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High levels of nicotinic receptors were found on the perikarya of 

most of the neurons and in the neuropil of the chicken NIO (Britto et 

al., 1992; Sorenson & Chiappinelli, 1992). The dense cholinergie 

innervation previously shown in the pigeon NIO (Medina & Reiner, 

1994) could originate both tectally and extra-tectally. The discovery 

of ChAT -ir cells afferent to the NIO suggests a multiple cholinergie 

influence on the centrifugai structure from layers 9/10 of the OT and 

from the Zp-NIII and the A VT. 

The cells afferent to the centrifugai cells located in the Zp-n.NVI 

exhibited no ChAT immunoreactivity, although a population of highly 

intense ChAT -ir cells was found laterally to this reglOn. These latter 

cells may correspond to the group of small ChAT -ir neurons 

described in the PRF by Medina & Reiner (1994). 

NOS Immunoreactivity 

The distribution of NOS immunoreactivity in the NIO and EN region, 

and in certain afferent structures, corresponds to the description 

obtained from various NADPH-d histochemical studies on NO 

distribution in the brains of different birds (chicken: Brüning, 1993; 

Morgan et al., 1994; Montagnese & Csillag, 1996; pigeon: Meyer et 

al., 1994; quail: Panzica et al., 1994, 1996; budgerigar M elopsittacus 

undulatus: Cozzi et al. , 1997). The present study is the first to use 
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an NOS antibody to deterrnine its irnmunoreactivity in the avian 

brain. Although sorne authors have described identical distributions 

for N ADPH-d activity and NOS immunoreactivity (Dawson et al., 

1991; Valtschanoff et al., 1993, Decker & Reuss, 1994; Hashikawa et 

al., 1994), others have observed that these two labelling techniques, 

reflecting NO activity, do not necessarily identify the sarne neuronal 

populations (Kharazia et al., 1994; Spessert & Layes, 1994; Spessert 

et al., 1994; Traub et al., 1994; Vizzard et al., 1994). It has b~en 

suggested that NADPH-d activity is positive only in neurons that 

actively synthetize NO. while irnrnunohistochernical detection 

identifies aIl of the neurons containing NOS (Rodrigo et al., 1994). 

Another advantage to the latter approach is that NOS seerns to be 

influenced less by variations in tissue fixation than the NADPH-d 

histochernical rnethod (Gonzalez-Hernandez et al., 1996). 

Our results revealed the presence of NOS-ir centrifugaI neurons in 

the pigeon NIO. This is consistent with data obtained using the 

NADPH-d histochernical rnethod in the chicken (Brüning, 1993; 

Montagnese & Csillag. 1996) and the budgerigar Melopsittacus 

undulatus (Cozzi et al.. 1997). It has also been shown that the 

NADPH-d elernents in the retina degenerate following destruction of 

the NIO or the isthrno-optic tract (Morgan et al., 1994). NADPH-d has 

not been reported in the quail NIO (Panzica et al., 1994). Our study 

has shown, for the first tirne, that sorne of the centrifugaI cells in the 

EN region also exhibit NOS immunoreactivity. 
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The study has also revealed the presence of NOS-ir cells in the 

plgeon OT, including sorne in layers 9/10. A large number of 

afferent neurons in these layers also react positively to the NOS 

antibody. These NOS-ir afferent cells may correspond to the neurons 

labelled by the NADPH-d enzyme previously identified in layers 9 

and 10 of the OT in the chicken (Brüning, 1993) and in the pigeon 

(Meyer et al., 1994). It has been suggested that these latter neurons 

may project onto the Ipc (Meyer et al., 1994), but our double­

labelling results show instead that sorne cells in the same region 

project upon the NIO. Given that only a small percentage of the NOS­

ir cells in layers 9/10 project onto the centrifugaI cells, it is possible 

that these same afferent cells by way of collateral axonal branching, 

or the NOS-ir cells in the broader regions of layer 10 are the source 

of the tecto-Ipc projections . Nevertheless, most of the afferent 

neurons in layers 9/10 of the OT which project upon the centrifugai 

cells utilize NO as a chemical messenger. 

Among the extra-tectal structures studied, NOS-ir afferent cells 

were found in the A VT, and particularly in the Zp-NIII, where a 

higher degree of somatic immunoreactivity was observed. These 

data are consistent with the previous description of neurons labelled 

with NADPH-d in the corresponding regions in the chicken (Brüning, 

1993; Montagnese & Csillag, 1996), quail (Panzica et al., 1994, 1996) 

and budgerigar Melopsittacus undulatus (Cozzi et al., 1997). With 
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respect to the PRF. including the Zp-n-NVI, sorne NOS-ir cells were 

identified which project to the centrifugaI neurons. These latter may 

correspond to the cells found to be immunoreactive to NADPH-d to 

varying degrees throughout the PRF in the quail (Panzica et al., 1994) 

and to a high degree in the sarne region in the budgerigar 

M elopsittacus undulatus (Cozzi et al., 1997). It is therefore possible 

that the different afferent structures sarnpled in the present study 

are the source of the NADPH-d innervation described in the NIO 

(Brüning, 1993). 

GABA Immunoreactivity 

The distribution of GABA-ergic cells III the NIO and EN region, and in 

the afferent structures sampled. is sirnilar to that described in the 

brain of the pigeon (Domeniei et al., 1988; Mieeli et al., 1995) and 

chicken (Granda et al.. 1989). The present study confirmed that none 

of the NIO centrifugaI cells were GABAergic (Mieeli et al., 1995), and 

the results showed no GABA immunoreactivity in the EN. GABA-ir 

interneurons were found only in the interpilar regions of the NIO and 

this is consistent with the results obtained in a previous light and 

electron microscopie study (Miceli et al., 1995). 

Our results also showed that none of the tectal cells afferent to 

the centrifugaI cells were GABA-ir. Although sorne GABA-ir cells 

were similar in diameter to the latter, most displayed a smaller 
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somata, and a proportionally larger nucleus surrounded by a narrow 

rim of cytoplasm, suggesting that they are in fact interneurons 

(Repérant et al., 1981). Various studies have suggested that GABA 

could be used by neurons in layer 10 of the OT projecting to the GLv 

(Hunt & Künzle, 1976a; Veenman & Reiner, 1994) and/or the tecto­

Ipc (Hunt & Künzle, 1976b; Hunt et al., 1977; Veenman & Reiner, 

1994). These tecto- Ipc and tecto-Glv neurons may correspond, at 

least in part, to the many GABA-ir neurons surrounding the cells 

afferent to the centrifugaI cells. 

Given that the terminaIs in the NIO, containing round synaptic 

vesic1es, degenerate following Iesions of the OT (Crossland, 1979), 

Miceli et al. (1995) suggested that the various categories of 

GABAergic endings with the same synaptic vesicle profiles might 

originate ln the tectum. This has not been confirmed by the present 

results, SInce the afferent cells In the OT were GABA­

immunonegative. The possibility of extra-tectal GABAergic 

projections has also been suggested, based on the fact that GABAergic 

terminaIs containing pleomorphic synaptic vesicies were aiso found 
-

in the NIO (Miceli et al., 1995). However, the results of the present 

study exclude the existence of GABAergic afferent projection cells in 

the Zp-NIII, A VT and PRF, inc1uding Zp-n-NVI. Other evidence for 

the presence of GABAergic afferents to the NIO is the finding of 

myelinated GABA-ir axons within the NIO (Miceli et al., 1995). 

Consequently, their origin may be related to the other afferents to 
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the centrifugaI cens that were not sampled in the present study, l.e. 

the broader region of the mesencephalic reticular formation (Miceli 

et al. 1997). However, the afferents may aiso stem from cens which 

project, not directIy upon the centrifugai neurons, but instead upon 

the GABAergic interneurons within the NIO. The transneuronai 

transport of RITC from the eye may be specifically transsynaptic and 

thus the second-order uptake of the tracer occurs solely through 

those terminaIs making contact with the centrifugaI neurons (Miceli 

et al, 1993). Consequently, afferent neurons projecting to the 

GABAergic interneurons within the NIO may not have been Iabelled 

with the RITC transneuronal labelling method. 

NO and its colocalization 

The results of the present study concernmg NOS and ChAT 

immunoreactivity in both centrifugai cells and their afferents 

indicate strong similarities in their topographical distribution and 

morphoIogicaI characteristics. Descriptions of NADPH-d-ir cells in the 

brains of different birds (quail: Panzica et al., 1994, 1996; chicken: 

Brüning, 1993; Montagnese & Csillag, 1996; pigeon: Meyer et al., 

1994; budgerigar Melopsittacus undulatus: Cozzi et al., 1997) and of 

ChAT -ir cens in the pigeon (Bagnoli et al., 1992; Medina & Reiner, 

1994) and chicken (Sorenson et al, 1989) also suggest a 

correspondence between the two in sorne regions of the brain. Both 

NOS and ChAT have already been found in several regions of the 
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brains of mammals, including the mesopontine reglOn (Vincent et al., 

1983; Pasqualotto & Vincent, 1991), and in the quail LoC (Panziea & 

Garzino, 1994). Sorne investigators have suggested that acety1choline 

is a potential candidate for colocalization with NADPH-d in the avian 

brain (Brüning, 1993; Panzica et al., 1994; Montagnese & Csillag, 

1996). Brüning (1993) proposed that several nuclei in the avian 

brain-stem, including the NIO, contained both NADPH-d and ChAT. 

Our immunohistofluorescence results revealed that centrifugaI cells 

in the NIO were ChAT -ir and that the vast majority of neurons 

located in the centrifugaI cell layers were also NOS-ir. It is therefore 

highly probable that both NOS and ChAT are colocalized in such 

neurons. Moreover, based on the distribution and morphology of the 

ChAT -ir and NOS-ir cells, both of the neuroactive substances may be 

present in the centrifugaI cells of the ectopie region and especially in 

the Zp-NIII , where most of the afferent cells expressed both 

immunoreactivities. Similarly, such a colocolization may exist in A VT 

and OT afferent neurons , but the smaller number of ChAT -ir and 

NOS-ir cells detected in the se regions makes the correspondence 

more difficult to establish. In order to clearly demonstrate NOS and 

ChAT colocolization in cells within the different structures a double­

labelling immunohistofluorescence study would have to be carried 

out using both antibodies simultaneously. 

Immunohistochemical data recently obtained usmg electronic 

microscopy have shown that sorne centrifugaI cells of the NIO in the 
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pigeon are glutamate-ir (Rio, 1996). Given that the vast majority of 

the centrifugai cells in the NIO are NOS-ir, it is possible that they 

colocalize NO and glutamate. Nitric oxide has been shown to reduce 

the sensitivity of AMP A and NMDA glutamate receptors (Crepel & 

Jaillard, 1990; Shibuki & Okada, 1991; Manzoni et al., 1992), and 

correspondingly, in the CVS, NO may alter the effects of glutamate 

release within the retina. 

N itric oxide seems to play an important role as a 

neurotransmitter or neuromoderator and intracellular messenger in 

various parts of the central and autonomie nervous system ln 

vertebrates (Bredt & Snyder, 1992; Snyder, 1992; Vincent & Hope, 

1992). It has been shown that NO may act either as a retrograde 

messenger, by modulating presynaptic activity following 

postsynaptic release (for review, see Garthwaite, 1991; Bredt & 

Snyder, 1992; Wiklund et al., 1993), or as a neurotransmitter 

following presynaptic release (Garthwaite, 1991). In mammals, 

NADPH-d neurons are present at aIl levels of the visual system, 

suggesting that NO plays an important role in regulating visual 

functions (Gonzalez-Hernandez et al., 1992; Mitrofanis, 1992). 

Moreover, various data suggest that NO may play an important role 

in the retina in birds, and in the visual centres of the thalamofugal, 

tectofugal (Panzica et al., 1994; Cozzi et al., 1997) and centrifugaI 

(Cozzi et al., 1997) pathways. Our results demonstrating the 

presence of NO in the NIO and EN, as weIl as in the tectal and extra-
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tectal afferent neurons suggest that it may have a significant 

influence on CYS function. 

The functional role of the CYS 

The CYS of grain-eating birds such as the pIgeon, quail and chicken is 

particularly well-developed (10,000 to 12,000 retinopetal neurons). 

Based on preferential projections from the ventral tectum to the NIO 

and centrifugaI projections to the ventral retina, Holden (1990) 

postulated that the CYS plays a role in behavioral attention during 

the search for food (searchlight hypothesis). Other studies have also 

lent support to the involvement of the avian CYS in feeding behavior 

(Shortess & Klose, 1977; Weidner et aL, 1987; Hahmann & 

Güntürkün, 1992). Woodson et al. (1995) suggested that the CYS 

increased retinal stabilization of gaze, to improve the precision with 

which small objects are identified, and involves a centrifugaI input 

upon displaced ganglion cells In the retina which project onto the 

accessory optic system (Nickla et aL, 1994). Finally, it has also been 

suggested that the CYS selectively increases retinal sensitivity to 

novel or meaningful stimuli (food objects, detection of predators, etc.) 

within the visual field ("highlighting hypothesis": Uchiyama, 1989; 

Miceli et aL, 1995). 

In Vlew of the different hypotheses, CYS function would appear 

to in volve a dynamic process of selectively increasing the visual 
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attention with regard to either rather large (superior vs inferior) or 

smaller more punctate regions of the visual field . 

Electrophysiological studies have shown that the visual responses 

recorded in the ganglion cells are facilitated by the activation of 

centrifugaI fibers (Galifret et al., 1971; Miles , 1972). The facilitating 

effect may be produced by the inhibiting action of the centrifugaI 

fibers on the inhibitory influences of the receptive field of the retinal 

ganglion cells (Pearlman & Hughes, 1973; Holden, 1978, 1982). One 

mechanism may be that the centrifugaI fibers exercise an inhibiting 

effect on the GABAergic and glycinergic amacrine cells, which in turn 

exercise an inhibitory effect on the ganglion cells (Frumkes et al., 

1981 ; Uchiyama, 1989). However, the present study confirmed that 

GABA, the major inhibitory neurotransmitter in the central nervous 

system (Mugnaini & Oertel, 1985; OUerson & Storm-Mathisen, 1985), 

is not used by the centrifugaI fibers, and that the only GABAergic 

elements in the NIO are the intrinsic interneurons (Miceli et al. , 

1995). Conversely, the identification of ChAT -ir centrifugaI cells 

suggests that the centrifugaI influence on the retinal amacrine cells is 

excitatory. In the mammalian visual thalamus, it has been shown 

that ACh produces an excitatory effect directly on geniculate cells 

(Pasik et al. , 1990). A similar action by the centrifugaI cells on the 

target retinal cells has also been suggested following the finding that 

centrifugaI endings are aspartate-ir (Uchiyama, 1995) and 

glutamate-ir (Rio, 1996). Moreover, it has been shown that amacrine 

cells , which are the target of the convergent-type NIO endings, are 
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not inhibitory because they have ne ver been observed to be GABA-ir 

(Nickla et al., 1994), but are probably excitatory since they have 

been found to be highly glutamate-ir and aspartate-ir (Uchiyama et 

al., 1995). 

AIl these data , taken together, suggest that the centrifugai 

influence involves a deactivation of the centrifugai ceUs in the NIO 

either through intrinsie interneurons, or through extrinsie GABAergic 

inhibitory inputs. In contrast, activation is also possible via either an 

extra- or intra-nuclear GABAergic inhibitory input on the intrinsie 

interneurons , or by an excitatory extrinsic action on the centrifugai 

ceUs stemming from the brain-stem afferents which have been 

shown in the present study to be cholinergic. These cholinergic 

afferents to the NIO seem to be modulated by NO , whieh may be 

colocalized in the same neurons . Thus NO wou Id appear to play a 

significant role at aU levels of the CYS: (1) within the' main tecto-NIO­

retinal pathway for facilitating the transfer of visual information 

related to specific portions of the visual field; (2) within the diffuse 

and non-specifie projection systems in the brain-stem (Zp-NIII/A VT) 

which may contribute to longer-term effects on centrifugaI neuronal 

activity , possibly associated with mechanisms involved in regulating 

general states of arousal; (3) in afferent systems from the oculomotor 

centres of the brain-stem (Zp-n-NVIIPRF) which may modulate 

retinal sensitivity in accordance with eye movements or gaze (Miceli 

et al., 1997). 
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Annexe 



LEGENDS 

Figure 1. Double-Iabeling technique (A-D). A) Somatic retrograde 

labeling of NIO centrifugaI neurons following the intraocular injection 

of RITC and visualized using the N2 filter system and in B) the same 

region observed with the 12 fil ter system demonstrating that 

numerous centrifugaI cells are ChAT-if (FITC labeled) . X93 . C-D) 

Similar double-Iabeling respectively of RITC centrifugai ectopic 

neurons (EN), sorne of which (indicated by arrows) are ChAT-ir (FITC 

labeled) . X270. E) ELF technique: showing ChAT-ir cells in the NIO 

and in the underlying reglOn of ectopic neurons as visualized using 

the A filter system. X83 . F) Immunohistofluorescent technique 

showing the labeling (RITC) of NOS-ir neurons within the centrifugaI 

cell layers of the NIO. X91. G-H) Double-Iabeling technique showing 

respectively a labeled EN after the intraocular injection of RITC and 

the same region showing the same cell (arrow) to be NOS-ir (FITC 

labeled) . X216. 

Figure 2. Optic tectum. Double-Iabeling techniques . A) Retrograde 

RITC labeling of afferent neurons at the layers 9/10 border region of 

the optic tectum (OT) following transneuronal transport of the tracer 

from the eye and in B) the same region showing that sorne of the 

cells (indicated by arrows are also ChAT-ir (FITC labeled) . X365. C-D) 

Similar double-labeling of respectively RITC afferent tectal cells in 

layers 9/10 and that sorne (arrows) are also NOS-ir (FITC). X350. E) 
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Retrograde FG labeling of cell bodies in tectal layers 9/10 following 

an injection of the tracer into the NIO and in F) the same region 

demonstrating the distribution of numerous smaller GABA-ir (RITC 

labeled) cells non double-labeled with the FG cells in E. X220. 

Figure 3. Double-Iabeling technique. A-B) Respectively, RITC 

retro grade transneuronal labeling of afferent neurons in the ZpNIII 

and the same region containing FITC labeled ChAT -ir cells, sorne of 

which appear double-Iabeled (arrows). X212. C-D) Similar double 

labeling of respectively A VT afferent neurons (RITC) and the latter 

also immunolabeled (arrows) with FITC (NOS-ir). X220. E-F) RITC 

afferent cells in the Zp-n.NVI and sorne FITC immunolabeled (NOS-ir) 

cells in the same region, sorne of which were double-Iabeled 

(arrows). X223. 

Figure 4. Schematic representation of frontal sections through the 

pigeon brain showing the location of NOS-ir (open triangle), ChAT -ir 

(black diamond) and GABA-ir (asterisk) cells. The latter were 

observed in the NIO and EN as well as 10 afferent neurons in 

different brain-stem structures found to project upon the centrifugaI 

neurons. The centrifugaI neurons were ChAT -ir and NOS-ir, whereas 

GABA-ir cells corresponded to .interneurons within the neuropilar 

region of the NIO. Abbreviations: CbI: Nucleus cerebrallis internus; 

CbM: Nucleus cerebrallis intermedius; CCV: Commissura cerebralis 

ventralis; CP: Commissura posterior; CT: Commissura tectalis; EM: 
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Nucleus ectomamillaris; GCt: Sustancia gnsea centralis; Imc: Nucleus 

isthmi, pars magnocellularis; MLD: Nucleus mesencephalicus lateralis, 

pars dorsalis; MRF: Formatio reticularis medialis mesencephali; nVI: 

Nucleus nervi abducentis; n VII: Nucleus nervi facialis; PL: Nucleus 

pontis lateralis; PRF: Formatio reticularis pontis; R: Nuclei raphes; V: 

Ventriculus; VeL: Nucleus vestibularis lateralis; VL V: Nucleus 

ventralis lemnisci lateralis. 
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