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15  Abstract

16  In mammals, mothering is one of the most important pro-social female behavior to promote
17  survival, proper sensorimotor and emotional development of the offspring. Different intrinsic
18 and extrinsic factors can initiate and maintain these behaviors, such as hormonal, cerebral, and
19  sensory changes. Infant cues also stimulate multisensory systems and orchestrate complex
20  maternal responsiveness. To understand the maternal behavior driven by complex sensory
21  interactions, it is necessary to comprehend the individual sensory systems by taking out other
22 senses. An excellent model for investigating sensory regulation of maternal behavior is a murine
23 model of congenital blindness, the ZRDBA mice, where both anophthalmic and sighted mice
24  are generated from the same litter. Therefore, this study aims to assess whether visual inputs
25  are essential to driving maternal behaviors in mice. Maternal behaviors were assessed using
26  three behavioral tests, including the pup retrieval test, the home cage maternal behavior test,
27  and the maternal aggression test. Our results show that blind mothers: 1) took less time to
28  retrieve their offspring inside the nest, 2) spent more time nursing and licking their offspring in
29  the second-and third-week post-partum, and 3) exhibited faster aggressive behaviors when
30  exposed to an intruder male, compared to the sighted counterparts. This study provides evidence
31  that congenitally blind mothers show more motivation to retrieve the pups, care, and protection

32 towards their pups than sighted ones, likely due to a phenomenon of sensory compensation.

33 Key words: Congenital blindness, maternal aggression, maternal behaviors, maternal

34  motivation, mice.
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1. Introduction

Extensive work over the past 50 years has explored mechanisms mediating
caregiving/mothering behavior in a wide variety of model organisms spanning from fishes,
reptiles, birds, to mammals (Bosh, 2013; Dulac et al., 2014; Kristal, 2009; Stolzenberg &
Mayer, 2019). In most mammals, mothering is crucial for the survival, the optimal sensorimotor
and emotional development of the offspring, as the mother is the primary contributor to
ensuring care and protection (Bayerl & Bosch, 2019; Francis & Meaney, 1999; Gonzélez-
Mariscal & Poindron, 2002; Klampfl & Bosch, 2019; Meaney, 2001; Schaal et al., 2009). It
appears that a core maternal circuit is widely conserved across several species (Numan & Insel,
2003). In rodents, the mother displays a constellation of maternal behaviors, defined by three
major components: (1) maternal motivation to retrieve pups into the nest, (2) maternal care, and
(3) maternal aggression (Bayerl & Bosch, 2019; Klampfl & Bosch, 2019; Numan & Woodside,
2010). More precisely, (1) maternal motivation, referring to an internal process that changes
the way an individual responds to specific external stimuli (Pfaff, 1982), was classically
assessed by using the pup retrieval test, (2) maternal care consists of nest building,
arching/crouching over pups for facilitating access to their nipples/milk, licking/grooming to
help them to urinate/defecate, and (3) maternal aggression is defined as protecting pups against
predators or threatening intruders (Bayerl & Bosch, 2019; Klampfl & Bosch, 2019). All these
maternal behaviors ensure the dietary, energy, thermal, and safety needs of the newly born
(Bosh, 2011; Caughey et al., 2011; Gonzalez-Mariscal & Poindron, 2002). These coordinated
maternal behaviors are regulated by intrinsic factors, such as a variety of sensory and
neuroendocrine changes during the gestation and postnatal period (Lonstein et al., 2015;
Rosenblatt et al., 1979; Stern, 1989), and extrinsic factors, including pup exposure, female’s
reproductive life history, and the degree of sensorimotor maturity of the newly born (Poindron,
2005; Keller et al., 2019; Lévy & Keller, 2009). From the late gestation until the weaning
period, all these changes operate in concert to rewire the brain and remodel the behavior of the
female expressing a high level of maternal responsiveness towards sensory cues emanating
from the offspring (Barriére et al., 2021; Numan & Insel, 2003; Rosenblatt & Lehrman, 1963;
Stern & Lonstein, 2001; Stolzenberg & Champagne, 2016).

Accordingly, the integrity of the sensory channels of the mothers is required to detect their pups,
easily localize them, nurse them, and protect them from predators and intruders (Gandelman et
al., 1970; Noirot, 1969; Rosenblatt, 1967). Since rodents are macrosmatic animals, olfaction is

the main sensory sense driving social behaviors (Brennan & Keverne, 2004; Swaney et al.,
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2008). The importance of individual sensory systems on maternal behavior regulation has been
investigated by means of experimental alterations (deprivation of sensory inputs or lesion of
sensory organs) or absence of the sensory systems. In rodents, firstly, (1: maternal motivation
to retrieve pups into the nest) the ability to retrieve the pups is mainly driven by olfactory cues
emitted by offspring, as anosmia, congenitally or induced by olfactory bulb cauterization or by
gene mutation, results in impaired pup retrieval in female mice (Fraser & Shah, 2014; Weiss et
al., 2011) and rats (Beach & Jaynes, 1956). Ultrasonic vocalizations emitted when pups are
displaced from the nest are also shown to facilitate pup localization and pup retrieval in mice
(Noirot, 1965; Smotherman et al. 1974) and rats (Beach & Jaynes, 1956; Kenyon et al., 1983).
However, one study demonstrated that female mice have identical retrieving behavior when put
in the presence of live, dead or anesthetized pups (i.e. not emitting vocalizations) (Gandelman
et al., 1970), suggesting that body movements and vocalizations of the pups are not necessary
to elicit retrieving behavior. Visual inputs are also important since both peripherally and
centrally blinded female rats retrieved their scattered young but did so more slowly compared
to sighted ones (Beach, 1937; Beach & Jaynes, 1956). Secondly, (2: maternal care) it has been
widely established in rodents that the onset and maintenance of maternal behaviors throughout
the lactational period, including nest building, nursing or licking pups, are mainly regulated by
olfactory cues (Gandelman et al., 1971.p; 1972; Fraser & Shah, 2014; Sato et al., 2010;
Vandenbergh, 1973; Weiss et al., 2011) and tactile cues (Morgan et al., 1992; Stern, 1996; Stern
& Johnson, 1990). Ultrasonic vocalizations may also help the mother to avoid accidentally
stepping on the pups (Stern, 1997) and to adjust her nursing position or licking (Gaub & Ehret,
2005). Interestingly, making dams blind - by enucleating or suturing the rat mother’s eyes after
parturition - leads to increased maternal care: mothers spent twice as much time licking
(Kolunie et al., 1994) and crouching over their pups compared to sighted ones (Herrenkohl &
Rosenberg, 1972). Thirdly, (3: maternal aggression) research in rats showed that olfactory cues
from the male intruder are crucial for eliciting maternal aggression (Ferreira et al., 1987;
Kolunie & Stern, 1995; Mayer & Rosenblatt, 1993), conversely to visual or auditory inputs
(Kolunie et al., 1994). Taken together, these findings highlight that the sensory regulation of
maternal behavior can vary depending on the specific components of maternal behavior, the
experimental procedure, and the tested sensory systems (Herrenkohl & Rosenberg, 1972;
Lonstein et al. 2015; Stolzenberg & Mayer, 2019).

Whilst the sensory mechanisms underlying maternal behaviors have been investigated
mostly through sudden and late-deterioration sensory systems in rodents, little work to date has

explored the impact of early sensory deprivation on the expression of maternal responsiveness.
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To our knowledge, no study has investigated the effect of early blindness on maternal behaviors
in non-human animals despite the existence of various rodent models of early visual
deprivation. Therefore, the aim of the current study is to examine the impact of early blindness
on maternal responsiveness using a mouse model of congenital blindness (ZRDBA strain). We
performed three different tests to study the three components of maternal behavior in
congenitally blind and sighted mothers: (1; maternal motivation to retrieve pups into the nest)
the pup retrieval test consisted in assessing the latency to localize pups and bring them back to
the nest, (2; maternal care) the home cage maternal behaviors test during which the time spent
nursing, interacting, or not interacting with pups was evaluated throughout the lactational
period, and (3; maternal aggression) the maternal aggression test, consisting in quantifying the

latency before the first attack and the frequency and time spent attacking a male intruder.

2. Materials and Methods

2.1. Animals

A total of 88 female mice of the ZRDBA strain, bred and housed in the animal facility of
the University of Québec in Trois-Rivieres, were used for this study. Among them, 20
congenitally blind and 20 sighted dams were assessed for the pup retrieval test, 12 blind and 12
sighted dams were used for the home cage maternal behaviors test, and 12 blind and 12 sighted
dams were assayed for the maternal aggression test. These female mice (aged of 3,5 to 4,5
months) were initially paired with 12 males (2 females and 1 male/cage), and then housed
individually after impregnation in polypropylene cages with wood shavings as bedding material
for nest building. Daily weight gain measurements were performed to determine the pregnancy.
The day of birth was considered postnatal day 0. All mice were housed under standard
environmental conditions of 12h/12h light/dark cycle (light phase: 7:00-19:00 h) at a controlled
room temperature (20-22°C and 40-60% humidity). Food and water were provided ad libitum.
Experimental procedures and animal use were permitted by the animal care committee of the
Université du Québec a Trois-Rivieres (2017-S.A.1), in accordance with the guidelines of the

Canadian Council on Animal Care.

The ZRDBA strain has been generated by crossbreeding two strains: the sighted DBA-6
and the anophthalmic ZRDCT strains (Touj et al., 2019; 20214). The anophthalmic ZRDCT
strain is characterized by an absence of the eyes, the optic tracts and the afferents retina-
hypothalamus, induced by a mutation on chromosome 18 on the Rx/Rax gene (Chase & Chase,

1941; Tucker et al., 2001). Importantly, anophthalmic (Rx/Rax homozygous) ZRDBA mice are
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mated with sighted ZRDBA mice (Rx/Rax heterozygous) to produce half of the pups born with

eyes and half of them born anophthalmic within the same litter.

2.2. Behavioral procedures
We tested three major components of maternal behaviors: maternal motivation to retrieve the
pups, maternal care, and maternal aggression (Bayerl & Bosch, 2019; Klampfl & Bosch, 2019;
Numan & Woodside, 2010). Each dam and her litter were tested in only one experimental test
to avoid potential effects of maternal and/or pups’ stress. All the recordings and coding were

done using Ethovision XT software (Noldus, Virgina, USA).

2.2.1. Pup retrieval test

Behavioral experiments were carried out under dark conditions (i.e., red light) between 1 pm
and 5 pm. The protocol for the pup retrieval test, adapted from Abel (1972) and Aguggia (2013),
consists in assessing, in anophthlamic and sighted dams, the latency before retrieving their
scattered pups into the nest on day 1, day 2 and day 3 postpartum. First, the mother was left in
its own breeding cage 30 minutes prior to the test to allow it to habituate to the experimental
room. Before the test, the mother was placed in an individual cage and four pups were lined up
on the opposite side of the nest in the breeding cage. The recording was started once the female
was put back in its empty nest and the time spent to retrieve the first pup and all the 4 pups into
the nest was measured. The test lasted 15 minutes maximum. If females were unable to retrieve

the pups, a score of 15 minutes was assigned.

2.2.2. Home cage maternal behavior test

The protocol, adapted from Skripuletz et al. (2010), consisted of video-recording maternal
behaviors for 2 hours over 5 days. Given that mice are crepuscular creatures and are more active
during dawn and dusk (Bains et al., 2018; Peirson & Foster, 2011; Peirson et al., 2018), the
recordings were performed between 5-6 am and 9-10 pm. Maternal behaviors from
anophthlamic and sighted females were analyzed on days 5, 10, 13, 16 and 19 postpartum (PD).
A total of 6 behaviors were coded as follows: maternal behaviors design a) nursing behavior
and b) mother-pup interactions in the nest (grooming and licking), while non-maternal
behaviors refer to ¢) maternal presence in the nest with no social interaction, d) mother resting
outside of the nest (resting or self-grooming), ) mother walking, and f) mother drinking/eating.
The duration of maternal and non-maternal behaviors was compared between blind and sighted

dams. No maternal-pup separation was performed before the test.



167
168
169
170
171
172
173
174
175
176
177
178

179
180
181
182
183
184
185
186
187
188

189
190
191
192
193
194

195
196
197
198

2.2.3. Maternal aggression test

The maternal aggression test took place on day 10 post-partum between 1 pm and 4 pm under
dark conditions (i.e., red light). The highest levels of maternal aggression display were observed
between 0 and 13™ post-partum days, after which it vanishes (Gandelman, 1972; Lonstein &
Gammie, 2002). To avoid any potential infanticide by the male intruder (Vom Saal & Howard,
1982), all pups were removed from the nest prior to the tests (Lonstein & Gammie, 2002). After
a 30 min habituation period, an unrelated adult male intruder (aged 2 months) was introduced
into the female’s home cage for a 3-min test. Intruder males were never used more than once,
so any effect of previous aggression on the intruder mice was considered. Maternal attacks,
referring to a female spontaneously biting or kicking the intruder (Martin-Sanchez et al., 2015),
were quantified as follows: latency to the first attack, number of attacks, and total duration of

attacks (Gammie & Nelson, 2001; Gammie et al., 2004).

2.3. Data analyses

Statistical analyses were performed using SPSS software ver. 22.0 (IBM, Armonk, NY,
USA). We verified the normal distribution of our data using the Shapiro-Wilk test. Regarding
the pup retrieval test, we performed log-rank (Kaplan-Meier) tests to compare the distribution
of the latencies to retrieve the first and the fourth pups of each of the 3 consecutive days
(Postpartum Day (PD) 1, 2, 3) in both blind and sighted mothers. Then, we used mixed
ANOVAs with visual status (2 levels: blind, sighted), as the between-subjects factor, and day
of testing (3 levels: PD 1, 2, 3), as the within-subjects factor, to examine the improvement across
time in both groups. Here, we compared the latency to retrieve the four pups between blind and

sighted mothers.

Regarding the home cage maternal behavior test, we performed a mixed ANOVA with
visual status (2 levels: blind, sighted), as the between-subjects factor, and day of the testing (3
levels: PD 1, 2, 3), as the within-subjects factor, to compare the durations of each behavioral
parameter in both blind and sighted groups. When the interaction between factors was
significant, Student's ¢-tests with appropriate control (Bonferroni post hoc) for multiple

comparisons were applied to compare both groups on each day of the testing.

Regarding the maternal aggression test, we used Student's #-tests with appropriate control
for multiple comparisons (Bonferroni) to compare the latency to the first attack, the number of
attacks and total duration of attacks in blind and sighted mothers. For all statistical analyses,

the significance level was set at p < 0.05.
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3. Results
3.1. Pup retrieval test

As illustrated in Figure 1, Kaplan-Meier tests examined differences in the distribution of the
retrieval latencies for the first and the fourth pups on 3 consecutive days postpartum (PD 1, 2
and 3) between blind and sighted mothers. On PD 1, the survival distributions of the latency to
retrieve the first pup were significantly different between blind and sighted mothers (}2[1] =
17.508, p < 0.001), whereas the distribution to retrieve the fourth pup were similar in both
groups (¥2[1] = 3.622, p = 0,057). On PD 2, survival distributions of the latencies to retrieve
the first and fourth pup (Fig. 4d) were significantly different between blind and sighted mothers
(x2[1] = 11.934, p < 0.001 for pup 1 and ¥2[1] = 5.345, p = 0.021 for pup 4). On PD 3, blind
and sighted dams differed significantly in the latencies to retrieve the first and fourth pups
(x2[1]=17.462; p <0.001; ¢2[1] =11.431, p <0.001, respectively). Thus, blind dams showed
shorter retrieval latencies than sighted dams for pup 1 at PD 1, 2 and 3 and for pup 4 at PD 2
and 3.

With regards to fourth-pup retrieval latencies (Figure 2), the ANOVA revealed a significant
effect of visual status (F(1, 38) = 10.962; p = 0.002), and day of testing (F(2, 76) = 28.494 ; p
< 0.001), but no interaction visual status * day of testing (F(2, 76) = 0.445; p > 0.05). Fourth
pup retrieval efficiency improved from PD 1 to PD 2 (p < 0.001), PD 1 to PD 3 (p < 0.001),
and PD 2 to PD 3 (p = 0.043).

3.2. Home cage maternal behaviors test

A) Mother nursing pups (Figure 3a): The ANOVA revealed significant effects of visual status
(F(1, 22) =41.029 ; p<0.001), day of testing (F(4, 88) = 39.285 ; p<0.001), and the interaction
visual status * day of testing (F(4, 88) = 5.117 ; p<0.001). Blind dams spent more time nursing
pups compared to sighted dams on PD 13 (t=3.929, p <0.001), 16 (t=6.570, p <0.001) and
19 (t=4.025, p <0.001) but not on the PD 5 (t = 0.639, p > 0.05) and PD 10 (t=-0.171, p >
0.05).

B) Mother-pup interactions in the nest (Figure 3b): There were significant effects of visual
status (F(1, 22) = 11.481; p = 0.003), day of testing (F(4, 88) = 2.798 ; p = 0.031), and the
interaction visual status * day of testing (F(4, 88) = 4.648 ; p = 0.002). Blind dams spent more
time interacting with their pups in the nest compared to sighted dams on PD 13 (t=5.138, p
<0.001) and 16 (t = 3.933, p <0.001) but not on PD 5 (t = 0.251, p > 0.05), 10 (t=-0.502, p >
0.05) and 19 (t=1.66, p > 0.05).
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C) Mother in the nest with no pups’ interaction (Figure 3c): We found a significant effect of
day of testing (F(4, 88) = 26.597 ; p<0.001), but not of visual status (F(1, 22) = 1.267; p =
0.272) nor the interaction visual status * day of testing (F(4, 88) = 1,391; p = 0.258).
Bonferroni's post-hoc tests revealed significant differences between: 1) PD 5 and PD 13 / PD
16 /PD 19 (all p<0.01),2) PD 10 and PD 16 / PD 19 (p = 0.003 and p < 0.001, respectively),
3)PD 13 and PD 5/PD 16 /PD 19 (p=0.01; p=10.031, p <0 .001, respectively). This indicates
that blind and sighted dams spent progressively more time in the nest with no pups interaction
between PD 5 and PD 19.

D) Mother resting outside the nest (Figure 3d): the ANOV A yielded significant effects of visual
status (F(1, 22) = 11.706 ; p = 0.002), day of testing (F(4, 88) = 18.764 ; p<0.001), and the
interaction visual status * day of testing (F(4, 88) = 5.626 ; p<0.001). Sighted dams spent more
time than blind ones resting outside the nest on PD 10 (t = -3.847, p<0.001), 13 (t=-3.043, p
=0.03) and 16 (t =-3628, p = 0.005), but no difference was observed on PD 5 (t = 0.238, p >
0.05) and 19 (t=0.193, p > 0.05).

E) Mother walking (Figure 3e): There was no significant effect of visual status (F(1, 22) =
0.563; p=0.461), day of testing (F(4, 88) = 1.408 ; p = 0.238), nor the interaction visual status
* day of testing (F(4, 88) =0.139 ; p=0.967).

F) Mother drinking/eating outside the nest (Figure 3f): There was a significant effect of day of
testing (F(1, 88) = 6.046 ; p<0.001), but not of visual status (F(1,22)=0.142 ; p=0.710), nor
the interaction visual status * day of testing (F(1, 88) = 2.283 ; p = 0.067). Bonferroni's post-
hoc tests revealed significant differences between PD 10 and: 1) PD 16 (p = 0.042), and 2) PD
19 (p =0.013). Bonferroni's post-hoc tests revealed significant differences between PD 13 and:
1) PD 16 (p =0.005), and 2) PD 19 (p = 0.014). This indicates that blind and sighted dams spent
progressively less time drinking/eating outside the nest between the second and the third week

postpartum.

3.3. Maternal aggression test

Results are illustrated in Figure 4. Blind mothers exhibited the first attack faster when exposed
to a male intruder (t(1, 22) = 3.664; p = 0.003). In contrast, the total duration (t(1, 22) = -1.274;
p > 0.05) and frequency of attacks (t(1, 22) = -0.905; p > 0.05) towards a male intruder were

similar between blind and sighted dams.
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4. Discussion

The findings suggest that congenital visual deprivation results in heightened maternal behaviors
on each of the three major components: (1) maternal motivation to retrieve pups into the nest,
(2) care, and (3) aggression. Regarding maternal motivation to retrieve pups, we pointed out
that blind mothers retrieved their pups to the nest faster than sighted ones. In addition, both
blind and sighted dams retrieved faster their pups through the second and third trials, underlying
similar learning abilities in this task. Our result is contrary to previous studies which have
suggested that both peripherally or centrally blinded rat dams retrieved their pups more slowly
than did sighted mothers (Beach, 1937; Beach & Jaynes, 1956). Regarding maternal care, we
found that both blind and sighted females display high levels of maternal behaviors during the
early post-partum period (PD 5), with 70% of the time nursing and liking the pups, which is
consistent with previous research conducted on wild-type mice (Grota & Ader, 1974). On day
5 post-partum, when blind and sighted dams were not interacting with their pups in the nest,
they spent the same time resting, walking, and eating/drinking outside the nest (6%-13%,
respectively). On day 10 post-partum, both sighted and blind dams displayed similar nursing
time reduction (with 50% of the time nursing the pups), associated with similar time spent
resting in the nest and walking outside the nest. Additionally, sighted mothers exhibited higher
time resting outside the nest than blind ones, while blind mothers tended to spend longer time
eating/drinking outside the nest than their sighted counterparts. Whereas the time spent nursing
the pups decreases gradually to 25% at the end of the third week postpartum in sighted ZRDBA
dams, just like in wild-type dams (Grota & Ader, 1974), blind ZRDBA dams kept displaying a
stable and high level of maternal behaviors until PD 19 (more than 60% of the time nursing and
licking/grooming pups into the nest), and consequently, less time resting outside the nest during
the second and third week postpartum (Day 13-19 postpartum). These results are in good
agreement with previous findings obtained in enucleated and eyes-sutured female rats
(Herrenkohl & Rosenberg, 1972; Kolunie et al., 1994). We, however, did not find any effect of
the visual status on time spent resting in the nest with no mother-pup interaction, or
eating/drinking and walking, ruling these mechanisms out as potential variables. Regarding
maternal aggression, while duration and frequency of attacks toward a male intruder were
similar between both groups, blind mothers initiated the first attack faster than their sighted
counterparts. A previous study suggested that visual inputs from the pups or intruder are not
essential to the expression of maternal aggression in rats, since blinded rat dams (by eyelid
suturing on day 2 postpartum) displayed similar levels of maternal aggression one day after the

procedure (Kolunie et al., 1994). Nevertheless, although the bite latency data were not
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statistically significant between dams temporarily deprived of visual or auditory input and
controls, it is noteworthy to note that blind dams initiated the first bite of the intruder 2,5 times
faster than controls and deaf dams.

The inconsistencies between our results and certain studies are likely due to differences in
etiologies, onset, and duration of visual deprivation, resulting in different mechanisms of brain
plasticity and subsequent behavioral adaptations. For most sensory systems, congenital and
early sensory deprivation lead to much sensory compensation and higher brain reorganization
than late and short visual deprivation (Chabot et al, 2007; Kujala et al., 1997; Piché et al., 2004;
Qin et al., 2015; Slimani et al., 2014; Touj et al., 2021Db).

Studies conducted on different murine models of early blindness (congenital, dark-reared
housed, early enucleation) have established that early visual deprivation results in enhanced
nonvisual sensory perception such as olfactory performance and pain sensitivity (Touj et al.,
2019;2020; 20214,5; Zhou et al., 2017) accompanied by enlargement of the olfactory areas (bulb
and piriform cortex), auditory areas and amygdaloid complex volume (Mass¢ et al., 2014; Touj
et al., 2019; 2021a). Given that multisensory cues emitted by offspring are commonly used to
trigger maternal responsiveness (retrieval, nursing) towards the pups (reviewed in Numan &
Young, 2016; Numan & Isle, 2003; Dulac et al., 2014) and maternal aggression toward a
threatening individual (Kolunie & Stern, 1995; Mayer & Rosenblatt, 1993), such sensory
compensation may help congenitally blind dams to cope with the absence of visual inputs and
to evolve behavioral adjustments toward the offspring. In other words, enhanced intact
remaining modalities due to early visual deprivation, may explain the heightened maternal
responsiveness seen in blind dams.

Additionally, as the pup retrieval and the maternal aggression tests were conducted under dark
conditions, the faster responses displayed by blind dams toward the pups/intruder may be
explained by their enhanced ability to navigate driven by non-visual sensory cues. In rodents,
it has been shown that better odor perception and localization (in mice: Weiss et al., 2011;
Fraser & Shah, 2014, in rats: Beach & Jaynes, 1956) and better sound acuity and spatial hearing
(in mice: Noirot, 1965; Smotherman et al., 1974; in rats: Beach & Jaynes, 1956; Kenyon et al.,
1983; Stern, 1990) may help mothers to efficiently retrieve their pups. In line with our results,
several studies using the buried food test showed that blind rodents localized more quickly an
appetent olfactory source than sighted congeners in our blinded ZRDBA mice (Touj et al.,
2020), in dark-reared mice (C57BL6 strain) and in rats (Zhou et al., 2017). Accordingly,
structural MRI and histological analyses conducted on the ZRDBA blind mice suggest that
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these behavioral/sensory adaptations may be supported by extended neuroplasticity, including
enlargements of olfactory, auditory, orbital regions, amygdaloid complex and some cerebral
regions mediated in navigation and spatial memory, such as fimbria-fornix and nuclei in
mammillary bodies (Touj et al., 2020).

Moreover, enhanced attentional processes to respond to auditory and haptic stimuli have been
evidenced in blind rodents. For example, while both blind and sighted rodents preferred
exploring an attractive stimulus (ex: cage with pup, peanut butter, vanilla odor) against a neutral
one (empty cage, water), blind animals spent more time exploring the attractive stimulus than
sighted ones (congenitally blind mice: Touj et al., 2020; enucleated postpartumly rat: Beach &
Jaynes, 1956) and less time smelling the negative odor (2MB odor) compared with sighted
mice. These results indicate that early visual deprivation results in hypervigilance toward
meaningful olfactory cues (appetent/rewarding or aversive/fearful).

Taken together, these findings suggest that enhanced non-visual sensory processing and/or
attentional processing/awareness in congenitally blind mothers may promote enhanced
maternal behaviors, leading to faster pup retrieval (motivation), higher caregiving in late
lactation -2 and 3™ week post-partum- (care), and faster aggressive responses toward an
intruder (aggression). Another explanation can be proposed: increased activity and maternal-
motivated behaviors in our test conditions may be explained by the endogenous circadian
rhythm alteration induced by congenital blindness (Ramamurthy & Krubitzer, 2018; Iura &
Udo, 2014). Although we assumed that blind mice may have synchronized their circadian
rhythm with that of sighted mice as they are housed in the same breeding room under similar
environmental conditions of 12h/12h light/dark cycle, future studies should investigate this

question.

Interestingly, same results and mechanisms were found in humans. In the same vein, a large
body of evidence showed that early blindness leads to superior perceptual processing in the
remaining sensory modalities in humans, especially in audition, somesthesis and nociception
(Slimani et al., 2013; 2014; 2015; Kupers & Ptito, 2011, 2014). Such enhanced performance on
nonvisual tasks in blind humans is supported by intra-modal and cross-modal brain plasticity
related to dramatical anatomical and functional changes (Voss & Zatorre, 2012; Kupers & Ptito,
2011, 2014; Zhang et al., 2019). With regards to olfaction, a meta-analysis showed no
superiority of blind compared to sighted in humans, for olfactory identification, discrimination
and threshold (Sorokowska et al., 2019), which are tasks that are typically used in clinical tests.

While this seems to argue against the hypothesis of the present article, a recent study shows,
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inversely, a superiority of congenitally blind in the ecologically relevant olfactory tasks of
odorant localization (Manescu et al., 2021). This is in line with earlier reports on audition in
blind that suggest that ecological relevance is the key factor for crossmodal plasticity (Gougoux
et al., 2004). As rodents’ literature, behavioral adaptations were also reported in early blind
women who displayed prolonged duration of breastfeeding beyond the first year postpartum,
accompanied by increased physical contact/proximity and more frequent vocalizations toward
their newborn (Chiesa et al., 2015; Ganea et al., 2018; Santos & Ribeiro, 2020; Thoueille et al.,
2006). In addition, enhanced attentional processes to respond to auditory and haptic stimuli
have been evidenced in blind humans, which may contribute to heightening non-visual sensory
skills (Collignon & De Volder, 2009; Collignon et al., 2006; Hugdahl et al., 2004; Liotti et al.,
1998; Pigeon et al., 2015; Topalidis et al., 2020). Visually impaired adults and children showed
increased odor awareness and reactivity to smells, especially toward social and food odors
(Beaulieu-Lefbvre et al., 2011; Ferdenzi et al., 2010). Overall, non-visual channels, such as
olfactory, auditory, and somatosensory systems, are likely used more frequently to guarantee

harmonic interaction despite the mother’s impairment.

Multiple neural networks in brain areas, activated by both hormonal and environmental inputs,
mediate maternal care/motivation and affective processing (Kim & Strathearn, 2016; Keyser-
Marcus et al., 2001; Lee & Brown, 2002; Lonstein et al., 2015; Numan & Stolzenberg, 2009;
Sato et al., 2010; Terkel et al., 1979; Uriarte et al., 2020), as well as maternal aggression (Bosch
& Neumann et al., 2010; Gammie, 2005; Gammie & Nelson, 2001; Haller, 2018; Hasen &
Gammie, 2005; 2006; Kohl et al., 2017). In rodents, the mPOA/BNST circuits are known to be
involved in the onset and expression of maternal behavior and pup-associated motivation during
the early period of lactation (Lee et al., 1999; 2022; Numan, 2007; Numan & Stolzenberg, 2009;
Miceli et al., 1983; Oxley & Fleming, 2000; Petrulis, 2013; Semaan and Kauffman, 2010;
Terkel et al., 1979; Tobiansky et al., 2013; McHenry et al., 2015 for review). Importantly, this
core circuit has strong connections with the mesolimbic dopamine system, ventral tegmental
area (VTA), nucleus accumbens (NA) and caudate putamen, involved in infant-related reward
processing and in motivation (Barriere et al., 2021; Dong & Swanson, 2004; Dumont &
Williams, 2004; Jalabert et al., 2009; Kudo et al., 2012; Numan, 2007; Numan & Numan, 1997;
Numan & Stolzenberg, 2009; Tobiansky et al., 2013). Additionally, studies have reported that
lactating female rodents expressing higher levels of maternal care and motivation had specific
hypertrophies in regions involved in olfactory (MOB and AOB) and somatosensory

(somatosensory cortex) information processing, in memory (hippocampus, entorhinal cortex,
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retrosplenial cortex) and in reward and reinforcement (striatum) processing (Barriere et al.,
2021), and possess greater dopaminergic projections from the ventral tegmental area (VTA) to
the nucleus accumbens (NA) (Shahrokh et al., 2010). It is worthy to note that the maternal
behavior of female rodents is plastic and declines gradually until weaning, supported (in part)
by a progressive mPOA and the mesolimbic dopamine system deactivation toward pup-related
stimuli (Grieb et al., 2020; Pereira et al., 2009). Interestingly, high-resolution MRI and
histological studies highlighted large-scale anatomical brain plasticity in the ZRDBA mice
(Touj et al., 2020), in various sensory, limbic and cortical systems that regulate the expression
of maternal behavior. Grey matter volume alterations induced by visual deprivation at birth
were not only observed in the remaining sensory systems (olfactory, auditory, visual areas), but
also in subcortical and cortical structures, such as in BNST and mPOA, anterior hypothalamic
area, insular area, the central nucleus of the amygdala, overall amygdala volume, and nucleus
accumbens. These volumetric differences within specific hormone-sensitive brain regions
which regulate both maternal behaviors and affective processing may reflect the adaptation to
the visual deprivation and the enhanced maternal motivation to retrieve the pups, care, and
protection seen in anophthalmic dams. This neuroanatomical explanation should, however, be
taken with caution as this research has been conducted on both males and non-lactating,

anophthalmic and sighted mice.

Future studies should examine whether early visual deprivation may alter structural and
functional plasticity, as well as specific maternal behaviors responsiveness, in late gestating and
lactating females throughout the whole pre- and post-natal period. It is of particular interest to
disentangle cellular and molecular mechanisms underlying anatomical/functional plasticity in
anophthalmic mice, in terms of neural/glial cell number, neural/glial cell size, axon number,
axonal arborization, synaptic density, myelination, blood flow modifications,
hormonal/neurotransmitters levels and receptors’ sensitivity/density (Barri¢re et al., 2019;
Kelly et al., 2015; Zatorre et al., 2012). Furthermore, future immunoassay and
neuroimaging/immunohistochemical investigations should investigate physiological (e.g.,
hormones/neurotransmitters) and neural circuits which support the enhanced maternal

responsiveness in congenitally blind dams.

5. Conclusion
In the current study, a mouse model of congenital blindness, the ZRDBA strain, was used to

assess potential behavioral adaptations induced by blindness in lactating females. The findings
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provide evidence that maternal performance is enhanced in congenitally blind dams, in terms
of maternal motivation to retrieve the pups, care, and protection, underlined by: 1) a shorter
latency to retrieve pups, 2) increased nursing/licking durations during the 2" and 3™ week
postpartum, and 3) a faster aggressive behavior toward a male intruder, compared to sighted
mothers. These behavioral adaptations may be driven by sensory and attentional
compensations, supported by dramatical cerebral plasticity induced by early visual deprivation.
The present study reveals a profound impact of early visual deprivation on motherhood, paving
the way for further physiological, anatomical and behavioral investigations to gain insight into
the hormonal and neural circuits that regulate maternal responsiveness levels across the

postpartum period.
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CAPTIONS

FIGURE 1. Pup retrieval test on PD 1, 2, 3. Log-rank (Kaplan-Meier) statistics revealed
that blind and sighted dams performed differently in most of conditions. Survival plots
indicate the cumulative proportion of blind dams (black line) and sighted dams (grey line)
retrieving the first and fourth pup on days 1, 2 and 3 postpartum (*p < 0.05; ***p <0.001).

FIGURE 2. Pup retrieval test on PD 1, 2, 3. The mixed ANOVA revealed that blind
mothers displayed a shorter latency to retrieve the 4 pups compared with sighted mothers

and pup retrieval efficiency improved similarly over time in both groups (Data are shown
as mean £ SEM; *p < 0.05; **p <0.01; ***p <0.001).

FIGURE 3. The total duration of maternal and non-maternal behaviors displayed by
blind and sighted mothers throughout the lactational period on days 5, 10, 13, 16 and 19
postpartum. a) Nursing behavior: blind mothers nursed their pups longer than sighted mothers
on PD 13, 16 and 19. b) Mother-pup interactions in the nest: blind mothers spent more time
interacting with pups compared to sighted mothers on PD 13 and 16. c) Mother in the nest with
no pup’s interaction: Blind and sighted mothers spent the same time in the nest with no
interaction with their pups throughout the lactational period. d) Mother resting outside the nest:
sighted mothers spent more time resting outside the nest than blind mothers on PD 10, 13, and
16. e) Mother walking: Blind and sighted mothers spent the same time exploring the cage
throughout the lactational period. f) Mother eating/drinking outside the nest: Blind and sighted
mothers spent the same time eating/drinking throughout the lactational period (*p <0.05, **p
<0.01, ***p <0.001).

FIGURE 4. Aggressive-related behaviors exhibited by blind and sighted mothers toward
a male intruder. Blind mothers were faster to initiate the first attack toward a male intruder
than their sighted counterparts (a), but both groups exhibited a similar total duration of attacks
(b) and a similar number of attacks toward a male intruder (c). Data are shown as mean + SEM.
**p <0.01.





