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Diagnosis of Parkinson’s disease (PD) is commonly based on medical observations

and assessment of clinical signs, including the characterization of a variety of motor

symptoms. However, traditional diagnostic approaches may suffer from subjectivity

as they rely on the evaluation of movements that are sometimes subtle to human

eyes and therefore difficult to classify, leading to possible misclassification. In the

meantime, early non-motor symptoms of PD may be mild and can be caused by many

other conditions. Therefore, these symptoms are often overlooked, making diagnosis

of PD at an early stage challenging. To address these difficulties and to refine the

diagnosis and assessment procedures of PD, machine learning methods have been

implemented for the classification of PD and healthy controls or patients with similar

clinical presentations (e.g., movement disorders or other Parkinsonian syndromes). To

provide a comprehensive overview of data modalities and machine learning methods

that have been used in the diagnosis and differential diagnosis of PD, in this study, we

conducted a literature review of studies published until February 14, 2020, using the

PubMed and IEEE Xplore databases. A total of 209 studies were included, extracted

for relevant information and presented in this review, with an investigation of their aims,

sources of data, types of data, machine learning methods and associated outcomes.

These studies demonstrate a high potential for adaptation of machine learning methods

and novel biomarkers in clinical decision making, leading to increasingly systematic,

informed diagnosis of PD.
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INTRODUCTION

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases with a prevalence
rate of 1% in the population above 60 years old, affecting 1–2 people per 1,000 (Tysnes and Storstein,
2017). The estimated global population affected by PD has more than doubled from 1990 to 2016
(from 2.5 million to 6.1 million), which is a result of increased number of elderly people and
age-standardized prevalence rates (Dorsey et al., 2018). PD is a progressive neurological disorder
associated with motor and non-motor features (Jankovic, 2008) which comprises multiple aspects
of movements, including planning, initiation and execution (Contreras-Vidal and Stelmach, 1995).
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During its development, movement-related symptoms such
as tremor, rigidity and difficulties in initiation can be observed,
prior to cognitive and behavioral alterations including dementia
(Opara et al., 2012). PD severely affects patients’ quality of life
(QoL), social functions and family relationships, and places heavy
economic burdens at individual and society levels (Johnson et al.,
2013; Kowal et al., 2013; Yang and Chen, 2017).

The diagnosis of PD is traditionally based on motor
symptoms. Despite the establishment of cardinal signs of PD
in clinical assessments, most of the rating scales used in the
evaluation of disease severity have not been fully evaluated
and validated (Jankovic, 2008). Although non-motor symptoms
(e.g., cognitive changes such as problems with attention and
planning, sleep disorders, sensory abnormalities such as olfactory
dysfunction) are present in many patients prior to the onset of
PD (Jankovic, 2008; Tremblay et al., 2017), they lack specificity,
are complicated to assess and/or yield variability from patient to
patient (Zesiewicz et al., 2006). Therefore, non-motor symptoms
do not yet allow for diagnosis of PD independently (Braak et al.,
2003), although some have been used as supportive diagnostic
criteria (Postuma et al., 2015).

Machine learning techniques are being increasingly applied
in the healthcare sector. As its name implies, machine learning
allows for a computer program to learn and extract meaningful
representation from data in a semi-automatic manner. For the
diagnosis of PD, machine learning models have been applied to
a multitude of data modalities, including handwritten patterns
(Drotár et al., 2015; Pereira et al., 2018), movement (Yang et al.,
2009; Wahid et al., 2015; Pham and Yan, 2018), neuroimaging
(Cherubini et al., 2014a; Choi et al., 2017; Segovia et al., 2019),
voice (Sakar et al., 2013; Ma et al., 2014), cerebrospinal fluid
(CSF) (Lewitt et al., 2013; Maass et al., 2020), cardiac scintigraphy
(Nuvoli et al., 2019), serum (Váradi et al., 2019), and optical
coherence tomography (OCT) (Nunes et al., 2019). Machine
learning also allows for combining different modalities, such as
magnetic resonance imaging (MRI) and single-photon emission
computed tomography (SPECT) data (Cherubini et al., 2014b;
Wang et al., 2017), in the diagnosis of PD. By using machine
learning approaches, we may therefore identify relevant features
that are not traditionally used in the clinical diagnosis of PD
and rely on these alternative measures to detect PD in preclinical
stages or atypical forms.

In recent years, the number of publications on the application
of machine learning to the diagnosis of PD has increased.
Although previous studies have reviewed the use of machine
learning in the diagnosis and assessment of PD, they were limited
to the analysis of motor symptoms, kinematics, and wearable
sensor data (Ahlrichs and Lawo, 2013; Ramdhani et al., 2018;
Belić et al., 2019). Moreover, some of these reviews only included
studies published between 2015 and 2016 (Pereira et al., 2019).
In this study, we aim to (a) comprehensively summarize all
published studies that applied machine learning models to the
diagnosis of PD for an exhaustive overview of data sources,
data types, machine learning models, and associated outcomes,
(b) assess and compare the feasibility and efficiency of different
machine learningmethods in the diagnosis of PD, and (c) provide
machine learning practitioners interested in the diagnosis of PD

TABLE 1 | Boolean search strings used for the retrieval of relevant publications on

PubMed and IEEE Xplore databases.

Database Boolean search string

PubMed (“Parkinson Disease”[Mesh] OR Parkinson*) AND

(“Machine Learning”[Mesh] OR machine learn* OR

machine-learn* OR deep learn* OR deep-learn*) AND

(human OR patient) AND

(“Diagnosis”[Mesh] OR diagnos* OR detect* OR classif*

OR identif*) NOT review[Publication Type]

IEEE Xplore (Parkinson*) AND

(machine learn* OR machine-learn* OR deep learn* OR

deep-learn*) AND (human OR patient) AND

(diagnosis OR diagnose OR diagnosing OR detection OR

detect OR detecting OR classification OR classify OR

classifying OR identification OR identify OR identifying)

with an overview of previously used models and data modalities
and the associated outcomes, and recommendations on how
experimental protocols and results could be reported to facilitate
reproduction. As a result, the application of machine learning to
clinical and non-clinical data of different modalities has often led
to high diagnostic accuracies in human participants, therefore
may encourage the adaptation of machine learning algorithms
and novel biomarkers in clinical settings to assist more accurate
and informed decision making.

METHODS

Search Strategy
A literature search was conducted on the PubMed (https://
pubmed.ncbi.nlm.nih.gov) and IEEE Xplore (https://ieeexplore.
ieee.org/search/advanced/command) databases on February 14,
2020 for all returned results. Boolean search strings used
are shown in Table 1. No additional filters were applied in
the literature search. All retrieved studies were systematically
identified, screened and extracted for relevant information
following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines (Moher et al., 2009).

Inclusion and Exclusion Criteria
Studies that satisfy one or more of the following criteria and used
machine learning methods were included:

(1) Classification of PD from healthy controls (HC),
(2) Classification of PD from Parkinsonism (e.g., progressive

supranuclear palsy (PSP) and multiple system
atrophy (MSA)), and

(3) Classification of PD from other movement disorders (e.g.,
essential tremor (ET)).

Studies falling into one or more of the following categories
were excluded:

(1) Studies related to Parkinsonism or/and diseases other than
PD that did not involve classification or detection of
PD (e.g., differential diagnosis of PSP, MSA, and other
atypical Parkinsonian disorders),
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(2) Studies not related to the diagnosis of PD (e.g., subtyping or
severity assessment, analysis of behavior, disease progression,
treatment outcome prediction, identification, and localization
of brain structures or parameter optimization during surgery),

(3) Studies related to the diagnosis of PD, but performed
analysis and assessed model performance at sample level (e.g.,
classification using individual MRI scans without aggregating
scan-level performance to patient level),

(4) Classification of PD from non-Parkinsonism
(e.g., Alzheimer’s disease),

(5) Study did not use metrics that
measure classification performance,

(6) Study used organisms other than human (e.g., Caenorhabditis
elegans, mice or rats),

(7) Study did not provide sufficient or accurate descriptions
of machine learning methods, datasets or subjects used
(e.g., does not provide sample size, or incorrectly described
the dataset(s) used),

(8) Not original journal article or conference proceedings papers
(e.g., review and viewpoint paper), and

(9) In languages other than English.

Data Extraction
The following information is included in the data extraction
table: (1) objectives, (2) type of diagnosis (diagnosis, differential
diagnosis, sub-typing), (3) data source, (4) data type, (5) number
of subjects, (6) machine learning method(s), splitting strategy
and cross validation, (7) associated outcomes, (8) year, and
(9) reference.

For studies published online first and archived in another year,
“year of publication” was defined as the year during which the
study was published online. If this information was unavailable,
the year in which the article was copyrighted was regarded as the
year of publication. For studies that introduced novel models and
used existing models merely for comparison, information related
to the novel models was extracted. Classification of PD and scans
without evidence for dopaminergic deficit (SWEDD) was treated
as subtyping (Erro et al., 2016).

Study Objectives
To outline the different goals and objectives of included studies,
we have further categorized them based on the type of diagnosis
and their general aim. From the perspective of diagnostics, these
studies could be divided into (a) the diagnosis or detection
of PD (which compares data collected from PD patients
and healthy controls), (b) differential diagnosis (discrimination
between patients with idiopathic PD and patients with atypical
Parkinsonism), and (c) sub-typing (discrimination among sub-
types of PD).

Included studies were also analyzed for their general aim:
For studies with a focus on the development of novel technical
approaches to be used in the diagnosis of Parkinson’s disease,
e.g., new machine learning and deep learning models and
architectures, data acquisition devices, and feature extraction
algorithms that haven’t been previously presented and/or
employed, we defined them as (a) “methodology” studies. Studies
that validate and investigate (a) the application of previously

published and validated machine learning and deep learning
models, and/or (b) the feasibility of introducing data modalities
that are not commonly used in the machine learning-based
diagnosis of PD (e.g., CSF data), were defined as (b) “clinical
application” studies.

Model Evaluation
In the present study, accuracy was used to compare performance
of machine learning models. For each data type, we summarized
the type of machine learning models that led to the per-
study highest accuracy. However, in some studies, only one
machine learning model was tested. Therefore, we define “model
associated with the per-study highest accuracy” as (a) the only
model implemented and used in a study or (b) the model that
achieved the highest accuracy or that was highlighted in studies
that used multiple models. Results are expressed as mean (SD).

For studies reporting both training and testing/validation
accuracy, testing or validation accuracy was considered. For
studies that reported both validation and test accuracy, test
accuracy was considered. For studies with more than one dataset
or classification problem (e.g., HC vs. PD and HC vs. idiopathic
hyposmia vs. PD), accuracy was averaged across datasets or
classification problems. For studies that reported classification
accuracy for each group of subjects individually, accuracy
was averaged across groups. For studies reporting a range
of accuracies or accuracies given by different cross validation
methods or feature combinations, the highest accuracies were
considered. In studies that comparedHCwith diseases other than
PD or PD with diseases other than Parkinsonism, diagnosis of
diseases other than PD or Parkinsonism (e.g., amyotrophic lateral
sclerosis) was not considered. Accuracy of severity assessment
was not considered.

RESULTS

Literature Review
Based on the search criteria, we retrieved 427 (PubMed) and 215
(IEEEXplore) search results, leading to a total of 642 publications.
After removing duplicates, we screened 593 publications for titles
and abstracts, following which we excluded 313 based on the
exclusion criteria and examined 280 full text articles. Overall, we
included 209 research articles for data extraction (Figure 1 and
see Supplementary Materials for a full list of included studies).
All articles were published from the year 2009 onwards, and an
increase in the number of papers published per year was observed
(Supplementary Figure 1).

Data Source and Sample Size
In 93 out of 209 studies (43.1%), original data were collected
from human participants. In 108 studies (51.7%), data used were
from public repositories and databases, including University of
California at Irvine (UCI) Machine Learning Repository (Dua
and Graff, 2018) (n = 44), Parkinson’s Progression Markers
Initiative (Marek et al., 2011) (PPMI; n = 33), PhysioNet
(Goldberger et al., 2000) (n= 15), HandPD dataset (Pereira et al.,
2015) (n = 6), mPower database (Bot et al., 2016) (n = 4), and 6
other databases (Mucha et al., 2018; Vlachostergiou et al., 2018;
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FIGURE 1 | PRISMA Flow Diagram of Literature Search and Selection Process showing the number of studies identified, screened, extracted, and included in the

review.

Bhati et al., 2019; Hsu et al., 2019; Taleb et al., 2019; Wodzinski
et al., 2019; Table 2).

In 3 studies, data from public repositories were combined with
data from local databases or participants (Agarwal et al., 2016;
Choi et al., 2017; Taylor and Fenner, 2017). In the remaining
studies, data were sourced (Wahid et al., 2015) from another
study (Fernandez et al., 2013), collected at another institution
(Segovia et al., 2019), obtained from the authors’ institutional
database (Nunes et al., 2019), collected postmortem (Lewitt et al.,
2013), or commercially sourced (Váradi et al., 2019).

The 209 studies had an average sample size of 184.6 (289.3),
with a smallest sample size of 10 (Kugler et al., 2013), and a
largest sample size of 2,289 (Tracy et al., 2019; Figure 2A). For
studies that recruited human participants (n = 93), data from an
average of 118.0 (142.9) participants were collected (range: 10–
920; Figure 2B). For other studies (n = 116), an average sample
size of 238.1 (358.5) was reported (range: 30–2,289; Figure 2B).
For a description of average accuracy reported in these studies in
relation to sample size, see Figure 2C.

Study Objectives
In included studies, although “diagnosis of PD” was used as the
search criteria, machine learning had been applied for diagnosis
(PD vs. HC), differential diagnosis (idiopathic PD vs. atypical
Parkinsonism) and sub-typing (differentiation of sub-types of
PD) purposes. Most studies focused on diagnosis (n = 168,

80.4%) or differential diagnosis (n = 20, 9.6%). Fourteen studies
performed both diagnosis and differential diagnosis (6.7%), 5
studies (2.4%) diagnosed and subtyped PD, 2 studies (1.0%)
included diagnosis, differential diagnosis, and subtyping.

Among the included studies, a total of 132 studies (63.2%)
implemented and tested a machine learning method, a model
architecture, a diagnostic system, a feature extraction algorithm,
or a device for non-invasive, low-cost data acquisition that
hasn’t been established for the detection and early diagnosis
of PD (methodology studies). In 77 studies (36.8%), previously
proposed and validated machine learning methods were tested in
clinical settings for early detection of PD, identification of novel
biomarkers or examination of uncommonly used data modalities
for the diagnosis of PD (e.g., CSF; clinical application studies).

Comparing Studies With Different
Objectives
Source of Data
In the 132 studies that proposed or tested novel machine learning
methods (i.e., methodology studies), a majority used data from
publicly available databases (n = 89, 67.4%). Data collected from
human participants were used in 41 studies (31.1%) and the
two remaining studies (1.5%) used commercially sourced data or
data from both existing public databases and local participants
specifically recruited for the study. Out of the 77 studies that
used machine learning models in clinical settings (i.e., clinical
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TABLE 2 | Source of data of the included studies.

Data source/Database Number of

studies

Percentage

independent recruitment of human participants 93 43.06%

UCI Machine Learning Repository 44 20.37%

PPMI database 33 15.28%

PhysioNet 15 6.94%

HandPD dataset 6 2.78%

mPower database 4 1.85%

Other databases

(1 PACS, 1 PaHaW, 1 PC-GITA database, 1

PDMultiMC database, 1 Neurovoz corpus, 1 The

NTUA Parkinson Dataset)

6 2.78%

Collected postmortem 1 0.46%

Commercially sourced 1 0.46%

Acquired at another institution 1 0.46%

From another study 1 0.46%

From the author’s institutional database 1 0.46%

Others

(1 PPMI + Sheffield Teaching Hospitals NHS

Foundation Trust;

1 PPMI + Seoul National University Hospital cohort;

1 UCI + collected from participants)

3 1.39%

PACS, Picture Archiving and Communication System; PaHaW, Parkinson’s Disease
Handwriting Database.

application studies), 52 (67.5%) collected data from human
participants, 22 (28.6%) used data from public databases. Two
(2.6%) studies obtained data from a database and a local cohort,
and 1 (1.3%) study collected data postmortem.

Data Modality
Inmethodology studies, the most commonly used data modalities
were voice recordings (n = 51, 38.6%), movement (n = 35,
26.5%), and MRI data (n = 15, 11.4%). For studies on clinical
applications, MRI data (n = 21, 27.3%), movement (n = 16,
20.8%), and SPECT imaging data (n = 12, 15.6%) were of
high relevance. All studies using CSF features (n = 5) focused
on validation of existing machine learning models in a clinical
setting (Figure 3A).

Number of Subjects
The average sample size was 137.1 for the 132 methodology
studies (Figure 3B). For 41 out of the 132 studies that used data
from recruited human participants, the average sample size was
81.7 (Figure 3C). In the 77 studies on clinical applications, the
average sample size was 266.2 (Figure 3B). For 52 out of the 77
clinical studies that collected data from recruited participants, the
average sample size was 145.9 (Figure 3C).

Machine Learning Methods Applied to the
Diagnosis of PD
We divided 448 machine learning models from the 209 studies
into 8 categories: (1) support vector machine (SVM) and variants
(n = 132 from 130 studies), (2) neural networks (n = 76 from
62 studies), (3) ensemble learning (n = 82 from 57 studies),

(4) nearest neighbor and variants (n = 33 from 33 studies), (5)
regression (n = 31 from 31 studies), (6) decision tree (n = 28
from 27 studies), (7) naïve Bayes (n = 26, from 26 studies),
and (8) discriminant analysis (n = 12 from 12 studies). A small
percentage of models used did not fall into any of the categories
(n= 28, used in 24 studies).

On average, 2.14 machine learning models per study were
applied to the diagnosis of PD. One study may have used
more than one category of models. For a full description of
data types used to train each type of machine learning models
and the associated outcomes, see Supplementary Materials and
Supplementary Figure 2.

Performance Metrics
Various metrics have been used to assess the performance of
machine learning models (Table 3). The most common metric
was accuracy (n = 174, 83.3%), which was used individually
(n = 55) or in combination with other metrics (n = 119) in
model evaluation. Among the 174 studies that used accuracy,
some have combined accuracy with sensitivity (i.e., recall) and
specificity (n = 42), or with sensitivity, specificity and AUC (n =
16), or with recall (i.e., sensitivity), precision and F1 score (n =
7) for a more systematic understanding of model performance.
A total of 35 studies (16.7%) used metrics other than accuracy.
In these studies, the most used performance metrics were AUC
(n = 19), sensitivity (n = 17), and specificity (n = 14), and
the three were often applied together (n = 9) with or without
other metrics.

Data Types and Associated Outcomes
Out of 209 studies, 122 (58.4%) applied machine learning
methods tomovement-related data, i.e., voice recordings (n= 55,
26.3%), movement data (n= 51, 24.4%), or handwritten patterns
(n = 16, 7.7%). Imaging modalities analyzed including MRI (n
= 36, 17.2%), SPECT (n = 14, 6.7%), and positron emission
tomography (PET; n = 4, 1.9%). Five studies analyzed CSF
samples (2.4%). In 18 studies (8.6%), a combination of different
types of data was used.

Ten studies (4.8%) used data that do not belong to
any categories mentioned above, such as single nucleotide
polymorphisms (Cibulka et al., 2019) (SNPs), electromyography
(EMG) (Kugler et al., 2013), OCT (Nunes et al., 2019), cardiac
scintigraphy (Nuvoli et al., 2019), Patient Questionnaire of
Movement Disorder Society Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) (Prashanth and Dutta Roy, 2018), whole-
blood gene expression profiles (Shamir et al., 2017), transcranial
sonography (Shi et al., 2018) (TCS), eye movements (Tseng et al.,
2013), electroencephalography (EEG) (Vanegas et al., 2018), and
serum samples (Váradi et al., 2019).

Given that studies used different data modalities and sources,
and sometimes different samples of the same database, a
summary of model performance, instead of direct comparison
across studies, is provided.

Voice Recordings (n = 55)
The 49 studies that used accuracy to evaluate machine learning
models achieved an average accuracy of 90.9 (8.6) % (Figure 4A),

Frontiers in Aging Neuroscience | www.frontiersin.org 5 May 2021 | Volume 13 | Article 633752

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Mei et al. Machine Learning in Parkinson’s Disease

FIGURE 2 | Sample size of the included studies. (A) Cumulative relative frequency graph depicting the frequency of the sample sizes studied. (B) Histogram depicting

the frequency of a sample size of 0–50, 50–100, 100–200, 200–500, 500–100, and over 1,000 for studies using locally recruited human participants and studies using

previously published open databases. Green, studies using locally recruited human participants; gray, studies using data sourced from public databases. (C) Model

performance as measured by accuracy in relation to sample size, shown in means (SD).

FIGURE 3 | Data modality (A) and number of subjects (B,C) of included studies, summarized by objectives (i.e., methodology or clinical application). Orange, studies
with a focus on the development of a novel technical approach to be used in the diagnosis of Parkinson’s disease (i.e., methodology); blue, studies that investigate the

use of published machine learning models or novel data modalities (i.e., clinical application). (A) Proportion of data modalities in included studies displayed as

percentages. (B) Sample size in all included studies. (C) Sample size in studies that collected data from recruited human participants. Data shown are means (SD).

ranging from 70.0% (Kraipeerapun and Amornsamankul, 2015;
Ali et al., 2019a) to 100.0% (Hariharan et al., 2014; Abiyev
and Abizade, 2016; Ali et al., 2019c; Dastjerd et al., 2019).
In 3 studies, the highest accuracy was achieved by two types
of machine learning models individually, namely regression or
SVM (Ali et al., 2019a), neural network or SVM (Hariharan
et al., 2014), and ensemble learning or SVM (Mandal and
Sairam, 2013). The per-study highest accuracy was achieved
with SVM in 23 studies (39.7%), with neural network in 16
studies (27.6%), with ensemble learning in 7 studies (12.1%),
with nearest neighbor in 3 studies (5.2%), and with regression
in 2 studies (3.4%). Models that do not belong to any given
categories led to the per-study highest accuracy in 7 studies
(12.1%; Figure 4B).

Voice recordings from the UCI machine learning repository
were used in 42 studies (Table 4). Among the 42 studies, 39 used
accuracy to evaluate classification performance and the average
accuracy was 92.0 (9.0) %. The lowest accuracy was 70.0% and the
highest accuracy was 100.0%. Eight out of 9 studies that collected
voice recordings from human participants used accuracy as
the performance metric, and the average, lowest and highest
accuracies were 87.7 (6.8) %, 77.5%, and 98.6%, respectively. The
4 remaining studies used data from the Neurovoz corpus (n =
1), mPower database (n = 1), PC-GITA database (n = 1), or
data from both the UCI machine learning repository and human
participants (n = 1). Two out of these 4 studies used accuracy
to evaluate model performance and reported an accuracy of 81.6
and 91.7%.
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Movement Data (n = 51)
The 43 out of 51 studies using accuracy to assess model
performance achieved an average accuracy of 89.1 (8.3) %,
ranging from 62.1% (Prince and de Vos, 2018) to 100.0%
(Surangsrirat et al., 2016; Joshi et al., 2017; Pham, 2018;
Pham and Yan, 2018; Figure 4A). One study reported three

TABLE 3 | Performance metrics used in the evaluation of machine learning

models.

Performance metric Definition Number

of

studies

Accuracy TP+TN
TP+TN+FP+FN 174

Sensitivity (recall) TP
TP+FN 110

Specificity (TNR) TN
TN+FP 94

AUC The two-dimensional area under the

Receiver Operating Characteristic

(ROC) curve

60

MCC TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN) 9

Precision (PPV) TP
TP+FP 31

NPV TN
TN+FN 8

F1 score 2× precision×recall
precision+recall 25

Others

(7 kappa; 4 error rate; 3 EER; 1

MSE; 1 LOR; 1 confusion matrix; 1

cross validation score; 1 YI; 1 FPR; 1

FNR; 1 G-mean; 1 PE; 5

combination of metrics)

N/A 28

TNR, true negative rate; AUC, Area under the ROC Curve; MCC, Matthews correlation
coefficient; PPV, positive predictive value; NPV, negative predictive value; EER, equal error
rate; MSE,mean squared error; LOR, log odds ratio; YI, Youden’s Index; FPR, false positive
rate; FNR, false negative rate; PE, probability excess.

machine learning methods (SVM, nearest neighbor and decision
tree) achieving the highest accuracy individually (Félix et al.,
2019). Out of the 51 studies, the per-study highest accuracy
was achieved with SVM in 22 studies (41.5%), with ensemble
learning in 13 studies (24.5%), with neural network in 9
studies (17.0%), with nearest neighbor in 4 studies (7.5%), with
discriminant analysis in 1 study (1.9%), with naïve Bayes in 1
study (1.9%), and with decision tree in 1 study (1.9%). Models
that do not belong to any given categories were associated
with the highest per-study accuracy in two studies (3.8%;
Figure 4B).

Among the 33 studies that collected movement data from
recruited participants, 25 used accuracy in model evaluation,
leading to an average accuracy of 87.0 (7.3) % (Table 5). The
lowest and highest accuracies were 64.1% (Martínez et al.,
2018) and 100.0% (Surangsrirat et al., 2016), respectively. Fifteen
studies used data from the PhysioNet database (Table 5) and
had an average accuracy of 94.4 (4.6) %, a lowest accuracy of
86.4% and a highest accuracy of 100%. Three studies used data
from the mPower database (n= 2) or data sourced from another
study (n = 1), and the average accuracy of these studies was
80.6 (16.2) %.

MRI (n = 36)
Average accuracy of the 32 studies that used accuracy to evaluate
the performance of machine learning models was 87.5 (8.0) %.
In these studies, the lowest accuracy was 70.5% (Liu L. et al.,
2016) and the highest accuracy was 100.0% (Cigdem et al.,
2019; Figure 4A). Out of the 36 studies, the per-study highest
accuracy was obtained with SVM in 21 studies (58.3%), with
neural network in 8 studies (22.2%), with discriminant analysis
in 3 studies (8.3%), with regression in 2 studies (5.6%), and with
ensemble learning in 1 study (2.8%). One study (2.8%) obtained
the highest per-study accuracy usingmodels that do not belong to

FIGURE 4 | Data type, machine learning models applied, and accuracy. (A) Accuracy achieved in individual studies and average accuracy for each data type. Error

bar: standard deviation. (B) Distribution of machine learning models applied per data type. MRI, magnetic resonance imaging; SPECT, single-photon emission

computed tomography; PET, positron emission tomography; CSF, cerebrospinal fluid; SVM, support vector machine; NN, neural network; EL, ensemble learning;

k-NN, nearest neighbor; regr, regression; DT, decision tree; NB, naïve Bayes; DA, discriminant analysis; other: data/models that do not belong to any of the given

categories.
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TABLE 4 | Studies that applied machine learning models to voice recordings to diagnose PD (n = 55).

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD Fuzzy neural system with

10-fold cross validation

Testing accuracy = 100% 2016 Abiyev and

Abizade, 2016

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD RPART, C4.5, PART, Bagging

CART, random forest,

Boosted C5.0, SVM

SVM: 2019 Aich et al., 2019

Accuracy = 97.57%

Sensitivity = 0.9756

Specificity = 0.9987

NPV = 0.9995

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD DBN of 2 RBMs Testing accuracy = 94% 2016 Al-Fatlawi et al.,

2016

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD EFMM-OneR with 10-fold

cross validation or 5-fold

cross validation

Accuracy = 94.21% 2019 Sayaydeha and

Mohammad, 2019

Classification of PD

from HC

Diagnosis UCI machine

learning repository

40; 20 HC + 20 PD Linear regression, LDA,

Gaussian naïve Bayes,

decision tree, KNN,

SVM-linear, SVM-RBF with

leave-one-subject-out cross

validation

Logistic regression or

SVM-linear accuracy = 70%

2019 Ali et al., 2019a

Classification of PD

from HC

Diagnosis UCI machine

learning repository

40; 20 HC + 20 PD LDA-NN-GA with

leave-one-subject-out cross

validation

Training: 2019 Ali et al., 2019c

Accuracy = 95%

Sensitivity = 95%

Test:

Accuracy = 100%

Sensitivity = 100%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD NNge with AdaBoost with

10-fold cross validation

Accuracy = 96.30% 2018 Alqahtani et al.,

2018

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD Logistic regression, KNN,

naïve Bayes, SVM, decision

tree, random forest, DNN with

10-fold cross validation

KNN accuracy = 95.513% 2018 Anand et al., 2018

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD MLP with a

train-validation-test ratio of

50:20:30

Training accuracy = 97.86% 2012 Bakar et al., 2012

Test accuracy = 92.96%

MSE = 0.03552

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31 (8 HC + 23 PD)

for dataset 1 and 68

(20 HC + 48 PD) for

dataset 2

FKNN, SVM, KELM with

10-fold cross validation

FKNN accuracy = 97.89% 2018 Cai et al., 2018

Classification of PD

from HC

Diagnosis UCI machine

learning repository

40; 20 HC + 20 PD SVM, logistic regression, ET,

gradient boosting, random

forest with train-test split ratio

= 80:20

Logistic regression accuracy

= 76.03%

2019 Celik and Omurca,

2019

Classification of PD

from HC

Diagnosis UCI machine

learning repository

40; 20 HC + 20 PD MLP, GRNN with a

training-test ratio of 50:50

GRNN: 2016 Çimen and Bolat,

2016Error rate = 0.0995 (spread

parameter = 195.1189)

Error rate = 0.0958 (spread

parameter = 1.2)

Error rate = 0.0928 (spread

parameter = 364.8)
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TABLE 4 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD ECFA-SVM with 10-fold cross

validation

Accuracy = 97.95% 2017 Dash et al., 2017

Sensitivity = 97.90%

Precision = 97.90%

F-measure = 97.90%

Specificity = 96.50%

AUC = 97.20%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

40; 20 HC + 20 PD Fuzzy classifier with 10-fold

cross validation,

leave-one-out cross validation

or a train-test ratio of 70:30

Accuracy = 100% 2019 Dastjerd et al.,

2019

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD Averaged perceptron, BPM,

boosted decision tree,

decision forests, decision

jungle, locally deep SVM,

logistic regression, NN, SVM

with 10-fold cross-validation

Boosted decision trees: 2017 Dinesh and He,

2017Accuracy = 0.912105

Precision = 0.935714

F-score = 0.942368

AUC = 0.966293

Classification of PD

from HC

Diagnosis UCI machine

learning repository

50; 8 HC + 42 PD KNN, SVM, ELM with a

train-validation ratio of 70:30

SVM: 2017 Erdogdu Sakar

et al., 2017Accuracy = 96.43%

MCC = 0.77

Classification of PD

from HC

Diagnosis UCI machine

learning repository

252; 64 HC + 188

PD

CNN with

leave-one-person-out cross

validation

Accuracy = 0.869 2019 Gunduz, 2019

F-measure = 0.917

MCC = 0.632

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD SVM, logistic regression,

KNN, DNN with a train-test

ratio of 70:30

DNN: 2018 Haq et al., 2018

Accuracy = 98%

Specificity = 95%

sensitivity = 99%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD SVM-RBF, SVM-linear with

10-fold cross validation

Accuracy = 99% 2019 Haq et al., 2019

Specificity = 99%

Sensitivity = 100%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD LS-SVM, PNN, GRNN with

conventional (train-test ratio of

50:50) and 10-fold cross

validation

LS-SVM or PNN or GRNN: 2014 Hariharan et al.,

2014Accuracy = 100%

Precision = 100%

Sensitivity = 100%

specificity = 100%

AUC = 100

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD Random tree, SVM-linear,

FBANN with 10-fold cross

validation

FBANN: 2014 Islam et al., 2014

Accuracy = 97.37%

Sensitivity = 98.60%

Specificity = 93.62%

FPR = 6.38%

Precision = 0.979

MSE = 0.027

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD SVM-linear with 5-fold cross

validation

Error rate ∼0.13 2012 Ji and Li, 2012

Classification of PD

from HC

Diagnosis UCI machine

learning repository

40; 20 HC + 20 PD Decision tree, random forest,

SVM, GBM, XGBoost

SVM-linear: 2018 Junior et al., 2018

FNR = 10%

Accuracy = 0.725

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD CART, SVM, ANN SVM accuracy = 93.84% 2020 Karapinar Senturk,

2020

(Continued)
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TABLE 4 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification of PD

from HC

Diagnosis UCI machine

learning repository

Dataset 1: 31; 8 HC

+ 23 PD

Dataset 2: 40; 20

HC + 20 PD

EWNN with a train-test ratio of

90:10 and cross validation

Dataset 1:

Accuracy = 92.9%

2018 Khan et al., 2018

Ensemble classification

accuracy = 100.0%

Sensitivity = 100.0%

MCC = 100.0%

Dataset 2:

Accuracy = 66.3%

Ensemble classification

accuracy = 90.0%

Sensitivity = 93.0%

Specificity = 97.0%

MCC = 87.0%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

40; 20 HC + 20 PD Stacked generalization with

CMTNN with 10-fold cross

validation

Accuracy = ∼70% 2015 Kraipeerapun and

Amornsamankul,

2015

Classification of PD

from HC

Diagnosis UCI machine

learning repository

40; 20 HC + 20 PD HMM, SVM HMM: 2019 Kuresan et al.,

2019Accuracy = 95.16%

Sensitivity = 93.55%

Specificity = 91.67%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD IGWO-KELM with 10-fold

cross validation

Iteration number = 100 2017 Li et al., 2017

Accuracy = 97.45%

Sensitivity = 99.38%

Specificity = 93.48%

Precision = 97.33%

G-mean = 96.38%

F-measure = 98.34%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD SCFW-KELM with 10-fold

cross validation

Accuracy = 99.49% 2014 Ma et al., 2014

Sensitivity = 100%

Specificity = 99.39%

AUC = 99.69%

F-measure = 0.9966

Kappa = 0.9863

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD SVM-RBF with 10-fold cross

validation

Accuracy = 96.29% 2016 Ma et al., 2016

Sensitivity = 95.00%

Specificity = 97.50%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD Logistic regression, NN, SVM,

SMO, Pegasos, AdaBoost,

ensemble selection, FURIA,

rotation forest Bayesian

network with 10-fold

cross-validation

Average accuracy across all

models = 97.06%

SMO, Pegasos, or

AdaBoost accuracy =
98.24%

2013 Mandal and

Sairam, 2013

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD Logistic regression, KNN,

SVM, naïve Bayes, decision

tree, random forest, ANN

ANN: 2018 Marar et al., 2018

Accuracy = 94.87%

Specificity = 96.55%

Sensitivity = 90%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

Dataset 1: 31; 8 HC

+ 23 PD

KNN Dataset 1 accuracy = 90% 2017 Moharkan et al.,

2017
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TABLE 4 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Dataset 2: 40; 20

HC + 20 PD

Dataset 2 accuracy = 65%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD Rotation forest ensemble with

10-fold cross validation

Accuracy = 87.1% 2011 Ozcift and Gulten,

2011Kappa error = 0.63

AUC = 0.860

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD Rotation forest ensemble Accuracy = 96.93% 2012 Ozcift, 2012

Kappa = 0.92

AUC = 0.97

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD SVM-RBF with 10-fold cross

validation or a train-test ratio

of 50:50

10-fold cross validation: 2016 Peker, 2016

Accuracy = 98.95%

Sensitivity = 96.12%

Specificity = 100%

F-measure = 0.9795

Kappa = 0.9735

AUC = 0.9808

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD ELM with 10-fold cross

validation

Accuracy = 88.72% 2016 Shahsavari et al.,

2016Recall = 94.33%

Precision = 90.48%

F-score = 92.36%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD Ensemble learning with

10-fold cross validation

Accuracy = 90.6% 2019 Sheibani et al.,

2019Sensitivity = 95.8%

Specificity = 75%

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD GLRA, SVM, bagging

ensemble with 5-fold cross

validation

Bagging: 2017 Wu et al., 2017

Sensitivity = 0.9796

Specificity = 0.6875

MCC = 0.6977

AUC = 0.9558

SVM:

Sensitivity = 0.9252

specificity = 0.8542

MCC = 0.7592

AUC = 0.9349

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD Decision tree classifier, logistic

regression, SVM with 10-fold

cross validation

SVM: 2011 Yadav et al., 2011

Accuracy = 0.76

Sensitivity = 0.9745

Specificity = 0.13

Classification of PD

from HC

Diagnosis UCI machine

learning repository

80; 40 HC + 40 PD KNN, SVM with 10-fold cross

validation

SVM: 2019 Yaman et al., 2020

Accuracy = 91.25%

Precision = 0.9125

Recall = 0.9125

F-Measure = 0.9125

Classification of PD

from HC

Diagnosis UCI machine

learning repository

31; 8 HC + 23 PD MAP, SVM-RBF, FLDA with

5-fold cross validation

MAP: 2014 Yang et al., 2014

Accuracy = 91.8%

Sensitivity = 0.986

Specificity = 0.708

AUC = 0.94

(Continued)
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TABLE 4 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification of PD

from other disorders

Differential

diagnosis

Collected from

participants

50; 30 PD + 9 MSA

+ 5 FND + 1

somatization + 1

dystonia + 2CD + 1

ET + 1 GPD

SVM, KNN, DA, naïve Bayes,

classification tree with LOSO

SVM-linear: 2016 Benba et al.,

2016aAccuracy = 90%

Sensitivity = 90%

Specificity = 90%

MCC = 0.794067

PE = 0.788177

Classification of PD

from other disorders

Differential

diagnosis

Collected from

participants

40; 20 PD + 9 MSA

+ 5 FND + 1

somatization + 1

dystonia + 2CD +
1ET + 1 GPD

SVM (RBF, linear, polynomial,

and MLP kernels) with LOSO

SVM-linear accuracy = 85% 2016 Benba et al.,

2016b

Classification of PD

from HC and assess

the severity of PD

Diagnosis Collected from

participants

52; 9 HC + 43 PD SVM-RBF with cross

validation

Accuracy = 81.8% 2014 Frid et al., 2014

Classification of PD

from HC

Diagnosis Collected from

participants

54; 27 HC + 27 PD SVM with stratified 10-fold

cross validation or

leave-one-out cross validation

Accuracy = 94.4% 2018 Montaña et al.,

2018Specificity = 100%

Sensitivity = 88.9%

Classification of PD

from HC

Diagnosis Collected from

participants

40; 20 HC + 20 PD KNN, SVM-linear, SVM-RBF

with leave-one-subject-out or

summarized leave-one-out

SVM-linear: 2013 Sakar et al., 2013

Accuracy = 77.50%

MCC = 0.5507

Sensitivity = 80.00%

Specificity = 75.00%

Classification of PD

from HC

Diagnosis Collected from

participants

78; 27 HC + 51 PD KNN, SVM-linear, SVM-RBF,

ANN, DNN with leave-one-out

cross validation

SVM-RBF: 2017 Sztahó et al., 2017

Accuracy = 84.62%

Precision = 88.04%

Recall = 78.65%

Classification of PD

from HC and assess

the severity of PD

Diagnosis Collected from

participants

88; 33 HC + 55 PD KNN, SVM-linear, SVM-RBF,

ANN, DNN with

leave-one-subject-out cross

validation

SVM-RBF: 2019 Sztahó et al., 2019

Accuracy = 89.3%

Sensitivity = 90.2%

Specificity = 87.9%

Classification of PD

from HC

Diagnosis Collected from

participants

43; 10 HC + 33 PD Random forests, SVM with

10-fold cross validation and a

train-test ratio of 90:10

SVM accuracy = 98.6% 2012 Tsanas et al., 2012

Classification of PD

from HC

Diagnosis Collected from

participants

99; 35 HC + 64 PD Random forest with internal

out-of-bag (OOB) validation

EER = 19.27% 2017 Vaiciukynas et al.,

2017

Classification of PD

from HC

Diagnosis UCI machine

learning repository

and participants

40 and 28; 20 HC +
20 PD and 28 PD,

respectively

ELM Training data: 2016 Agarwal et al.,

2016Accuracy = 90.76%

MCC = 0.815

Test data:

Accuracy = 81.55%

Classification of PD

from HC

Diagnosis The Neurovoz

corpus

108; 56 HC + 52 PDSiamese LSTM-based NN

with 10-fold cross- validation

EER = 1.9% 2019 Bhati et al., 2019

Classification of PD

from HC

Diagnosis mPower database 2,289; 2,023 HC +
246 PD

L2-regularized logistic

regression, random forest,

gradient boosted decision

trees with 5-fold cross

validation

Gradient boosted decision

trees:

2019 Tracy et al., 2019

Recall = 0.797

Precision = 0.901

F1-score = 0.836

(Continued)
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TABLE 4 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification of PD

from HC

Diagnosis PC-GITA database 100; 50 HC + 50 PDResNet with train-validation

ratio of 90:10

Precision = 0.92 2019 Wodzinski et al.,

2019Recall = 0.92

F1-score = 0.92

Accuracy = 91.7%

ANN, artificial neural network; AUC, area under the receiver operating characteristic (ROC) curve; CART, classification and regression trees; CD, cervical dystonia; CMTNN,
complementary neural network; CNN, convolutional neural network; DA, discriminant analysis; DBN, deep belief network; DNN, deep neural network; ECFA, enhanced chaos-based
firefly algorithm; EFMM-OneR, enhanced fuzzy min-max neural network with the OneR attribute evaluator; ELM, extreme Learning machine; ET, extra trees or essential tremor; EWNN,
evolutionary wavelet neural network; FBANN, feedforward back-propagation based artificial neural network; FKNN, fuzzy k-nearest neighbor; FLDA, Fisher’s linear discriminant analysis;
FND, functional neurological disorder; FNR, false negative rate; FPR, false positive rate; FURIA, fuzzy unordered rule induction algorithm; GA, genetic algorithm; GBM, gradient
boosting machine; GLRA, generalized logistic regression analysis; GPD, generalized paroxysmal dystonia; GRNN, general(ized) regression neural network; HC, healthy control; HMM,
hidden Markov model; IGWO-KELM, improved gray wolf optimization and kernel(-based) extreme learning machine; KELM, kernel-based extreme learning machine; KNN, k-nearest
neighbors; LDA, linear discriminant analysis; LOSO, leave-one-subject-out; LS-SVM, least-square support vector machine; LSTM, long short-term memory; MAP, maximum a posteriori
decision rule; MCC, Matthews correlation coefficient; MLP, multilayer perceptron; MSA, multiple system atrophy; MSE, mean squared error; NN, neural network; NNge, non-nested
generalized exemplars; NPV, negative predictive value; PD, Parkinson’s disease; PNN, probabilistic neural network; RBM, restricted Boltzmann machine; ResNet, residual neural network;
RPART, recursive partitioning and regression trees; SCFW-KELM, subtractive clustering features weighting and kernel-based extreme learning machine; SMO, sequential minimal
optimization; SVM, support vector machine; SVM-linear, support vector machine with linear kernel; SVM-RBF, support vector machine with radial basis function kernel; XGBoost,
extreme gradient boosting.

any of the given categories (Figure 4B). In 8 of 36 studies, neural
networks were directly applied to MRI data, while the remaining
studies used machine learning models to learn from extracted
features, e.g., cortical thickness and volume of brain regions, to
diagnose PD.

Out of 17 studies that used MRI data from the PPMI database,
16 used accuracy to evaluate model performance and the average
accuracy was 87.9 (8.0) %. The lowest and highest accuracies were
70.5 and 99.9%, respectively (Table 6). In 16 out of 19 studies
that acquired MRI data from human participants, accuracy
was used to evaluate classification performance and an average
accuracy was 87.0 (8.1) % was achieved. The lowest reported
accuracy was 76.2% and the highest reported accuracy was
100% (Table 6).

Handwriting Patterns (n = 16)
Fifteen out of 16 studies used accuracy in model evaluation and
the average accuracy was 87.0 (6.3) % (Table 7). Among these
studies, the lowest accuracy was 76.44% (Ali et al., 2019b) and the
highest accuracy was 99.3% (Pereira et al., 2018; Figure 4A). The
highest accuracy per-study was obtained with neural network in
6 studies (37.5%), with SVM in 5 studies (31.3%), with ensemble
learning in 4 studies (25.0%), and with naïve Bayes in 1 study
(6.3%; Figure 4B).

SPECT (n = 14)
Average accuracy of 12 out of 14 studies that used accuracy
to measure the performance of machine learning models was
94.4 (4.2) % (Table 7). The lowest reported accuracy was 83.2%
(Hsu et al., 2019) and 97.9% (Oliveira F. et al., 2018; Figure 4A).
SVM led to the highest per-study accuracy in 10 out of 14
studies (71.4%). The highest per-study accuracy was obtained
with neural networks in 3 studies (21.4%) and with regression in
1 study (7.1%; Figure 4B).

PET (n = 4)
All 4 studies used sensitivity and specificity (Table 7) in model
evaluation while 3 used accuracy. Average accuracy of the 3
studies was 85.6 (6.6) %, with a lowest accuracy of 78.16%
(Segovia et al., 2015) and a highest accuracy of 90.72% (Wu
et al., 2019; Figure 4A). Half of the 4 studies (50.0%) obtained
the highest per-study accuracy with SVM (Segovia et al., 2015;
Wu et al., 2019) and the other half (50.0%) with neural networks
(Figure 4B).

CSF (n = 5)
All 5 studies used AUC, instead of accuracy, to evaluate machine
learning models (Table 7). The average AUC was 0.8 (0.1), the
lowest AUC was 0.6825 (Maass et al., 2020) and the highest AUC
was 0.839 (Maass et al., 2018), respectively. Two studies obtained
the highest per-study AUCwith ensemble learning, 2 studies with
SVM and 1 study with regression (Figure 4B).

Other Types of Data (n = 10)
Only 5 studies used accuracy to measure the performance of
machine learning models (Table 7). An average accuracy of 91.9
(6.4) % was obtained, with a lowest accuracy of 84.85% (Shi
et al., 2018) and a highest accuracy of 100% (Nuvoli et al., 2019;
Figure 4A). Out of the 10 studies, 5 (50%) used SVM to achieve
the per-study highest accuracy, 3 (30%) used ensemble learning,
1 (10%) used decision trees and 1 (10%) used machine learning
models that do not belong to any given categories (Figure 4B).

Combination of More Than One Data Type (n = 18)
Out of the 18 studies that used more than one type of data,
15 used accuracy in model evaluation (Table 7). An average
accuracy of 92.6 (6.1) % was obtained, and the lowest and highest
accuracy among the 15 studies was 82.0% (Prince et al., 2019)
and 100.0% (Cherubini et al., 2014b), respectively (Figure 4A).
The per-study highest accuracy was achieved with ensemble
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TABLE 5 | Studies that applied machine learning models to movement data to diagnose PD (n = 51).

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification of PD

from HC

Diagnosis Collected from

participants

103; 71 HC + 32 PD Ensemble method of 8

models (SVM, MLP, logistic

regression, random forest,

NSVC, decision tree, KNN,

QDA)

Sensitivity = 96%

Specificity = 97%

AUC = 0.98

2017 Adams, 2017

Classification of PD,

HC and other

neurological stance

disorders

Diagnosis and

differential

diagnosis

Collected from

participants

293; 57 HC + 27 PD +
49 AVS + 12 PNP + 48

CA + 16 DN + 25 OT +
59 PPV

Ensemble method of 7

models (logistic regression,

KNN, shallow and deep

ANNs, SVM, random

forest, extra-randomized

trees) with 90% training

and 10% testing data in

stratified k-fold

cross-validation

8-class classification

accuracy = 82.7%

2019 Ahmadi et al.,

2019

Classification of PD

from HC

Diagnosis Collected from

participants

137; 38 HC + 99 PD SVM with

leave-one-out-cross

validation

PD vs. HC accuracy =
92.3%

2016 Bernad-Elazari

et al., 2016

Mild vs. severe accuracy

= 89.8%

Mild vs. HC accuracy =
85.9%

Classification of PD

from HC

Diagnosis Collected from

participants

30; 14 HC + 16 PD SVM (linear, quadratic,

cubic, Gaussian kernels),

ANN, with 5-fold

cross-validation

Classification with ANN: 2019 Buongiorno et al.,

2019Accuracy = 89.4%

Sensitivity = 87.0%

Specificity = 91.8%

Severity assessment with

ANN:

Accuracy = 95.0%

sensitivity = 90.0%

Specificity = 99.0%

Classification of PD

from HC

Diagnosis Collected from

participants

28; 12 HC + 16 PD NN with a

train-validation-test ratio of

70:15:15, SVM with

leave-one-out

cross-validation, logistic

regression with 10-fold

cross validation

SVM:

Accuracy = 85.71%

Sensitivity = 83.5%

Specificity = 87.5%

2017 Butt et al., 2017

Classification of PD

from HC

Diagnosis Collected from

participants

28; 12 HC + 16 PD Logistic regression, naïve

Bayes, SVM with 10-fold

cross validation

Naïve Bayes: 2018 Butt et al., 2018

Accuracy = 81.45%

Sensitivity = 76%

Specificity = 86.5%

AUC = 0.811

Classification of PD

from HC

Diagnosis Collected from

participants

54; 27 HC + 27 PD Naïve Bayes, LDA, KNN,

decision tree, SVM-linear,

SVM-RBF, majority of votes

with 5-fold cross validation

Majority of votes

(weighted) accuracy =
96%

2018 Caramia et al.,

2018

Classification of PD,

HC and PD, HC, IH

Diagnosis Collected from

participants

90; 30 PD + 30 HC + 30

IH

SVM, random forest, naïve

Bayes with 10-fold cross

validation

Random forest: 2019 Cavallo et al.,

2019HC vs. PD:

Accuracy = 0.950

F-measure = 0.947

HC + IH vs. PD:

Accuracy = 0.917

F-measure = 0.912

HC vs. IH vs. PD:

(Continued)
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TABLE 5 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Accuracy = 0.789

F-measure = 0.796

Classification of PD

from HC and

classification of HC,

MCI, PDNOMCI, and

PDMCI

Diagnosis,

differential

diagnosis and

subtyping

Collected from

participants

PD vs. HC: Decision tree, naïve Bayes,

random forest, SVM,

adaptive boosting (with

decision tree or random

forest) with 10-fold cross

validation

Adaptive boosting with

decision tree:

2015 Cook et al., 2015

75; 50 HC + 25 PD PD vs. HC:

Accuracy = 0.79

Subtyping: AUC = 0.82

52; 18 HC + 16

PDNOMCI + 9 PDMCI +
9 MCI

Subtyping (HOA vs. MCI

vs. PDNOMCI vs. PDMCI):

Accuracy = 0.85

AUC = 0.96

Classification of PD

from HC

Diagnosis Collected from

participants

580; 424 HC + 156 PD Hidden Markov models

with nearest neighbor

classifier with cross

validation and train-test

ratio of 66.6:33.3

Accuracy = 85.51% 2017 Cuzzolin et al.,

2017

Classification of PD

from HC

Diagnosis Collected from

participants

80; 40 HC + 40 PD Random forest, SVM with

10-fold cross validation

SVM-RBF: 2017 Djurić-Jovičić

et al., 2017Accuracy = 85%

Sensitivity = 85%

Specificity = 82%

PPV = 86%

NPV = 83%

Classification of PD

from HC

Diagnosis Collected from

participants

13; 5 HC + 8 PD SVM-RBF with

leave-one-out cross

validation

100% HC and PD

classified correctly

(confusion matrix)

2014 Dror et al., 2014

Classification of PD

from HC

Diagnosis Collected from

participants

75; 38 HC + 37 PD SVM with leave-one-out

cross validation

Accuracy = 85.61% 2014 Drotár et al., 2014

Sensitivity = 85.95%

Specificity = 85.26%

Classification of PD

from ET

Differential

diagnosis

Collected from

participants

24; 13 PD + 11 ET SVM-linear, SVM-RBF with

leave-one-out cross

validation

Accuracy = 83% 2016 Ghassemi et al.,

2016

Classification of PD

from HC

Diagnosis Collected from

participants

41; 22 HC + 19 PD SVM, decision tree,

random forest, linear

regression with 10-fold and

leave-one-individual out

(L1O) cross validation

SVM accuracy = 0.89 2018 Klein et al., 2017

Classification of PD

from HC

Diagnosis Collected from

participants

74; 33 young HC + 14

elderly HC + 27 PD

SVM with 10-fold cross

validation

Sensitivity = ∼90% 2017 Javed et al., 2018

Classification of PD

from HC and assess

the severity of PD

Diagnosis Collected from

participants

55; 20 HC + 35 PD SVM with leave-one-out

cross validation

PD diagnosis: 2016 Koçer and Oktay,

2016Accuracy = 89%

Precision = 0.91

Recall = 0.94

Severity assessment:

HYS 1 accuracy = 72%

HYS 2 accuracy = 77%

HYS 3 accuracy = 75%

HYS 4 accuracy = 33%

(Continued)
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TABLE 5 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification of PD

from HC

Diagnosis Collected from

participants

45; 20 HC + 25 PD Naïve Bayes, logistic

regression, SVM,

AdaBoost, C4.5, BagDT

with 10-fold stratified

cross-validation apart from

BagDT

BagDT:

Sensitivity = 82%

Specificity = 90%

AUC = 0.94

2015 Kostikis et al.,

2015

Classification of PD

from HC

Diagnosis Collected from

participants

40; 26 HC + 14 PD Random forest with

leave-one-subject-out

cross-validation

Accuracy = 94.6%

Sensitivity = 91.5%

Specificity = 97.2%

2017 Kuhner et al., 2017

Classification of PD

from HC

Diagnosis Collected from

participants

177; 70 HC + 107 PD ESN with 10-fold cross

validation

AUC = 0.852 2018 Lacy et al., 2018

Classification of PD

from HC

Diagnosis Collected from

participants

39; 16 young HC + 12

elderly HC + 11 PD

LDA with leave-one-out

cross validation

Multiclass classification

(young HC vs.

age-matched HC vs. PD):

2018 Martínez et al.,

2018

Accuracy = 64.1%

Sensitivity = 47.1%

Specificity = 77.3%

Classification of PD

from HC

Diagnosis Collected from

participants

38; 10 HC + 28 PD SVM-Gaussian with

leave-one-out cross

validation

Training accuracy =
96.9%

2018 Oliveira H. M.

et al., 2018

Test accuracy = 76.6%

Classification of PD

from HC

Diagnosis Collected from

participants

30; 15 HC + 15 PD SVM-RBF, PNN with

10-fold cross validation

SVM-RBF: 2015 Oung et al., 2015

Accuracy = 88.80%

Sensitivity = 88.70%

Specificity = 88.15%

AUC = 88.48

Classification of PD

from HC

Diagnosis Collected from

participants

45; 14 HC + 31 PD Deep-MIL-CNN with LOSO

or RkF

With LOSO: 2019 Papadopoulos

et al., 2019Precision = 0.987

Sensitivity = 0.9

specificity = 0.993

F1-score = 0.943

With RkF:

Precision = 0.955

Sensitivity = 0.828

Specificity = 0.979

F1-score = 0.897

Classification of PD,

HC and post-stroke

Diagnosis and

differential

diagnosis

Collected from

participants

11; 3 HC + 5 PD + 3

post-stroke

MTFL with 10-fold cross

validation

PD vs. HC AUC = 0.983 2017 Papavasileiou

et al., 2017

Classification of PD

from HC

Diagnosis Collected from

participants

182; 94 HC + 88 PD LSTM, CNN-1D,

CNN-LSTM with 5-fold

cross-validation and a

training-test ratio of 90:10

CNN-LSTM: 2019 Reyes et al., 2019

Accuracy = 83.1%

Precision = 83.5%

Recall = 83.4%

F1-score = 81%

Kappa = 64%

Classification of PD

from HC

Diagnosis Collected from

participants

60; 30 HC + 30 PD Naïve Bayes, KNN, SVM

with leave-one-out cross

validation

SVM: 2019 Ricci et al., 2020

Accuracy = 95%

Precision = 0.951

AUC = 0.950

(Continued)
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TABLE 5 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification of PD,

HC and IH

Diagnosis and

differential

diagnosis

Collected from

participants

90; 30 HC + 30 PD + 30

IH

SVM-polynomial, random

forest, naïve Bayes with

10-fold cross validation

HC vs. PD, naïve Bayes or

random forest:

2018 Rovini et al., 2018

Precision = 0.967

Recall = 0.967

Specificity = 0.967

Accuracy = 0.967

F-measure = 0.967

HC + IH vs. PD, random

forest:

Precision = 1.000

Recall = 0.933

Specificity = 1.000

Accuracy = 0.978

F-measure = 0.966

Multiclass classification,

random forest:

Precision = 0.784

Recall = 0.778

Specificity = 0.889

Accuracy = 0.778

F-measure = 0.781

Classification of PD,

HC and IH

Diagnosis and

differential

diagnosis

Collected from

participants

45; 15 HC + 15 PD + 15

IH

SVM-polynomial, random

forest with 5-fold cross

validation

HC vs. PD, random forest: 2019 Rovini et al., 2019

Precision = 1.000

Recall = 1.000

Specificity = 1.000

Accuracy = 1.000

F-measure = 1.000

Multiclass classification

(HC vs. IH vs. PD),

random forest:

Precision = 0.930

Recall = 0.911

Specificity = 0.956

Accuracy = 0.911

F-measure = 0.920

Classification of PD

from ET

Differential

diagnosis

Collected from

participants

52; 32 PD + 20 ET SVM-linear with 10-fold

cross validation

Accuracy = 1 2016 Surangsrirat et al.,

2016Sensitivity = 1

Specificity = 1

Classification of PD

from HC

Diagnosis Collected from

participants

12; 10 HC + 2 PD Naive Bayes, LogitBoost,

random forest, SVM with

10-fold cross-validation

Random forest: 2017 Tahavori et al.,

2017Accuracy = 92.29%

Precision = 0.99

Recall = 0.99

Classification of PD

from HC

Diagnosis Collected from

participants

39; 16 HC + 23 PD SVM-RBF with 10-fold

stratified cross validation

Sensitivity = 88.9% 2010 Tien et al., 2010

Specificity = 100%

Precision = 100%

FPR = 0.0%

(Continued)
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TABLE 5 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification of PD

from HC

Diagnosis Collected from

participants

60; 30 HC + 30 PD Logistic regression, naïve

Bayes, random forest,

decision tree with 10-fold

cross validation

Random forest: 2018 Urcuqui et al.,

2018Accuracy = 82%

False negative rate = 23%

False positive rate = 12%

Classification of PD

from HC

Diagnosis PhysioNet 47; 18 HC + 29 PD SVM, KNN, random forest,

decision tree

SVM with cubic kernel: 2017 Alam et al., 2017

Accuracy = 93.6%

Sensitivity = 93.1%

Specificity = 94.1%

Classification of PD

from HC

Diagnosis PhysioNet 34; 17 HC + 17 PD MLP, SVM, decision tree MLP: 2018 Alaskar and

Hussain, 2018Accuracy = 91.18%

Sensitivity = 1

Specificity = 0.83

Error = 0.09

AUC = 0.92

Classification of PD

from HC and assess

the severity of PD

Diagnosis PhysioNet 166; 73 HC + 93 PD 1D-CNN, 2D-CNN, LSTM,

decision tree, logistic

regression, SVM, MLP

2D-CNN and LSTM

accuracy = 96.0%

2019 Alharthi and

Ozanyan, 2019

Classification of PD

from HC

Diagnosis PhysioNet 146; 60 HC + 86 PD SVM-Gaussian with 3- or

5-fold cross validation

Accuracy = 100%,

88.88%, and 100% in

three test groups

2019 Andrei et al., 2019

Classification of PD

from HC

Diagnosis PhysioNet 166; 73 HC + 93 PD ANN, SVM, naïve Bayes

with cross validation

ANN accuracy = 86.75% 2017 Baby et al., 2017

Classification of PD

from HC

Diagnosis PhysioNet 31; 16 HC + 15 PD SVM-linear, KNN, naïve

Bayes, LDA, decision tree

with leave-one-out cross

validation

SVM, KNN and decision

tree accuracy = 96.8%

2019 Félix et al., 2019

Classification of PD

from HC

Diagnosis PhysioNet 31; 16 HC + 15 PD SVM-linear with

leave-one-out cross

validation

Accuracy = 100% 2017 Joshi et al., 2017

Classification of PD

from HC

Diagnosis PhysioNet 165; 72 HC + 93 PD KNN, CART, decision tree,

random forest, naïve

Bayes, SVM-polynomial,

SVM-linear, K-means,

GMM with leave-one-out

cross validation

SVM:

Accuracy = 90.32%

Precision = 90.55%

Recall = 90.21%

F-measure = 90.38%

2019 Khoury et al., 2019

Classification of ALS,

HD, PD from HC

Diagnosis PhysioNet 64; 16 HC + 15 PD + 13

ALS + 20 HD

String grammar

unsupervised possibilistic

fuzzy C-medians with

FKNN, with 4-fold cross

validation

PD vs. HC accuracy =
96.43%

2018 Klomsae et al.,

2018

Classification of PD

from HC

Diagnosis PhysioNet 166; 73 HC + 93 PD Logistic regression,

decision trees, random

forest, SVM-Linear,

SVM-RBF, SVM-Poly, KNN

with cross validation

KNN: 2018 Mittra and Rustagi,

2018Accuracy = 93.08%

Precision = 89.58%

Recall = 84.31%

F1-score = 86.86%

Classification of PD

from HC

Diagnosis PhysioNet 85; 43 HC + 42 PD LS-SVM with

leave-one-out, 2- or

10-fold cross validation

Leave-one-out cross

validation:

2018 Pham, 2018

AUC = 1

Sensitivity = 100%

Specificity = 100%

Accuracy = 100%

(Continued)
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TABLE 5 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

10-fold cross validation:

AUC = 0.89

Sensitivity = 85.00%

Specificity = 73.21%

Accuracy = 79.31%

Classification of PD

from HC

Diagnosis PhysioNet 165; 72 HC + 93 PD LS-SVM with

leave-one-out, 2- or 5- or

10-fold cross validation

Accuracy = 100% 2018 Pham and Yan,

2018Sensitivity = 100%

Specificity = 100%

AUC = 1

Classification of PD

from HC

Diagnosis PhysioNet 166; 73 HC + 93 PD DCALSTM with stratified

5-fold cross validation

Sensitivity = 99.10% 2019 Xia et al., 2020

Specificity = 99.01%

Accuracy = 99.07%

Classification of HC,

PD, ALS and HD

Diagnosis and

differential

diagnosis

PhysioNet 64; 16 HC + 15 PD + 13

ALS + 20 HD

SVM-RBF with 10-fold

cross validation

PD vs. HC: 2009 Yang et al., 2009

Accuracy = 86.43%

AUC = 0.92

Classification of PD,

HD, ALS and ND

from HC

Diagnosis PhysioNet 64; 16 HC + 15 PD + 13

ALS + 20 HD

Adaptive neuro-fuzzy

inference system with

leave-one-out cross

validation

PD vs. HC: 2018 Ye et al., 2018

Accuracy = 90.32%

Sensitivity = 86.67%

Specificity = 93.75%

Classification of PD

from HC and assess

the severity of PD

Diagnosis mPower database 50; 22 HC + 28 PD Random forest, bagged

trees, SVM, KNN with

10-fold cross validation

Random forest: 2017 Abujrida et al.,

2017

PD vs. HC accuracy =
87.03%

PD severity assessment

accuracy = 85.8%

Classification of PD

from HC

Diagnosis mPower database 1,815; 866 HC + 949 PDCNN with 10-fold cross

validation

Accuracy = 62.1% 2018 Prince and de Vos,

2018

F1 score = 63.4%

AUC = 63.5%

Classification of PD

from HC

Diagnosis Dataset from

Fernandez et al.,

2013

49; 26 HC + 23 PD KFD-RBF, naïve Bayes,

KNN, SVM-RBF, random

forest with 10-fold cross

validation

Random forest accuracy

= 92.6%

2015 Wahid et al., 2015

ALS, amyotrophic lateral sclerosis; ANN, artificial neural network; AUC, area under the receiver operating characteristic (ROC) curve; AVS, acute unilateral vestibulopathy; BagDT,
bootstrap aggregation for a random forest of decision trees; CA, anterior lobe cerebella atrophy; CART, classification and regression trees; DCALSTM, dual-modal with each branch has
a convolutional network followed by an attention-enhanced bi-directional LSTM; DN, downbeat nystagmus syndrome; ESN, echo state network; FKNN, fuzzy k-nearest neighbor; GMM,
Gaussian mixture model; HC, healthy control; HD, Huntington’s disease; IH, idiopathic hyposmia; KFD, kernel Fisher discriminant; KNN, k-nearest neighbors; LDA, linear discriminant
analysis; LOSO, leave-one-subject-out; LS-SVM, least-squares support vector machine; LSTM, long short-termmemory; MCI, mild cognitive impairment; MIL, multiple-instance learning;
MLP, multilayer perceptron; MTFL, multi-task feature learning; NN, neural network; NSVC, nu-support vector classification; OT, primary orthostatic tremor; PD, Parkinson’s disease;
PDMCI, PD participants whomet criteria for mild cognitive impairment; PDNOMCI, PD participants with no indication of mild cognitive impairment; PNN, probabilistic neural network; PNP,
sensory polyneuropathy; PPV, phobic postural vertigo; QDA, quadratic discriminant analysis; RkF, repeated k-fold; SVM, support vector machine; SVM-Poly, support vector machine
with polynomial kernel; SVM-RBF, support vector machine with radial basis function kernel.
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TABLE 6 | Studies that applied machine learning models to MRI data to diagnose PD (n = 36).

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification of PD

from MSA

Differential

diagnosis

Collected from

participants

150; 54 HC + 65 PD +
31 MSA

SVM with

leave-one-out-cross

validation

MSA vs. PD: 2019 Abos et al., 2019

Accuracy = 0.79

Sensitivity = 0.71

Specificity = 0.86

MSA vs. HC:

Accuracy = 0.79

Sensitivity = 0.84

Specificity = 0.74

MSA vs. subsample of PD:

Accuracy = 0.84

Sensitivity = 0.77

Specificity = 0.90

Classification of PD

from MSA

Differential

diagnosis

Collected from

participants

151; 59 HC + 62 PD +
30 MSA

SVM with

leave-one-out-cross

validation

Accuracy = 77.17% 2019 Baggio et al.,

2019Sensitivity = 83.33%

Specificity = 74.19%

Classification of PD

from HC

Diagnosis Collected from

participants

94; 50 HC + 44 PD CNN with 85 subjects for

training and 9 for testing

Training accuracy = 95.24% 2019 Banerjee et al.,

2019Testing accuracy = 88.88%

Classification of PD

from HC

Diagnosis Collected from

participants

47; 26 HC + 21 PD SVM-linear with

leave-one-out cross

validation

Accuracy = 93.62% 2015 Chen et al.,

2015Sensitivity = 90.47%

Specificity = 96.15%

Classification of PD

from PSP

Differential

diagnosis

Collected from

participants

78; 57 PD + 21 PSP SVM with leave-one-out

cross validation

Accuracy = 100% 2013 Cherubini et al.,

2014aSensitivity = 1

Specificity = 1

Classification of PD,

MSA, PSP and HC

Diagnosis and

differential

diagnosis

Collected from

participants

106; 36 HC + 35 PD +
16 MSA + 19 PSP

Elastic Net regularized

logistic regression with

nested 10-fold cross

validation

HC vs. PD/MSA-P/PSP: 2017 Du et al., 2017

AUC = 0.88

Sensitivity = 0.80

Specificity = 0.83

PPV = 0.82

NPV = 0.81

HC vs. PD:

AUC = 0.91

Sensitivity = 0.86

Specificity = 0.80

PPV = 0.82

NPV = 0.89

PD vs. MSA/PSP:

AUC = 0.94

Sensitivity = 0.86

Specificity = 0.87

PPV = 0.88

NPV = 0.84

PD vs. MSA:

AUC = 0.99

Sensitivity = 0.97

Specificity = 1.00

PPV = 1.00

NPV = 0.93

PD vs. PSP:

AUC = 0.99
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TABLE 6 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Sensitivity = 0.97

Specificity = 1.00

PPV = 1.00

NPV = 0.94

MSA vs. PSP:

AUC = 0.98

Sensitivity = 0.94

Specificity = 1.00

PPV = 1.00

NPV = 0.93

Classification of HC,

PD, MSA and PSP

Diagnosis and

differential

diagnosis

Collected from

participants

64; 22 HC + 21 PD + 11

MSA + 10 PSP

SVM-linear with

leave-one-out cross

validation

PD vs. HC: 2011 Focke et al.,

2011Accuracy = 41.86%

Sensitivity = 38.10%

Specificity = 45.45%

PD vs. MSA:

Accuracy = 71.87%

Sensitivity = 36.36%

Specificity = 90.48%

PD vs. PSP:

Accuracy = 96.77%

Sensitivity = 90%

Specificity = 100%

MSA vs. PSP:

Accuracy = 76.19%

MSA vs. HC:

Accuracy = 78.78%

Sensitivity = 54.55%

Specificity = 90.91%

PSP vs. HC:

Accuracy = 93.75%

Sensitivity = 90.00%

Specificity = 95.45%

Classification of PD

and atypical PD

Differential

diagnosis

Collected from

participants

40; 17 PD + 23 atypical

PD

SVM-RBF with 10-fold

cross-validation

Accuracy = 97.50% 2012 Haller et al.,

2012TPR = 0.94

FPR = 0.00

TNR = 1.00

FNR = 0.06

Classification of PD

and other forms of

Parkinsonism

Differential

diagnosis

Collected from

participants

36; 16 PD + 20 other

Parkinsonism

SVM-RBF with 10-fold

cross validation

Accuracy = 86.92% 2012 Haller et al.,

2013TP = 0.87

FP = 0.14

TN = 0.87

FN = 0.13

Classification of HC,

PD, PSP, MSA-C and

MSA-P

Diagnosis and

differential

diagnosis

Collected from

participants

464; 73 HC + 204 PD +
106 PSP + 21 MSA-C +
60 MSA-P

SVM-RBF with 10-fold

cross validation

PD vs. HC: 2016 Huppertz et al.,

2016Sensitivity = 65.2%

Specificity = 67.1%

Accuracy = 65.7%
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TABLE 6 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

PD vs. PSP:

Sensitivity = 82.5%

Specificity = 86.8%

Accuracy = 85.3%

PD vs. MSA-C:

Sensitivity = 76.2%

Specificity = 96.1%

Accuracy = 94.2%

PD vs. MSA-P:

Sensitivity = 86.7%

Specificity = 92.2%

Accuracy = 90.5%

Classification of PD

from HC

Diagnosis Collected from

participants

42; 21 HC + 21 PD SVM-linear with stratified

10-fold cross validation

Accuracy = 78.33% 2017 Kamagata et al.,

2017Precision = 85.00%

Recall = 81.67%

AUC = 85.28%

Classification of PD,

PSP, MSA-P and HC

Diagnosis and

differential

diagnosis

Collected from

participants

419; 142 HC + 125 PD

+ 98 PSP + 54 MSA-P

CNN with train-validation

ratio of 85:15

PD: 2019 Kiryu et al., 2019

Sensitivity = 94.4%

Specificity = 97.8%

Accuracy = 96.8%

AUC = 0.995

PSP:

Sensitivity = 84.6%

Specificity = 96.0%

Accuracy = 93.7%

AUC = 0.982

MSA-P:

Sensitivity = 77.8%

Specificity = 98.1%

Accuracy = 95.2%

AUC = 0.990

HC:

Sensitivity = 100.0%

Specificity = 97.5%

Accuracy = 98.4%

AUC = 1.000

Classification of PD

from HC

Diagnosis Collected from

participants

65; 31 HC + 34 PD FCP with 36 out of the 65

subjects as the training set

AUC = 0.997 2016 Liu H. et al.,

2016

Classification of PD,

PSP, MSA-C and

MSA-P

Differential

diagnosis

Collected from

participants

85; 47 PD + 22 PSP + 9

MSA-C + 7 MSA-P

SVM-linear with

leave-one-out cross

validation

4-class classification (MSA-C

vs. MSA-P vs. PSP vs. PD)

accuracy = 88%

2017 Morisi et al.,

2018

Classification of PD

from HC

Diagnosis Collected from

participants

89; 47 HC + 42 PD Boosted logistic regression

with nested

cross-validation

Accuracy = 76.2% 2019 Rubbert et al.,

2019Sensitivity = 81%

Specificity = 72.7%

Classification of PD,

PSP and HC

Diagnosis and

differential

diagnosis

Collected from

participants

84; 28 HC + 28 PSP +
28 PD

SVM-linear with

leave-one-out cross

validation

PD vs. HC: 2014 Salvatore et al.,

2014Accuracy = 85.8%

Specificity = 86.0%
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TABLE 6 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Sensitivity = 86.0%

PSP vs. HC:

Accuracy = 89.1%

Specificity = 89.1%

Sensitivity = 89.5%

PSP vs. PD:

Accuracy = 88.9%

Specificity = 88.5%

Sensitivity = 89.5%

Classification of PD,

APS (MSA, PSP) and

HC

Diagnosis and

differential

diagnosis

Collected from

participants

100; 35 HC + 45 PD +
20 APS

CNN-DL, CR-ML, RA-ML

with 5-fold cross-validation

PD vs. HC with CNN-DL: 2019 Shinde et al.,

2019Test accuracy = 80.0%

Test sensitivity = 0.86

Test specificity = 0.70

Test AUC = 0.913

PD vs. APS with CNN-DL:

Test accuracy = 85.7%

Test sensitivity = 1.00

Test specificity = 0.50

Test AUC = 0.911

Classification of PD

from HC

Diagnosis Collected from

participants

101; 50 HC + 51 PD SVM-RBF with

leave-one-out cross

validation

Sensitivity = 92%

Specificity = 87%

2017 Tang et al., 2017

Classification of PD

from HC

Diagnosis Collected from

participants

85; 40 HC + 45 PD SVM-linear with

leave-one-out, 5-fold,

0.632-fold (1-1/e), 2-fold

cross validation

Accuracy = 97.7% 2016 Zeng et al., 2017

Classification of PD

from HC

Diagnosis PPMI database 543; 169 HC + 374 PD RLDA with JFSS with

10-fold cross validation

Accuracy = 81.9% 2016 Adeli et al., 2016

Classification of PD

from HC

Diagnosis PPMI database 543; 169 HC + 374 PD RFS-LDA with 10-fold

cross validation

Accuracy = 79.8% 2019 Adeli et al., 2019

Classification of PD

from HC

Diagnosis PPMI database 543; 169 HC + 374 PD Random forest (for feature

selection and clinical

score); SVM with 10-fold

stratified cross validation

Accuracy = 0.93 2018 Amoroso et al.,

2018AUC = 0.97

Sensitivity = 0.93

Specificity = 0.92

Classification of PD,

HC and prodromal

Diagnosis PPMI database 906; 203 HC + 66

prodromal + 637 PD

MLP, XgBoost, random

forest, SVM with 5-fold

cross validation

MLP: 2020 Chakraborty

et al., 2020Accuracy = 95.3%

Recall = 95.41%

Precision = 97.28%

F1-score = 94%

Classification of PD

from HC

Diagnosis PPMI database Dataset 1: 15; 6 HC + 9

PD

SVM with leave-one-out

cross validation

Dataset 1: 2014 Chen et al.,

2014EER = 87%

Dataset 2: 39; 21 HC +
18 PD

Accuracy = 80%

AUC = 0.907

Dataset 2:

EER = 73%

Accuracy = 68%

AUC = 0.780

Classification of PD

from HC

Diagnosis PPMI database 80; 40 HC + 40 PD Naïve Bayes, SVM-RBF

with 10-fold cross

validation

SVM: 2019 Cigdem et al.,

2019
Accuracy = 87.50%
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TABLE 6 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Sensitivity = 85.00%

Specificity = 90.00%

AUC = 90.00%

Classification of PD

from HC

Diagnosis PPMI database 37; 18 HC + 19 PD SVM-linear with

leave-one-out cross

validation

Accuracy = 94.59% 2017 Kazeminejad

et al., 2017

Classification of PD,

HC and SWEDD

Diagnosis and

subtyping

PPMI database 238; 62 HC + 142 PD +
34 SWEDD

Joint learning with 10-fold

cross validation

HC vs. PD: 2018 Lei et al., 2019

Accuracy = 91.12%

AUC = 94.88%

HC vs. SWEDD:

Accuracy = 94.89%

AUC = 97.80%

PD vs. SWEDD:

accuracy = 92.12%

AUC = 93.82%

Classification of PD

and SWEDD from HC

Diagnosis PPMI database Baseline: 238; 62 HC +
142 PD + 34 SWEDD

12 months: 186; 54 HC

+ 123 PD + 9 SWEDD

24 months: 127; 7 HC +
88 PD + 22 SWEDD

SSAE with 10-fold cross

validation

HC vs. PD:

Accuracy = 85.24%,

88.14%, and 96.19% for

baseline, 12m, and 24m

HC vs. SWEDD:

Accuracy = 89.67%,

95.24%, and 93.10% for

baseline, 12m, and 24m

2019 Li et al., 2019

Classification of PD

from HC

Diagnosis PPMI database 112; 56 HC + 56 PD RLDA with 8-fold cross

validation

Accuracy = 70.5% 2016 Liu L. et al.,

2016AUC = 71.1

Classification of PD

from HC

Diagnosis PPMI database 60; 30 HC + 30 PD SVM, ELM with train-test

ratio of 80:20

ELM: 2016 Pahuja and

Nagabhushan,

2016

Training accuracy = 94.87%

Testing accuracy = 90.97%

Sensitivity = 0.9245

Specificity = 0.9730

Classification of PD

from HC

Diagnosis PPMI database 172; 103 HC + 69 PD Multi-kernel SVM with

10-fold cross validation

2017 Peng et al., 2017

Accuracy = 85.78%

Specificity = 87.79%

Sensitivity = 87.64%

AUC = 0.8363

Classification of PD

from HC

Diagnosis and

subtyping

PPMI database 109; 32 HC + 77 PD (55

PD-NC + 22 PD-MCI)

SVM with 2-fold cross

validation

PD vs. HC: 2016 Peng et al., 2016

Accuracy = 92.35%

Sensitivity = 0.9035

Specificity = 0.9431

AUC = 0.9744

PD-MCI vs. HC:

Accuracy = 83.91%

Sensitivity = 0.8355

Specificity = 0.8587

AUC = 0.9184

PD-MCI vs. PD-NC:

Accuracy = 80.84%

Sensitivity = 0.7705
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TABLE 6 | Continued

Objectives Type of

diagnosis

Source of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Specificity = 0.8457

AUC = 0.8677

Classification of PD,

HC and SWEDD

Diagnosis and

subtyping

PPMI database 831; 245 HC + 518 PD

+ 68 SWEDD

LSSVM-RBF with cross

validation

Accuracy = 99.9%

Specificity = 100%

Sensitivity = 99.4%

2015 Singh and

Samavedham,

2015

Classification of PD,

HC and SWEDD

Diagnosis and

differential

diagnosis

PPMI database 741; 262 HC + 408 PD

+ 71 SWEDD

LSSVM-RBF with 10-fold

cross validation

PD vs. HC accuracy =
95.37%

2018 Singh et al.,

2018

PD vs. SWEDD accuracy =
96.04%

SWEDD vs. HC accuracy =
93.03%

Classification of PD

from HC

Diagnosis PPMI database 408; 204 HC + 204 PD CNN (VGG and ResNet) ResNet50 accuracy = 88.6% 2019 Yagis et al., 2019

Classification of PD

from HC

Diagnosis PPMI database 754; 158 HC + 596 PD FCN, GCN with 5-fold

cross validation

AUC = 95.37% 2018 Zhang et al.,

2018

APS, atypical parkinsonian syndromes; AUC, area under the receiver operating characteristic (ROC) curve; CNN, convolutional neural network; CNN-DL, convolutional neural network
with discriminative localization; CR-ML, contrast ratio classifier; EER, equal error rate; ELM, extreme learning machine; FCN, fully connected network; FCP, folded concave penalized
(learning); FN, false negative; FNR, false negative rate; FP, false positive; FPR, false positive rate; GCN, graph convolutional network; HC, healthy control; JFSS, joint feature-sample
selection; LSSVM, least-squares support vector machine; MLP, multilayer perceptron; MSA, multiple system atrophy; MSA-C, multiple system atrophy with a cerebellar syndrome;
MSA-P, multiple system atrophy with a parkinsonian type; PD, Parkinson’s disease; PD-MCI, PD participants who met criteria for mild cognitive impairment; PD-NC, PD participants with
no indication of mild cognitive impairment; PSP, progressive supranuclear palsy; RA-ML, radiomics based classifier; ResNet, residual neural network; RFS-LDA, robust feature-sample
linear discriminant analysis; RLDA, robust linear discriminant analysis; SSAE, stacked sparse auto-encoder; SVM, support vector machine; SVM-RBF, support vector machine with radial
basis function kernel; SWEDD, PD with scans without evidence of dopaminergic deficit; TN, true negative; TNR, true negative rate; TP, true positive; TPR, true positive rate; XgBoost,
extreme gradient boosting.

learning in 6 studies (33.3%), with neural network in 5 studies
(27.8%), with SVM in 4 studies (22.2%), with regression in 1
(5.6%) study and with nearest neighbor (5.6%) in 1 study. One
study (5.6%) used machine learning models that do not belong
to any given categories to obtain the highest per-study accuracy
(Figure 4B).

DISCUSSION

Principal Findings
In this review, we present results from published studies that
applied machine learning to the diagnosis and differential
diagnosis of PD. Since the number of included papers
was relatively large, we focused on a high-level summary
rather than a detailed description of methodology and direct
comparison of outcomes of individual studies. We also
provide an overview of sample size, data source and data
type, for a more in-depth understanding of methodological
differences across studies and their outcomes. Furthermore,
we assessed (a) how large the participant pool/dataset was,
(b) to what extent new data (i.e., unpublished, raw data
acquired from locally recruited human participants) were
collected and used, (c) the feasibility of machine learning
and the possibility of introducing new biomarkers in the
diagnosis of PD. Overall, methodology studies that proposed
and tested novel technical approaches (e.g., machine learning
and deep learning models, data acquisition devices, and feature

extraction algorithms) have repetitively shown that features
extracted from data modalities including voice recordings and
handwritten patterns could lead to high patient-level diagnostic
performance, while facilitating accessible and non-invasive data
acquisition. Nevertheless, only a small number of studies
further validated these technical approaches in clinical settings
using local human participants recruited specifically for these
studies, indicating a gap between model development and their
clinical applications.

A per-study diagnostic accuracy above chance levels was
achieved in all studies that used accuracy in model evaluation
(Figure 4A). Apart from studies using CSF data that measured
model performance with AUC, classification accuracy associated
with 8 other data types ranged between 85.6% (PET) and
94.4% (SPECT), with an average of 89.9 (3.0) %. Therefore,
although the small number of studies of some data types
may not allow for a generalizable prediction of how well
these data types can help us differentiate PD from HC or
atypical Parkinsonian disorders, the application of machine
learning to a variety of data types led to high accuracy in
the diagnosis of PD. In addition, an accuracy significantly
above chance levels was achieved in all machine learning
models (Supplementary Table 1), while SVM, neural networks
and ensemble learning were among the most popular model
choices, all yielding great applicability to a variety of data
modalities. In the meantime, when compared with other
models, they led to the per-study highest classification accuracy
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TABLE 7 | Studies that applied machine learning models to handwritten patterns, SPECT, PET, CSF, other data types and combinations of data to diagnose PD (n = 67).

Objectives Type of

diagnosis

Source of

data

Type of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification

of PD from

HC

Diagnosis HandPD Handwritten

patterns

92; 18 HC +
74 PD

LDA, KNN, Gaussian naïve

Bayes, decision tree, Chi2

with Adaboost with 5- or

4-fold stratified cross

validation

Chi-2 with Adaboost:

Accuracy = 76.44%

Sensitivity = 70.94%

Specificity = 81.94%

2019 Ali et al., 2019b

Classification

of PD (PD +
SWEDD) from

HC

Diagnosis PPMI

database

More than one 388; 194 HC

+ 168 PD +
26 SWEDD

Ensemble method of several

SVM with linear kernel with

leave-one-out cross validation

Accuracy = 94.38% 2018 Castillo-Barnes

et al., 2018

Classification

of PD from

HC

Diagnosis PPMI

database

More than one 586; 184 HC

+ 402 PD

MLP, BayesNet, random

forest, boosted logistic

regression with a train-test

ratio of 70:30

Boosted logistic regression:

Accuracy = 97.159%

AUC curve = 98.9%

2016 Challa et al., 2016

Classification

of tPD from

rET

Differential

diagnosis

Collected

from

participants

More than one 30; 15 tPD +
15rET

Multi-kernel SVM with

leave-one-out cross validation

Accuracy = 100% 2014 Cherubini et al.,

2014b

Classfication

of PD, HC

and atypical

PD

Diagnosis,

differential

diagnosis and

subtyping

PPMI

database and

SNUH cohort

SPECT imaging

data

PPMI: 701;

193 HC + 431

PD + 77

SWEDD

snuh: 82 PD

CNN with train-validation ratio

of 90:10

PPMI:

Accuracy = 96.0%

Sensitivity = 94.2%

Specificity = 100%

SNUH:

Accuracy = 98.8%

Sensitivity = 98.6%

Specificity = 100%

2017 Choi et al., 2017

Classification

of PD from

HC

Diagnosis Collected

from

participants

Other 270; 120 HC

+ 150 PD

Random forest Classification error = 49.6%

(rs11240569)

Classification error = 44.8%

(rs708727)

Classification error =
49.3% (rs823156)

2019 Cibulka et al.,

2019

Classification

of PD from

HC

Diagnosis HandPD Handwritten

patterns

92; 18 HC +
74 PD

Naïve Bayes, OPF, SVM with

cross-validation

SVM-RBF accuracy =
85.54%

2018 de Souza et al.,

2018

Classification

of PD from

HC

Diagnosis PPMI

database

More than one 1194; 816 HC

+ 378 PD

BoostPark Accuracy = 0.901

AUC-ROC = 0.977

AUC-PR = 0.947

F1-score = 0.851

2017 Dhami et al.,

2017

Classification

of PD and

HC, and PD

+ SWEDD

and HC

Diagnosis PPMI

database

More than one 430; 127 HC

+ 263 PD +
40 SWEDD

AdaBoost, SVM, naïve Bayes,

decision tree, KNN, K-Means

with 5-fold cross validation

PD vs. HC (adaboost):

Accuracy = 0.98954704

Sensitivity = 0.97831978

Specificity = 0.99796748

PPV = 0.99723757

NPV = 0.98396794

LOR = 10.0058805

PD + SWEDD vs HC

(adaboost):

Accuracy = 0.9825784

Sensitivity = 0.97560976

Specificity = 0.98780488

PPV = 0.98360656

NPV = 0.98181818

LOR = 8.08332861

2016 Dinov et al., 2016

Classification

of PD from

HC

Diagnosis Collected

from

participants

CSF Cohort 1: 160;

80 HC + 80

PD

Cohort 2: 60;

30 HC + 30

PD

Elastic Net and gradient

boosted regression with

10-fold cross validation

Ensemble of 60 decision

trees identified with gradient

boosted model:

Sensitivity = 85%

Specificity = 75%

PPV = 77%

NPV = 83%

AUC = 0.77

2018 Dos Santos et al.,

2018

(Continued)
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TABLE 7 | Continued

Objectives Type of

diagnosis

Source of

data

Type of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification

of PD from

HC

Diagnosis Collected

from

participants

Handwritten

patterns

75; 38 HC +
37 PD

SVM-RBF with stratified

10-fold cross-validation

Accuracy = 88.13%

Sensitivity = 89.47%

Specificity = 91.89%

2015 Drotár et al., 2015

Classification

of PD from

HC

Diagnosis Collected

from

participants

Handwritten

patterns

75; 38 HC +
37 PD

KNN, ensemble AdaBoost,

SVM

SVM:

Accuracy = 81.3%

Sensitivity = 87.4%

Specificity = 80.9%

2016 Drotár et al., 2016

Classification

of IPD, VaP

and HC

Differential

diagnosis

Collected

from

participants

More than one 45; 15 HC +
15 IPD + 15

VaP

MLP, DBN with 10-fold cross

validation

IPD + VaP vs HC with MLP:

Accuracy = 95.68%

Specificity = 98.08%

Sensitivity = 92.44%

VaP vs. IPD with DBN:

Accuracy = 75.33%

Specificity = 72.31%

Sensitivity = 79.18%

2018 Fernandes et al.,

2018

Classification

of PD from

HC

Diagnosis Collected

from

participants

More than one 75; 15 HC +
60 PD

blood: 75; 15

HC + 60 PD

FDOPA PET:

58; 14 HC +
44 PD

FDG PET: 67;

16 HC +
51 PD

SVM-linear, random forest

with leave-one-out cross

validation

SVM AUC for FDOPA +
metabolomics: 0.98

SVM AUC for FDG +
metabolomics: 0.91

2019 Glaab et al., 2019

Classification

of PD, HC

and SWEDD

Diagnosis and

subtyping

PPMI

database

More than one 666; 415 HC

+ 189 PD +
62 SWEDD

EPNN, PNN, SVM, KNN,

classification tree with

train-test ratio of 90:10

EPNN: PD vs SWEDD vs

HC accuracy = 92.5%

PD vs HC accuracy =
98.6%

SWEDD vs HC accuracy =
92.0%

PD vs. SWEDD accuracy

= 95.3%

2015 Hirschauer et al.,

2015

Classification

of PD from

HC and

assess the

severity of PD

Diagnosis Picture

Archiving and

Communication

System

(PACS)

SPECT imaging

data

202; 6 HC +
102 mild PD +
94 severe PD

Linear regression, SVM-RBF

with a train-test ratio of 50:50

SVM-RBF:

Sensitivity = 0.828

Specificity = 1.000

PPV = 0.837

NPV = 0.667

Accuracy = 0.832

AUC = 0.845

Kappa = 0.680

2019 Hsu et al., 2019

Classification

of PD from VP

Differential

diagnosis

Collected

from

participants

SPECT imaging

data

244; 164 PD +
80 VP

Logistic regression, LDA, SVM

with 10-fold cross-validation

SVM:

Accuracy = 0.904

Sensitivity = 0.954

Specificity = 0.801

AUC = 0.954

2014 Huertas-

Fernández et al.,

2015

Classification

of PD from

HC

Diagnosis Collected

from

participants

SPECT imaging

data

208; 108 HC

+ 100 PD

SVM, KNN, NM with 3-fold

cross validation

SVM:

Sensitivity = 89.02%

Specificity = 93.21%

AUC = 0.9681

2012 Illan et al., 2012

Classification

of PD from

HC

Diagnosis Collected

from

participants

Handwritten

patterns

72; 15 HC +
57 PD

CNN with 10-fold cross

validation or leave-one-out

cross validation

Accuracy = 88.89% 2018 Khatamino et al.,

2018

Classification

of PD from

HC

Diagnosis Collected

from

participants

Other 10; 5 HC + 5

PD

SVM with

leave-one-subject-out cross

validation

Sensitivity = 0.90

Specificity = 0.90

2013 Kugler et al.,

2013

(Continued)
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TABLE 7 | Continued

Objectives Type of

diagnosis

Source of

data

Type of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification

of PD from

HC

Diagnosis UCI machine

learning

repository

Handwritten

patterns

72; 15 HC +
57 PD

SVM-linear, SVM-RBF, KNN

with leave-one-subject-out

cross validation

SVM-linear:

Accuracy = 97.52%

MCC = 0.9150

F-score = 0.9828

2019 İ et al., 2019

Classification

of PD from

HC

Diagnosis Collected

postmortem

CSF 105; 57 HC +
48 PD

SVM with 10-fold cross

validation

Sensitivity = 65%

Specificity = 79%

AUC = 0.79

2013 Lewitt et al., 2013

Classification

of PD from

HC

Diagnosis Collected

from

participants

CSF 78; 42 HC +
36 PD

Random forest and extreme

gradient tree boosting with

10-fold cross validation

Extreme gradient tree

boosting:

Specificity = 78.6%

Sensitivity = 83.3%

AUC = 83.9%

2018 Maass et al.,

2018

Classification

of PD from

HC or NPH

Diagnosis and

differential

diagnosis

Collected

from

participants

CSF 157; 68 HC +
82 PD + 7

NPH

SVM with 10-fold cross

validation or leave-one-out

cross validation

Cohort 1, PD vs HC:

AUC = 0.76

Cohort 2, PD vs HC:

AUC = 0.78

Cohort 3, PD vs HC:

AUC = 0.31

Cohort 4, PD vs NPH:

AUC = 0.88

2020 Maass et al.,

2020

Classification

of PD from

HC

Diagnosis PPMI

database

More than one 550; 157 HC

+ 342 PD +
51 SWEDD

SVM, random forest, MLP,

logistic regression, KNN with

nested cross-validation

Motor features, SVM:

Accuracy = 78.4%

AUC = 84.7%

Non-motor features, KNN:

Accuracy = 82.2%

AUC = 88%

2018 Mabrouk et al.,

2019

Classification

of PD from

HC

Diagnosis PPMI

database

SPECT imaging

data

642; 194 HC

+ 448 PD

CNN (LENET53D,

ALEXNET3D) with 10-fold

stratified cross-validation

ALEXNET3D:

Accuracy = 94.1%

AUC = 0.984

2018 Martinez-Murcia

et al., 2018

Classification

of PD from

HC

Diagnosis Collected

from

participants

Handwritten

patterns

75; 10 HC +
65 PD

MLP, non-linear SVM, random

forest, logistic regression with

stratified 10-fold

cross-validation

MLP:

Accuracy = 84%

Sensitivity = 75.7%

Specificity = 88.9%

Weighted Kappa = 0.65

AUC = 0.86

2015 Memedi et al.,

2015

Classification

of PD from

HC

Diagnosis Parkinson’s

Disease

Handwriting

Database

(PaHaW)

Handwritten

patterns

69; 36 HC +
33 PD

Random forest with stratified

7-fold cross-validation

Accuracy = 89.81%

Sensitivity = 88.63%

Specificity = 90.87%

MCC = 0.8039

2018 Mucha et al.,

2018

Classification

of PD, MSA,

PSP, CBS

and HC

Differential

diagnosis

Collected

from

participants

SPECT imaging

data

578; 208 HC

+ 280 PD +
21 MSA + 41

PSP + 28

CBS

SVM with 5-fold

cross-validation

Accuracy = 58.4–92.9% 2019 Nicastro et al.,

2019

Classification

of PD from

HC

Diagnosis Collected

from

participants

Handwritten

patterns

30; 15 HC +
15 PD

KNN, decision tree, random

forest, SVM, AdaBoost with

3-fold cross validation

Random forest accuracy =
0.91

2018 Nõmm et al.,

2018

Classification

of HC, AD

and PD

Diagnosis and

differential

diagnosis

The authors’

institutional

oct database

Other 75; 27 HC +
28 PD + 20

AD

SVM-RBF with 2-, 5- and

10-fold cross validation

Accuracy = 87.7%

HC sensitivity = 96.2%

HC specificity = 88.2%

PD sensitivity = 87.0%

PD specificity = 100.0%

2019
Nunes et al.,

2019

Classification

of idiopathic

PD, atypical

Parkinsonian

and ET

Differential

diagnosis

Collected

from

participants

Other 85; 50

idiopathic PD

+ 26 atypical

PD + 9 ET

SVM, random forest with

leave-one-out cross validation

SVM accuracy = 100%

Random forest accuracy

= 98.5%

2019 Nuvoli et al., 2019
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TABLE 7 | Continued

Objectives Type of

diagnosis

Source of

data

Type of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification

of PD from

HC

Diagnosis PPMI

database

SPECT imaging

data

654; 209 HC

+ 445 PD

SVM-linear with leave-one-out

cross validation

Accuracy = 97.86%

Sensitivity = 97.75%

Specificity = 98.09%

2015 Oliveira and

Castelo-Branco,

2015

Classification

of PD from

HC

Diagnosis PPMI

database

SPECT imaging

data

652; 209 HC

+ 443 PD

SVM-linear, KNN, logistic

regression with leave-one-out

cross validation

SVM-linear:

Accuracy = 97.9%

Sensitivity = 98.0%

Specificity = 97.6%

2017 Oliveira F. et al.,

2018

Classification

of PD and

non-PD (ET,

drug-induced

Parkinsonism)

Differential

diagnosis

Collected

from

participants

SPECT imaging

data

90; 56 PD +
34 non-PD

SVM-RBF with leave-one-out

or 5-fold cross validation

Accuracy = 95.6% 2014 Palumbo et al.,

2014

Classification

of PD from

HC

Diagnosis Collected

from

participants

Handwritten

patterns

55; 18 HC +
37 PD

Naïve Bayes, OPF, SVM-RBF

with 10-fold cross validation

Naïve Bayes accuracy =
78.9%

2015 Pereira et al.,

2015

Classification

of PD from

HC

Diagnosis HandPD Handwritten

patterns

92; 18 HC +
74 PD

Naïve Bayes, OPF, SVM-RBF

with cross-validation

SVM-RBF recognition rate

(sensitivity) = 66.72%

2016 Pereira et al.,

2016a

Classification

of PD from

HC

Diagnosis Extended

handpd

dataset with

signals

extracted

from a smart

pen

Handwritten

patterns

35; 21 HC +
14 PD

CNN with cross validation

with a train:test ratio of 75:25

or 50:50

Accuracy = 87.14% 2016 Pereira et al.,

2016b

Classification

of PD from

HC

Diagnosis HandPD Handwritten

patterns

92; 18 HC +
74 PD

CNN, OPF, SVM, naïve Bayes

with train-test split = 50:50

CNN-Cifar10 accuracy =
99.30%

Early stage accuracy with

CNN-ImageNet = 96.35%

or 94.01% for Exam 3 or

Exam 4

2018 Pereira et al.,

2018

Classification

of PD from

HC

Diagnosis UCI machine

learning

repository

More than one Dataset 1: 40;

20 HC + 20

PD

dataset 2: 77;

15 HC +
62 PD

Random forest, KNN,

SVM-RBF, ensemble method

with 5-fold cross validation

Ensemble method:

Accuracy = 95.89%

Specificity = 100%

Sensitivity = 91.43%

2019 Pham et al., 2019

Classification

of PD from

HC

Diagnosis PPMI

database

More than one 618; 195 HC

+ 423 PD

SVM-linear, SVM-RBF,

classification tree with a

train-test ratio of 70:30

SVM-RBF, test set:

Accuracy = 85.48%

Sensitivity = 90.55%

Specificity = 74.58%

AUC = 88.22%

2014 Prashanth et al.,

2014

Classification

of PD from

HC

Diagnosis and

subtyping

PPMI

database

SPECT imaging

data

715; 208 HC

+ 427 PD +
80 SWEDD

SVM, naïve Bayes, boosted

trees, random forest with

10-fold cross validation

SVM:

Accuracy = 97.29%

Sensitivity = 97.37%

Specificity = 97.18%

AUC = 99.26

2016 Prashanth et al.,

2017

Classification

of PD from

HC

Diagnosis PPMI

database

More than one 584; 183 HC

+ 401 PD

Naïve Bayes, SVM-RBF,

boosted trees, random forest

with 10-fold cross validation

SVM:

Accuracy = 96.40%

Sensitivity = 97.03%

Specificity = 95.01%

AUC = 98.88%

2016 Prashanth et al.,

2016

Classification

of PD from

HC

Diagnosis PPMI

database

Other 626; 180 HC

+ 446 PD

Logistic regression, random

forests, boosted trees, SVM

with cross validation

Accuracy > 95%

AUC > 95%

Random forests:

Accuracy = 96.20–97.14%

(95% CI)

2018 Prashanth and

Dutta Roy, 2018
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TABLE 7 | Continued

Objectives Type of

diagnosis

Source of

data

Type of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification

of PD from

HC

Diagnosis mPower

database

More than one 133 out of

1,513 with

complete

source data;

46 HC + 87

PD

Logistic regression, random

forests, DNN, CNN, Classifier

Ensemble, Multi-Source

Ensemble learning with

stratified 10-fold cross

validation

Ensemble learning:

Accuracy = 82.0%

F1-score = 87.1%

2019 Prince et al.,

2019

Classification

of PD from

HC

Diagnosis HandPD Handwritten

patterns

35; 21 HC +
14 PD

Bidirectional Gated Recurrent

Units with a

train-validation-test ratio of

40:10:50 or 65:10:25

The Spiral dataset:

Accuracy = 89.48%

Precision = 0.848

Recall = 0.955

F1-score = 0.897

The Meander dataset:

Accuracy = 92.24%

Precision = 0.952

Recall = 0.883

F1-score = 0.924

2019 Ribeiro et al.,

2019

Classification

of PD from

HC

Diagnosis Collected

from

participants

Handwritten

patterns

130; 39 elderly

HC + 40

young HC +
39 PD + 6 PD

(validation set)

+ 6 HC

(validation set)

KNN, SVM-Gaussian, random

forest with leave-one-out

cross validation

SVM for PD vs young HC:

Accuracy = 94.0%

Sensitivity = 0.94

Specificity = 0.94

F1-score = 0.94

SVM for PD vs elderly HC:

Accuracy = 89.3%

Sensitivity = 0.89

Specificity = 0.89

F1-score = 0.89

Random forest for validation

set:

Accuracy = 83.3%

Sensitivity = 0.92

Specificity = 0.93

F1-score = 0.92

2019 Rios-Urrego

et al., 2019

Classification

of IPD from

non-IPD

Differential

diagnosis

Collected

from

participants

PET imaging 87; 39 IPD +
48 non-IPD

(24 MSA + 24

PSP)

SVM with leave-one-out cross

validation

Accuracy = 78.16%

Sensitivity = 69.29%

Specificity = 85.42%

2015 Segovia et al.,

2015

Classification

of PD from

HC

Diagnosis Dataset from

“Virgen de la

Victoria”

hospital

SPECT imaging

data

189; 94 HC +
95 PD

SVM with 10-fold cross

validation

Accuracy = 94.25%

Sensitivity = 91.26%

Specificity = 96.17%

2019 Segovia et al.,

2019

Classification

of PD from

HC

Diagnosis Collected

from

participants

Other 486; 233 HC

+ 205 PD +
48 NDD

SVM-linear with

leave-batch-out cross

validation

Validation AUC = 0.79

Test AUC = 0.74

2017 Shamir et al.,

2017

Classification

of PD from

HC

Diagnosis Collected

from

participants

PET imaging 350; 225 HC

+ 125 PD

GLS-DBN with a

train-validation ratio of 80:20

Test dataset 1:

Accuracy = 90%

Sensitivity = 0.96

Specificity = 0.84

AUC = 0.9120

Test dataset 2:

Accuracy = 86%

Sensitivity = 0.92

Specificity = 0.80

AUC = 0.8992

2019 Shen et al., 2019

Classification

of PD from

HC

Diagnosis Collected

from

participants

Other 33; 18 HC +
15 PD

SMMKL-linear with

leave-one-out cross validation

Accuracy = 84.85%

Sensitivity = 80.00%

Specificity = 88.89%

YI = 68.89%

PPV = 85.71%

NPV = 84.21%

F1 score = 82.76%

2018 Shi et al., 2018
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TABLE 7 | Continued

Objectives Type of

diagnosis

Source of

data

Type of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification

of PD from

HC

Diagnosis Collected

from

participants

More than one Plasma

samples: 156;

76 HC + 80

PD;

CSF samples:

77; 37 HC +
40 PD

PLS, random forest with

10-fold cross validation with

train-test ratio of 70:30

PLS:

AUC (plasma) = 0.77

AUC (CSF) = 0.90

2018 Stoessel et al.,

2018

Classification

of PD from

HC

Diagnosis PPMI

database

SPECT imaging

data

658; 210 HC

+ 448 PD

Logistic Lasso with 10-fold

cross validation

Test errors:

FP = 2.83%

FN = 3.78%

Net error = 3.47%

2017 Tagare et al.,

2017

Classification

of PD from

HC

Diagnosis PDMultiMC handwritten

patterns

42; 21 HC +
21 PD

CNN, CNN-BLSTM with

stratified 3-fold cross

validation

CNN:

Accuracy = 83.33%

Sensitivity = 85.71%

Specificity = 80.95%

CNN-BLSTM:

Accuracy = 83.33%

Sensitivity = 71.43%

Specificity = 95.24%

2019 Taleb et al., 2019

Classification

of PD from

HC

Diagnosis PPMI

database and

local

database

SPECT imaging

data

Local: 304;

113 Non-PDD

+ 191 PD

PPMI: 657;

209 HC +
448 PD

SVM with stratified, nested

10-fold cross-validation

Local data:

Accuracy = 0.88 to 0.92

PPMI:

Accuracy = 0.95 to 0.97

2017 Taylor and

Fenner, 2017

Classification

of PD from

HC

Diagnosis Collected

from

participants

CSF 87; 43 HC +
44 PD

Logistic regression Sensitivity = 0.797

specIFICITy = 0.800

AUC = 0.833

2017 Trezzi et al., 2017

Classification

of PD from

HC

Diagnosis Collected

from

participants

Other 38; 24 HC +
14 PD

SVM-RFE with repeated

leave-one-out bootstrap

validation

Accuracy = 89.6% 2013 Tseng et al., 2013

Classification

of MSA and

PD

Differential

diagnosis

Collected

from

participants

More than one 85; 25 HC +
30 PD + 30

MSA-P

NN AUC = 0.775 2019 Tsuda et al., 2019

Classification

of PD from

HC

Diagnosis Collected

from

participants

Other 59; 30 HC +
29 PD

Logistic regression, decision

tree, extra tree

Extra tree AUC = 0.99422 2018 Vanegas et al.,

2018

Classification

of PD from

HC

Diagnosis Commercially

sourced

Other 30; 15 HC +
15 PD

Decision tree Cross validation score =
0.86 (male)

Cross validation score =
0.63 (female)

2019 Váradi et al., 2019

Classification

of PD from

HC

Diagnosis Collected

from

participants

More than one 84; 40 HC +
44 PD

CNN with train-validation-test

ratio of 80:10:10

Accuracy = 97.6%

AUC = 0.988

2018 Vásquez-Correa

et al., 2019

Classification

of PD and

Parkinsonism

Differential

diagnosis

The NTUA

Parkinson

Dataset

More than one 78; 55 PD +
23

Parkinsonism

MTL with DNN Accuracy = 0.91

Precision = 0.83

Sensitivity = 1.0

Specificity = 0.83

AUC = 0.92

2018 Vlachostergiou

et al., 2018

Classification

of PD from

HC

Diagnosis PPMI

database

More than one 534; 165 HC

+ 369 PD

pGTL with 10-fold cross

validation

Accuracy = 97.4% 2017 Wang et al., 2017

Classification

of PD from

HC

Diagnosis PPMI

database

SPECT imaging

data

645; 207 HC

+ 438 PD

CNN with train-validation-test

ratio of 60:20:20

Accuracy = 0.972

Sensitivity = 0.983

Specificity = 0.962

2019 Wenzel et al.,

2019
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TABLE 7 | Continued

Objectives Type of

diagnosis

Source of

data

Type of data Number of

subjects (n)

Machine learning

method(s), splitting

strategy and cross

validation

Outcomes Year References

Classification

of PD from

HC

Diagnosis Collected

from

participants

PET imaging Cohort 1: 182;

91 HC + 91

PD

Cohort 2: 48;

26 HC +
22 PD

SVM-linear, SVM-sigmoid,

SVM-RBF with 5-fold cross

validation

Cohort 1:

Accuracy = 91.26%

Sensitivity = 89.43%

Specificity = 93.27%

Cohort 2:

Accuracy = 90.18%

Sensitivity = 82.05%

Specificity = 92.05%

2019 Wu et al., 2019

Classification

of PD, MSA

and PSP

Differential

diagnosis

Collected

from

participants

PET imaging 920; 502 PD +
239 MSA +
179 PSP

3D residual CNN with 6-fold

cross validation

Classification of PD:

Sensitivity = 97.7%

Specificity = 94.1%

PPV = 95.5%

NPV = 97.0%

Classification of MSA:

Sensitivity = 96.8%

Specificity = 99.5%

PPV = 98.7%

NPV = 98.7%

Classification of PSP:

Sensitivity = 83.3%

Specificity = 98.3%

PPV = 90.0%

NPV = 97.8%

2019 Zhao et al., 2019

AD, Alzheimer’s disease; AUC or AUC-ROC, area under the receiver operating characteristic (ROC) curve; AUC-PR, area under the precision-recall (PR) curve; BLSTM, bidirectional long
short-term memory; CBS, corticobasal syndrome; CNN, convolutional neural network; CSF, cerebrospinal fluid; DBN, deep belief network; DNN, deep neural network; EPNN, enhanced
probabilistic neural network; ET, essential tremor; FN, false negative; FP, false positive; GLS-DBN, group Lasso sparse deep belief network; HC, healthy control; IPD, idiopathic Parkinson’s
disease; KNN, k-nearest neighbors; LDA, linear discriminant analysis; LOR, log odds ratio; MCC, Matthews correlation coefficient; MLP, multilayer perceptron; MSA, multiple system
atrophy; MSA-P, Parkinson’s variant of multiple system atrophy; MTL, multi-task learning; NDD, neurodegenerative disease; NM, nearest mean; non-PDD, patients without pre-synaptic
dopaminergic deficit; NPH, normal pressure hydrocephalus; NPV, negative predictive value; OPF, optimum-path forest; PD, Parkinson’s disease; PET, positron emission tomography;
pGTL, progressive graph-based transductive learning; PLS, partial least square; PNN, probabilistic neural network; PPV, positive predictive value; PSP, progressive supranuclear palsy;
rET, essential tremor with rest tremor; SMMKL, soft margin multiple kernel learning; SPECT, single-photon emission computed tomography; SVM, support vector machine; SVM-RBF,
support vector machine with radial basis function kernel; SVM-RFE, support vector machine-recursive feature elimination; SWEDD, PD with scans without evidence of dopaminergic
deficit; tPD, tremor-dominant Parkinson’s disease; VaP or VP, vascular Parkinsonism; YI, Youden’s Index.

in >50% of all cases (50.7, 51.9, and 52.3%, respectively;
Supplementary Table 1). Despite the high diagnostic accuracy
and performance reported, in a number of studies, data splitting
strategies and the use of cross validation were not specified.
For data modalities such as 3D MRI scans, when 2D slices are
extracted from 3D volumes, multiple slices could be generated
for one subject. Having data from the same subject across
training, validation and tests sets can lead to a biased data split
(Wen et al., 2020), causing data leakage and overestimation
of model performance, thus compromising reproducibility of
published results.

As previously discussed (Belić et al., 2019), although
satisfactory diagnostic outcomes could be achieved, sample
size in few studies was extremely small (<15 subjects). The
application of some machine learning models, especially neural
networks, typically rely on a large dataset. Nevertheless, collecting
data from a large pool of participants remains challenging
in clinical studies, and data generated are commonly of high
dimensionality and small sample size (Vabalas et al., 2019).
To address this challenge, one solution is to combine data

from a local cohort with public repositories including PPMI,
UCI machine learning repository, PhysioNet and many others,
depending on the type of data that have been collected from the
local cohort. Furthermore, when a great difference in group size
is observed (i.e., class imbalance problem), labeling all samples
after themajority class may lead to an undesired high accuracy. In
this case, evaluating machine learning models with other metrics
including precision, recall and F-1 score is recommended (Jeni
et al., 2013).

Even though high diagnostic accuracy of PD has been
achieved in clinical settings, machine learning approaches have
also reached high accuracy as shown in the present study, while
models including SVM and neural networks are particularly
useful in (a) diagnosis of PD using data modalities that have
been overlooked in clinical decision making (e.g., voice), and
(b) identification of features of high relevance from these
data. For example, the use of machine learning models with
feature selection techniques allows for assessing the relative
importance of features of a large feature space in order to
select the most differentiating ones, which is conventionally
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challenging using manual approaches. For the discovery of
novel markers allowing for non-invasive diagnostic options
with relatively high accuracy, e.g., handwritten patterns, a
small number of studies have been conducted, mostly using
data from published databases. Given that these databases
generally included handwritten patterns from a small number
of diagnosed PD patients, sometimes under 15, it would
be of great importance to validate the use of handwritten
patterns in early diagnosis of PD in clinical studies of a
larger scale. In the meantime, diagnosing PD using more than
one data modality has led to promising results. Accordingly,
supplying clinicians with non-motor data and machine learning
approachesmay support clinical decisionmaking in patients with
ambiguous symptom presentations, and/or improve diagnosis at
an earlier stage.

An issue observed in many included studies was the
insufficient or inaccurate description of methods or results, and
some failed to provide accurate information of the number and
type of subjects used (for example, methodology studies on early
diagnosis of PD missing a table summarizing the characteristics
of subjects, therefore it was challenging to understand the stage
of PD in recruited patients), or how machine learning models
were implemented, trained and tested. Infrequently, authors
skipped basic information such as number of subjects and
their medical conditions and referred to another publication.
Although we attempted to list model hyperparameters and
cross-validation strategies in the data extraction table, many
included studies did not make this information available in
the main text, leading to potential difficulties in replicating
the results. Apart from these, rounding errors or inconsistent
reporting of results also exist. Furthermore, although we
treated the differentiation of PD from SWEDD as subtyping,
there is ongoing controversy regarding whether it should be
considered as differential diagnosis or subtyping (Lee et al.,
2014; Erro et al., 2016; Chou, 2017; Kwon et al., 2018). Given
these limitations, clinicians interested in adapting machine
learning models or implementing diagnostic systems based on
novel biomarkers are advised to interpret published results
with care. Further, in this context we would like to stress
the need for uniform reporting standards in studies using
machine learning.

In both machine learning research and clinical settings,
appropriately interpreting published results and methodologies
is a necessary step toward an understanding of state-of-the-
art methods. Therefore, vagueness in reporting not only
compromises the interpretation of results but makes further
methodological developments based on published research
unnecessarily challenging. Moreover, for medical doctors
interested in learning how machine learning methods could be
applied in their domains, insufficient description of methods
may lead to incorrect model implementation and failure
of replication.

To enable efficient replication of published results, detailed
descriptions of (a) model and architecture (hyperparameters,
number and type of layers, layer-specific parameter
settings, regularization strategies, activation functions), (b)
implementation (programming language, machine learning

and deep learning libraries used, model training and
testing, metrics and model evaluation, validation strategy,
optimization), and (c) version numbers of software/libraries
used for both preprocessing and model implementation,
are often desirable, as newer software versions may lead to
differences in pre-processing and model implementation stages
(Chepkoech et al., 2016).

Due to the use of imbalanced datasets in medical sciences,
reporting model performance with a confusion matrix may give
rise to a more comprehensive understanding of the model’s
ability to discriminate between PD and healthy controls. In
the meantime, due to costs associated with acquisition of
patient data, researchers often need to expand data collected
from a local cohort using data sourced from publicly available
databases or published studies. Nevertheless, unclear description
of data acquisition and pre-processing protocols in some
published studies may lead to challenges in the integration
of newly acquired data and previously published data. Taken
together, to facilitate early, refined diagnosis of PD and
efficient application of novel machine learning approaches in
a clinical setting, and to allow for improved reproducibility of
studies on machine learning-based diagnosis and assessment
of PD, a higher transparency in reporting data collection,
pre-processing protocols, model implementation, and study
outcomes is required.

Limitations
In the present study, we have excluded research articles
in languages other than English and results published in
the form of conference abstracts, posters, and talks. Despite
the ongoing discussion of advantages and importance of
including conference abstracts in systematic reviews and
reviews (Scherer and Saldanha, 2019), conference abstracts
often do not report sufficient key information which is
why we had to exclude them. However, this may lead
to a publication and result bias. In addition, since the
aim of the present review is to assess and summarize
published studies on the detection and early diagnosis of
PD, we noticed that few large-scale, multi-centric studies on
subtyping or/and severity assessment of PD were therefore
excluded. Given the current challenges in subtyping, severity
assessment and prognosis of PD, a further step toward a
more systematic understanding of the application of machine
learning to neurodegenerative diseases would be to review
these studies.

Moreover, due to the high inter-study variance in the
data source and presentation of results, it was challenging
to directly compare outcomes associated with each type of
model across studies, as some studies failed to indicate
whether model performance was evaluated using a test set,
and/or results given by models that did not yield the best
per-study performance. Results of published studies were
discussed and summarized based on data and machine learning
models used, and for data modalities such as PET (n =
4) or CSF (n = 5), the number of studies were too
small despite the high total number of studies included.
Therefore, it was improbable to assess the general performance
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of machine learning techniques when PET or CSF data
are used.

CONCLUSIONS

To the best of our knowledge, the present study is the first review
which included results from all studies that applied machine
learning methods to the diagnosis of PD. Here, we presented
included studies in a high-level summary, providing access to
information including (a) machine learning methods that have
been used in the diagnosis of PD and associated outcomes, (b)
types of clinical, behavioral and biometric data that could be used
for rendering more accurate diagnoses, (c) potential biomarkers
for assisting clinical decision making, and (d) other highly
relevant information, including databases that could be used to
enlarge and enrich smaller datasets. In summary, realization of
machine learning-assisted diagnosis of PD yields high potential
for a more systematic clinical decision-making system, while
adaptation of novel biomarkers may give rise to easier access to
PD diagnosis at an earlier stage. Machine learning approaches
therefore have the potential to provide clinicians with additional
tools to screen, detect or diagnose PD.
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