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Context: Olfactory dysfunction (OD) is a common early symptom of Parkinson’s 
disease (PD). However, OD is not specific to PD, as approximatively 20% of the 
general population exhibit different forms of OD. To use olfactory measures for 
early Parkinson screening, it is crucial to distinguish PD-related OD from Non-
Parkinsonian OD (NPOD).

Objectives and hypothesis: This study aimed to compare the structural changes 
associated with PD-related OD (n  =  15) with NPOD (n  =  15), focusing on gray 
matter volumes and white matter fiber integrity in chemosensory regions. 
We hypothesized that PD-related OD presents specific structural alterations in 
these regions.

Methods: Participants underwent a 3  T MRI scan, which included anatomical T1 
and diffusion-weighted imaging. Gray and white matter integrity were assessed 
using both whole-brain analyses (voxel-based morphometry—VBM and tract-
based spatial statistics—TBSS, respectively) and localized approaches, including 
regions of interest and tractography.

Results: PD patients exhibited significantly higher gray matter volume in the left 
insula using restricted regions-of-interest analyses, while no other significant 
gray or white matter differences were found between groups.

Conclusion: Structural imaging of the gray matter, particularly the insula, but 
not of white matter, differentiates PD-related OD from NPOD.
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Introduction

Olfactory dysfunction (OD) is a common symptom of Parkinson’s disease (PD), affecting 
over 90% of patients (Haehner et al., 2009; Doty, 2012; Fullard et al., 2017; Oppo et al., 2020; 
Alonso et al., 2021). OD often manifests itself in preclinical stages, years before the onset of 
the characteristic motor symptoms, thereby preceding the diagnostic of the disease (Berg et al., 
2015). This underscores the potential of using OD as a prodromal biomarker for PD. However, 
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OD is not specific to PD, as it affects up to 20% of the general 
population (Desiato et al., 2021). There are many underlying causes of 
non-parkinsonian OD (NPOD), such as viral infections of the upper 
respiratory tract, traumatic brain injury, sinonasal diseases, congenital 
anosmia, exposure to toxic substances, or nasal surgery (Whitcroft 
et al., 2023).

When aiming to use olfactory measures for early PD screening, a 
crucial initial step is therefore to differentiate PD-related OD from 
other forms of NPOD (Tremblay and Frasnelli, 2021; Orso et  al., 
2024). In this context, the trigeminal system a third chemosensory 
system alongside smell and taste, that allows the perception of 
sensations such as the freshness, warmth, and pungency of odorants, 
through the stimulation of the trigeminal nerve (Cranial Nerve V) 
(Terrier et al., 2022), is of particular interest (Tremblay and Frasnelli, 
2021; Orso et al., 2024). This system closely interacts with the olfactory 
system for the perception of odorants, and this interaction appears to 
be affected in a disease-specific manner in PD (Tremblay et al., 2020; 
Tremblay and Frasnelli, 2021). In fact, in contrast to NPOD which is 
typically associated with a reduced trigeminal sensibility (Gudziol 
et al., 2001; Frasnelli et al., 2006), PD patients exhibit OD with an 
unimpaired trigeminal system, when measured behaviorally 
(Tremblay et al., 2017). Moreover, electrophysiological recordings of 
the nasal mucosa and functional magnetic resonance imaging (MRI) 
techniques suggest that PD specifically alters the central interaction 
between the trigeminal and the olfactory systems thus allowing the 
trigeminal system to maintain its integrity despite an impaired 
olfactory system (Tremblay et  al., 2019, 2020; Tremblay and 
Frasnelli, 2021).

The olfactory and trigeminal systems are two independent systems 
that activate distinct brain areas but also share overlapping central 
processing areas such as (1) the insula, (2) the piriform cortex, and (3) 
the orbitofrontal cortex (Albrecht et  al., 2010). First, the insula is 
crucially involved in the processing of olfactory and trigeminal stimuli 
(Nieuwenhuys, 2012). More specifically, while the anterior insula 
receives projections from the piriform cortex (Kurth et al., 2010) and 
is therefore considered an olfactory processing center, the medial 
insula receives somatosensory projections related to trigeminal 
information and pain (Afif et al., 2010; Kurth et al., 2010). Second, the 
piriform cortex is a primary olfactory processing area involved in the 
detection, recognition, and memory of odors, but it also responds to 
trigeminal activation (Gottfried et  al., 2004; Zelano et  al., 2007; 
Albrecht et al., 2010; Chevy and Klingler, 2014). The orbitofrontal 
cortex, finally, has reciprocal connections with the primary olfactory 
cortex, integrates olfactory-trigeminal information (Gottfried and 
Zald, 2005) and supports higher-level cognitive processes, including 
the perception of odor quality and experience-dependent modulation 
(Gottfried, 2007).

Recently, a model has been proposed to explain the hitherto 
unknown underlying mechanisms of alterations of olfactory-
trigeminal interactions in PD-related OD (Tremblay and Frasnelli, 
2021). This model stipulates that the interaction between olfactory and 
trigeminal central nervous areas is affected—on both, functional and 
structural levels—in a disease-specific manner in PD. On a functional 
level, this is, in fact the case: functional connectivity is (a) reduced 
between anterior and medial insula and (b) increased between 
primary olfactory and trigeminal processing areas; while this is not 
the case in NPOD (Tremblay et al., 2020). In addition, PD patients 
exhibit significantly different network modularity within the 

chemosensory network, when compared to NPOD patients (Tremblay 
et al., 2020). In summary, this supports the notion of an impaired 
pattern of connectivity between olfactory and trigeminal processing 
areas in PD, that is distinct from NPOD. However, the structural 
changes affecting the interaction between olfactory and trigeminal 
central nervous areas in PD are yet unknown. This is particularly 
interesting as the reliability of trigeminal testing to distinguish 
PD-related OD from NPOD, while being promising, is not yet fully 
established and its clinical usefulness in the current form remains 
doubtful (Orso et  al., 2024). Combining neuroimaging data with 
behavioral tests may offer more conclusive insights (Berendse and 
Ponsen, 2009; Georgiopoulos et al., 2015; Tremblay et al., 2019).

The aim of this exploratory study was therefore to assess 
PD-specific structural changes in gray and white matter within 
chemosensory processing areas by comparing PD patients with 
NPOD patients. We  focused on structural changes in olfactory 
processing (piriform and orbitofrontal cortex), trigeminal processing 
(thalamus and postcentral gyrus), and chemosensory integration 
(medial and anterior insula) areas. We hypothesized that PD would 
be characterized by preserved structural integrity in the trigeminal 
regions, in contrast to NPOD, where we  anticipate structural 
alterations. Additionally, we expected that structural changes in PD 
would underly functional connectivity changes observed in PD but 
not in NPOD, suggesting potential compensatory mechanisms in PD 
(Tremblay et al., 2020). To evaluate gray and white matter integrity, 
we analyzed anatomical and diffusion MRI data and employed whole-
brain analyses (voxel-based morphometry [VBM] and tract-based 
spatial statistics [TBSS], respectively) as well as localized approaches, 
including tractography and regional extraction of regions of interest.

Materials and methods

Participants

A total of 30 participants completed the study: 15 PD patients 
(age: 66.8 ± 7.3 years, 7 women, Hoehn and Yahr (H&Y) stage: 1.6 ± 0.6 
(1–3), disease duration: 6.3 ± 2.8 years) and 15 matched patients 
diagnosed with olfactory dysfunction (age: 62.8 ± 9.2 years, 6 women, 
disease duration: 10 ± 9 years) either caused by a viral infection of the 
upper respiratory tract (postviral; n = 10) or sinunasal disease 
(sinunasal; n = 5). The probable cause of OD was subjectively evaluated 
using a questionnaire based on the position paper on OD (Hummel 
et al., 2017).

These participants were included in a larger MRI study, see earlier 
published reports (Tremblay et al., 2020; Tremblay et al., 2020). The 
study was conducted in accordance with the Declaration of Helsinki 
and approved by the local ethics committees (University of Quebec at 
Trois-Rivières and Research Center of the Institut Universitaire de 
Gériatrie de Montréal at the University of Montréal). Written 
informed consent was obtained from all subjects before the study.

Neuropsychological evaluation

Olfactory function was assessed using the standardized “Sniffin 
Sticks” test battery (Burghart, Wedel, Germany), which includes 
detection threshold, odor discrimination, and identification tasks 
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(Hummel et  al., 1997). The final score (TDI) was calculated by 
summing the results of the three subtests 
(Threshold + Discrimination + Identification). Global cognitive 
function was evaluated using the Montreal Cognitive Assessment 
(MoCA) (Nasreddine et al., 2005) and depressive symptoms were 
measured by the Beck Depressive Inventory (BDI) (Beck et al., 1961).

T-test were conducted to compare TDI, MoCA and BDI scores 
between PD and NPOD patients.

MRI data acquisition

All participants underwent an MRI exam on a 3.0 Tesla Prisma Fit 
MRI scanner (Siemens Magnetom) using a 32-channel head coil, at 
the Functional Neuroimaging Unit (UNF) of the research center of the 
Institut Universitaire de Gériatrie de Montréal. A T1-weighted 3D 
magnetization prepared rapid acquisition gradient echo (MPRAGE) 
sequence (echo time [TE]: 2.17 ms, repetition time [TR]: 2400.0 ms, 
flip angle: 8°, voxel size: 1 × 1 × 1 mm3, 176 contiguous sagittal slices, 
Field of view [FOV]: 224 mm) was acquired for anatomical reference. 
Whole-brain diffusion-weighted images were also acquired using 
spin-echo planar imaging (diffusion gradient directions = 108, 
b-values = 0; 300; 1,000; 2,000 s/mm2, FOV = 220 mm, voxel 
size = 2 × 2 × 2 mm3). PD patients were in their usual dopaminergic 
medication state during MRI scanning to control for involuntary head 
motions. The MRI session included both structural and functional 
scans; results on functional connectivity within the chemosensory 
system are published elsewhere (Tremblay et al., 2020).

MRI data preprocessing

The preprocessing was performed with the support provided by 
Calcul Québec1 and the Alliance.2 DICOM files were first converted 
to NIFTI format. Diffusion MRI data were corrected for distortions 
induced by eddy currents and magnetic susceptibility as well as subject 
motion using FSL (EDDY and TOPUP toolboxes) (Andersson and 
Sotiropoulos, 2016). Fractional anisotropy (FA) and mean diffusivity 
(MD) maps were generated for each participant using the DTIFIT tool 
implemented in FSL. Briefly, FA reflects the directionality of water 
diffusion in tissue, while MD represents the average rate of diffusion. 
Lower FA values indicate disrupted or less organized white matter 
structures, whereas higher MD values are typically associated with 
increased water movement, often linked to tissue damage 
or degeneration.

Anatomical MRI segmentation

The structural 3D T1-weighted images were automatically 
segmented into anatomical regions using the multi-atlas propagation 
with enhanced registration (MAPER) method (Heckemann et al., 
2010) and the 120-region Hammersmith atlas (Hammers et al., 2003; 

1  calculquebec.ca

2  alliancecan.ca/en

Gousias et al., 2008; Steinbart et al., 2023). White matter and gray 
matter probability maps obtained with the segment function 
(Statistical Parametric Mapping [SPM12]) were thresholded at 0.5 and 
combined with the 120-ROI anatomical segmentation in order to 
separate their gray and white matter parts, expect for pure white 
matter regions such as the corpus callosum, and pure gray matter 
regions such as the basal ganglia.

Voxel-based morphometry

To explore gray matter volume across our two groups of 
participants, voxel-based morphometry (VBM) analysis was 
performed using the standard VBM processing protocol of the 
Computational Anatomy Toolbox (CAT12) running on SPM12. First, 
3D T1-weighted images were segmented into gray matter, white 
matter and cerebrospinal fluid tissue classes using SPM’s unified 
segmentation function. We assessed group differences in gray matter 
volume using a two-tailed t-test in CAT12 with TDI, age and sex as 
covariables. We performed a restricted analysis applying an explicit 
Activation Likelihood Estimation (ALE) derived mask composed of 
regions functionally activated by intranasal trigeminal stimulation 
with carbon dioxide (CO2) (Albrecht et  al., 2010) and regions 
functionally activated by olfactory stimulation (Torske et al., 2022).

Gray matter regional extraction

To further explore potential group differences in specific 
chemosensory regions of interest, gray matter volumes were extracted 
at defined ROIs and compared between the two groups of participants 
using RStudio (2024.04.1 version). The selected ROIs included the 
orbitofrontal cortex, piriform cortex, post-central gyrus, thalamus, 
and the anterior and medial insula to specifically represent the 
olfactory and trigeminal regions, as well as the regions of interaction 
between the two systems (Figure 1). These regions were defined using 
masks derived from anatomical segmentation of T1-weighted MRI, as 
described previously (Hammers et  al., 2003; Gousias et  al., 2008; 
Steinbart et al., 2023).

White matter integrity analysis

Local FA and MD differences between groups were mapped at the 
voxel level with TBSS (Smith et al., 2006) implemented in FSL. A 
general linear model analysis including unpaired Student’s t-test (PD 
patients vs. NPOD patients) with TDI, age and sex as covariates, was 
used to compare FA and MD between groups. Results were corrected 
for multiple comparisons using family-wise error (FWE) correction 
and threshold-free cluster enhancement.

In addition, the integrity of white matter fibers connecting our 
ROIs, which were defined using masks derived from the anatomical 
segmentation of the T1-weighted MRI (Hammers et al., 2003; Gousias 
et al., 2008; Steinbart et al., 2023), was investigated by tractometry. The 
piriform cortex, medial insula and thalamus were used as seed regions 
and the orbito-frontal cortex, anterior insula and the post-central 
gyrus were, respectively, used as target regions. First, fiber orientations 
were estimated in each voxel using BEDPOSTX (FSL). Then, 
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probabilistic tractography was performed using PROBTRACKX (FSL) 
with default settings (5,000 streamlines/voxel). An exclusion mask for 
the contralateral hemisphere was specified for each seed-target pair. 
The strength and the most likely location of a pathway between the 
seed and its target region was calculated (fdt_path). Tractography 
results (fdt_path) for each seed-target pair were divided by the 
waytotal number associated (a measure of the total number of 
streamlines between each seed-target pair) and thresholded to 0.007 
to normalize the tracts (Hecht et al., 2015). Finally, the resulting tracts 
were binarized and used as masks to extract mean FA and MD values 
for each participant (Figure 2). For each seed-target pair, the unequal 
variance t-test was performed to examine the difference in regional 
FA and MD values, as well as the waytotal number, between PD and 

NPOD patients using RStudio, with the TDI score included as 
a covariate.

For all analyses, a family-wise error (FWE) correction with a 
p-value inferior to 0.05 or, in a second step, an uncorrected p-value 
<0.001 for predicted areas, was considered statistically significance.

Results

Neuropsychological evaluation

There were no significant age differences between the two groups 
[t(27) = 1.32; p = 0.20]. A t-test comparing the TDI scores between PD 

FIGURE 1

Regions of interest in a representative subject, overlaid on the subject’s T1 image. (A) Olfactory regions; (B) trigeminal regions; (C) regions of 
interaction.

FIGURE 2

Regions of interest and final tracts in a representative subject, overlaid on the subject’s FA image. (A) Olfactory regions; (B) trigeminal regions; 
(C) regions of interaction. Blue streamlines in panels (A–C) represent the final tract for each seed-target pair.
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patients (17.5 ± 6.9) and NPOD (17.3 ± 7.7) revealed no significant 
difference in olfactory function between the two groups [t(27) = 0.07; 
p = 0.94], and both groups’ averages were in the range of hyposmia 
(Oleszkiewicz et al., 2019). No difference in global cognitive function, 
as measured by the MoCA, was observed between PD patients 
(27.0 ± 2.8) and NPOD patients (27.2 ± 2.3) [t(27) = −0.21; p = 0.83]. 
However, a significant difference in depressive symptoms was found, 
as measured BDI [t(27) = 3.29; p = 0.003], with PD patients (6.1 ± 3.4) 
showing significantly higher levels of depression compared to NPOD 
patients (2.3 ± 2.9).

Gray matter integrity

VBM
To explore gray matter volume differences between the two 

groups, we employed a two-step approach. First, a whole-brain VBM 
analysis was performed using the standard VBM processing protocol, 
which revealed no significant differences between PD and NPOD 
patients (FWE, p < 0.05). Next, we  focused the VBM analysis on 
regions activated by trigeminal and olfactory stimulation. In this 
restricted analysis, PD patients showed higher gray matter volume 
(p < 0.001, uncorrected) in the left insula and the cerebellar vermis 
compared with NPOD patients (Table 1). No significant differences 
were found for the contrast PD < NPOD.

ROI
PD patients exhibited significantly higher gray matter volume in 

the anterior insula compared to NPOD patients (Table  2). No 
difference was found in the other ROIs (Table 2).

White matter integrity

TBSS
There were no significant differences in the diffusion imaging 

indices (FA and MD) between PD patients and NPOD patients (FWE, 
p < 0.05) at voxel-wise level.

Tractography
There were no regional significant differences in the diffusion 

imaging indices (FA and MD) and the waytotal number between PD 
patients and NPOD patients (Table 3).

Discussion

In the present study, we investigated structural changes in gray 
and white matter within chemosensory areas in PD patients compared 
to NPOD patients. Our main finding is that PD patients exhibited 

significantly higher gray matter volume in the left insula. This increase 
of gray matter in the insula was detected in both restricted analysis of 
regions of interest (VBM analysis on trigeminal and olfactory regions 
and ROI extraction analysis). We did not observe any other alterations 
in gray or white matter between the groups.

Structural alterations in PD and NPOD 
patients

Previous research shows that both PD and NPOD are associated 
with structural changes in regions related to olfaction in both gray and 
white matter. With regards to (1) PD, these changes are characterized 
by decreased FA and increased MD in white matter areas involved in 
olfactory processing, including the orbitofrontal cortex, entorhinal 
cortex, cerebellum, and olfactory sulcus (Ibarretxe-Bilbao et al., 2010; 
Zhang et al., 2011; Georgiopoulos et al., 2017). In early-stage PD, 
reduced FA in white matter adjacent to primary olfactory regions and 
the gyrus rectus has been correlated with olfactory dysfunction 
(Ibarretxe-Bilbao et  al., 2010). A meta-analysis further indicated 
decreased FA in the right olfactory cortex among medication-free PD 
patients (Suo et al., 2021). Additionally, advanced PD patients show 
increased axial, mean, and radial diffusivity in olfactory-related white 
matter regions (Hummel et al., 2021). Surprisingly, one study reported 
decreased FA values in the olfactory tract in PD patients compared to 
controls, but also observed increased FA values in several other brain 
regions, including the corticospinal tract, superior longitudinal 
fasciculus and cingulum (Chen et al., 2018). PD patients also show 
decreased gray matter volume in brain areas associated with olfactory 
functions, such as the olfactory bulb, piriform cortex, amygdala, and 
entorhinal cortex (Wattendorf et al., 2009; Chen et al., 2014; Li et al., 
2016). The correlation between olfactory scores and gray matter 
atrophy is significantly higher in PD patients compared to controls 
(Wattendorf et al., 2009). In summary, PD appears to be associated 
with both gray and white matter alterations in key olfactory 
processing areas.

Similarly, (2) NPOD is also associated with structural changes in 
regions related to olfaction in both gray and white matter, with 
alterations observed in patients with both anosmia (complete loss of 
smell) and hyposmia (reduced sense of smell) (Bitter et al., 2010; Gao 
et al., 2022; Hura et al., 2022). A recent systematic review reported 
reduced gray matter volume in NPOD patients in the orbitofrontal 
cortex, anterior cingulate cortex, insular cortex, parahippocampal 
cortex, piriform cortex, cerebellum, fusiform cortex, middle temporal 
gyrus, and middle frontal gyrus/cortex (Hura et  al., 2022). 
Additionally, reduced white matter volume was found surrounding 
the anatomical atrophy of these gray matter regions (Hura et al., 2022). 
Conversely, no study has reported an increase in gray matter and/or 
white matter volume in NPOD patients compared to controls (Hura 
et  al., 2022). In summary, NPOD is associated with widespread 

TABLE 1  Statistical parametric mapping results of the two samples t-test on gray matter volume (uncorrected, p  <  0.001).

Contrast Region Side t-value Cluster size
Peak MNI coordinate 

(X, Y, Z)

NPOD<PD
Insula L 3.81 26 −34, −2, −12

Cerebellar vermis – 3.66 5 −8, −56, −28

L, left; MNI, Montreal Neurological Institute.
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reductions in both gray and white matter volumes in olfactory-related 
regions, without evidence of compensatory increases in these areas.

The insula, a region involved in olfactory and trigeminal 
interaction, has previously shown changes in functional connectivity 
in PD, in the same cohort (Tremblay et al., 2020). Our results may 
be  interpreted as compensatory mechanisms in PD, absent in 
NPOD. While these findings suggest potential insula-specific changes 
in PD, the limited statistical power and the absence of other structural 
imaging studies directly comparing PD and NPOD patients, this 
interpretation has to be taken with caution. Futures studies with larger 
sample sizes should further explore insula-related changes in PD.

The PD-specific alteration of the trigeminal-olfactory interaction 
being a relatively recent finding, no study has specifically investigated 
structural effects of PD on trigeminal processing areas. In turn, NPOD 
is characterized by a reduction of gray matter in trigeminal processing 
regions, such as the thalamus and the insula (Bitter et al., 2010; Hura 
et al., 2022).

This review of the literature shows that both PD and NPOD lead 
to structural alterations in gray and white matter of chemosensory 
processing areas. When directly comparing both groups, no 
differences in olfactory bulb volumes could be  found, although 
machine learning approaches suggested that the surrounding olfactory 
bulb cortical areas allowed for a discrimination between the two 
conditions (Tremblay et al., 2020). We extend these observations by 
showing increased gray matter in PD patients in the left insula through 
restricted regions-of-interest analyses, and in the cerebellar vermis 

through VBM restricted analysis, but no differences in white matter 
integrity were observed. This may suggest that observed structural 
changes in chemosensory areas in PD may be associated with olfactory 
dysfunction, rather than being specific to PD. This underlines the 
necessity to include NPOD patients as controls in future studies.

Functional vs. structural alterations

Recent studies indicate specific functional alterations in 
chemosensory regions of PD patients compared to NPOD patients 
(Tremblay et al., 2020; Georgiopoulos et al., 2024). Specifically, PD 
patients exhibit impaired functional connectivity between olfactory 
and trigeminal processing areas, with particular focus on the 
connexions between the anterior and medial insula, as well as the 
piriform cortex (Tremblay et al., 2020; Georgiopoulos et al., 2024). 
Additionally, abnormal connexions between gray matter areas related 
to olfaction and white matter fiber bundles have been identified in PD 
patients compared to controls (Du et al., 2022).

To better characterize the olfactory and trigeminal systems and 
their interaction in PD, one of the objectives of this study was to 
investigate whether the previously observed functional alterations 
(related to BOLD changes during a task) were supported by structural 
differences (e.g., size or shape) in gray and white matter. This is 
important since combining various imaging modalities has proven 
beneficial in classification of neurodegenerative diseases. For example, 

TABLE 2  Region-of-interest analysis of the gray matter volume of PD patients and patients with NPOD.

ROI

PD NPOD

p Value t-ValueMean voxel 
number

Mean voxel 
number

Olfactory regions
Orbitofrontal cortex 12,374 12,386 0.99 −0.02

Piriform cortex 437 436 0.96 0.05

Trigeminal regions
Thalamus 4,972 4,778 0.61 0.52

Postcentral gyrus 10,870 10,354 0.40 0.86

Interaction regions
Anterior insula 2,585 2,314 0.04* 2.21

Medial insula 1,144 1,047 0.17 1.42

*p < 0.05. Statistically significant results are highlighted in bold.

TABLE 3  Region-of-interest analysis of diffusion tensor imaging indices in the white matter of PD patients and NPOD patients.

Seed →  target Metric
PD NPOD

p Value t-Value
Mean Mean

Olfactory regions
Piriform cortex → Orbitofrontal 

cortex

FA 0.39 0.40 0.57 −0.58

MD 6.79 × 10−4 6.67 × 10−4 0.30 1.06

Waytotal 32,055 35,165 0.61 −0.52

Trigeminal regions Thalamus → Postcentral gyrus

FA 0.46 0.45 0.49 0.70

MD 6.13 × 10−4 6.11 × 10−4 0.84 0.20

Waytotal 570,205 443,344 0.21 1.30

Interaction regions Medial insula → Anterior insula

FA 0.40 0.39 0.44 0.79

MD 6.17 × 10−4 6.17 × 10−4 0.98 0.03

Waytotal 419,711 391,105 0.13 1.55

PD, Parkinson’s disease; NPOD, non parkinsonian olfactory dysfunction; FA, fractional anisotropy; MD, mean diffusivity.
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combining information from anatomical MRI, diffusion weighted 
MRI, and resting state functional MRI can improve Alzheimer disease 
classification (Schouten et al., 2016). Nevertheless, our study did not 
reveal any structural differences in the chemosensory regions between 
PD and NPOD patients—except for the insula as previously 
discussed—even though functional differences were observed in the 
same cohort (Tremblay et  al., 2020). The relationship between 
structural and functional alterations is complex. For example, 
disrupted structural connectivity may be  associated by increased 
functional activity as a compensatory mechanism (Zhou et al., 2020). 
In early PD, functional connectivity changes precede structural 
connectivity changes (Meles et al., 2021). Our study suggests that, in 
distinguishing PD patients from NPOD patients through the 
assessment of olfactory and trigeminal senses, functional imaging 
appears to be  more suitable than structural imaging. Further 
investigation using EEG, which provides high temporal precision, 
would be  valuable. Combining multiple functional techniques is 
essential for better understanding the central interactions between the 
trigeminal and olfactory systems in PD compared to NPOD.

Limitations

This exploratory study aimed to characterize the structural integrity 
of chemosensory regions in PD compared to NPOD, following the 
observation of functional differences in the same cohort of participants 
(Tremblay et al., 2020). We acknowledge that the sample size used in 
this study is relatively small; hence, the results should be interpreted 
carefully. This may also explain the relatively few differences in gray 
matter volumes and the absence of differences in white matter integrity 
between groups. However, PD patients were carefully matched to a 
non-PD group with a similar level of olfactory impairment to identify 
underlying mechanism specific to PD-related OD. Moreover, 
participants completed a behavioral test to assess their olfactory 
function (TDI), but no test was conducted to evaluate their trigeminal 
system. While it would be valuable to include an assessment of the 
trigeminal system in future studies, available trigeminal tests are both 
time-consuming and lack precision (Hummel and Kobal, 1999; 
Hummel et al., 2003). Therefore, the development of practical tools to 
measure trigeminal sensitivity is of primary importance (Hummel et al., 
2016; Huart et al., 2019; Jobin et al., 2021). Future studies could enhance 
our approach by including axial and radial diffusivity values into the 
analyses, providing additional insights into white matter alterations.

Conclusion

In summary, we are presenting preliminary findings regarding the 
structural alterations in chemosensory areas between PD and NPOD 
patients. While we observed increased gray matter volume in the left 
insula of PD patients, no other significant differences in gray or white 
matter were found between the two groups. These results suggest that 
structural changes in chemosensory regions may be more related to 
olfactory dysfunction in general rather than being specific to 
PD. Furthermore, our findings indicate that functional imaging may 
be more effective for differentiating PD from NPOD by capturing the 
altered interaction between olfactory and trigeminal systems.
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