
• Small and accurate system to perform tests with a low amount of activated 
carbon (1 g). 

In the final version of the setup, the stainless steel measuring cell was sur­
rounded by a cylindrical copper mantle to guarantee an even temperature dis­
tribution. The good thermal heat conductivity of copper increases even more at 
very low temperatures. For performing experiments at low temperatures, this 
copper rod was then directly inserted into a liquid helium Dewar whereas it had 
no contact to liquid helium but was just cooled by the helium vapor present in 
the upper part of the Dewar. For measuring the temperature gradient we used 
two platinum RTDs installed at the bottom and the top of the measuring cell. 
A small low power (max. 4 W) heating system made out of Teflon insulated 
constantan wire was installed at the very bottom of the copper coat to balance 
the temperature gradient caused by the heat flux coming from the top. In the 
final experiments it was possible to keep the temperature gradient over the mea­
suring celliess than 30 mK. The whole volume of the measuring cell was filled 
with 1 g AX-21 powder. The hydrogen feeding line contained a small amount 
of cotton to avoid any intrusion of the activated carbon powder in the rest of 
the system. The accuracy of the pressure reading was any time better than ± 
100 Pa. Figure 2 shows photos of the setup and figure 3 shows a sketch of the 
complete setup of the cooling device. 

Figure 2: Photos of the measuring device including the helium cooling system. 

The temperature of the measuring cell was adjusted by changing the immer­
sion level of the setup in the helium Dewar. By pulling it more out the tem­
perature was increased, by pushing it more in the temperature was decreased. 
A change of the immersion level of 1mm caused a temperature change of ap­
proximately 1 K inside the measuring cell. Without using the heating system 
to avoid the temperature gradient, we measured up to 15 K difference between 
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F igure 3: Drawing of the helium cooling system. The left si de of the sketch 
shows t he measuring cell inside the copper rod immersed in t he helium Dewar. 
T he right side is an enlargement of the copper rod containing the measuring cell 
including temperature sensors and heating syst em. 

t he top and the bottom of the measuring cell. 
Before t he record of every isotherm the AX-21 was heated out for approximately 
3 hours at 1000e. inside the measuring cell by using an external heating element 
and the mechanical vacuum pump. 

3 Results and discussion 

The who le system was calibrated by recording isotherms at room temperature 
and at 77 K. The gained data was then compared with existing one to guarantee 
the functionality of t he setup. After this verification we recorded isotherms from 
60 K down to 30 K as shown in figure 4. 

T he recording time of one isotherm with 15 to 20 points varied between 8 
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Figure 4: Hydrogen excess adsorption isotherms on AX-21 in g hydrogen per 
kilo gram of activated carbon from 77 K down to 30 K. 

and 10 ho urs which means approximately 30 min per measured point. It was 
necessary to readjust the temperature by varying the power of the heater and 
the immersion level of the copper rod for every single point because the absolute 
temperature and the temperature gradient varied depending on the pressure in 
the system. The helium consumption was less than 100 ml liquid Helium per 
isotherm. 
The specifications of the PEEK™tubing mentioned a maximum pressure of 6000 
psi (~ 40 MPa) when it contains liquids like acids of solvents. Meanwhile we 
observed a low permeability of H 2 through the walls , which is not detectable 
with a leak detector. Such H 2 loss is very low and does not affect the final 
results due to the amount ofAX-21 sample (1 g) used for the tests. 
As apparent in Figure 4, all isotherms at 77 K and below show a maximum. 
At this maximum the partial density of the hydrogen molecules (number of 
molecules) over the pressure is the same for the adsorbed phase as well for the 
gas phase. 

ânl 
âp adsorbed phase 

ân l 
âp gas phase 

(6) 

Beyond this point , any increase in pressure causes a faster increase of the 
density in the gas phase than in the density of the adsorbed phase. This causes 
the decrease of any isotherm at higher pressures. The only exception is the 
isotherm at 30 K where the hydrogen liquefies at around 0,9 MPa. 
To complete the data gained for AX-21 up to room temperature, we included 
former work done by P.Bénard and R. Chahine who performed excess adsorption 
measurements on AX-21 from 77 K to 295 K , shown in figure 5. 
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Figure 5: Hydrogen excess adsorption isotherms on AX-21 in g hydrogen per 
kilogram of activated carbon from 296 K down to 77 K. 

In figure 6 we focused on the behavior ofAX-21 at 30 K up to pressures of 
6 MPa. 

The excess adsorption shows the amount of hydrogen actually adsorbed on 
the surface area of the activated carbon. However to calculate the final storage 
capacity of an activated carbon based cryogenie adsorption system, one has to 
take account of the gaseous hydrogen being present in the volume of the meso­
and macro pores of the activated carbon. By adding both, one obtains t he total 
amount of hydrogen stored in the tank system. We also added to the graph the 
amount of hydrogen which would be stored in this tank system at 30 K in the 
absence of activated carbon. 
Especially at low pressures around 1 MPa the activated carbon based storage 
system shows about 4 times greater storage capacity than a pressure vessel with 
the same volume (at 30 K) . The advantage of the adsorbent shrinks with higher 
pressures and disappears completely at pressures around 5 MPa. 
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Figure 6: Comparison between an AX-21 filled activated carbon storage system 
and a compressed hydrogen storage system (at 30 K). The graph shows the 
excess adsorption, the hydrogen gas present in the mesa- and macropores of the 
activated carbon, the sum of both, which is the total amount of hydrogen gas 
stored in the activated carbon based storage system, as well as the amount of 
gas stored in a pressure vessel with the same volume as the activated carbon 
based storage system. 
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Chapter 6 

Conclusion 

The procedures and techniques used for the metal doping of the nano-carbon materials 

were basically working. Both methods used for the synthesis of titanium doped materials 

(CVD/PVD and wet chemical method) turned out to be suitable for depositing titanium 

on the surface of the samples, however, the pro cesses were linked with difficulties : 

1. The CVD /PVD pro cess just allowed a poor control of the amount of titanium being 

deposited and thus, over the thickness of the titanium layer on the samples surface. 

XRD measurements show that the thickness of that layer sometimes reached more 

than 100 molecule diameters which is way too mu ch for proving the increased 

hydrogen storage effect as it was predicted by [2] and [3]. 

2. The greatest problem concerning the titanium coating technologies turned out to be 

the formation of solid Ti02 during or after the synthesis. In the CVD /PVD Ti02 

was produced intentionally to obtain a solid phase on the surface of the sample, 

however, the reduction of that substance was hardly possible without destroying 



the molecular structure of the sample. As a consequence just a fraction of the 

Ti02 could be turned into pure titanium. Additionally, pure titanium immediately 

oxidizes in an ambient atmosphere, so the samples had to be prepared for analysis 

inside a glove-box. Even inside the glove-box, which was filled with argon gas and 

usually showed an oxygen concentration of maximum 300 ppm, the titanium did 

oxidize after a few days. 

one of the hydrogen adsorption measurements of the samples decorated with titanium 

did show an increased adsorption capacity which can be explained by the formation of 

Ti02 that occurred intentionally during the synthesis or as soon as the sample was ex­

posed to small quantities of oxygen. The presence of Ti02 could be proven by XRD as 

well as XPS analysis for most of the samples. Due to the inactivity of Ti02 regarding 

hydrogen adsorption the coating acted as a ballast , the remaining adsorption capacity 

can be fully explained by physisorption on the samples surface. A storage effect as de­

scribed by [2, 3, 4] could not be generated. 

Decorating nano-carbons with noble met aIs like palladium and platinum by Colloidal 

Microwave Processing allowed a better control of the amount of metal deposited on the 

samples surface. Hydrogen adsorption measurements of samples decorated with palla­

dium or platinum. showed an increasing of their adsorption capacity after the doping 

process. However, two important points have to be considered : 

1. The adsorption isotherms of the metal doped materials usually shows a bend at low 

pressures around 1 bar up to witch the adsorption capacity rises very fast. This 

behavior can be explained by the formation of metal hydrides (palladiumjplatinum 
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hydride) which already get saturated at low pressures. At pressures greater 1bar, 

the additional adsorption is caused by physisorption on the remaining surface of 

the sample. 

2. The slope of the adsorption isotherms of the metal decorated materials is, at pres­

sures greater 1 bar, lower in comparison with the undoped pristine materials. De­

pending on the doping and the pristine material the adsorption isotherms of both, 

the doped material and same material undoped, intersect at a certain pressure. At 

this pressure the adsorption capacity of the undoped pristine material gets higher 

than the capacity of the doped one. 

The adsorption effects measured can be fully explained by simple chemi- and physisorp­

tion. A spillover effect as it was mentioned by [13, 14J could not be measured. 

Future work in this field should aim at adapting the methods developed for the dop­

ing pro cess in order to gain a better control of the metal layer deposited on the samples 

surface. In case of the titanium doping, efforts have to be made to prevent an oxidation 

of the sample by preventing any contact with oxygen. 
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Appendix A 

XRD results 
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Figure A.l : XRD spectrum of activated carbon IRH40 doped with 8wt% Pd showing 
the peaks related to Pd_ 
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Figure k2 : XRD spectrum of carbon nanotubes CNT-MW 'as synthesized' showing the 
peaks related to Co. 
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Figure A.3 : XRD spectrum of carbon nanofibers CNF-PL 'as synthesized' showing the 
peaks related to C. 

75 



3500 

500 

10 20 30 40 50 60 70 80 90 100 

Two-Thela (deg) 

Figure A.4 : XRD spectrum of carbon nanofibers CNF-PL 'as synt hesized ' showing the 
peaks related to F e3C. 
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Figure A. 5 : XRD spectrum of carbon nanofibers CNF-PL doped with 8wt% P d showing 
the peaks related to C. 
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Figure A.6 XRD spectrum of TiD2 showing the peaks related to Ti02 . 
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Figure A.7 : XRD spectrum of TiD3 showing t he peaks related to T i 0 2 . 
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Figure A.8 XRD spectrum of TiD3 showing the peaks related to TiH2 _ 
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Figure A.9 XRD spectrum of TiD5 showing the peaks related to NiFe . 
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Figure A.IO XRD spectrum of TiD5 showing the peaks related to Cr F e. 
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Figure A.II XRD spectrum of TiD5 showing the peaks related to Ti02 . 
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Figure A.12 : XRD spectrum of TiLl showing the peaks related to Ti02 . 

00-051-0622> TiC Il ·1itanium Cabide 

Two-Theta (deg) 

Figure A.13 : XRD spectrum of TiLl showing the peaks related to TiC8 . 
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Figure k 14 : XRD spectrum of TiL 1 showing the peaks related to TiC_ 
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Figure k 15 XRD speCtrum of TiLl showing the peaks related to Ti_ 
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Figure k 16 XRD spectrum of TiL2 showing the peaks related to T i _ 
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Figure A.17 XRD spectrum of TiL2 showing the peaks related to T i20 3 . 
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Figure A-18 XRD spectrum of TiL2 showing the peaks related to Ti02 -
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Figure B.I XPS spectrum of TiD3 showing 3 emission lines for titanium, oxygen and 
carbon. 
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Figure B.2 : XPS spectrum of T iD3 with focus on emission line Ti 2s. 
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Figure B.3 : XPS spectrum of TiD3 with focus on emission li ne Ols. 
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Figure B.4 : XPS spectrum of TiD3 with focus on emission line Ti 2p. 
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Figure B.5 : XPS spectrum of TiD3 with focus on emission line C Is. 
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Figure B.6 : XPS spectrum of TiD4 showing 2 emission lines for oxygen and carbon. 
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Figure B.7 : XPS spectrum of TiD4 with focus on emission line Ols. 

91 



on 
Q.. 
U 

C Isl/1 0 

3 

u 
20 

15 

10 

5 

300 290 280 
Binding Erergy (eV) 
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Figure C. I : Hydrogen adsorpt ion measurements performed with t he gravimetric mea­
surement system at a temperature of 295 K and pressures up to 4 MPa. Samples shown 
are Pd and Pt covered carbon materials in comparison with their undoped pristine ma­
terials. 
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Figure C .2 : Hydrogen adsorption measurements performed with the gravimetric mea­
surement system at a temperature of 295 K and pressures up to 4 MPa. Samples shown 
are Ti covered carbon materials in comparison with their undoped pristine materials. 
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Figure C.3 : Hydrogen adsorption measurements performed with the volumetrie mea­
surement system at a temperature of 77 K and pressures up to 1 bar. Sample shown is 
the activated carbon IRH40. 
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Figure C.4 : Hydrogen adsorption measurements performed with the volumetrie mea­
surement system at a temperature of 295 K and pressures up to 1 bar. Sample shown is 
the aetivated carbon IRH40. 
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Figure C.5 : Hydrogen adsorption measurements performed with the volumetrie mea­
surement system at a temperature of 77 K and pressures up to 1 bar. Sample shown is 
the Ti eovered sample TiD2 in eomparison with its pristine material IRH40. 
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Figure C .6 : Hydrogen adsorption measurements performed with the volumetrie mea­
surement system at a temperature of 295 K and pressures up to 1 bar. Sample shown is 
the Ti eovered sample TiD2 in eomparison with its pristine material IRH40. 
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Figure C.7 : Hydrogen adsorption measurements performed with the volumetrie mea­
surement system at a temperature of 77 K and pressures up to 1 bar. Sample shown is 
the Ti eovered sample TiLl in eomparison with its pristine material CNT-MW. 
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Figure C.8 : Hydrogen adsorpt ion .measurements performed wit h t he volumetrie mea­
surement system at a temperature of 77 K and pressures up to 1 bar. Sample shown is 
the Ti eovered sample TiL3 in eomparison with its pristine material IRH40. 
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