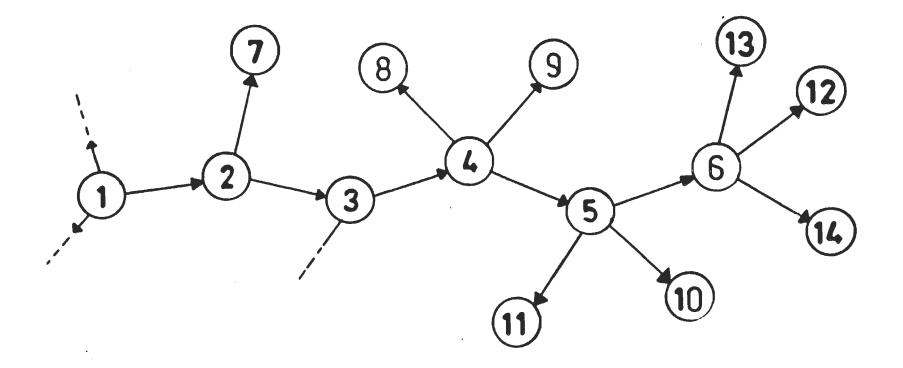
$$S\mu_6/SR_2 = - si(S|\vec{p}|/SR_2) = -$$

$$\mu_6/R_6 = + \text{puisque } \mu_6 > 0$$

$$\$\mu_{6}/\$R_{15} = + si (\$|\vec{\mu}|/\$R_{15}) = +$$

$$S\mu_8/SR_7 = + si(S|\vec{\mu}|/SR_7) = +$$

$$\mu_8/\Re_8 = + \text{ puisque } \mu_8 > 0$$



S

54

$$S\mu_8/SR_{22} = -$$
 si $(S|\vec{\mu}|/SR_{22}) = -$

$$8\mu_9/8R_{19} = -$$
 si $(8|\vec{\mu}|/8R_{19}) = -$

$$S\mu_9/SR_{20} = -$$
 si $(S|\vec{\mu}|/SR_{20}) = -$

$$S\mu_9/SR_{21} = -$$
 si $(S|\vec{\mu}|/SR_{21}) = -$

$$8\mu_{13}/8R_{26} = -$$
 si $(8|\vec{\mu}|/8R_{26}) = -$

$$S\mu_{13}/SR_{27} = -$$
 si $(S|\vec{\mu}|/SR_{27}) = -$

dont certaines coordonnées internes sont données de la façon suivante :

coordonnées d'élongations	liai	sons
R 1	1	2
R 2	2	3
R ₃	3	4
R 4	4	5
R ₅	5	6
R 6	2	7
0		0

R ₈	4	1	9	
R 9	5	i	10	
R ₁₀	5	5	11	
R ₁₁	6	,	12	
R ₁₂	6	,	13	
R ₁₃	6	•	14	
coordonnées angulaires	angles			
R ₁₄	1	2	3	
R ₁₅	2	3	4	
R ₁₆	3	4	5	
R ₁₇	3	4	8	
R ₁₈	3	4	9	
R ₁₉	4	5	6	
R ₂₀	4	5	10	
R ₂₁	4	5	11	
R ₂₂	8	4	9	
R ₂₃	10	5	11	
R ₂₄	5	6	12	
R ₂₅	5	6	13	
R ₂₆	5	6	14	
R ₂₇	12	6	14	

Cette convention est respectée pour les paramètres électrooptiques de la cyclopentanone. Pour chaque dérivée $\$\mu_k/\R_i le signe est vérifié en calculant $\$|\vec{\mu}|/\R_i . Un exemple est illustré à l'annexe C. La méthode est résumée de la façon suivante :

1- La distribution des charges de la cyclopentanone est fixée.

2- Le signe des moments dipolaires μ_k est établi d'après la distribution de charges et le sens des vecteurs unitaires \vec{e}_k .

3- Le signe des $S\mu_k/SR_i$ est déterminé d'après la convention cihaut mentionnée.

2.4.6-Méthode de calcul des fréquences et des intensités

L'expression du déterminant séculaire exprimé en fonction des coordonnées internes est de degré 42 en λ . Pour calculer les racines de ce polynôme de degré très élevé, il faut utiliser le programme que nous avons adapté. Les coordonnées internes et les caractéristiques moléculaires sont introduites pour former la matrice G. La matrice F est construite d'après les indications de la section 2.4.4. et introduite dans le programme. Avec les coordonnées de symétrie il y a formation des matrices G^S et F^S (voir les éqs. 2.15 et 2.16). Les équations séculaires sont formées avec les symétries A et B:

$$|\mathbf{G}^{\mathsf{S}} \mathbf{F}^{\mathsf{S}} - \lambda \mathbf{I}|_{\mathbf{A}} = 0 \tag{2.71}$$

$$|\mathbf{G}^{\mathsf{S}} \mathbf{F}^{\mathsf{S}} - \lambda \mathbf{I}|_{\mathsf{B}} = 0 \tag{2.72}$$

L'équation (2.71) est d'ordre 22 X 22 et l'équation (2.72) est d'ordre 20 X 20. En résolvant les équations, nous obtenons les fréquences d'oscillations de la cyclopentanone.

Il y a 3 X 14 - 6 = 36 modes de vibrations normales. Le problème consiste à calculer les 36 fréquences d'oscillations de la cyclopentanone. Il faut donc résoudre, en coordonnées internes, un polynôme de degré 36 en λ . Il y a 42 coordonnées internes au lieu de 36, puisque le programme de Gribov-Dement'ev permet d'introduire les coordonnées internes redondantes. Dans tous les cas, le programme calcule 3N-6 fréquences d'oscillations.

Le programme forme l'équation vibrationnelle (2.49) et calcule l'intensité des bandes fondamentales de la cyclopentanone.

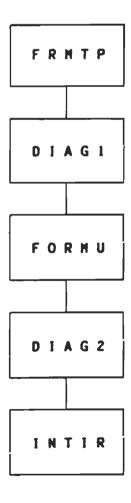
Chapitre 3

PROGRAMME DE GRIBOV-DEMENT'EV

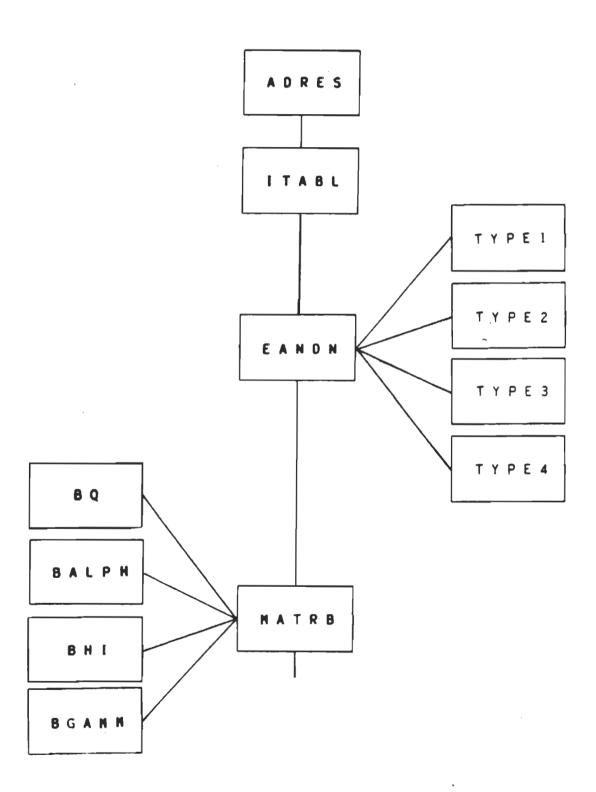
3.1. Ordinogramme

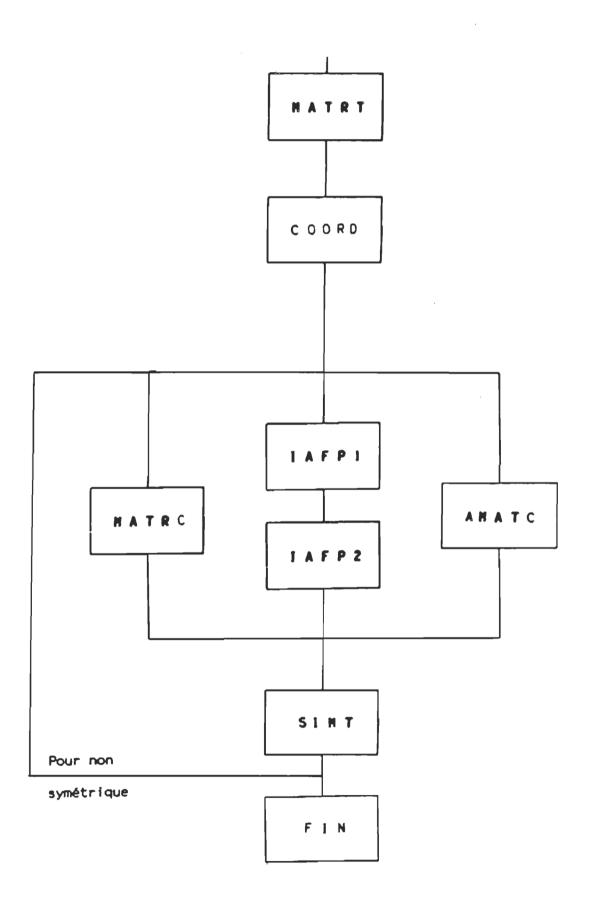
L'ordinogramme du programme qui calcule le spectre infrarouge d'une molécule polyatomique est illustré ci-dessous :

Les programmes sont :



Les sous-routines principales de FRMTP sont :





3.2. Description du programme

L'algorithme de Gribov-Dement'ev pour le calcul des fréquences et des intensités des bandes fondamentales infrarouges d'une molécule polyatomique se compose des programmes : FRMTP, DIAG1, FORMU, DIAG2, INTIR.

Le programme FRMTP se compose principalement des sous-routines :

ADRES, ITABL, EANDN, MATRB, BALH, BHI, MATRT, IAFP1 et IAFP2. ADRES

est la sous-routine qui sélectionne la zone dans laquelle les

programmes FRMTP, DIAG1, FORMU, DIAG2 et INTIR inscrivent et

extraient les résultats intermédiaires obtenus pendant la formation

de l'équation séculaire et l'équation vibrationnelle.

Les données du fichier d'entrées sont inscrites sur le ruban 1.

Les résultats intermédiaires, formés pendant le calcul des

fréquences et des intensités, sont inscrits sur le ruban 8 qui se

divise en 11 zones que nous pouvons utiliser simultanément. La zone

1 est réservée pour le problème inverse. Les zones 2 et 3

contiennent des molécules qui ont jusqu'à 160 coordonnées internes.

Les zones 4, 5, 6 et 7 sont pour les molécules qui ont jusqu'à 80

coordonnées internes. Les zones 9, 10 et 11, sont pour les

molécules qui ont 40 coordonnées internes ou moins. Le programme

peut résoudre simultanément 10 équations séculaires et 10 équations

vibrationnelles qui sont propres à autant de molécules.

La sous-routine ITABL va lire sur le ruban 1, le nombre d'atomes et le nombre de coordonnées d'élongations, le nombre de déformations angulaires et le nombre de déformations non-planaires. Cette sous-

routine n'admet pas plus de 52 atomes et 160 coordonnées internes par molécule.

La sous-routine EANDN va lire dans le fichier d'entrées, les composantes cartésiennes des vecteurs unitaires des liaisons internes de la molécule. A défaut de quoi EANDN s'adresse aux sous-routines TYPE1, TYPE2, TYPE3 et TYPE4 pour calculer les composantes de vecteurs unitaires inconnus, à partir de vecteurs et des angles connus. Les équations mathématiques des sous-routines TYPE 1, 2, 3 et 4 pour le calcul des vecteurs unitaires sont respectivement :

1)
$$\vec{e}_1 \cdot \vec{e}_3 = \cos \Phi_1$$

$$\vec{e}_2 \cdot \vec{e}_3 = \cos \Phi_2$$

$$\vec{n} \cdot \vec{e}_3 = \cos \beta$$
(3.1)

C'est un système d'équations où les composantes du vecteur inconnu \vec{e}_3 sont calculées à partir des vecteurs \vec{e}_1 et \vec{e}_2 et des angles Φ_1 et Φ_2 avec la règle de Cramer, (fig. 15). Le vecteur unitaire n'est normal au plan P.

2)
$$\vec{e}_3 = \vec{e}_1 \times \vec{e}_2 / \sin \alpha$$
 (3.2)

où \vec{e}_3 est le vecteur inconnu.

$$\vec{e}_2 = M \vec{e}_1 \tag{3.3}$$

ဂပဲ ခိုဥ est le vecteur inconnu (voir fig. 16) et :

$$\mathbf{M} = \begin{bmatrix} \mathbf{t^2}_{\mathbf{x}} (1 - \cos \Phi) + \cos \Phi & \mathbf{t_x t_y} (1 - \cos \Phi) + \mathbf{t_z sin\Phi} & \mathbf{t_x t_z} (1 - \cos \Phi) - \mathbf{t_y sin\Phi} \\ \mathbf{t_y t_x} (1 - \cos \Phi) - \mathbf{t_z sin\Phi} & \mathbf{t^2}_{\mathbf{y}} (1 - \cos \Phi) + \cos \Phi & \mathbf{t_y t_z} (1 - \cos \Phi) + \mathbf{t_x sin\Phi} \\ \mathbf{t_z t_x} (1 - \cos \Phi) + \mathbf{t_y sin\Phi} & \mathbf{t_z t_y} (1 - \cos \Phi) - \mathbf{t_x sin\Phi} & \mathbf{t^2_z} (1 - \cos \Phi) + \cos \Phi \end{bmatrix}$$

4)
$$\vec{e} = \sum_{i=1}^{k} \vec{e}_i / | \sum_{i=1}^{k} \vec{e}_i |$$
 (3.4)

où è est le vecteur inconnu calculé à partir de k vecteurs è connus.

La sous-routine MATRB fait la lecture des masses atomiques et des longeurs de liaisons de la molécule contenue dans le fichier d'entrées. Cette sous-routine forme la matrice vectorielle B qui est la matrice de transformation entre les coordonnées vectorielles et les coordonnées internes de la molécule [1]:

$$R = \vec{B} \cdot \vec{r} \tag{3.5}$$

Pour le calcul des éléments de la matrice $\overrightarrow{\mathbf{B}}$, MATRB s'adresse aux sous-routines BQ, BALPH, BHI et BGAMM pour calculer les vecteurs $\overrightarrow{\mathbf{s}}_{i\alpha}$ des coordonnées d'élongations et de déformations des angles de valence et des angles entre les plans.

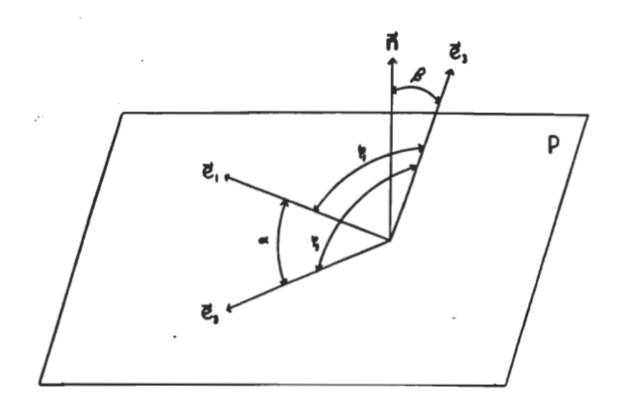


Figure 15. Schéma pour le calcul du vecteur e3

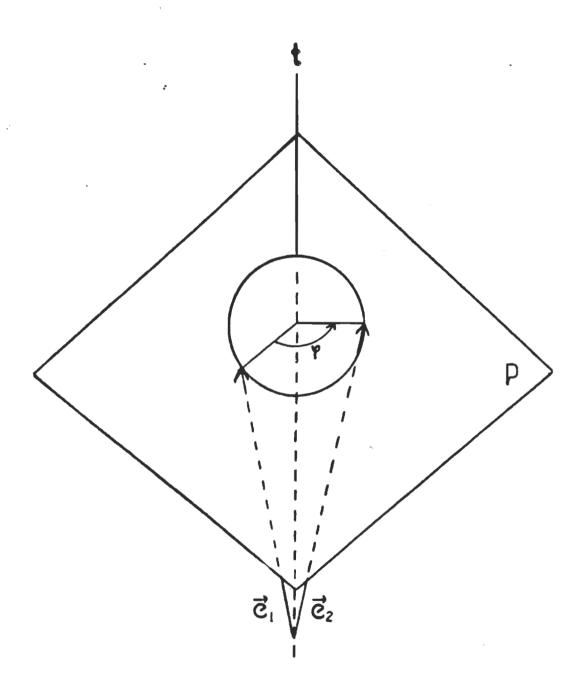


Figure 16. Schéma pour le calcul du vecteur \overrightarrow{e}_2

MATRT forme la matrice des coefficients cinématiques G dans l'espace des coordonnées internes de la molécule. Cette matrice est formée à l'aide de la matrice B contenue dans le fichier des résultats intermédiaires. Les éléments de la matrice G sont calculés à partir de l'équation :

$$G = B_x W B'_x + B_y W B'_y + B_z W B'_z$$
 (3.6)

où W est la matrice diagonale des masses réciproques sans dimension. L'équation (3.6) est identiquement égale à l'équation (2.68).

La sous-routine IAFP1 détermine les éléments de symétrie et le groupe ponctuel de la molécule.

IAFP2 détermine le nombre de modes normaux de vibrations de la molécule qui sont au nombre de 3N-6 en se servant de l'expression :

$$a_{i} = 1/g \sum_{\text{classes}} n_{R} X(R) X_{i}(R)$$
 (3.7)

où g est le nombre d'éléments de symétrie du groupe ponctuel de la molécule; n_R est le nombre d'éléments d'une classe; $X(R) = \sum\limits_{m} \Gamma(R)_{mm}$ sont les caractères d'une représentation réductible; $X_i(R) = \sum\limits_{m} \Gamma(R)_{mm}$ sont les caractères d'une représentation irréductible [5].

La sous-routine IAFP2 fait le calcul des éléments de la matrice des coefficients de symétrie U. La formation de cette matrice

permet d'exprimer la matrice G en fonction des coordonnées de symétrie. Les éléments de la matrice G^s sont calculés d'après l'équation (2.15) :

$$G^{s} = U G U'. \tag{3.8}$$

Le programme DIAGI diagonalise la matrice G ou GS.

Le programme FORMU construit la matrice F, d'après les instructions qui sont inscrits sur le ruban 1. Il faut bâtir cette matrice à partir des constantes de force exprimées en fonction des coordonnées internes. Le programme calcule automatiquement la matrice F^S exprimée en fonction des coordonnées de symétrie (éq. 2.16).

Le programme DIAG2 diagonalise la matrice F ou F⁵. DIAG2 solutionne l'équation séculaire pour chaque type de symétrie :

$$G^{S} F^{S} L^{S} = L^{S} A \qquad (3.9)$$

et il calcule les fréquences d'oscillations de la molécule :

où
$$\lambda_i = (f_i)^2$$
 (3.10)

Le programme INTIR calcule les dérivées du moment dipolaire total par rapport aux coordonnées normales, $(S_{\mu}^{\uparrow}/SQ_{i})_{O}$ à partir de (2.49) :

 $(S_{\mu}/SQ_{i})_{o} = \{\vec{e}\} | S_{\mu}/SR | || 1 ||_{i}$

- (u) || l e / s || + (u) ||
$$\Delta \vec{r}$$
 / s || (3.11)

C'est le calcul de l'équation paramètrique pour obtenir l'intensité des bandes fondamentales infrarouges de l'équation (2.20).

3.3 Préparation des données

Pour calculer la fréquence et l'intensité des bandes fondamentales du spectre infrarouge d'une molécule polyatomique, il faut introduire les paramètres de la molécule de la façon suivante :

Fichier pour FRMTP

NZ : le numéro de la zone dans le format (I3)

Dans le format (715) on introduit :

NM : le numéro de la molécule (1 à 99999)

NA : le nombre d'atomes de la molécule (NA < 52)

NBL : = 1 si la molécule est assymétrique

= 31415 pour la construction automatique de la matrice U

NQ : le nombre de coordonnées d'élongations

Nα : le nombre de coordonnées angulaires (non-linéaire)

NG : le nombre de coordonnées angulaires (linéaire)

NH : le nombre de coordonnées hors plan

Les données sont introduites dans le format (215) :

CHIV : le nombre de vecteurs unitaires connus

CHRV : le nombre de vecteurs unitaires inconnus

Si CHIV > 0, nous introduisons le numéro du vecteur et ses composantes selon x, y et z. Nous introduisons CHIV vecteurs unitaires dans le format (14,3F11.7). L'ordre d'entrées des vecteurs n'est pas important.

Si CHRV > 0, nous calculons automatiquement CHRV vecteurs unitaires dans le format (1018). Il y a 4 façons de calculer les vecteurs inconnus à partir de vecteurs et d'angles connus :

METHODE 1 :

A : le numéro du vecteur à calculer

1 : le numéro de la méthode

B : le numéro du premier vecteur connu

FI (A,B) : l'angle entre les vecteurs A et B (degré min sec)

C : le numéro du second vecteur connu

FI (A,C): l'angle entre les vecteurs A et C, (voir la fig. 15).

METHODE 2 :

- A: le numéro du vecteur à calculer
- 2 : le numéro de la méthode
- B : le numéro du premier vecteur connu
- C : le numéro du second vecteur connu.

METHODE 3 :

- A : le numéro du vecteur à calculer
- 3 : le numéro de la méthode
- B : le numéro du premier vecteur connu
- C : le numéro du second vecteur connu
- FI: l'angle de torsion entre les vecteurs B et C dans le sens positif anti-horaire autour de l'axe t , (voir la fig. 16).

METHODE 4 :

Lorsque le vecteur recherché est la somme de vecteurs connus :

- A : le numéro du vecteur à calculer
- 4 : le numéro de la méthode
- k : le nombre de vecteurs à additionner
- B : le numéro du premier vecteur de la somme
- C: le numéro du second vecteur de la somme si k > 1, etc.

Nous introduisons dans le format (10F7.3) :

M : les masses atomiques dans l'ordre de leur numérotation (voir

l'exemple du cas particulier présenté à la section 2.4.2)

L : les longeurs des liaisons (A) suivant l'ordre ci-haut

mentionné.

Dans le format (2014) et en suivant l'ordre de numérotation, nous introduisons les coordonnées internes de la molécule:

Pour les coordonnées d'élongations :

AH : le numéro de l'atome initial

AK : le numéro de l'atome terminal de la liaison H-K

Pour les coordonnées angulaires (non-linéaire) :

SA : le numéro de la première liaison

SB : le numéro de la seconde liaison formant l'angle de valence;

l'ordre d'introduction de ces coordonnées n'est pas important.

Pour les coordonnées angulaires (linéaire) :

HYU : le numéro du vecteur perpendiculaire à la forme linéaire.

SA : le numéro de la première liaison

SB : le numéro de la seconde liaison formant l'angle de 180° .

Pour les coordonnées non-planaires :

SA : le numéro de la première liaison

SB : le numéro de la seconde liaison

SC : le numéro de la liaison extérieur à ce plan. Nous ajoutons à ces numéros de liaisons les nombres auxilliaires : 700 700 700.

Fichier pour DIAG!

NZ : le numéro de la zone dans le format (I3)

Fichier pour FORMU

NZ : le numéro de la zone dans le format (I3)

T : le type du calcul dans le format (II)

Pour construire la matrice F. T = 0.

Si F a déjà été introduite, T = 1

Il y a deux façons d'introduire les éléments de la matrice F :

1) Régime automatique :

Nous introduisons dans le format (214) :

CHKHE: le nombre d'éléments à introduire

CHGE: le nombre de groupes d'éléments

Si CHKHE > 0, dans le format (213,F7.3) nous introduisons :

I : le numéro de la ligne de l'élément F_{i}

J : le numéro de la colonne de l'élément F ; i

FIJ : la valeur de l'élément

L'ordre d'introduction des F_{ij} n'est pas important et (J >=I)

2) Régime manuel :

Si CHGE > 0, nous introduisons pour chaque groupe, dans le format

(213,15), les nombres suivants :

I : numéro de la ligne

J : numéro de la colonne (J >= 0)

K : la quantité d'éléments du groupe

Dans le format (10F7.3) on introduit la valeur de l'élément.

Fichier pour INTIR

NZ : le numéro de la zone dans le format (13)

T : le type de calcul dans le format ([1])

Si T = 0, nous introduisons les paramètres électro-optiques

Si T = 1, les paramètres électro-optiques ont déjà été introduits.

Nous introduisons dans le format (14) :

KMYU : le groupe des moments dipolaires.

Pour chaque groupe des moments dipolaires, nous introduisons dans le format (214) :

J : le numéro de la rangé du premier élément du groupe

NMYU : le nombre de moments dipolaires à introduire

Dans le format (10F7.3) nous introduisons :

MYU : la valeur des moments dipolaires

Dans le format (214) nous introduisons :

NF : le nombre d'éléments $S\mu_k/SR_i$ à introduire.

NG : le nombre de groupe d'éléments μ_k/R

Il y a deux façons d'introduire les éléments de $\mid S\mu_{k}/SR_{i} \mid$:

1) Régime automatique :

Sur des lignes différentes, dans le format (213,F7.3) :

I : le numéro de la ligne

J : le numéro de la colonne

DMYU/DR : la valeur de l'élément Su,/SR;

2) Régime manuel :

Pour chaque groupe nous introduisons dans le format (213,14) :

I : le numéro de la ligne

J : le numéro de la colonne

K : le nombre d'éléments du groupe

Nous introduisons dans le format (10F7.3) la valeur de l'élément.

3.4. Traitement des résultats

Les spectres expérimentaux des molécules auxquelles nous avons appliqué la méthode de Gribov sont illustrés au chapitre 5. Pour reproduire fidèlement ces spectres, nous les avons digitalisés avec le Calcom 1900 relié au Cyber de Control Data. Les courbes digitalisées ont été emmagasinées dans un fichier. A l'aide des programmes MATI, BALL et TRACE qui sont des programmes conçus par les chercheurs du laboratoire de spectroscopie moléculaire, nous avons traité les courbes expérimentales pour les présenter dans le format des figures que nous retrouvons au chapitre 5.

Les spectres théoriques ont été obtenus en calculant dans un premier temps la fréquence et l'intensité à partir du programme de Gribov-Dement'ev. Pour donner un profil aux courbes, nous avons ajouté les largeurs à la mi-hauteur des bandes en nous basant sur les valeurs de Gribov et al [18]. Nous avons inscrit les valeurs de

ces trois paramètres dans un fichier et nous avons tracé les spectres théoriques en utilisant les programmes MATI, BALL et TRACE. Le profil que nous avons utilisé est une fonction produit ayant 70 % d'une courbe de Cauchy et 30 % d'une courbe de Gauss.

Chapitre 4

CALCUL DU SPECTRE DES FREQUENCES DE L'EAU

Les équations séculaires de la cyclopentanone, exprimées en fonction des coordonnées de symétrie, sont des équations d'ordre 22 X 22 et 20 X 20 (voir la section 2.4.6.). Le degré en λ des polynômes générés par les déterminants séculaires est trop élevé pour faire un calcul numérique des fréquences de la molécule. Pour illustrer les étapes mathématiques de ce calcul, nous avons utilisé la molécule $\rm H_2O$.

4.1. Formation de la matrice F^S

Pour $\rm H_2O$ la matrice des constantes de force, $\rm F$, exprimée en coordonnées internes, est d'ordre 3 X 3 (voir éq. 2.52) et a la forme :

$$\mathbf{F} = \begin{vmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{vmatrix}$$
 (4.1)

L'expression du déterminant séculaire exprimée en fonction des coordonnées internes est un polynôme de degré 3 en λ . Pour diminuer le degré de ce polynôme, les coordonnées de symétrie sont utilisées (voir les éqs. 2.57, 2.58 et 2.59).

Si les coordonnées de symétrie sont exprimées dans la forme de l'équation matricielle (2.14) :

$$\begin{vmatrix} R^{A} \\ \Gamma^{A} \\ R^{B} \end{vmatrix} = \begin{vmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{vmatrix} \begin{vmatrix} R_{1} \\ R_{2} \\ \Gamma_{1} \end{vmatrix}$$
(4.2)

alors la matrice U est :

C'est la matrice des coefficients de symétrie pour obtenir les matrices F⁵ de chaque type de symétrie.

Pour les vibrations du type A, , la matrice U devient :

$$U_{A1} = \begin{vmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
 (4.4)

En portant (4.1) et (4.4) dans l'équation (2.16) :

$$F_{A1}^{S} = \begin{vmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{vmatrix} \begin{vmatrix} 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 0 \\ 0 & 1 \end{vmatrix}$$
(4.5)

et en effectuant le produit matriciel, nous avons :

$$F_{A1}^{s} = \begin{vmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} 1/\sqrt{2} & (F_{11} + F_{12}) & F_{13} \\ 1/\sqrt{2} & (F_{11} + F_{12}) & F_{23} \\ \sqrt{2} & F_{13} & F_{33} \end{vmatrix}$$
(4.6)

d'où il suit :

$$\begin{vmatrix} F_{11}^{s} & F_{12}^{s} \\ F_{21}^{s} & F_{22}^{s} \end{vmatrix} = \begin{vmatrix} F_{11} + F_{12} & \sqrt{2} F_{13} \\ \sqrt{2} F_{13} & F_{33} \end{vmatrix}$$
(4.7)

puisque
$$F_{21} = F_{12}$$
; $F_{22} = F_{11}$; $F_{32} = F_{23} = F_{31} = F_{13}$

C'est la matrice des constantes de force exprimée en fonction des coordonnées de symétrie du type ${\sf A}_1$.

Pour les vibrations du type B_2 , la matrice f U devient :

$$U_{B2} = \begin{vmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{vmatrix}$$
 (4.8)

et en portant (4.1) et (4.8) dans l'équation (2.16) :

$$F_{B2}^{s} = \begin{vmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{vmatrix} \begin{vmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{vmatrix} \begin{vmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{vmatrix}$$
(4.9)

d'où:
$$F_{B2}^{s} = |F_{33}^{s}| = |F_{11} - F_{12}|$$
 (4.10)

C'est l'élément de la matrice \mathbf{F}^s exprimé en fonction des coordonnées de symétrie du type \mathbf{B}_2 .

4.2. Formation de la matrice G^S

La matrice des coefficients cinématiques, G, exprimée en fonction des coordonnées internes est de la forme :

$$\mathbf{G} = \begin{bmatrix} G_{11} & G_{12} & G_{13} \\ G_{21} & G_{22} & G_{23} \\ G_{31} & G_{32} & G_{33} \end{bmatrix}$$
(4.11)

Pour calculer les éléments de la matrice G, il faut déterminer les vecteurs $\vec{s}_{i\alpha}$ de la molécule, (fig. 17).

A partir des équations (2.63 à 2.67) de la section 2.4.3 nous obtenons pour la coordonnée d'élongation R_1 :

$$\vec{s}_{11} = \vec{e}_{31}, \vec{s}_{12} = 0, \vec{s}_{13} = -\vec{e}_{31}$$
 (4.12)

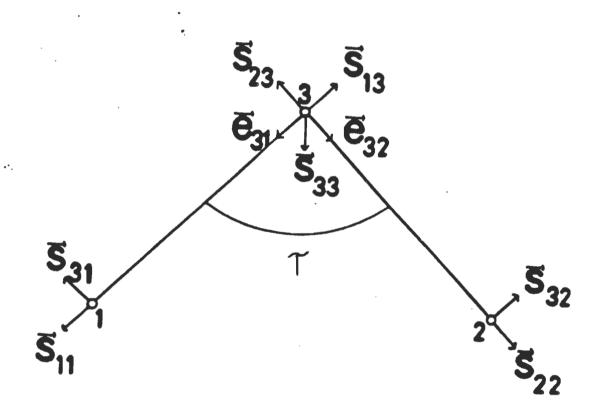


Figure 17. Les vecteurs \vec{s}_{i} de la molécule d'eau

pour la coordonnée d'élongation R_2 :

$$\vec{s}_{21} = 0$$
, $\vec{s}_{22} = \vec{e}_{32}$, $\vec{s}_{23} = -\vec{e}_{32}$ (4.13)

pour la coordonnée angulaire $R_3 = \Gamma_1$

$$\vec{s}_{31} = (\cos \tau) (\vec{e}_{31} - \vec{e}_{32}) / r_{31} \sin \tau$$
 (4.14)

$$\vec{s}_{32} = (\cos \tau) (\vec{e}_{32} - \vec{e}_{31}) / r_{32} \sin \tau$$
 (4.15)

$$\vec{s}_{33} = (1 - \cos \tau) (\vec{e}_{31} + \vec{e}_{32}) / r_{31} \sin \tau$$
 (4.16)

puisque: $r_{31} = r_{32}$

Les vecteurs $\vec{s}_{i\alpha}$ sont portés dans l'équation (2.68) et les éléments de la matrice G sont calculés :

$$G_{11} = w_1 (\vec{s}_{11} \cdot \vec{s}_{11}) + w_2 (\vec{s}_{12} \cdot \vec{s}_{12}) + w_3 (\vec{s}_{13} \cdot \vec{s}_{13})$$
 (4.17)

$$G_{11} = w_1 (\vec{e}_{31} \cdot \vec{e}_{31}) + w_3 ((-\vec{e}_{31}) \cdot (-\vec{e}_{31}))$$
 (4.18)

$$G_{11} = w_1 + w_3$$
 (4.19)

$$G_{12} = w_1 (\vec{s}_{11} \cdot \vec{s}_{12}) + w_2 (\vec{s}_{12} \cdot \vec{s}_{22}) + w_3 (\vec{s}_{13} \cdot \vec{s}_{23})$$
 (4.20)

$$G_{12} = w_3 ((-\vec{e}_{31}) \cdot (-\vec{e}_{32}))$$
 (4.21)

$$G_{12} = w_3 \cos \tau$$
 (4.22)

$$G_{13} = - (1 / r_{31}) w_3 sint$$

$$G_{22} = w_2 + w_3$$

$$G_{33} = (1 / (r_{31})^2) w_3 (2 - 2 cost) + 2 w_1$$

puisque :

$$\vec{e}_{31} \cdot \vec{e}_{31} = 1$$
 $\vec{e}_{32} \cdot \vec{e}_{32} = 1$
 $\vec{e}_{31} \cdot \vec{e}_{32} = \cos \tau$
 $\vec{e}_{31} = r_{32}$

Afin d'obtenir une matrice sans dimension, r_{31} = 1.09 / σ est introduit et la matrice G devient :

$$G = \begin{bmatrix} w_1 + w_3 & w_3 \cos \tau & -w_3 \sigma \sin \tau \\ w_3 \cos \tau & w_2 + w_3 & -w_3 \sigma \sin \tau \\ -w_3 \sigma \sin \tau & -w_3 \sigma \sin \tau & w_3 (2\sigma^2 - 2\sigma^2 \cos \tau) + 2w_1 \sigma^2 \end{bmatrix}$$
(4.23)

et:
$$\sigma = \sigma_{OH} = 1.09 \text{ A } / r_{31}$$
 (4.24)

Il faut calculer les éléments de la matrice G^S exprimés en fonction des coordonnées de symétrie. Pour le type de symétrie A_1 , la matrice U est donnée par l'expression (4.3). En portant (4.3) et (4.11) dans l'équation (2.15) nous obtenons :

$$\begin{vmatrix} G^{s}_{11} & G^{s}_{12} \\ G^{s}_{21} & G^{s}_{22} \end{vmatrix} = \begin{vmatrix} G_{11} + G_{12} & \sqrt{2} & G_{13} \\ \sqrt{2} & G_{13} & G_{33} \end{vmatrix}$$
(4.25)

C'est la matrice \mathbf{G}^{S} exprimée en fonction des coordonnées de symétrie du type \mathbf{A}_{1} .

La matrice \cup pour le type de symétrie \mathbb{B}_2 est donnée par l'expression (4.8). En portant (4.8) et (4.11) dans l'équation (2.15) nous obtenons :

$$G_{82}^{s} = |G_{33}^{s}| = |G_{11} - G_{12}|$$
 (4.26)

C'est l'élément de la matrice $\mathbf{G}^{\mathbf{S}}$ exprimé en fonction des coordonnées de symétrie du type \mathbf{B}_2 .

En portant les éléments de la matrice ${\bf G}$, (4.23), dans l'équation (4.25), les éléments de la matrice ${\bf G}^{\bf S}$ pour le type de symétrie ${\bf A}_1$ sont déterminés :

$$G_{11}^{s} = G_{11} + G_{12}$$

= $w_1 + w_3 (1 + \cos \tau)$ (4.27)

$$G_{12}^{s} = 12 G_{13}$$

= 12 (-w₃ \sigma \sin \tau) (4.28)

$$G_{21}^{s} = G_{12}^{s}$$
 (4.29)

$$G_{22}^{s} = G_{33}$$

= 2 σ^{2} [w_{3} (1 - cos τ) + w_{1}] (4.30)

En portant (4.27), (4.28), (4.29) et (4.30) dans (4.25), la matrice $\mathbf{G}^{\mathbf{S}}$ est exprimée en fonction des coordonnées de symétrie \mathbf{A}_1 :

$$\begin{vmatrix} G^{S}_{11} & G^{S}_{12} \\ G^{S}_{21} & G^{S}_{22} \end{vmatrix} = \begin{vmatrix} w_{1} + w_{3} & (1 + \cos\tau) & -w_{3} & \sqrt{2} \sin\tau \\ -w_{3} & \sqrt{2} \sin\tau & 2 & \sigma^{2} & [w_{1} + w_{3}(1 - \cos\tau)] \end{vmatrix}$$
(4.31)

et en portant G_{11} et G_{12} (voir éq. 4.23) dans (4.26), l'élément de la matrice G^s est :

$$G_{33}^{5} = w_{1} + w_{3} (1 - \cos\tau)$$
 (4.32)

4.3. Calcul des fréquences

L'équation séculaire, exprimée en fonction des coordonnées de symétrie, se sépare en deux équations distinctes pour chaque type de symétrie. Il y a pour le type de symétrie A :

$$|G^{5}F^{5} - \lambda I|_{A1} = 0$$
 (4.33)

et pour le type de symétrie B₂ :

$$|G^{S}F^{S} - \lambda I|_{B2} = 0$$
 (4.34)

L'équation (4.33) est d'ordre (2 X 2) (voir les éqs. 4.7 et 4.31) et elle est de la forme :

$$\begin{vmatrix} G^{s}_{11} & G^{s}_{12} \\ G^{s}_{21} & G^{s}_{22} \end{vmatrix} \begin{vmatrix} F^{s}_{11} & F^{s}_{12} \\ F^{s}_{21} & F^{s}_{22} \end{vmatrix} - \begin{vmatrix} \lambda & 0 \\ 0 & \lambda \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 0$$
 (4.35)

En multipliant les matrices de l'équation (4.35) et en soustrayant le résultat nous avons :

$$\begin{vmatrix} (G^{s}_{11} F^{s}_{11} + G^{s}_{12} F^{s}_{21}) - \lambda & G^{s}_{11} F^{s}_{12} + G^{s}_{12} F^{s}_{22} \\ G^{s}_{21} F^{s}_{11} + G^{s}_{22} F^{s}_{21} & G^{s}_{21} F^{s}_{12} + G^{s}_{22} F^{s}_{22}) - \lambda \end{vmatrix} = 0$$

$$(4.36)$$

Le déterminant de cette équation est :

$$[(G_{11}^{s} F_{11}^{s} + G_{12}^{s} F_{21}^{s}) - \lambda] [G_{21}^{s} F_{12}^{s} + G_{22}^{s} F_{22}^{s}) - \lambda]$$

- [(
$$G_{11}^{s} F_{12}^{s} + G_{12}^{s} F_{22}^{s}$$
) ($G_{21}^{s} F_{11}^{s} + G_{22}^{s} F_{21}^{s}$)] = 0 (4.37)

Après réarrangement, elle devient :

$$(-\lambda)^2 + (G_{11}^s F_{11}^s + 2G_{12}^s F_{12}^s + G_{22}^s F_{22}^s) (-\lambda)$$

$$+ \begin{vmatrix} G^{s}_{11} & G^{s}_{12} \\ G^{s}_{21} & G^{s}_{22} \end{vmatrix} \begin{vmatrix} F^{s}_{11} & F^{s}_{12} \\ F^{s}_{21} & F^{s}_{22} \end{vmatrix} = 0$$
 (4.38)

L'expression (4.38) est un polynôme de degré 2 en λ qu'il faut résoudre pour calculer les fréquences d'oscillations du type ${\bf A}_1$.

On calcule les coefficients de l'équation (4.38) à partir des paramètres donnés dans la référence 19 :

$$F_{11} = 13.1907 \times 10^6 \text{ cm}^{-2}$$
 $F_{12} = -0.1560 \times 10^6 \text{ cm}^{-2}$
 $F_{13} = 0.3206 \times 10^6 \text{ cm}^{-2}$
 $F_{33} = 0.9152 \times 10^6 \text{ cm}^{-2}$
 $\tau = 104.523^\circ$
 $r_{31} = 0.957 \text{ A}$; $\sigma = 1.09 / 0.957 = 1.1390$
 $r_{11} = 1.008 \text{ u.m.a.}$; $r_{12} = 1.088 / 1.008 = 1.0794$
 $r_{13} = 16.000 \text{ u.m.a.}$

Le premier coefficient de l'équation (4.38) se calcule à partir des éléments des matrices \mathbf{G}^S et \mathbf{F}^S qui furent établis pour le type \mathbf{A}_1 en (4.31) et (4.7):

$$G_{11}^{S}F_{11}^{S} + 2G_{12}^{S}F_{12}^{S} + G_{22}^{S}F_{22}^{S} = [(w_1 + w_3(1 + \cos \tau)) (F_{11} + F_{12}) + 2 ((-w_3 \sigma / 2 \sin \tau) (\sqrt{2} F_{13})) +$$

$$+ ((2 \sigma^2 [w_1 + w_3 (1 - \cos \tau)]) (F_{33})) (4.39)$$

et en portant la valeur des paramètres, nous obtenons :

$$G_{11}^{s} F_{11}^{s} + 2G_{12}^{s} F_{12}^{s} + G_{22}^{s} F_{22}^{s} = 17.4028 \times 10^{6} \text{ cm}^{-2}$$
 (4.40)

La matrice G^S du second coefficient de l'équation (4.38) est :

$$-(-w_3 \sigma /2 \sin \tau)^2)$$
 (4.41)

et en portant la valeur des paramètres, nous obtenons :

$$\begin{vmatrix} G^{S}_{11} & G^{S}_{12} \\ G^{S}_{21} & G^{S}_{22} \end{vmatrix} = 3.4039 \tag{4.42}$$

La matrice F s du second coefficient de l'équation (4.38) est :

$$\begin{vmatrix} F^{s}_{11} & F^{s}_{12} \\ F^{s}_{21} & F^{s}_{22} \end{vmatrix} = (F_{11} + F_{12}) (F_{33}) - (72F_{13}) (72F_{13})$$
(4.43)

et en portant les valeurs des paramètres :

$$\begin{vmatrix} F^{S}_{11} & F^{S}_{12} \\ F^{S}_{21} & F^{S}_{22} \end{vmatrix} = 1.1721 \times 10^{13} \text{ cm}^{-4}$$
 (4.44)

d'où le produit des matrices G^S et F^S donne :

$$\begin{vmatrix} G^{s}_{11} & G^{s}_{12} & | & F^{s}_{11} & F^{s}_{12} \\ G^{s}_{21} & G^{s}_{22} & | & F^{s}_{21} & F^{s}_{22} \end{vmatrix} = 3.9897 \times 10^{-13} \text{ cm}^{-4}$$
 (4.45)

Avec les résultats obtenus en (4.40) et en (4.45), l'équation (4.38) devient :

$$\lambda^2$$
 - (17.4028 X 10⁶ cm⁻²) λ + 3.9897 X 10¹³ cm⁻⁴ = 0

En résolvant cette équation du second degré, les racines sont :

$$\lambda_1 = 14.6862 \times 10^6 \text{ cm}^{-2}$$

$$\lambda_2 = 2.7166 \times 10^6 \text{ cm}^{-2}$$

En vertu de la relation (2.13), $\lambda_i = (f_i)^2$, on trouve :

$$f_1 = 3832.26 \text{ cm}^{-1}$$

$$f_2 = 1648.21 \text{ cm}^{-1}$$

 \mathbf{f}_1 et \mathbf{f}_2 sont les fréquences des vibrations de la molécule d'eau, pour le type \mathbf{A}_1 .

La fréquence de la vibration du type B_2 est calculée en portant les équations (4.10) et (4.32) dans l'équation (4.34) :

$$G_{33}^{5}F_{33}^{5} - \lambda_{3} = 0$$
 (4.46)

C'est-a-dire :

$$[w_1 + w_3 (1 - \cos \tau)][F_{11} + F_{12}] = \lambda_3$$
 (4.47)

d'où :
$$\lambda_3 = 15.5415 \times 10^6 \text{ cm}^{-2}$$

et :
$$f_3 = 3942.27 \text{ cm}^{-1}$$

 f_1 , f_2 et f_3 sont les fréquences harmoniques des modes normaux de vibrations illustrées sur la figure 18.

Dans le tableau 3 ces résultats sont comparés avec ceux que nous avons obtenus avec le programme de Gribov-Dement'ev.

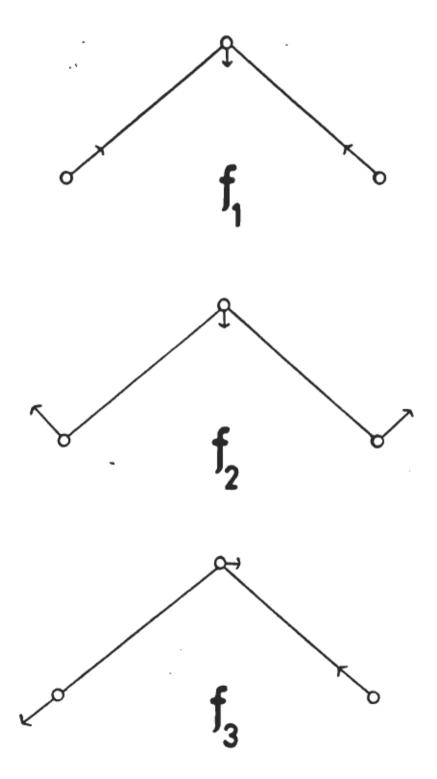


Figure 18. Les modes de vibration normales de ${\rm H_2O}$

Tableau 3 : fréquences harmoniques de H₂0¹

	calculées	P-G-D ²	Levine-Pearce ³
f	3832.26	3832.07	3832.1
f ₂	1648.21	1648.42	1648.0
f ₃	3942.27	3942.22	3942.2
	_1		

 $1: fen cm^{-1}$

2 : programme de Gribov-Dement'ev (voir annexe D)

3 : voir référence 19

Chapitre 5

RESULTATS ET DISCUSSION

Afin de vérifier le bon fonctionnement du programme de Gribov-Dement'ev, nous avons calculé les molécules suivantes : éthane, butane et benzène.

5.1. Ethane, C_2H_6

La molécule d'éthane est composée de huit atomes (fig. 19). Elle a sept liaisons et 22 coordonnées internes. Nous avons introduit sept coordonnées d'élongations, 12 coordonnées angulaires et 3 coordonnées non-planaires. Les paramètres d'entrées sont donnés dans les tableaux 4, 5, 6 et 7. Les résultats sont donnés dans le tableau 8 et sur la figure 20 qui inclut le spectre expérimental [20].

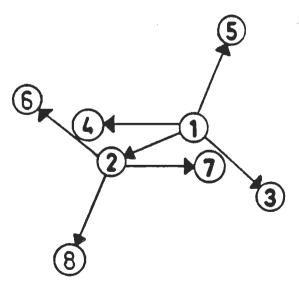


Figure 19. La molécule d'éthane

 $e_{6z} = 0.4714064$

e 7z = 0.4714064

```
Tableau 4 : Caractéristiques moléculaires de l'éthane
                     masses atomiques ( u.m.a. )
        longeurs des liaisons ( A )
r<sub>1 2 = 1.543</sub> r<sub>1 3 = r<sub>1 4 = r<sub>1 5 = r<sub>2 6 = r<sub>2 7 =</sub></sub></sub></sub></sub>
r_{28} = 1.093
           composantes cartésiennes des vecteurs unitaires
                                                   e_{1z} = 0.0000000
                             e_{1y} = 1.0000000
       e_{1x} = 0.0000000
                          e_{2y}^{-7} = -0.3333224
       e_{2x} = 0.0000000
                                                  e_{2z} = 0.9428129
                          e_{3y} = -0.3333224
                                                 e_{3z} = -0.4714064
       e_{3x} = -0.8165000
                                                 e_{4z}^{32} = -0.4714064
                          e_{4y} = -0.3333224
       e_{4x} = 0.8165000
                                                   e_{5z} = -0.9428129
                             e_{5y} = 0.3333224
       e_{5x} = 0.0000000
```

 $e_{6y} = 0.3333224$

 $e_{7y} = 0.3333224$

 $e_{6x} = 0.8165000$

 $e_{7x} = -0.8165000$

Tableau 5 : Coordonnées internes de l'éthane

coordonnées	Numé	ros	d'at	ones			Туре
R ₁		1	2				e-(C-C)
R 2		1	3				e-(C-H)
R ₃		1	4				e-(C-H)
R ₄		1	5				e-(C-H)
R ₅		2	6				e-(C-H)
R 6		2	7				e-(C-H)
R 7		2	8				e-(C-H)
R 8	2	1		3			d-(C-C-H)
R 9	2	1		4			d-(C-C-H)
R ₁₀	2	1		5			d-(C-C-H)
R ₁₁	1	2	<u>.</u>	6			d-(C-C-H)
R ₁₂	1	2		7			d-(C-C-H)
R ₁₃	1	2		8			d-(C-C-H)
R ₁₄	4	1	•	5			d-(H-C-H)
R ₁₅	3	1		5			d-(H-C-H)
R ₁₆	3	1		4			d-(H-C-H)
R ₁₇	7	2		8			d-(H-C-H)
R ₁₈	6	2	!	8			d-(H-C-H)
R ₁₉	6	2	2	7			d-(H-C-H)
R ₂₀	3	1	2	1	2	6	n-p-(HCC-CCH)
R ₂₁	4	1	2	1	2	7	n-p-(HCC-CCH)
R ₂₂	5	1	2	1	2	8	n-p-(HCC-CCH)

Tableau 6 : Constantes de force de l'éthane l

F 1 1 = 6.74000 F 2 3 = 0.06000 F 8 8 = 0.92000 F 8 12 = -0.02000 F 14 15 = -0.03400	F 1 8 = 0.46000 F 2 8 = 0.30000 F 8 9 = -0.02500 F 8 15 = -0.03400 F _{20 20} = 0.03300	F 2 2 = 8.03000 F 2 15 = 0.30000 F 8 11 = 0.14000 F _{14 14} = 0.71000
6 -2		

1 : F_{ij} en 10⁶ cm⁻²

Tableau 7 : Paramètres électro-optiques de l'éthane!

µ ₁ = 0.000 µ	2 = 0.280	µ ј = 0.280	μ ₄ = 0.280
µ ₅ = 0.280 µ	6 = 0.280	$\mu_{7} = 0.280$	
8μ ₂ /8R ₂ = 0.790	Sμ ₂ /SR ₃	س8 = 0.280 s	2/SR ₄ = 0.280
$\mu_{2}/\mu_{8} = -0.400$	8μ ₂ /8R ₉	س8 = -0.535	$2^{/R}_{10} = -0.535$
$8\mu_{2}/8R_{14} = -0.380$	8μ 2 ^{/8R} 15	= -0.300 Sµ	2 ^{/SR} 16 = -0.300
$8\mu_{3}/8R_{2} = 0.280$	8μ ₃ /8R ₃	برة 0.790 ع	$3/^{SR}$ 4 = 0.280
$8\mu_{3}/8R_{8} = -0.535$	9 3/8R س8	= -0.400 Sµ	$3/^{8R}_{10} = -0.535$
8µ ₃ /8R ₁₄ = -0.300	8µ ₃ /8R ₁₅	س8 0.380 ع	3/SR ₁₆ = -0.300
Sµ 4/SR 2 = 0.280	8μ ₄ /8R ₃	س8 0.280 ع	4/SR 4 = 0.790
$8\mu_4/8R_8 = -0.535$	Su 4/SR 9	س8 = -0.535 ه	$_{4}/SR_{10} = -0.400$
$\mu_{4}/\kappa_{14} = -0.300$	8µ ₄ /8R ₁₅	س8 –0.300 هـ	4/ ^{\$R} 16 = -0.390
$8\mu_{5}/8R_{5} = 0.790$	δμ ₅ /8R ₆	س8 - 0.280 ع	5/8R 7 = 0.280
8µ ₅ /8R ₁₁ = -0.400	۶ _{4 5} /8R ₁₂	س8 -0.535 ه	$5/8R_{13} = -0.535$
$8\mu_{5}/8R_{17} = -0.380$	8µ ₅ /8R ₁₈	س8 –0.300 ه	$5/8R_{19} = -0.300$
$8\mu_{6}/8R_{5} = 0.280$	8μ 6/8R 6	س8 - 0.790 ع	6 ^{/SR} 7 = 0.280
$8\mu _{6}/8R_{11} = -0.535$	Sμ 6/SR12	= -0.400 Sµ	$6^{/8R}_{13} = -0.535$
$8\mu_{6}/8R_{17} = -0.300$	^{8μ} 6 ^{/8R} 18	= -0.380 Sµ	$6^{/8R}_{19} = -0.300$
Su 7/SR 5 = 0.280	^{8μ} 7/ ^{8R} 6	س8 0.280 =	7/8R $7 = 0.790$
$8\mu_{7}/8R_{11} = -0.535$	Sμ 7/SR ₁₂	= -0.535	$7/SR_{13} = -0.400$
Sμ ₇ /SR ₁₇ = -0.300	Sμ 7/SR 18	= -0.300 Su	7 ^{/SR} 19 = -0.380

l : μ en debyes, μ_k/R_i en D/A (debyes/angstrom)

Tableau	8	:	Résultats	de	1	'éthane	(D_{2d})
---------	---	---	-----------	----	---	---------	------------

				30			
Fréq. l exp.	Fréq. cal.	Spectre	(8µ/80;) ² cal: o	larg. mi-haut.	mode	type ² s	ymétrie
(cm ⁻¹)	(cm ⁻¹)		(D/A) ²	(cm ⁻¹)			
2954	2896	Raman	-		f 1	e ⁵ -(CH ₃)	a _{lg}
1388	1382	Raman	-		f 2	q ₂ -(CH ³)	a _{lg}
995	979	Raman	-		f 3	e-(C-C)	a _{lg}
289	272	i-r	0.0000	-	f 4	t	a _{lu}
2896	2892	i-r	1.2787	60	f 5	e ^s -(CH ₃)	a _{2u}
1379	1377	i-r	0.0943	16	f 6	d ^s -(CH ₃)	a _{2u}
2969	2963	Raman	-		f 7	e ^d -(CH ₃)	e g
1468	1455	Raman	-		f ₈	qq-(CH ³)	eg
1190	1182	Raman	-		f 9	b-(CH ₃)	e g
2985	2974	i-r	0.8145	60	f ₁₀	e ^d -(CH ₃)	eu
1469	1 485	i-r	0.0870	20	f	d ^d -(CH ₃)	e _u
822	832	i-r	0.0326	60	f 12	ь-(CH ₃)	e

1 : voir référence 21

2 : e : élongation

d : déformation

t : torsion

b : balancement

 X^S : mode symétrique

 χ^{d} : mode dégénérée

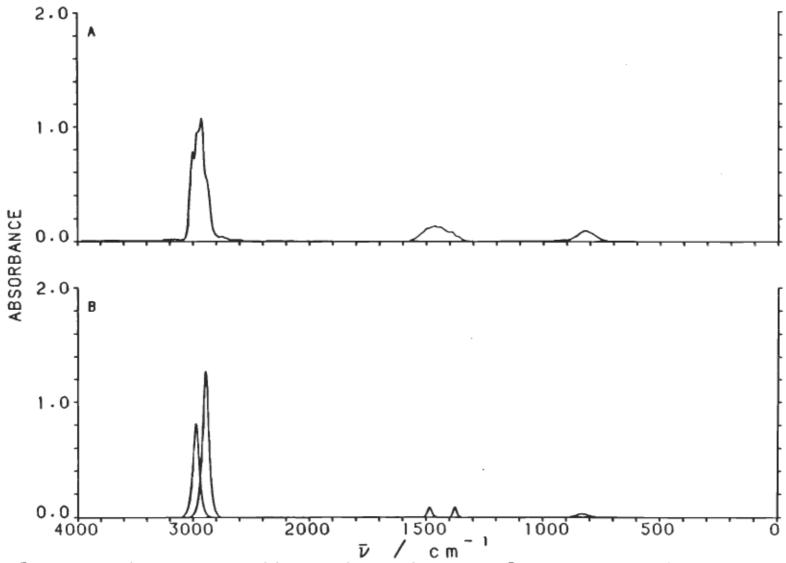


Figure 20. Spectre in de l'éthane, A : expérimental, B : bandes calculés

Discussion:

Les spectres expérimentaux ont un contour rotationnel et notre étude néglige les transitions rotationnelles de la molécule. Pour respecter la convention internationale, nous avons utilisé $\overline{V} \equiv f$ sur les figures illustrant les spectres expérimentaux et calculés. Comparons le spectre expérimental [20] avec le spectre théorique qui sont illustrés sur la figure 20. Sur le spectre expérimental, il y a trois bandes principales. Nous localisons la position des bandes fondamentales de ce spectre. La bande de la région de 3000 cm⁻¹ a deux pics qui se distinguent légèrement. En comparant avec le spectre calculé, nous pouvons déterminer si ces pics correspondent à des bandes fondamentales.

Dans la région de 3000 cm⁻¹, sur le spectre théorique, nous avons calculé deux bandes fondamentales. La première bande est située à 2974 cm⁻¹ et elle est dégénérée. Cette bande est engendrée par l'élongation antisymétrique des liaisons C-H de la molécule. La seconde bande est située à 2892 cm⁻¹. Elle est générée par l'élongation symétrique des CH₃.

A partir des résultats théoriques, nous déduisons qu'il y a deux bandes fondamentales dans la région de 3000 cm⁻¹ sur le spectre expérimental. Des études expérimentales [21] montrent que ces bandes existent. Les résultats expérimentaux sont donnés dans le tableau 8 et ils confirment nos résultats théoriques. En effet, deux bandes fondamentales forment un recouvrement près de 3000 cm⁻¹. Ces bandes expérimentales sont situées à 2985 cm⁻¹ et à 2896 cm⁻¹.

L'écart entre les fréquences théoriques et les fréquences expérimentales est de 2 % pour la bande à 2954 cm $^{-1}$ et de 0.4 % pour la bande à 2985 cm $^{-1}$. Ce sont des écarts acceptables.

Portons notre analyse sur la seconde bande principale située vers 1500 cm⁻¹. A cet endroit, sur le spectre expérimental, le profil rotationnel masque l'activité des bandes fondamentales. Il n'est pas possible d'établir la position et le nombre de bandes fondamentales à cet endroit.

Le résultat de nos calculs permet d'affirmer qu'il y a deux bandes fondamentales, dans la région de 1500 cm^{-1} . Nos calculs situent ces bandes à 1485 cm^{-1} et à 1377 cm^{-1} . Des analyses [21] poussées des résultats expérimentaux confirment nos prédictions théoriques. L'absorption autour de 1500 cm^{-1} est composée de deux bandes fondamentales situées à 1469 cm^{-1} et à 1379 cm^{-1} .

Notre étude montre qu'il y a dégénérescence de la bande située à $822~{\rm cm}^{-1}$.

Finalement l'intensité des bandes du spectre théorique concorde assez bien avec celle du spectre expérimental.

5.2. Butane, C₄H₁₀

La molécule du butane est composée de 14 atomes (fig. 21). Elle a 13 liaisons chimiques et 37 coordonnées internes. Nous avons introduit 13 coordonnées d'élongations et 24 coordonnées angulaires. Les paramètres d'entrées sont donnés dans les tableaux 9, 10, 11 et 12. Les résultats sont donnés dans le tableau 13. Le spectre des bandes individuelles est présenté sur la figure 22. Celui de la somme des bandes est présenté sur la figure 23. Pour fin de comparaison, le spectre expérimental [20] a été ajouté sur les figures.

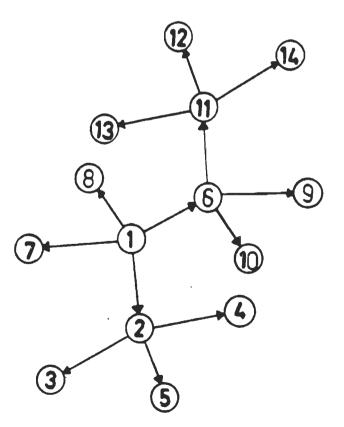


Figure 21. La molécule du butane

```
Tableau 9 : Caractéristiques moléculaires du butane
                       masses atomiques ( u.m.a. )
                     m_2 = 12.000
     m_1 = 12.000
                                        m_3 = 1.088 m_4 = 1.088
     m_5 = 1.088 m_6 = 12.000 m_7 = 1.088 m_8 = 1.088
                                       m_{11} = 12.000 \quad m_{12} = 1.088
                        m_{10} = 1.088
     m_{9} = 1.088
     m_{13} = 1.088
                        m_{14} = 1.088
                  longeurs des liaisons atomiques ( A )
                     \Gamma_1 2 = \Gamma_1 6 = \Gamma_6 11 = 1.543
      \Gamma_{2} 3 = \Gamma_{2} 4 = \Gamma_{2} 5 = \Gamma_{11} 12 = \Gamma_{11} 13 = \Gamma_{11} 14 = 1.093
                r<sub>1</sub> 7 = r<sub>1</sub> 8 = r<sub>6</sub> 9 = r<sub>6</sub> 10 = 1.099
            composantes cartésiennes des vecteurs unitaires
      e_{1x} = 0.4714061
                              e_{ly} = 0.3333352
                                                      e_{1z} = -0.8164949
      e_{2x} = 0.0000000
                              e_{2y} = 1.0000000
                                                      e_{2z} = 0.0000000
      e_{3x} = 0.9428097
                              e_{3y} = -0.3333315
                                                      e_{2z} = 0.0000000
                                                      e_{4z} = -0.8164994
      e_{4x} = -0.4714009
                              e_{4y} = -0.3333315
                              e_{5y} = -1.0000000
                                                      e_{5z} = -0.0000034
      e_{5x} = 0.0000020
                              e_{6y} = 0.33333333
      e_{6x} = -0.9428091
                                                      e_{6z} = -0.0000034
      e_{7\times} = 0.4714036
                              e_{7y} = 0.33333333
                                                      e_{7z} = 0.8164972
                                                      e_{8z} = 0.0000011
      e_{8x} = 0.9428090
                              e_{8v} = -0.33333334
      e_{9x} = -0.4714017
                              e_{9v} = -0.33333334
                                                       e_{97} = -0.8164982
      e_{10\times} = -0.4714054
                              e_{10v} = -0.3333389
                                                       e_{10z} = 0.8164938
      e_{11x} = 0.4714056
                              e_{lly} = 0.3333333
                                                       e_{11z} = 0.8164960
      e_{12x} = -0.9428091
                              e_{12y} = 0.33333333
                                                       e_{12z} = -0.0000056
```

 $e_{13y} = -1.0000000$

 $e_{13x} = 0.0000059$

 $e_{13z}^{-} = -0.0000102$

Tableau 10 : Coordonnées internes du butane

coordonnées	Numéro	d	'atomes	Type
R ₁	1		2	e-(C-C)
R 2	2		3	e- (C-H)
R 3	2		4	e-(C-H)
R 4	2		5	e-(C-H)
R ₅	1		6	e-(C-C)
R 6	1		7	e-(C-H)
R 7	1		8	e-(C-H)
R 8	6		9	e-(C-H)
R 9	6		10	e-(C-H)
R ₁₀	6		11	e-(C-C)
R ₁₁	11		12	e-(C-H)
R ₁₂	11		13	e-(C-H)
R ₁₃	11		14	e-(C-H)
R ₁₄	1	2	3	d-(C-C-H)
R ₁₅	1	2	4	d-(C-C-H)
R ₁₆	1	2	5	d-(C-C-H)
R ₁₇	2	1	7	d-(C-C-H)
R ₁₈	2	1	8	d-(C-C-H)
R ₁₉	6	1	7	d-(C-C-H)
R ₂₀	6	1	8	d-(C-C-H)
R ₂₁	1	6	9	d-(C-C-H)
R ₂₂	1	6	10	d-(C-C-H)
R ₂₃	11	6	9	d-(C-C-H)
R ₂₄	11	6	10	d-(C-C-H)
[~] 25	6	11	12	d-(C-C-H)
^R 26	6	11	13	d-(C-C-H)
R ₂₇	6	11	14	d-(C-C-H)
R ₂₈	4	2	5	d-(H-C-H)
R ₂₉	3	2	5	d-(H-C-H)
R ₃₀	3	2	4	d-(H-C-H)
R ₃₁	7	1	8	d-(H-C-H)
R ₃₂	9	6	10	d-(H-C-H)
R ₃₃	12	11	13	d-(H-C-H)
R ₃₄	13	11	14	d~(H-C-H)
^K 35	12	11	14	d-(H-C-H)
×36	2	1	6	d-(C-C-C)
R ₃₇	1	6	11	d-(C-C-C)

Tableau II : Constantes de force du butane 1

 $1 : F_{ij} = 10^6 \text{ cm}^{-1}$

Tableau 12 : Paramètres électro-optiques du butane 1

µ₃ = 0.280 µ₂ = 0.280 $\mu_{4} = 0.280$ $\mu_{1} = 0.000$ $\mu_6 = 0.25 0$ µ₈ = 0.250 $\mu_7 = 0.250$ $\mu_{5} = 0.000$ $\mu_{10} = 0.000$ $\mu_{11} = 0.280$ $\mu_{12} = 0.280$ $\mu_{9} = 0.250$ $\mu_{13} = 0.280$ $S\mu_1/SR_1 = -0.424$ $8\mu_{1}/8R_{19} = -0.271$ $S\mu_1/SR_{20} = -0.271$ $8\mu_2/8R_2 = 0.790$ $8\mu_1/8R_{36} = -0.635$ $8\mu_{1}/8R_{31} = 0.083$ $S\mu_{2}/SR_{14} = -0.372$ $S\mu_2/SR_3 = 0.280$ $S\mu_2/SR_4 = 0.280$ $8\mu_{2}/8R_{15} = -0.531$ $S\mu_2/SR_{16} = -0.531$ $S\mu_2/SR_{28} = -0.437$ 8µ ₂/8R₂₉ = -0.266 $8\mu 2/8R_{30} = -0.266$ $8\mu 3/8R_2 = 0.280$ $8\mu_3/8R_3 = 0.790$ $S\mu_3/SR_4 = 0.280$ $8\mu_{3}/8R_{14} = -0.531$ $\mu_{3}/\kappa_{28} = -0.266$ $8\mu 3/8R_{16} = -0.531$ $8\mu_{3}/8R_{15} = -0.372$ $8\mu_{3}/8R_{29} = -0.437$ $8\mu_3/8R_{30} = -0.266$ $\mu_4/R_2 = 0.280$ $S\mu_4/SR_3 = 0.280$ $S\mu_4/SR_4 = 0.790$ $8\mu_4/8R_{14} = -0.531$ $8\mu_4/8R_{15} = -0.531$ $\mu_4/\kappa_{28} = -0.266$ $S\mu_4/SR_{16} = -0.372$ 8µ 4/8R₂₉ = -0.266 $8\mu_6/8R_6 = 0.920$ $8\mu_4/8R_{30} = -0.437$ $^{\text{S}\mu}$ 6/8R 7 = 0.050 $8\mu 6/8R_{17} = -0.378$ $8\mu _{6}/8R_{18} = -0.475$ $8\mu 6/8R_{31} = -0.370$ $8\mu_{6}/8R_{19} = -0.378$ $8\mu 6/8R_{20} = -0.475$ $S\mu 7/SR 7 = 0.920$ $\mu_{6/8R_{36}} = -0.884$ $8\mu 7/8R_6 = 0.050$ $8\mu 7/8R_{19} = 0.479$ $\mu_{7}/\mu_{17} = -0.475$ $S\mu 7/SR_{18} = -0.378$ $8\mu 7/8R_{20} = -0.378$ $S\mu 7/SR_{31} = -0.370$ $S\mu 7/SR_{36} = -0.884$ $8 \mu 8/8 R = 0.920$ $S\mu_8/SR_{21} = -0.378$ $S\mu_8/SR_9 = 0.050$ $\mu_{8}/\kappa_{23} = -0.378$ $8\mu_{8}/8R_{24} = -0.475$ $8\mu_{8}/8R_{22} = -0.475$ $8\mu_{8}/8R_{32} = -0.370$ $8\mu 8/8R_{37} = -0.884$ $8\mu _{9}/8R_{8} = 0.050$

Tableau 12 (suité)

Sµ 9/SR 9 = 0.920	$8\mu_{9}/8R_{21} = -0.475$	$8\mu_{9}/8R_{22} = -0.378$
^{8μ} 9/ ^{8R} 23 = -0.475	$8\mu _{9}/8R_{24} = -0.378$	$8\mu_{9}/8R_{32} = -0.370$
$8\mu 9/8R_{37} = -0.884$	$8\mu_{10}/8R_{10} = -0.424$	$8\mu_{10}/8R_{21} = -0.271$
$8\mu_{10}/8R_{22} = -0.271$	$8\mu_{10}/8R_{32} = 0.083$	$8\mu_{10}/8R_{37} = -0.635$
$$\mu_{11}/$R_{11} = 0.790$	$8\mu_{11}/8R_{12} = 0.280$	$8\mu_{11}/8R_{13} = 0.280$
$8\mu_{11}/8R_{25} = -0.372$	$8\mu_{11}/8R_{26} = -0.531$	$8\mu_{11}/8R_{27} = -0.531$
$\mu_{11}/\kappa_{33} = -0.266$	$S\mu_{11}/SR_{34} = -0.437$	$8\mu_{11}/8R_{35} = -0.266$
$S\mu_{12}/SR_{11} = 0.280$	$8\mu_{12}/8R_{12} = 0.790$	$8\mu_{12}/8R_{13} = 0.280$
$8\mu_{12}/8R_{25} = -0.531$	$s_{\mu_{12}/sR_{26}} = -0.372$	$8\mu_{12}/8R_{27} = -0.531$
$8\mu_{12}/8R_{33} = -0.266$	$8\mu_{12}/8R_{34} = -0.266$	$8\mu_{12}/8R_{35} = -0.437$
$S\mu_{13}/SR_{11} = 0.280$	$8\mu_{13}/8R_{12} = 0.280$	$8\mu_{13}/8R_{13} = 0.790$
$8\mu_{13}/8R_{25} = -0.531$	$8\mu_{13}/8R_{26} = -0.531$	$8\mu_{13}/8R_{27} = -0.372$
Sμ ₁₃ /SR ₃₃ = -0.437	Su ₁₃ /SR ₃₄ = -0.266	\$µ ₁₃ /\$R ₃₅ = -0.266

l : μ en debyes, μ_k/R_i en D/A

Tableau	13 : Ré	sultats du	butane (C ₂₁	n) (forme	trans	;)	
Fréq. l	Fréq.	Spectre	(Sµ/SQ _i) _o ² cal.	larg. mi-haut.	mode	type ²	symétrie
(cm ⁻¹)	(cm ⁻¹)		(D/A) ²	(cm ^{-l})			
2965 2872 2853 1460 1442 1382 1361 1151 1059 837 425 2968 2930 1461 1257 948 731 194 102 2965 2912 1460 1300	2969 2894 2846 1469 1449 1380 1374 1153 1053 823 402 2971 2914 1459 1259 961 691 - 2970 2885 1460 1295	Raman i-r i-r i-r i-r i-r i-r Raman Raman Raman Raman	- - - - - - 1.3031 1.7385 0.0038 0.0008 0.0000 0.0789	60 60 60 - - 20	f 9 f 10 f 11 f 12 f 13 f 14 f 15 f 16 f 17	e-(CH ₃ e-(CH ₃ w-(CH ₂ b-(C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C)
1180 803 225	1199 811 -	Raman Raman Raman	- - -		f ₂₄ f ₂₅	b-(CH ₂ b-(CH ₃ b-(CH ₂ -C) bg) ba

Tableau 13 (suite)

					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2968	2969	i-r	0.9022	60	f ₂₇ e ^d -(CH ₃ ) b _u
2870	2894	i-r	1.2814	60	f ₂₈ e ⁵ -(CH ₃ ) b.
2853	2851	i-r	1.2670	60	f ₂₉ e ⁵ -(CH ₂ ) b _u
1461	1471	i-r	0.4266	20	f ₃₀ d ^d -(CH ₃ ) b _u
1461	1454	i-r	0.1319	20	f ₃₁ sc-(CH ₂ ) b _u
1379	1379	i-r	0.1749	16	f ₃₂ d ^s -(CH ₃ ) b _u
1290	1292	i-r	0.0589	20	f ₃₃ w-(CH ₂ ) b _u
1009	998	i-r ³	0.0554	8	f 34 e-(C-C) b _u
964	980	i-r	0.0627	8	f ₃₅ b-(CH ₃ ) b _u
271	253	i-r	0.0156	60	f ₃₆ d-(C-C-C) b _u
					-

1 : voir référence 21, isolation en matrice pour l'ir et solide

pour le Raman

2 : e : élongation

d : déformation

t : torsion

b : balancement

X^S : mode symétrique

X^d : mode dégénérée

sc : ciseaux

w : wagging

tw : twisting

X^a : mode anti-symétrique

3 : solide

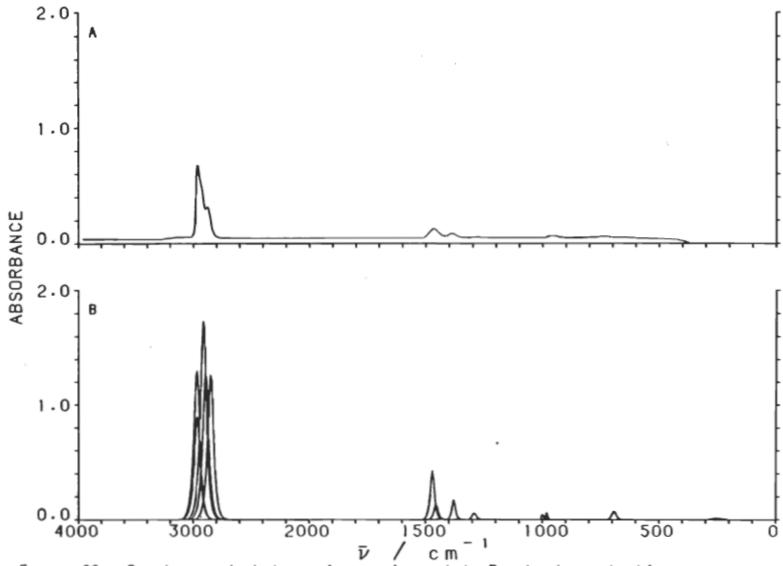
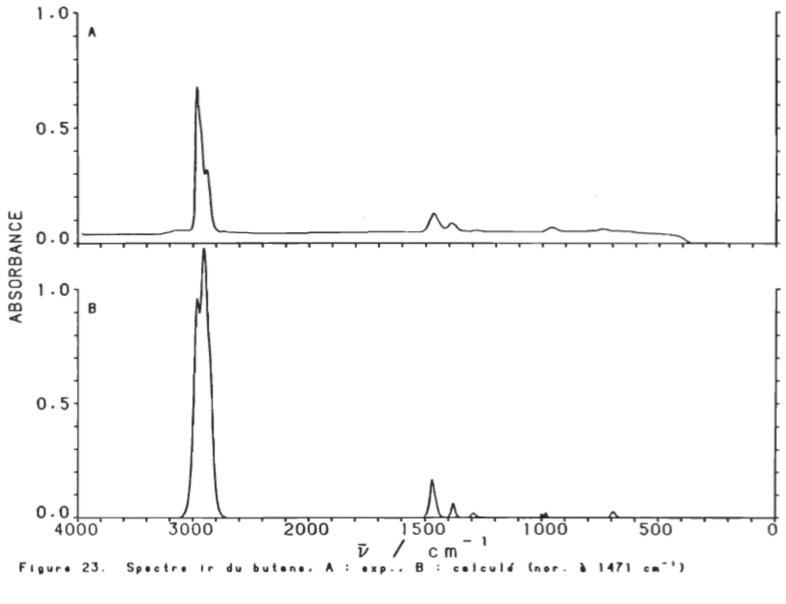


Figure 22. Spectre ir du butane, A : expérimental, B : bandes calculées



#### Discussion:

Les résultats du butane en conformation trans sont donnés dans le tableau 13. Trente-trois bandes fondamentales ont été calculées et trente-six bandes fondamentales expérimentales ont été observées. Les trois bandes manquantes sont dues aux modes de torsion qui ne sont pas calculés par le programme.

Si on compare le spectre expérimental [20], (fig. 22), avec le spectre théorique, on apprécie l'importance de notre étude. En effet, le profil du spectre expérimental ne permet pas de distinguer toutes les bandes fondamentales. Considérons l'absorption à 3000 cm⁻¹ sur ce spectre. Pour le spectre théorique, nous avons calculé des bandes fondamentales à: 2914, 2969, 2971, 2894 et 2851 cm⁻¹. L'absorption à 3000 cm⁻¹ est un recouvrement de bandes fondamentales dont les fréquences expérimentales sont situées à 2930, 2968, 2968, 2870 et 2853 cm⁻¹ [21].

Le programme calcule la bande  $f_{36}$  située à 253 cm⁻¹ et qui correspond à la bande expérimentale située à 271 cm⁻¹ (tableau 13). L'intensité de cette bande est très faible. D'autre part, les bandes situées à 194 et 102 cm⁻¹ n'ont pas été calculées parce qu'elles sont attribuées aux torsions.

Sur la figure 23, le spectre a été normalisé à 1470.70 cm⁻¹ afin de faciliter la comparaison entre le spectre calculé et le spectre expérimental. L'intensité des autres bandes est comparable.

# 5.3. Benzène, C₆H₆

La molécule du benzène est composée de 12 atomes (fig. 24). Elle possède 12 liaisons chimiques et 42 coordonnées internes. Pour les calculs, nous avons utilisé 12 coordonnées d'élongations, 18 coordonnées angulaires et 12 coordonnées non-planaires. Les paramètres d'entrées sont donnés dans les tableaux 14, 15, 16 et 17. Les résultats sont présentés dans le tableau 18 et sur les figures 25 et 26 avec le spectre expérimental [20].

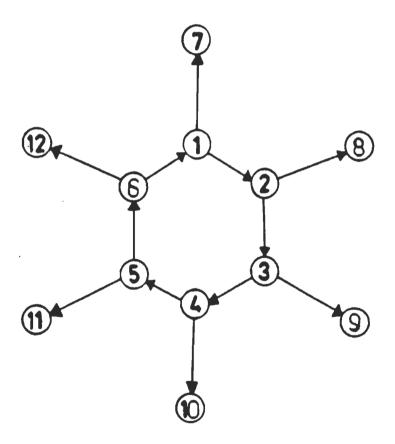


Figure 24. La molécule du benzène

```
Tableau 14 : Caractéristiques moléculaires du benzène
                      masses atomiques ( u.m.a. )
     m_1 = 12.000 m_2 = 12.000 m_3 = 12.000 m_4 = 12.00
     m_5 = 12.000 m_6 = 12.000 m_7 = 1.088 m_8 = 1.088
     m_{9} = 1.088 m_{10} = 1.088 m_{11} = 1.088
                                                      m_{12} = 1.088
                        longeurs des liaisons ( A )
       r 1 2 = r 2 3 = r 3 4 = r 4 5 = r 5 6 = r 6 1 = 1.400
       r 1 7 = r 2 8 = r 3 9 = r 4 10 = r 5 11 = r 6 12 = 1.0897
           composantes cartésiennes des vecteurs unitaires
                                                   e 1z = 0.000000
                             e_{1y} = -0.5000000
      e_{1x} = 0.8660254
                             e <sub>2y</sub> = -1.0000000
                                                   e_{2z} = 0.000000
      e <sub>2×</sub> = 0.0000000
                                                  e_{3z} = 0.000000
      e_{3x} = -0.8660254
                           e_{3y} = -0.5000000
                                                   e_{4z} = 0.000000
                             e_{4y} = 0.5000000
      e_{4x} = -0.8660254
                            e 5y = 1.0000000
                                                   e_{5z} = 0.000000
      e_{5x} = 0.0000000
                            e_{6y} = 0.5000000
                                                   e_{6z} = 0.000000
      e_{6x} = 0.8660254
                                                   e_{7z} = 0.000000
      e_{7x} = 0.0000000
                             e_{7y} = 1.0000000
                                                   e <sub>8z</sub> = 0.000000
                             e_{8y} = 0.5000000
        8x = 0.8660254
                                                   e_{9z} = 0.000000
                             e_{9y} = -0.5000000
       e_{9x} = 0.8660254
                                                   e_{10z} = 0.000000
                            e_{10y} = -1.00000000
       e_{10x} = 0.0000000
      e<sub>118</sub> = -0.8660254
                             e_{11y} = -0.5000000
                                                   e_{11z} = 0.000000
```

Tableau 15 : Coordonnées internes du benzène

coordonnée	Numéro	d'ato	mes	type
R ₁ :	1	2		e-(C-C)
R 2 :	2	3		e-(C-C)
R 3 :	3	4		e-(C-C)
R 4 :	4	5		e-(C-C)
R 5:	5	6		e-(C-C)
R 6 :	6	1		e-(C-C)
R 7 :	1	7		e-(C-H)
R '8 :	2	8		e-(C-H)
R _q :	3	9		e-(C-H)
R ₁₀ :	4	10		e-(C-H)
R ₁₁ :	5	11		e-(C-H)
R ₁₂ :	6	12		e-(C-H)
R ₁₃ :	6	1	2	d-(C-C-C)
R ₁₄ :	I	2	3	d-(C-C-C)
R ₁₅ :	2	3	4	d-(C-C-C)
R ₁₆ :	3	4	5	d-(C-C-C)
R ₁₇ :	4	5	6	d-(C-C-C)
R ₁₈ :	5	6	1	d-(C-C-C)
R ₁₉ :	6	1	7	d-(C-C-H)
R ₂₀ :	7	1	2	d-(C-C-H)
R ₂₁ :	1	2	8	d-(C-C-H)
R ₂₂ :	8	2	3	d-(C-C-H)
R ₂₃ :	2	3	9	d-(C-C-H)
R ₂₄ :	9	3	4	d-(C-C-H)

Tableau 15 (suite)

R ₂₅ :	3	4	4	10			d-(C-C-H)
R ₂₆ :	10	4	4	5			d-(C-C-H)
R ₂₇ :	4	5	5	11			d-(C-C-H)
R ₂₈ :	11	9	5	6			d-(C-C-H)
R ₂₉ :	5	6	ົ້	12			d-(C-C-H)
R ₃₀ :	12	6	5	1			d-(C-C-H)
R ₃₁ :	6	1	2	7	1	7	n-p
R ₃₂ :	3	2	1	8	2	8	n-p
R ₃₃ :	2	3	4	9	3	9	n-p
R ₃₄ :	5	4	3	10	4	10	n-p
R ₃₅ :	4	5	6	11	5	11	n-p
R ₃₆ :	1	6	5	12	6	12	n-p
R ₃₇ :	6	1	2	1	2	3	n-p
R ₃₈ :	l	2	3	4	3	2	n-p
R ₃₉ :	2	3	4	5	4	3	n-p
R ₄₀ :	3	4	5	6	5	4	n-p
R ₄₁ :	4	5	6	5	6	1	n-p
R ₄₂ :	5	6	1	6	1	2	n-p

Tableau 16 : Constantes de force du benzène 1

F 1 1 = 11.09550 F 1 4 = 0.83490 F 1 20 = 0.11500 F 7 19 = 0.17300 F 13 19 = 0.01790 F 19 21 = 0.02270 F 31 31 = 0.64300	F 1 2 = 0.83490 F 1 13 = 0.54380 F 7 7 = 8.56500 F 13 13 = 1.12950 F 19 19 = 0.66870 F 19 23 = -0.02190 F 31 32 = 0.10710	$F_{1 3} = -0.83490$ $F_{1 19} = -0.39660$ $F_{7 13} = -0.01600$ $F_{13 14} = -0.16030$ $F_{19 20} = -0.06420$ $F_{19 25} = -0.02880$ $F_{31 33} = 0.00355$ $F_{31 33} = 0.00355$
$F_{31 \ 34} = 0.02225$	$F_{31 \ 37} = 0.21200$	$F_{31\ 38} = 0.09360$
$F_{31 \ 39} = -0.02500$ $F_{37 \ 39} = 0.01670$	$F_{37 \ 37} = 0.24900$ $F_{37 \ 40} = -0.06050$	$F_{37\ 38} = 0.17150$
37 39 = 0.01070	37 40 - 0.00030	

1 : F_{ij} en 10⁶ cm⁻²

Tableau 17 : Paramètres électro-optiques du benzène 1

μ ₁ = 0.000 μ ₂ = 0.000	µ ₃ = 0.000 µ ₄ =	0.000 µ ₅ = 0.000
μ ₆ = 0.000 μ ₇ = 0.580	и _в = 0.580 и ₉ =	$0.580  \mu_{10} = 0.580$
$\mu_{11} = 0.580  \mu_{12} = 0.580$		
$8\mu_{7}/8R_{1} = -0.005$	$8\mu 7/8R_6 = -0.005$	$S\mu_7/SR_7 = 0.470$
$S_{\mu} _{7}/SR_{21} = 0.161$	$8\mu 7/8R_{30} = 0.160$	$s_{\mu}_{8}/s_{R}_{1} = -0.005$
$8\mu_{8}/8R_{2} = -0.005$	$8\mu_{8}/8R_{8} = 0.470$	Su 8/SR ₂₀ = 0.161
$8\mu_{8}/8R_{23} = 0.160$	8µ 9/8R 2 = -0.005	$8\mu _{9}/8R_{3} = -0.005$
Sµ 9/SR 9 = 0.470	\$µ 9/\$R ₂₂ = 0.161	$8\mu_{9}/8R_{25} = 0.160$
$\mu_{10}/R_3 = -0.005$	$8\mu_{10}/8R_4 = -0.005$	$S\mu_{10}/SR_{10} = 0.470$
$\$\mu_{10}/\$R_{24} = 0.161$	$8\mu_{10}/8R_{27} = 0.160$	$s\mu_{11}/sR_4 = -0.005$
$\mu_{11}/R_5 = -0.005$	$\$\mu_{11}/\$R_{11} = 0.470$	$8\mu_{11}/8R_{26} = 0.161$
$\$\mu_{11}/\$R_{29} = 0.160$	$S\mu_{12}/SR_5 = -0.005$	$8\mu_{12}/8R_{6} = -0.005$
$$\mu_{12}/$R_{12} = 0.470$	$S\mu_{12}/SR_{19} = 0.161$	$8\mu_{12}/8R_{28} = 0.160$

l : μ en debyes,  $\mu_k/R_i$  en D/A

Tableau	18	:	Résultats	pour	ìе	benzène	$(D_{ch})$
---------	----	---	-----------	------	----	---------	------------

Fréq. 1	Fréq.	Spectre		larg. mi-haut.		type ² sy	métrie
(cm ⁻¹ )	(cm ⁻¹ )		(D/A) ²	(cm ⁻¹ )			
3062 992 1326 673 3068 1010 995 703 1310 1150 849 3063 1486 1038 3047 1596 1178 606 975	3073 991 1348 672 3057 1008 989 708 1314 1141 845 3064 1484 1029 3056 1600 1181 607 966	Raman Raman i-r i-r3 i-r3 inactif inactif inactif i-r4 i-r Raman i-r5 i-r Raman Raman Raman		40 - - - 60 24 20	f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f 12 f 13 f 14 f 15 f 16 f 17 f 18 f 19	e-(C-H) ea be-(C-H) be-(C-H) da be-(C-H) da be-(C-H) da ea be-(C-H) e-(C-H) e-(C-H) e-(C-H) ea+d be-(C-H) ea+d be-(C-H)	a2u b1u b2g b2g b2u e1g e1u e2g e2g e2g
410	398	i-r ³	0.0000	-	f ₂₀	da	e _{2u}

1 : voir référence 21, en phase gazeuse pour l'ir et en liquide pour le Raman

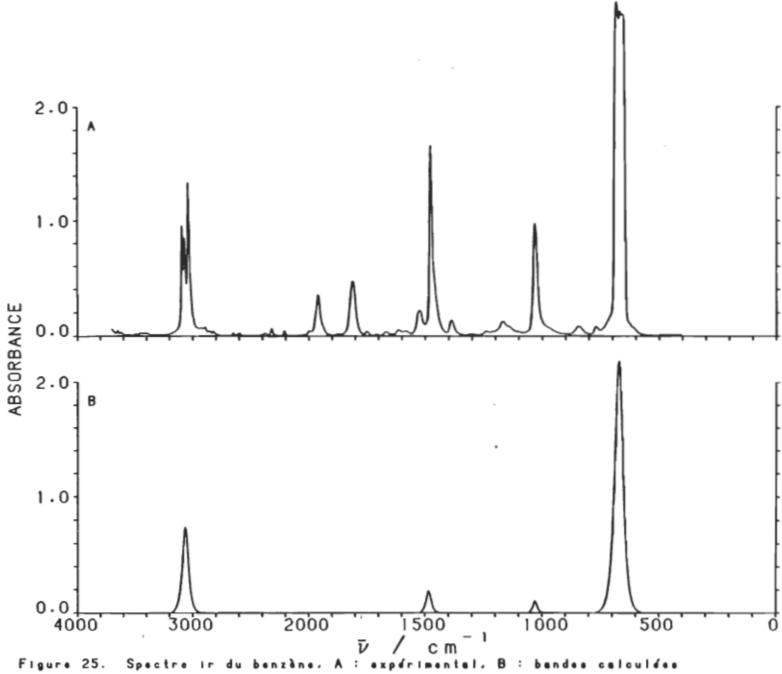
2 : voir tableau 13

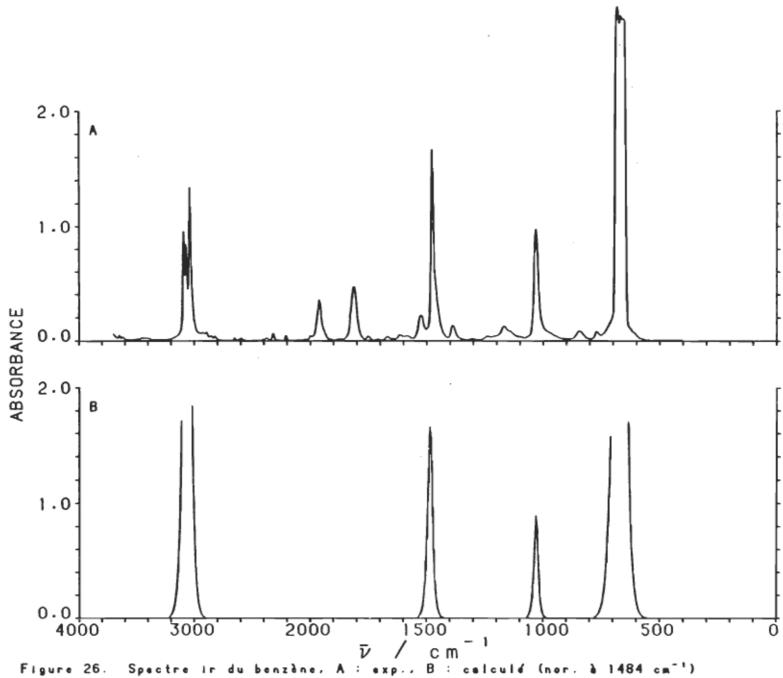
ea : élongation de-l'anneau

da : déformation de l'anneau

be : bending

3 : solide; 4 : liquide; 5 : résonnance de Fermi (liq. à 3080 et  $3030~\rm cm^{-1}$ ); 6 : résonnance de Fermi (1606, 1585 cm $^{-1}$ )





#### Discussion:

Le spectre expérimental [20] montre huit bandes principales sur la figure 25. Le spectre calculé montre quatre bandes fondamentales. Le spectre expérimental dans la région de 3000 cm $^{-1}$  montre trois bandes dont deux sont attribuées à des combinaisons. Le programme ne calcule pas les bandes de combinaison. Le spectre théorique donne une bande fondamentale dégénérée située à 3064 cm $^{-1}$ . La première bande du spectre expérimental située à 3062 cm $^{-1}$  correspond à ce mode dégénérée. Les deux bandes voisines du spectre expérimental sont attribuées aux combinaisons  $f_2 + f_{16} + f_{14}$  et  $f_{13} + f_{16}$ . La bande de combinaisons  $f_{13} + f_{16}$  est de forte intensité car elle entre en résonnance de Fermi avec la bande située à 3062 cm $^{-1}$ . Ces deux bandes sont de symétrie  $e_{10}$ .

Dans la région de 2000 à 1750 cm⁻¹, sur le spectre expérimental, il y a deux bandes de forte intensité. Elles sont absentes du spectre théorique puisque ce sont des modes de combinaison. Les bandes à 1484, 1029 et 672 cm⁻¹ du spectre théorique concordent avec celles du spectre expérimental.

Sur la figure 26, le spectre théorique a été normalisé en utilisant la bande à 1484.11 cm⁻¹.

Pour conclure, les sections 5.1, 5.2 et 5.3 montrent que les résultats obtenus pour l'éthane, le butane et le benzène sont identiques à ceux obtenus par Gribov et Dement'ev. Les résultats montrent que le programme modifié fonctionne bien.

### 5.4. Cyclopentarone, C₅H₈O

La cyclopentanone est composée de 14 atomes (fig.27). Cette molécule possède 14 liaisons. Nous avons sélectionné 42 coordonnées internes. Nous avons introduit 14 coordonnées d'élongations, 27 coordonnées angulaires et une coordonnée non-planaire. Les paramètres d'entrées sont donnés dans les tableaux 19, 20, 21 et 22. Les résultats sont présentés dans le tableau 23 et sur les figures 28 et 29 avec le spectre expérimental [20].

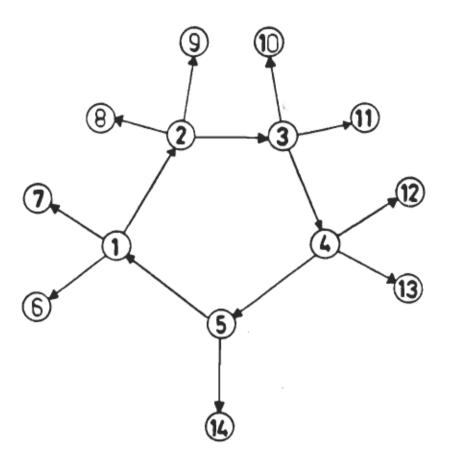


Figure 27. La molécule de la cyclopentamone

Tableau 19 : Caractéristiques moléculaires de la cyclopentanone

#### masses atomiques (u.m.a)

#### longeurs des liaisons ( A )

 $r_{1\ 2} = r_{2\ 3} = r_{3\ 4} = 1.542$   $r_{4\ 5} = r_{5\ 1} = 1.512$   $r_{1\ 6} = r_{1\ 7} = r_{2\ 8} = r_{2\ 9} = r_{3\ 10} = r_{3\ 11} = r_{4\ 12} = r_{4\ 13} = 1.086$   $r_{5\ 14} = 1.241$ 

#### composantes cartésiennes des vecteurs unitaires

Tableau 20 : coordonnées internes de la cyclopentanone

coordonnées numéros d'atomes type 1 2 e-(C-C) 3 2 e-(C-C) 2 3 e-(C-C) 4 e-(C-C) 5 e-(C-C) 2 e-(C-H) 2 9 e-(C-H) 3 10 e-(C-H) 11 3 e-(C-H) 12 e-(C-H) 13 e-(C-H) 6 e-(C-H) 7 1 e-(C-H) 14 e-(C=0) 2 d-(C-C-C)1 3 3 d-(C-C-C)2  $R_{17}$ d-(C-C-C) 3 5 d-(C-C-C)5 5 1 d-(C-C-C)4 R₂₀ 5 14 d-(C-C-O)4 d-(C-C-O) 5 1 14 8 2 9 d-(H-C-H) 10 3 11 d-(H-C-H)d-(H-C-H) 12 13

_____

Tableau 20 (suite)

R ₂₅	6	1	7			d-(H-C-H)
R ₂₆	1	2	8			d-(C-C-H)
R ₂₇	1	2	9			d-(C-C-H)
R ₂₈	8	2	3			d-(C-C-H)
R ₂₉	9	2	3			d-(C-C-H)
R ₃₀	2	3	10			d-(C-C-H)
R ₃₁	2	3	11			d-(C-C-H)
R ₃₂	10	3	4			d-(C-C-H)
R ₃₃	11	3	4			d-(C-C-H)
R ₃₄	3	4	12			d-(C-C-H)
R ₃₅	3	4	13			d-(C-C-H)
R ₃₆	12	4	5			d-(C-C-H)
R ₃₇	13	4	5			d-(C-C-H)
R ₃₈	5	1	6			d-(C-C-H)
R ₃₉	5	1	7			d-(C-C-H)
R ₄₀	6	1	2			d-(C-C-H)
R ₄₁	7	1	2			d-(C-C-H)
R ₄₂	4	5 !	5 1	5	14	n-p-(CCC-CO)

-----

Tableau 21 : Constantes de force de la cyclopentanone

```
F_{1} = 6.4651 F_{1} = 0.1576 F_{1} = 0.1576
F_{1 15} = 0.5968 F_{1 18} = 0.5968 F_{1 26} = 0.4695
F_{127} = 0.4695 F_{128} = 0.1131 F_{129} = 0.1131
F_{138} = 0.1131 F_{139} = 0.1131 F_{140} = 0.4695
F_{141} = 0.4695 F_{22} = 6.4651 F_{23} = 0.1576
F_{2 15} = 0.5968 F_{2 16} = 0.5968 F_{2 26} = 0.1131
F_{2\ 27} = 0.1131 F_{2\ 28} = 0.4695 F_{2\ 29} = 0.4695
F_{230} = 0.4695 F_{231} = 0.4695 F_{232} = 0.1131
F_{233} = 0.1131 F_{33} = 6.4651 F_{34} = 0.1576
F_{3 16} = 0.5968 F_{3 17} = 0.5968 F_{3 30} = 0.1131
F_{331} = 0.1131 F_{332} = 0.4695 F_{333} = 0.4695
F_{334} = 0.4695 F_{335} = 0.4695 F_{336} = 0.1131
F_{337} = 0.1131 F_{44} = 6.6336 F_{45} = 0.1576
F_{4\ 17} = 0.5968 F_{4\ 19} = 0.5968 F_{4\ 20} = 0.5968
F_{434} = 0.1131 F_{435} = 0.1131 F_{436} = 0.4695
F_{437} = 0.4695 F_{55} = 6.6336 F_{518} = 0.5968
F_{5,19} = 0.5968 F_{5,21} = 0.5968 F_{5,38} = 0.4695
F_{5 39} = 0.4695 F_{5 40} = 0.1131 F_{5 41} = 0.1131
F_{6}_{6} = 7.2467 F_{6}_{7} = 0.0094 F_{7}_{7} = 7.2467
F_{88} = 7.2467 F_{89} = 0.0094 F_{99} = 7.2467
```

### Tableau 21 (suite)

F _{10 10} = 7.3231 F _{10 11} = 0.0094 F _{11 11} = 7.3231	
$F_{12 \ 12} = 7.3231$ $F_{12 \ 13} = 0.0094$ $F_{13 \ 13} = 7.3231$	
$F_{14 \ 14} = 15.8335$ $F_{15 \ 15} = 1.1529$ $F_{15 \ 26} = -0.0407$	
$F_{15\ 27} = -0.0407$ $F_{15\ 28} = -0.0407$ $F_{15\ 29} = -0.0407$	
$F_{16\ 16} = 1.1529$ $F_{16\ 30} = -0.0407$ $F_{16\ 31} = -0.0407$	
$F_{16 \ 32} = -0.0407$ $F_{16 \ 33} = -0.0407$ $F_{17 \ 17} = 1.3289$	
$F_{17 \ 34} = -0.0407$ $F_{17 \ 35} = -0.0407$ $F_{17 \ 36} = -0.0407$	
$F_{17 \ 37} = -0.0407$ $F_{18 \ 18} = 1.3289$ $F_{18 \ 38} = -0.0407$	
F _{18 39} = -0.0407 F _{18 40} = -0.0407 F _{18 41} = -0.0407	
F _{19 19} = 1.4589 F _{20 20} = 1.1884 F _{21 21} = 1.1884	
$F_{22\ 22} = 0.6828$ $F_{23\ 23} = 0.6828$ $F_{24\ 24} = 0.6500$	
F _{25 25} = 0.6500 F _{26 26} = 0.8889 F _{26 27} = -0.0276	
$F_{27\ 27} = 0.8889$ $F_{28\ 28} = 0.8889$ $F_{28\ 29} = -0.0276$	
$F_{29\ 29} = 0.8889$ $F_{30\ 30} = 0.8889$ $F_{30\ 31} = -0.0276$	
$F_{31\ 31} = 0.8889$ $F_{32\ 32} = 0.8889$ $F_{32\ 33} = -0.0276$	
$F_{33 \ 33} = 0.8889$ $F_{34 \ 34} = 0.7892$ $F_{34 \ 35} = -0.0276$	
$F_{35 \ 35} = 0.7892$ $F_{36 \ 36} = 0.7892$ $F_{36 \ 37} = -0.0276$	
$F_{37 \ 37} = 0.7892$ $F_{38 \ 38} = 0.7892$ $F_{38 \ 39} = -0.0276$	
$F_{39 \ 39} = 0.7892$ $F_{40 \ 40} = 0.7892$ $F_{40 \ 41} = -0.0276$	
F _{41 41} = 0.7892 F _{42 42} = 0.4477	

1 : F_{ij} en 10⁶ cm⁻²

Tableau 22 : Paramètres électro-optiques de la cyclopentanone 1  $\mu_1 = 0.000 \quad \mu_2 = 0.000 \quad \mu_3 = 0.000 \quad \mu_4 = 0.660$  $\mu_{5} = -0.660$   $\mu_{6} = 0.250$   $\mu_{7} = 0.250$   $\mu_{8} = 0.250$  $\mu_{9} = 0.250$   $\mu_{10} = 0.250$   $\mu_{11} = 0.250$   $\mu_{12} = 0.250$  $\mu_{13} = 0.250$   $\mu_{14} = -1.840$  $\mu_{4}/\kappa_{11} = 0.120 \quad \kappa_{5}/\kappa_{12} = 0.120$  $8\mu_4/8R_{10} = 0.120$  $8\mu_{5}/8R_{13} = 0.120$  $S\mu_6/SR_6 = 0.920$   $S\mu_6/SR_7 = 0.050$  $8\mu_{6}/8R_{22} = -0.370$   $8\mu_{6}/8R_{26} = -0.378$  $8\mu _{6}/8R_{15} = -0.884$  $8\mu 6/8R_{27} = -0.475$  $\text{Sµ}_{6}/\text{SR}_{28} = -0.378$   $\text{Sµ}_{6}/\text{SR}_{29} = -0.475$ Sµ 7/SR₁₅ = -0.884  $8\mu 7/8R_6 = 0.050$  $8\mu 7/8R 7 = 0.920$  $8\mu_{7}/8R_{22} = -0.370$  $8\mu 7/8R_{26} = -0.475$  $S\mu_7/SR_{27} = -0.378$  $8\mu_8/8R_8 = 0.920$  $8\mu 7/8R_{28} = -0.475$  $8\mu 7/8R_{29} = -0.378$  $8\mu 8/8R_{23} = -0.370$  $8\mu_8/8R_9 = 0.050$  $\mu_{8}/\Re_{16} = -0.884$  $8\mu 8/8R_{32} = -0.378$  $8\mu_{8}/8R_{30} = -0.378$  $8\mu_8/8R_{31} = -0.475$  $8\mu_{8}/8R_{33} = -0.475$  $8\mu_{9}/8R_{8} = 0.050$  $8\mu_9/8R_9 = 0.920$  $8\mu_9/8R_{30} = -0.475$  $8\mu_{9}/8R_{16} = -0.884$  $8\mu _{9}/8R_{23} = -0.370$ 

Sμ₁₄/SR₁₄ = -5.210

 $8\mu_{9}/8R_{32} = -0.475$ 

 $8\mu_{10}/8R_{11} = 0.210$ 

 $8\mu_{11}/8R_{11} = 0.520$ 

 $\$\mu_{12}/\$R_{13} = 0.210 \quad \$\mu_{12}/\$R_{25} = -0.290$ 

 $\$\mu_{13}/\$R_{13} = 0.520 \quad \$\mu_{13}/\$R_{25} = -0.290$ 

 $S\mu_9/SR_{33} = -0.378$ 

 $8\mu_{10}/8R_{24} = -0.290$ 

 $8\mu_{11}/8R_{24} = -0.290$ 

 $8\mu_{9}/8R_{31} = -0.378$ 

 $8\mu_{10}/8R_{10} = 0.520$ 

 $8\mu_{11}/8R_{10} = 0.210$ 

 $8\mu_{12}/8R_{12} = 0.520$ 

 $8\mu_{13}/8R_{12} = 0.210$ 

l : μ en debyes,  $\mu_k/R_i$  en D/A

Tableau 23 : Résultats de la cyclopentanone (C2) (infrarouge)

Fréq. ^l exp.	Fréq. cal.	Fréq. ^l cal.	(δμ/SQ _i ) _o cal.	larg. mi-haut.	No.	symétrie
(cm ⁻¹ )	(cm ⁻¹ )	(cm ⁻¹ )	(D/A) ²	(cm ⁻¹⁾		
105	-	106	-		1	В
240	160	239	0.0017	16	2 3	Α
450	422	440	0.3970	16	3	В
471	477	478	0.1708	16	4	В
564	544	545	0.0330	16	5	Α
580	571	573	0.0235	16	6	В
706	771	771	0.0525	16	7	Α .
806	832	832	0.0224	16	8	Α
831	831	832	0.1562	16	9	В
889	893	894	0.0092	16	10	Α
-	951	954	0.2367	16	11	В
958	966	974	0.2508	16	12	В
1021	1031	1038	0.0308	16	13	Α
~	1061	1066	0.0002	16	14	Α
1148	1146	1149	0.0009	16 ·	15	Α
-	1154	1154	0.2464		16	В
1176	1173	1174	0.2788		17	В
-	1181	1184	0.0069	16	18	Α
1227	1210	1211	0.0402	16	19	В
1262		1231	0.0710	16	20	В
-	1232	1232	0.0084	16	21	Α
1274		1280	0.1621	16	22	Α
1311		1327	0.0232	16	23	В
1409	1411	1412	0.1100	16	24	Α
-	1418	1418	1.2023	16	25	В
1454	1460	1460	0.0222	16	26	Α
1469	1467	1467	0.0176	16	27	В
1748	1745	1745	5.1312	13	28	Α
2873	2883	2884	0.6086	60	29	В
2885	2885	2885	0.8137	60	30	A
2898	2899	2899	1.1097	60	31	В
-	2900	2901	0.0908	60	32	A
2946	2951	2952	2.2632	60	33	В
-	2957	2958	0.3049	60	34	A
2969	2969	2970	0.2299	60	35	В
-	2969	2971	0.0020	60	36	Α

1 : voir référence 15

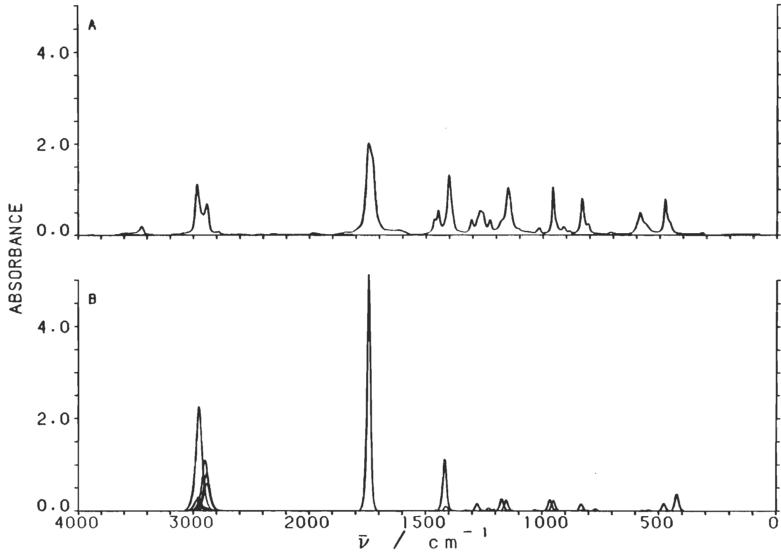
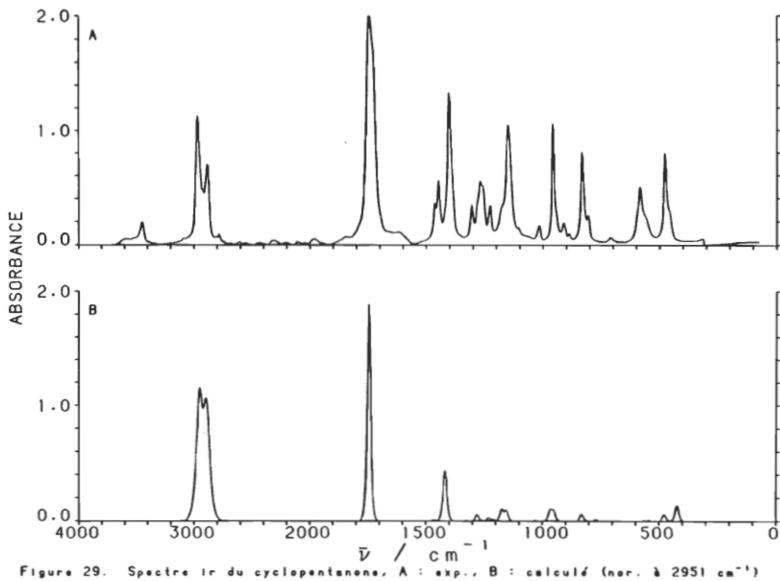


Figure 28. Spectre ir du cyclopentanone, A : expérimental, B : bandes calculés



#### Discussion:

Nous avons calculé 18 fréquences à partir de l'équation 2.71 et 17 fréquences à partir de l'équation 2.72. Nous avons obtenu trente-cinq fréquences au lieu de 36. Celle qui manque est la fréquence de torsion que le programme ne calcule pas.

Une matrice F composée de 119 éléments a été formée en ajoutant les éléments qui sont physiquement équivalents. Les constantes de force qui ont été utilisées viennent de la référence 15 et elles ont été raffinées à partir des fréquences expérimentales. Dans le tableau 23, nous comparons nos résultats avec ceux de cette référence et avec les résultats expérimentaux. A part la position des bandes 2 et 3, où la contribution des modes de torsion est importante, la position des autres bandes est comparable.

Pour obtenir le spectre théorique de la cyclopentanone, nous avons pris les fréquences et les valeurs de  $(\S\mu/\S Q_i)_0^2$  que nous avons calculées. Ces valeurs ont été mis en ordonnée et les fréquences en abscise. Une fonction de forme a été utilisée pour donner un profil aux bandes calculées. Pour le groupe carbonyle, nous avons utilisé une largeur de 13 cm⁻¹ et pour les bandes de la région des C-H, nous avons utilisé 60 cm⁻¹. Ces valeurs proviennent de la référence 18. Dans la discussion, nous appellerons l'intensité (éq. 2.20), la surface sous le profil (surface intégrée) de la bande.

Comparons le spectre expérimental avec le spectre théorique sur la figure 28. Dans la région de 3000 cm⁻¹, sur le spectre

expérimental, il y a deux bandes. En comparant avec le spectre théorique nous déterminons si elles sont des bandes fondamentales. Sur le spectre théorique, nous avons calculé 8 bandes fondamentales qui sont situées à 2969, 2969, 2957, 2951, 2900, 2899, 2885 et 2883 cm⁻¹ Il faut conclure que les deux bandes expérimentales contiennent toutes ces bandes fondamentales puisque la sommme est presque identique au spectre expérimental (fig. 29).

Dans la région de 1700 cm⁻¹, qui est celle du groupe carbonyle, nous constatons que nos résultats concordent. La position de cette bande est située à 1745 cm⁻¹ sur le spectre théorique et elle apparaît à 1748 cm⁻¹ sur le spectre expérimental.

Dans la région de 1400 cm⁻¹, qui est celle des déformations CH₂, les résultats de nos calculs concordent assez bien avec le spectre expérimental, bien que sur ce dernier il y a d'autres bandes qui sont attribuées aux combinaisons et aux harmoniques qui ne sont pas calculées sur le spectre théorique.

Dans la région des basses fréquences, nous remarquons que l'écart entre les fréquences calculées et expérimentales est un peu plus grand car nous n'avons pas tenu compte des coordonnées de torsion.

Nos résultats, pour le calcul des intensités, nous indique que nous avons réussi à appliquer la méthode de Gribov sur la molécule de cyclopentanone (fig 28). Nous avons fait le problème direct [1] en empruntant les paramètres électro-optiques de l'acétone [17] et du butane [18]. Nous avons formé une matrice |  $\$\mu_k/\$R_i$  | composée de 49 éléments. Nous avons ajouté les éléments qui sont physi-

quement équivalents. Nous avons obtenu une solution approximative et les résultats le confirment (fig. 28). La différence entre le spectre théorique et le spectre expérimental est faible et n'influence pas les conclusions de notre étude.

Nous avons normalisé l'intensité des bandes du spectre théorique total à 2959.39 cm⁻¹. Le résultat est illustré sur la figure 29. Dans la région des C-H et du groupe carbonyle, nous obtenons de fortes intensités, comparables à celles du spectre expérimental.

L'intensité des bandes que nous avons calculé dans la région de 1500-200 cm⁻¹ ne concorde pas exactement avec l'intensité des bandes expérimentales. Ce phénomène est normal puisque nous ne disposions pas des paramètres électro-optiques de la cyclopentanone. Il y a aussi l'absence des coordonnées de torsion pour les basses fréquences. Cette différence d'intensités repose sur le choix des paramètres que nous avons sélectionnés.

Pour la partie 1 (fig. 12) de la cyclopentanone, nous avons formé un champ électro-optique complet. Nous disposions des valeurs des paramètres principaux de cette région [18]. Dans la partie 2, nous avons formé un champ sélectif restreint puisque nous ne disposions pas de tous les paramètres. Nous n'avons pas trouvé de paramètres électro-optiques de molécules avec un groupe carbonyle autre que l'acétone.

Dans le tableau 24, nous remarquons une différence dans la valeur des dérivées du butane et de l'acétone pour les groupes CH₃. Cette différence s'explique par l'influence présente du groupe carbonyle

Tableau 24.	Sucu/SRCH	du butane 1	et	de	l'acétone ²
IGD ICGG E-I	ANCH AUCH	22 22 22.10			

н. сп			
	СНЗ	CH ₂	
^{SµCH} \88 ^{CH}	0.79	0.92	
SHCH/SR CH	0.28	0.05	
ShCH\SKCH	0.52		
SHCH/SK, CH	0.21		
	Sµ _{CH} /SR _{CH}	Sμ _{CH} /SR _{CH} 0.79 Sμ _{CH} /SR ['] CH 0.28 Sμ _{CH} /SR _{CH} 0.52	CH ₃ CH ₂ Sμ _{CH} /SR _{CH} 0.79 0.92  Sμ _{CH} /SR' _{CH} 0.28 0.05  Sμ _{CH} /SR _{CH} 0.52

1 : voir référence 18

2 : voir référence 17

': indique la coordonnée  $R_{\hbox{\footnotesize{CH}}}$  voisine

sur l'acétone. Il en va de même pour la partie 2 de la cyclopentanone. Les dérivées  $\$\mu_{CH}/\$R_{CH}$  et  $\$\mu_{CH}/\$R_{CH}$  des  $CH_2$  diffèrent de celles que nous avons choisies pour la partie 1. Les dérivées  $\$\mu_{CH}/\$R_{CCH}$ ,  $\$\mu_{CH}/\$R_{CCC}$  et  $\$\mu_{CH}/\$R_{CCC}$  sont également affectées par la présence du groupe carbonyle. Puisque nous ne disposions pas des valeurs des dérivées  $\$\mu_{CH}/\$R_{CH}$  et  $\$\mu_{CH}/\$R_{CH}$ , nous avons emprunté les valeurs des dérivées des  $CH_3$  de l'acétone. Nous avons mis les dérivées par rapport aux coordonnées de déformations des angles CCH et CCC égales à zéro. Les valeurs de ces dérivées ne sont pas connues. Nous avons mis des valeurs nulles aux moments dipolaires  $\mu_1$  et  $\mu_3$ .

Ce choix s'inscrit dans le souci d'exposer la méthode et les limites que l'on rencontre lorsque nous bâtissons la matrice  $\mid$   $\$\mu_{\text{L}}/\$R_{i}\mid$ . Les remarques que nous avons exposées, permettront aux chercheurs de faire un choix logique et consistant lors du raffinage des matrices (  $\mu_k$  ) et |  $\$\mu_k/\$R$ , | à partir des intensités expérimentales. Soulignons que l'exactitude, d'une solution obtenue par la méthode du problème inverse [4], repose sur le choix des valeurs initiales des moments dipolaires et des dérivées des moments dipolaires par rapport aux coordonnées internes. Elle dépend également du choix des écarts imposés sur les valeurs des paramètres électro-optiques durant les itérations [4]. Nous pourrions obtenir plusieurs solutions mais il faudrait choisir une solution qui est physiquement acceptable. [] faudrait, par exemple, rejeter les solutions qui présentent des valeurs de pre = 0 et celles qui ne respectent pas la convention de signes exposées à la section 2.4.5. Après un raffinement des paramètres électro-optiques de la molécule, nous devrions nous attendre à ce que le rapport des surfaces des bandes théoriques et expérimentales, (fig. 29), tende vers l'unité. C'est le cas d'une solution exacte.

## Chapitre 6

#### CONCLUSION

Notre attention, dans cette étude, a été centrée sur l'idée d'appliquer le plus fidèlement possible la méthode de Gribov à la molécule du cyclopentanone.

Cette démarche nous a permis de mieux connaître l'aspect vibrationnel d'une molécule polyatomique qui est un phénomène peu exploré et très complexe.

En appliquant cette méthode aux molécules d'éthane, de butane et de benzène, nous avons constaté que les résultats étaient identiques à ceux de Gribov. A cette étape, nous pouvions conclure que le programme était fiable. Le calcul des bandes fondamentales du spectre infrarouge d'une molécule à partir des constantes de force et des paramètres électro-optiques nous a permis d'identifier et de localiser les bandes fondamentales présentes dans un spectre expérimental.

Cette nouvelle avenue de la recherche théorique en spectroscopie infrarouge offre des possibilités immenses. Nous avons appliqué la méthode de Gribov à une molécule de 14 atomes et nous savons pertinemment qu'il est possible d'augmenter les possibilités du programme afin de pouvoir calculer une molécule de 137 atomes. Il serait alors possible de calculer la molécule de chlorophylle afin de pouvoir identifier toutes les bandes dans le spectre de cette molécule.

Nous sommes conscients que nous n'avons qu'effleuré le sujet et que les perspectives d'avenir sont très grandes. Pour la cyclopentanone, il serait possible de raffiner les paramètres électro-optiques, par la méthode des moindres carrés, afin d'obtenir des intensités théoriques comparables aux intensités expérimentales.

Plusieurs avenues s'ouvrent à nos chercheurs. Par exemple, ils pourraient calculer les spectres de molécules qui se trouvent dans des configurations difficiles à reproduire en laboratoire.

L'algorithme de Gribov et Dement'ev permet également de calculer les spectres Raman pourvu que la polarisabilité et la variation de la polarisabilité des groupes fonctionnels soient introduites dans le programme.

#### REFERENCES :

- L. A. Gribov, intensity theory for infrared spectra of polyatomic molcules, Consultant Bureau, New York (1964).
- L. A. Gribov, V. A. Dement'ev et V. I. Smirnov, Programs for calculation of vibrational spectra of molecules (en russe), Inst. Geokhim. Anal. Khim. Im. Vernadskogo, Moscou (1974).
- V. A. Dement'ev, V. I. Smirnov et L. A. Gribov, Fortran programs for calculating molecular vibrations (en russe), Inst. Geokhim. Anal. Khim. Im. Vernadskogo. Moscou (1977).
- L.A. Gribov et V.A. Dement'ev, Metody i algoritmy vichislenii v teorii kolebatelnikh spectrov molekul, Nauka, Moscou (1981).
- Barrow, Introduction to molecular spectroscopy, McGraw-Hill,
   New York (1962).
- I. M. Mills, "Force constant calculations for small molecules", Chap. V, Infra-red, spectroscopy and molecular structure, Edité par M. Davies, Elsevier Publishing Company, New York (1963).
- E. B. Wilson, "A method of obtaining the expanded secular equation for the vibration frequencies of a molecule", J. Chem. Phys. 7 (1939) 1047-1052.
- S. Califano, Vibrational States, Wiley and Sons, New York
   (1976).
- E. B. Wilson, "Some mathematical methods for study of molecular vibrations", J. Chem. Phys. 9 (1940) 76-84.
- E. B. Wilson, J. C. Decius et P. Cross, Molecular Vibrations, McGraw-Hill, New-York (1955).
- V. A. Dement'ev, V. I. Smirnov et L. A. Gribov, "Calculation

- of electro-optical parameters of polyatomic molecules by the least-squares method with the aid of electronic calculation machines", Traduit de Zh. Prikl. Spektrosk. 20 2 (1974) 261-267.
- 12. L. A. Gribov, V. A. Dement'ev et A. T. Todorovskii, "Determination of the electrooptical parameters of paraffins, benzene, and alkylbenzenes on the basis of the intensities in their infrared spectra", Traduit de Zh. Prikl. Specktrosk. 28 2 (1978) 295-301.
- 13. C. Chapados, "Aggregation of chlorophylls in monolayers. VI. Infrared study of the C-H stretching bands of chlorophyll a and of chlorophyll b in monolayers", Biophys. Chem.
  21 (1985) 227-242.
- 14. R. M. Leblanc et C. Chapados, "Aggregation of chlorophylls in monolayer", Biophys. Chem. 6 (1977) 77-85.
- 15. V. B. Kartha, H. H. Mantsch et R. N. Jones, "The vibrational analysis of cyclopentanone", Can. J. Chem. 51 (1973) 1749-1766.
- 16. E. M. Popov et V. N. Zheltova, "Electrooptical parameters and intensities of the infrared absorption bands of methylamine and acetone", Traduit de Zh. Prikl. Specktrosk. 13 6 (1970) 1046-1052.
- 17. L. A. Gribov, Vvedenie v molekulyarnuyu spektroskopiyu, Nauka, Moscou (1976).
- 18. L. A. Gribov et V. A. Dement'ev, Parameters tables for calculating the vibrational spectra of polyatomic molecules (en russe), Izd. Akad. Nauk SSSR, Moscou (1979).

- 19. I. W. Levine et R. A. R. Pearce, "Intramolecular force field calculations: method and application", Chap. 3, Vibrational spectra and structure, Edité par J. R. Durig, Elsevier Scientific Pub. Co., Amsterdam (1975).
- 20. DMS, Raman/ir atlas of organic compounds Volume 1-3, Verlag Chemie, Weinheim (1977).
- 21. T. Shimanouchi, Tables of molecular vibrational frequencies consolidated Volume 1, Nat. Bur. Stand. (U.S.), Washington (1972).

#### Annexe A.

Définition des coefficients  $c_1$ ,  $c_2$ , ... de l'équation (2.12)

Considérons A, une matrice carrée composée d'éléments  $A_{ij}$ . Le déterminant :

$$\begin{vmatrix} A_{11} - \lambda & A_{12} & \cdots & A_{1N} \\ A_{21} & A_{22} - \lambda & \cdots & A_{2N} \\ A_{N1} & A_{N2} & \cdots & A_{NN} - \lambda \end{vmatrix} = 0$$
 (1)

est un polynôme de degré N en  $\lambda$ . Ce polynôme est de la forme :

$$(-\lambda)^{N} + c_{1}(-\lambda)^{N-1} + c_{2}(-\lambda)^{N-2} + \dots + c_{N-1}(-\lambda) + c_{N} = 0$$
 (2)

$$o\dot{u}: c_{1} = \sum_{i} A_{ii}$$
 (3)

$$c_2 = \sum_{j,i < j} (A_{ii} A_{jj} - A_{ij} A_{ji})$$
 (4)

. . . . . . . . . . . . . . . .

$$c_N = |A|$$
 (5)

#### Annexe B.

## Transformation de l'équation (2.20)

L'intensité absolue d'une bande d'absorption vibrationnelle d'une molécule polyatomique est [10] :

où 
$$g = x$$
, y et z.

Dans l'espace des coordonnées normales, lorsque nous développons la composante selon x du moment dipolaire total de la molécule en série de Taylor autour de la position d'équilibre :

$$\mu_{x} = \mu_{x}^{0} + \sum_{i=1}^{3N-6} (\S \mu_{x}/\S Q_{i})_{0} Q_{i} + \text{des termes d'ordre \'elev\'e}$$
 (2)

Dans ce cas, lorsque nous portons l'équation (2) dans (1), l'élément de matrice de la composante x du moment dipolaire est :

$$\langle \Phi_{V,i} h^{X} | \Phi^{V,i} \rangle = \langle \Phi_{A,i} h^{X}_{O} | \Phi^{A,i} \rangle + \sum_{i=1}^{2} (2h^{X}/2G^{i})^{O} \langle \Phi^{A,i} | G^{i} | \Phi^{A,i} \rangle$$

Dans l'approximation harmonique, les fonctions d'onde des états vibrationnels ., et ., sont :

$$\Phi_{v}, = \prod_{i=1}^{3N-6} \Phi_{v,i} (Q_i)$$
(4)

et 
$$\Phi_{v'}$$
, =  $\prod_{i=1}^{3N-6} \Phi_{v'',i} (Q_i)$  (5)

Le premier terme du second membre de (3) s'annule en vertu de la propriété d'orthogonalité des fonctions d'onde à moins que v'= v''. Le moment dipolaire permanent n'a aucune contribution dans l'intensité des spectres d'absorption.

Et si nous posons :

$$u_{x}^{i} \equiv (\$\mu_{x}/\$Q_{i})_{o}$$
 (6)

alors l'équation (3) devient :

$$\langle \bar{\Phi}_{\mathbf{v}'} | \mu_{\mathbf{x}} | \bar{\Phi}_{\mathbf{v}''} \rangle = \sum_{i=1}^{S} u_{\mathbf{x}}^{i} \langle \bar{\Phi}_{\mathbf{v}'} | Q_{i} | \bar{\Phi}_{\mathbf{v}''} \rangle$$
 (7)

Lorsque nous portons les fonctions d'onde (4) et (5) dans le second membre de l'équation (7) et que la sommation est développée :

$$S_{k=1}^{3N-6} \times (\overline{\mathbb{A}}_{v'1} \dots \overline{\mathbb{A}}_{v'k} \dots \overline{\mathbb{A}}_{v'3N-6}) = Q_{k} | \overline{\mathbb{A}}_{v''1} \dots \overline{\mathbb{A}}_{v''k} \dots \overline{\mathbb{A}}_{v''3N-6})$$
(8)

Le k-ième terme se transforme de la façon suivante :

$$u_X^K \leftarrow \overline{\Psi}_{v'||} | \overline{\Psi}_{v''|} > \leftarrow \overline{\Psi}_{v'2} | \overline{\Psi}_{v''2} > \dots$$

$$\cdots \leftarrow \stackrel{\bullet}{\bullet}_{v'k} \mid Q_k \mid \stackrel{\bullet}{\bullet}_{v''k} \rangle \cdots \leftarrow \stackrel{\bullet}{\bullet}_{v'3N-6} \mid \stackrel{\bullet}{\bullet}_{v''3N-6} \rangle$$
 (9)

Sous forme intégrale, nous écrivons :

$$u_{x}^{k} \int \overline{\Phi}_{v'k}^{*} Q_{k} \Phi_{v''k} dQ_{k} \prod_{j \neq k} \int \overline{\Phi}_{v'j}^{*} \Phi_{v''j} dQ_{j}$$
 (10)

En vertu de l'orthogonalité des fonctions d'onde, les intégrales apparaissant dans le produit sont différentes de zéro lorsque :

$$v'_1 = v''_1$$
 ,  $v'_2 = v''_2$  , ... ,  $v'_j = v''_j$  , ... ,

Nous avons alors :

$$\prod_{j \neq k} \int \Phi^*_{\gamma',j} \Phi_{\gamma'',j} dQ_j = 1$$
(11)

L'intégrale relative aux nombres quantiques  $v'_k$  et  $v''_k$  (éq 10) est différente de zéro lorsque  $v'_k$  =  $v''_k$  + 1 . Cette intégrale est évaluée dans [10] :

$$u_{x}^{k} \int {\mathbb{F}^{*}_{v'k}} Q_{k} {\mathbb{F}_{v''k}} dQ_{k} = u_{x}^{k} ((h/8\pi^{2}f_{k}) (v''_{k} + 1))^{1/2}$$
 (12)

Pour ce type de transition fondamentale, l'élément de matrice de la composante x du moment dipolaire (éq. 8) se réduit à :

$$\langle \Phi_{v''k+1} | \mu_x | \Phi_{v''k} \rangle = u_x^k ((h/8\pi^2 f) (v''_k+1))^{1/2}$$
 (13)

Il y a i = 3N-6 bandes fondamentales. Plus particulièrement, pour une bande fondamentale i généré par la transition  $v_i \rightarrow v_i + 1$ , l'équation (13) devient :

$$\langle \Phi_{v_i} + 1 | \mu_{x_i} | \Phi_{v_i} \rangle = (S\mu_{x_i}/SQ_i)_0 ((h/8\pi^2 f_i) (v_i + 1))^{1/2}$$
 (14)

puisque : 
$$u_x^i = (\$\mu_x/\$Q_i)_0$$

Pour cette transition, nous modifions l'équation (1) en prenant [10] :

$$f_{v'v'} = f_{i} \tag{15}$$

$$N_{v_i} = (N/\theta_i) \exp(-(a_i v_i))$$
 (16)

où  $a_i = (hf_i)/kT$  et k est la constante de Boltzmann et T la température

$$N_{v_{1}+1} = (N/\theta_{1}) \exp(-a_{1}(v_{1}+1))$$
 (17)

En portant (14) et (15 à 17) dans l'équation (1) et en sommant sur tous les  $\mathbf{v}_i$  , c'est-à-dire sur la fondamentale et les bandes chaudes, nous avons :

$$\int_{\mathbb{R}^{2}} K (f) df = (N\pi/3c\theta_{i}) ((S\mu_{x}/SQ_{i})_{o}^{2} + (S\mu_{y}/SQ_{i})_{o}^{2} + (S\mu_{z}/SQ_{i})_{o}^{2})$$
bande
$$\Delta w_{i=1}$$

X ( 
$$\Sigma \left( \exp((-hf_{i}/kT)v_{i}) - \exp(-(hf_{i}/kT)(v_{i}+1)) \right) (v_{i}+1)$$
)  $v_{i}=0$ 

La fonction de partition est : 
$$\theta_i = (1 - \exp(-hf_i/kT))^{-1}$$
(19)

La sommation qui apparaît dans l'expression (18), prend une valeur qui est identique à la fonction de partition  $\theta_i$ , [10], pour la vibration  $Q_i$ . L'équation (18) devient donc :

$$G_{i} = \int K (f) df = (N\pi/3c)((S\mu_{x}/SQ_{i})_{o}^{2} + (S\mu_{y}/SQ_{i})_{o}^{2} + (S\mu_{z}/SQ_{i})_{o}^{2})$$
Bande
$$\Delta v_{i} = 1$$
(20)

C'est l'équation (2.20) que nous avons présentée à la section  $2.1.2. \ \ \, \text{Lorsque} \ f_{\parallel} \ \, \text{est dégénérée, l'intensité de la bande est [10] : }$ 

$$G_{i} = \int_{\alpha} K (f) df = (N\pi/3c) \sum_{\alpha} ((S\mu_{x}/SQ_{i})_{\alpha}^{2} + ((S\mu_{y}/SQ_{i})_{\alpha}^{2} + ((S\mu_{z}/SQ_{i})_{\alpha}^{2})$$
Bande
$$(21)$$

où α est le degré de dégénérescence.

## Annexe C.

Vérification du signe de : 
$$\mu_5/8R_{12}$$

Le module du moment dipolaire total est :

$$|\mu| = (\mu_1^2 + \mu_2^2 + \dots + \mu_{14}^2)^{1/2}$$

alors:

$$\frac{\|\mu\|/\delta R_{12}}{(\mu_1^2 + \mu_2^2 + \dots + \mu_{14}^2)^{1/2}} = \frac{\mu_5 \; (\delta \mu_5/\delta R_{12}) + \mu_{12} \; (\delta \mu_{12}/\delta R_{12}) + \mu_{13} \; (\delta \mu_{13}/\delta R_{12})}{(\mu_1^2 + \mu_2^2 + \dots + \mu_{14}^2)^{1/2}}$$

c'est-à-dire :

$$\frac{8|\mu|/8R_{12}}{((0.000)^2 + (0.000)^2 + ... + (-1.84)^2)^{1/2}}$$

$$S[\mu]/SR_{12} = + => S\mu_5/SR_{12} = +$$

# Annexe D.

Fréquences de H₂O calculées avec P-G-D

16.000	4 .	191						
					103	1043122		
				-				
0.957	3 1 2							
TABLE C	'INFORMATION	1 1						
	TION MOLECULA							
MOMBRE	DE BLOC DE S	YMETRIE :						
NO AB RE	DE COORDONNE DE COORDONNE	EES ANGUL	IRE ( NON-L I	MEATRE) :	1			
NOMBRE	DE COORDONNE	ES NON-PL	ANAIRE :					
NORBRE	TOTAL DE COC	ROOMNEES	3					
PROJECT	TION DES VECT	TEURS						
,							•	
	1.0000000 2507648		0000000 7680480	.0000000				
EPSILON								
.0680	1.0794	1.0794						
1.1390	1.1390							
PLUS PETIT	SYMETRIE							
	YMETRIE MOLE	CULE CZV						
QUART(N)								
GE ME RATION	DES GROUPESS	ICA 21CX				_		
	DROONNEE ATO							
2 X .0	0 Y76 Z	.52						
TABLE (NN+NC	0 Y .76 Z	.52						
IAFP2 RECAVOIR SU	IVANT TYPE D	E SYMETRIE						
DABRE BLOC		1 SIM S		ASIM SIM				
TYPE SOMMAT		5,14, 3		1				
SIRT								
		WRITTEN	IN ZONE	2				
TSUS(IP)	ULE 222			-				
TSUS(IP)								
TSUS(IP)  MOLEC  NUMERO	D'ENREGISTRE	MENT						
TSUS(IP)	D*ENREGISTRE	MENT	36 184 07 -200		1875 -2091	-1885 -2173	-1903 -2188	

```
2
 4 - 6---
  1 1 13.1907
     2 -0.1540
     3 0.3206
ADRES
RINUS
MINUS
RINUS
DT
EI GEN
    MOLECULE 222 DANS LA ZOME
DI AGOMALISATION DE LA MATRICE T
    LIGHE MS 4 2 1
MASHLOS PLUSIEURS STRICTEMENT QUATITE MATRICE T. BOLBSMIKEM
                                                                            .00500000
    NUMERO D'ENTREE
  1794 1804 1808
-1915 -1925 -1966
                           1836 -- 1846 -- 1859 -- 1875
-2007 -- 2009 -- - 2050 -- - 2091
                                                                           1903 -1905
                                                                 -2173
ADRES
RATRU
RIMUS
AI MUS
RINUS
SIAU
RINUS
TSUS (1P)
                                                              LA ZONE B 2
                                222 DAMS
  CALCUL MOLECULE FRMU
    MOMBRE D'ENTREES
   1794 1804 1808
1915 -1925 -1966
                                                1859
                                                         1875
                              1836
                                       1846
                                                                   1005
                                                                           1903
                                                                                     1905
                             -2007
                                      -2 009
                                               -2050
                                                         -2091
                                                                           -2188
                                                                                    -2204
                                                                 -2173
ADRES
AI NUS
    CALCUL DE LA FREQUENCE D'OSCILLATION DE LAMOLECULE ZZZ DAMS LA ZONE
RINUS
RINUS
RINUS
Đυ
EIGEN
    BLOC 1
    FREQUENCE D'OSCILLATION NORMALISEE (OBR.CM)
      1 3832.07
                         2 1648.42
FORMA
PULSE
FORMA
FORMA
   BLOC 2
   FREQUENCES 3942.22
    MUMERO D'ENTREE
794 1804 1808
                               1836
                                        1846
                                                 1859
                                                          1075
                                                                            1903
                                                                                     1905
   1794
   1794 1804
1915 1925
                                        2009
                                                                                    -2204
                                                          2091
                     1966
                               2007
                                                 2050
                                                                 -2173
                                                                           -2188
```