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This paper presents a Reinforcement Learning (RL) approach to a price-based Demand Response (DR) program.
The proposed framework manages a dynamic pricing scheme considering constraints from the supply and market
side. Under these constraints, a DR Aggregator (DRA) is designed that takes advantage of a price generator
function to establish a desirable power capacity through a coordination loop. Subsequently, a multi-agent system
is suggested to exploit the flexibility potential of the residential sector to modify consumption patterns utilizing
the relevant price policy. Specifically, electrical space heaters as flexible loads are employed to cope with the
created policy by reducing energy costs while maintaining customers’ comfort preferences. In addition, the
developed mechanism is capable of dealing with deviations from the optimal consumption plan determined by
residential agents at the beginning of the day. The DRA applies an RL method to handle such occurrences
while maximizing its profits by adjusting the parameters of the price generator function at each iteration.
A comparative study is also carried out for the proposed price-based DR and the RL-based DRA. The results
demonstrate the efficiency of the suggested DR program to offer a power capacity that can maximize the profit
of the aggregator and meet the needs of residential agents while preserving the constraints of the system.
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Introduction

Demand-side management plays a key role in optimizing end-users’ 
mand in smart grids. This idea facilitates power system operation 
rough different services, including the liberalization of electricity 
arkets, real-time balance of demand and supply, the improvement of 
ad control strategies, the reduction of energy consumption, and the in-
gration of decentralized energy resources [1]. Accordingly, it assists 
e smart grid with the self-optimization concept (distributed optimiza-
n) that promotes more continuous and sophisticated demand-side 
rticipation. Particularly, Demand Response (DR) programs, as an im-
rtant facet of demand-side management, enable the management of 
rious controllable and programmable loads in the residential sector, 
ch as thermostatic devices, plug-in electric vehicles, and smart ap-
iances [2]. This energy flexibility program leads to the realization of 
art distribution grids where residential customers participate in grid 
eration as active players [3].

Corresponding author.

The DR programs have been developed to mitigate peak load by 
changing consumption patterns in response to price or incentive signals 
[4,5]. Monetary incentives influence clients to modify their load profiles 
without significantly compromising their comfort preferences [6]. From 
a realistic standpoint, peak demand management is crucial to power 
system reliability regarding the designed capacity of the grid. From a 
financial perspective, such a service is pivotal to electricity generators 
that must operate with higher costs during peak periods to manage the 
additional usage [7]. Therefore, the reduction of peak load through im-
plementing DR programs is a key strategy that offers benefits for both 
the demand and supply sides.

An effective DR program can be realized through capturing demand 
flexibility at its full potential. Accordingly, the DR Aggregator (DRA) 
has emerged as a commercial entity to explore such an opportunity by 
negotiating agreements between consumers and market [8]. This medi-
ator recruits customers and directly contacts clients using information 
ailable online 27 March 2024
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Nomenclature

Acronyms

DR Demand Response
DRA Demand Response Aggregator
DSO Distribution System Operator
ESH Electric Space Heating
MDP Markov Decision Process
PAR Peak-to-Average Ratio
PPO Proximal Policy Optimization
RL Reinforcement Learning

Functions

𝐴̂𝑡 Advantage at episode 𝑡
𝜓(⋅) Power generation cost reduction function
𝜉(⋅) DRA welfare function
𝑔(⋅) Thermal model
𝑅𝑡 Reward function at episode 𝑡
𝑈 (𝑢𝑖

𝑘
) Thermal comfort function

Indices

𝑖 House index
𝑘 Time-step index

𝑡 Iteration index

Parameters

𝛼 Rate of price change
𝜋𝑚𝑎𝑥 Upper price limit
𝜋𝑚𝑖𝑛 Lower price limit
𝑀 Capacity limit

Variables

𝛿𝑖
𝑘

Thermal discomfort factor of 𝑖𝑡ℎ house
𝜂 Capacity limit reduction
𝑢̂𝑖
𝑘

Actual energy consumption of 𝑖𝑡ℎ house at time-step 𝑘
𝜇ℎ
𝑡

Normalized aggregated consumption
𝑎𝑡 Action at episode 𝑡
𝑠𝑡 State at episode 𝑡
𝑢𝑖
𝑘

Energy consumption reported of 𝑖𝑡ℎ house at time-step 𝑘
𝑥𝑖
𝑘

Indoor temperature of 𝑖𝑡ℎ house at time-step 𝑘
𝑥𝑜𝑢𝑡
𝑘

Outdoor temperature at time-step 𝑘
𝑥𝑖
𝑐𝑜𝑚𝑓

Set-point temperature profile of 𝑖𝑡ℎ house
𝑦𝑘 Aggregated energy consumption time-step 𝑘
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d communication technologies [9]. As a result, it collects load flex-
ility and offers it as a service to the Distribution System Operator 
SO). Congestion management, power quality improvement, and grid 
pacity expansion are critical exercises performed by the DSO based 
 this flexibility [10,3].
Specifically in the residential sector, an important source of flexibil-
 is the thermal loads [11]. In countries with harsh winters, residential 
ermal loads are among the major energy-expensive appliances. For 
stance, in Quebec, Electric Space Heating (ESH) systems account for 
out 60% of household energy consumption [12]. These appliances 
n cause a significant increase in power demand during peak load 
d, at the same time, represent a critical factor in the user’s electric-
 bill. Because of this, smart programmable thermostats are widely 
ployed to manage the problems, from the user’s point of view, of re-
cing their electricity bills. Alternatively, these controllable devices 
lease the opportunity to capture the flexibility potentials of these 
ads, which can be capitalized by the DRA, enabling new possibilities 
r both the demand side and the DRA that can be exploited through 
e implementation of DR programs [13].
One of the key elements in the correct implementation of DR pro-
ams in the residential sector, is the optimal generation of price-based 
licies [14]. The main goal of these mechanisms is to exploit the flex-
ility potential from the demand side to deal with the problem of 
nsumption peaks. However, there exist some challenges for the DRA 
 implementing these mechanisms at the residential level, starting with 
gnificant privacy concerns [15], resulting in affecting the optimality 
 DR policies due to the uncertainty that comes from the lack of in-
rmation provided by the user, like users’ thermal comfort preferences 
6]. Moreover, if the problem is analyzed from the grid perspective, 
rforming this exercise without considering the needs of the network 
n generate imbalances in the system, as shown in [17]. In addition, 
isting market regulations establish limits for the sale of energy, which 
akes most of the studies that do not consider restrictions on price gen-
ation unsuitable for retailers such as DRAs [18]. This is evidence of 
e need to continue exploring these types of scenarios to avoid a my-
ic generation of pricing tariffs that end up affecting the grid stability 
 in unprofitable strategies for the DRA.
In this regard, this research study addresses optimizing thermal en-
gy usage among a group of residential customers considering a DRA 
2

spite supply and market constraints. It tackles this issue by introduc- co
g a price generator function that utilizes the aggregated consumption 
ofile as the only source of information to generate price policies. 
rthermore, the function takes into account the existing market reg-
ations to establish restrictions in a dynamic pricing approach, and 
lows the translation of a target capacity limit into a dynamic pric-
g policy through a coordination process. As a result, this mechanism 
oves its capabilities at exploiting residential flexibility in a controlled 
anner, and reducing power generation costs while simultaneously in-
easing the profit for the DRA. To set the function parameters that 
timize the generation of price-based policies through the coordina-
n loop, a reinforcement learning (RL) mechanism is used to deal with 
e lack of information regarding the users’ objectives. The RL mecha-
sm is implemented for two reasons, first, it allows dealing with the 
mplex environment with incomplete information on the DR program, 
d second, it will handle the users’ deviations in the execution of the 
nsumption plans to guarantee the respect of the capacity limit stipu-
ted by the DSO.

1. Related works

Price-based DR programs are formulated to deal with the challenges 
 defining prices/rates for different time blocks in an optimal manner, 
pecially in day-ahead markets [19]. In fact, the idea of offering fixed 
ices to residential customers for long periods in order to maintain the 
lance of the power grid as a complex real-time system can yield ineffi-
ent performances [20]. In this regard, the implementation of dynamic 
icing schemes is suggested that can provide an efficient utilization of 
neration capacity. These strategies encourage users to change their 
nsumption patterns without modifying generators’ costly operation 
1]. Nevertheless, acquiring an optimal pricing design is difficult due 
 inherent uncertainties in DR programs related to customers’ dynamic 
ad consumption and price-responsive behavior. For instance, the au-
ors in [22,23] have addressed this situation by developing optimal 
namic pricing mechanisms that allow a trade-off between consumers 
d the utility. Their method has roots in the two most popular practices 
 price-based DR programs. The first performs optimization problems 
at rely on an extensive exchange of specific information [22,24,25]. 
bsequently, in many cases, they can affect the privacy and participa-
n interests of customers. The second implements iterative processes 

mmonly based on game theoretical frameworks [23,26,27]. The over-
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liance of these procedures on users can give them opportunities to 
me the system. In response to these issues, in [28,29], the authors 
ve proposed non-cooperative approaches to reduce the peak of ag-
egated energy consumption profile. A similar strategy that shares 
e power consumption cost between users has been suggested by the 
thors in [29]. However, these solutions suffer from the lack of con-
raints on price generators that can result in either unwanted penalties 
ainst users or barriers to implementing constrained markets.
On the other hand, the emergence of DRA in the implementation 

 DR services has allowed different approaches to be explored. The 
teractions between these entities and households have also enabled 
e development of markets with capacity constraints. As an exam-
e, the authors in [30] took advantage of this interaction to impose 
pacity constraints, in which they propose a strategy for construct-
g a bidding curve for capacity increments. In this regard, in [31] a 
arket-clearing mechanism was developed for offering a capacity lim-
tion service. This work investigates at what costs aggregators can 
er capacity constraints, and how these can reduce the DSO’s net-
ork operating cost. These bidding mechanisms have a good response 
 capacity-constrained flexibility markets. However, the need for intru-
ve approaches to the construction of aggregators’ bidding models can 
 a disadvantage in their implementation. Moreover, the additional 
orkload for DSOs to submit or clear bids in these markets remains a 
ajor obstacle to their implementation. In this regard, authors in [32]
oposed a mathematical framework for a dynamic pricing mechanism 
 an energy community to enable the provision of capacity limita-
n services to the DSO. They highlight the importance of extending 
e portfolio of local flexibility resources to thermostatically controlled 
ads. However, no price limits have been taken into account, and the 
ggestion of a bi-level optimization may result in privacy issues from 
e demand side.
Recently, researchers have focused their efforts on utilizing Rein-
rcement Learning (RL) methods in order to solve the existing issues. 
rticularly, an RL agent can handle system uncertainties without any 
ior knowledge [33]. The approach of the authors in [34,35] relies on 
ploying the RL technique for an optimization problem with a com-
ned objective function to meet the desires of both consumers and the 
gregator in a real-time context. However, such a manner of formu-
ting users’ preferences raises privacy issues since it requires access to 
eir dissatisfaction information during the price policy generation pro-
ss. In a previous study, the authors have addressed this obstacle by 
veloping a learning procedure only based on the aggregated load to 
fine RL actions, and thus, alleviated privacy concerns [36,37]. The 
lated research also considered price constraints determined by the 
arket to improve either the Peak-to-Average ratio (PAR) or the Load 
ctor. Although there are significant achievements in terms of flatten-
g the energy consumption curve by means of RL techniques, there is 
 clear link between peak reduction and system balance. This high-
hts the need to explore a different approach that allows for utilizing 
d-users flexibility in a controlled way based on the maximum con-
mption expected by the DSO. Such consideration brings about an 
timal means to facilitate maintaining the power grid’s reliability.

2. Motivation and contribution

The main objective of this paper is to derive a dynamic pricing 
echanism to provide a capacity limitation service considering the es-
blished energy market regulations. For brevity of the presentation, 
ble 1 compares the differences between the existing methods and the 
oposed model, demonstrating the lack of consideration of price limits 
 the literature, which could significantly impact the optimization pro-
sses. In addition, capacity services in a pricing context are usually of-
red through bidding mechanisms, which leads to high computational 
sts and an over-reliance on the information provided by customers. 
ese points are a further barrier to DR program implementations [18]
3

lated to current regulatory and tariff structures, particularly for resi- an
Smart Energy 14 (2024) 100139

ntial customers. Moreover, one of the remaining fundamental issues 
 pricing in a demand response scenario of the power market by re-
ecting both the capacity and operational costs of responding.
To overcome the aforementioned issue and develop a dynamic pric-
g mechanism, we introduce a price generator function for the DRA 
 considering power capacity and market constraints. Each residential 
er independently determines its best response strategy to minimize 
ergy costs and maximize profit. The proposed DRA uses the price 
nerator function in a game theoretic scenario to coordinate customer 
sponses. The proposed method takes advantage of RL techniques to 
timate the price generator function parameters and a proximal de-
mposition algorithm as a regularizer on the customers’ side. The 
gularization allows us to ensure the convergence of the proposed 
ulti-agent system. Accordingly, this work contributes,

. A price-based DR program centred on proposing a price-generating 
function for the DRA agents that considers the market price restric-
tions. This work identifies a sigmoid function that, combined with 
the regularization of users’ DR based on proximal decomposition in 
a coordination loop, allows the reduction of local peaks according 
to the stipulated capacity limits.

. An RL method to determine the parameters of the price generator 
function during the coordination loop. These parameters assist in 
maximizing the DRA’s profit while respecting DSO’s service needs. 
The PPO algorithm is used to overcome the lack of user information 
in the process of optimizing pricing policies.

. An RL-based DRA agent that considers the deviations from con-
sumers from their stipulated consumption plans. This agent can 
characterize users’ variations to avoid significant impacts on the 
power constraints of the system while improving the DRA’s profit. 
The data-driven mechanism makes it possible to characterize the 
uncertainty of user deviations during the execution of consump-
tion plans.

e rest of the paper is organized as follows: Section 2 presents the 
ethodology for the developed framework. Section 3 covers the val-
ation setup. The results are discussed in Section 4, followed by the 
nclusion in Section 5.

 DR mechanism and problem formulation

In a residential distribution grid, operated by automated agents, 
SO interacts with a DRA agent in order to manage load flexibility of 
group of residences. The DRA provides monetary incentives by man-
ing the price policy. In response, the customers change their energy 
nsumption patterns that helps avoid network congestion and ensure 
e system reliability. Indeed, this constitutes a mechanism in which 
stomers communicate their consumption plan with the DRA in re-
onse to a stipulated price profile. Although the DRA does not know 
nsumers’ preferences in this structure, it can adapt the price pro-
e according to their propositions. In this regard, Fig. 1 illustrates the 
ructure of the proposed price-based DR mechanism. In the designed 
amework, the DRA runs the day-ahead planning of a set of residential 
ents. It communicates to them price signals in a coordination loop 
d induces them to react. Through this interaction, the DRA seeks to 
crease the aggregate peak demand by regulating customers’ power 
ofiles. Specifically, the DRA defines a constant price profile and waits 
r the users’ response. Upon receiving the feedback, the DRA adapts 
e price profile and waits for the residential agents’ new consumption 
an until reaching an agreement.

1. Price generator function

In order to define the DRA’s price profile, a price generator func-
n is formulated considering 𝜋𝑚𝑖𝑛 and 𝜋𝑚𝑎𝑥 as the market’s minimum 

d maximum price constraints accepted for the DR mechanism. This 
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Demand side strategy

Load scheduling with photovoltaic renewable 
energy source integration
Energy optimization and scheduling for 
renewable microgrid
Optimal scheduling of thermostatically controlled 
loads
Consumption optimization of interruptible, 
non-interruptible, non-shiftable, and curtailable 
loads.
Energy optimization for prosumers with 
distributed energy and energy storage devices
Optimal control of customers’ switching behaviors

Flexibility level based price-responsive behavior

Optimal charging of electric vehicles

Optimal appliance scheduling and control of 
energy storage devices

Optimal control of thermostatically controlled 
loads and photovoltaic generators
Optimal energy management strategy for their 
distributed energy resources
Optimal control of production facilities and/or an 
energy storage system for prosumers
Energy management of critical and curtailable 
loads
Minimize consumers’ dissatisfaction utilizing an 
energy disutility function
A data-driven deep neural network to model a 
multi-microgrid price responsive behavior
Optimal control of electric space heating

energy optimization and scheduling for renewable 
microgrids
Control capabilities of air-conditioning systems 
and electric vehicles for commercial buildings
Optimal control of electric space heating
Table 1

Comparison between the existing methods and the proposed model regarding objective functions, consideration of capacity limitation, and price constraints.
Ref DR Mechanism Pricing generation Method Objective Function Capacity 

Limitations
Price 
Constraints

[20] Dynamic pricing Binary genetic algorithm Minimize the average system cost and rebound 
peaks

✗ ✗

[22] Dynamic pricing Multi-objective optimization Considers the benefits and costs of the opposing 
entities at both ends of supply and demand

✗ ✗

[23] Dynamic pricing Multi-objective optimization Social welfare maximization ✗ ✗

[24] Dynamic pricing Bi-level, meta-heuristic Profit maximization for retail electricity provider 
and cost minimization for customers

✗ ✗

[25] Real-time pricing Single-objective optimization 
model

Minimize the electricity cost and electricity 
consumption dissatisfaction

✗ ✗

[26] Demand biding Bi-level game-theoretic model Maximizes the social welfare of the local power 
exchange market and minimizes the social cost of 
the day-ahead wholesale market

✗ ✓

[27] Day-ahead pricing Stackelberg game-theoretic 
model

Maximize aggregator’s profit ✗ ✗

[28] Time-ahead pricing Game-theoretic model Minimizes the player’s costs based on the 
predicted strategy of all other players

✗ ✗

[29] Dynamic pricing Game-theoretic model Minimizes the square euclidean distance between 
the instantaneous load demand and the average 
demand for the energy provider and minimizes 
energy payment for the users

✗ ✗

[30] Demand biding Stochastic optimization Minimizes the deviation from a baseline load 
profile

✓ ✗

[31] Demand biding Market clearing mechanisms Minimizes overall social cost ✓ ✗

[32] Dynamic pricing Bi-level optimization r minimizes the total operational cost of an 
energy community

✓ ✗

[34] Dynamic pricing Reinforcement learning Maximizes service provider profit and minimizes 
customers’ costs

✗ ✗

[35] Dynamic pricing Reinforcement learning Minimizes the expected discounted system cost of 
the service provider

✗ ✗

[36] Distribution locational 
marginal price

Reinforcement learning maximize the total profit of selling power ✗ ✗

[37] Time-of-Use Reinforcement learning Maximizes the load factor and demand response 
aggregator’s profit

✗ ✓

[38] Dynamic pricing Three-tiered optimization Maximize the financial savings from renewable 
energy

✗ ✓

[39] Dynamic pricing Stackelberg game-theoretic 
model

Maximize subcontracting power supply profit ✗ ✓

Proposed 
work

Dynamic pricing Reinforcement learning Minimizes demand response aggregator profit 
reduction and the cost of exceeding the capacity 
limitations

✓ ✓
00139
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Fig. 1. Automatic price-based DR sequence.

Fi

tio

co
is
al
tie
th
to
sy
to
th
co
re
st
no
w

𝜋𝑘

w
{1
en

be
tim
of
co
lin

pr
th
lis
sl
ag

fo
pa
cr
As
m
of

2.

in
pr
tio
ca
of
m
ut
g. 2. Market and power constraints in terms of power generation cost func-
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nsideration is important as it restricts the implementation of many ex-
ting mechanisms that do not consider these price constraints in their 
gorithms. Then, the following price generator function allows enti-
s like DRAs to compete in this type of market, where optimizing 
eir profits becomes an important challenge. Moreover, the genera-
r function considers a capacity limitation factor 𝑀 established by the 
stem. This factor is defined by the DSO based on the power genera-
r cost function of the energy provider (see Fig. 2). This means that 
e DSO may define a value for 𝑀 when the power grid operation is 
mpromised. Aspects such as maintenance reduction or operating cost 
duction, would determine the 𝑀 value based on physical system con-
raints (such as maximum transformer capacity) or maximum desired 
de capacity (for reducing system losses), respectively. Accordingly, 
e propose the following price generator function,

(𝑦𝑘) = 𝜋𝑚𝑖𝑛 +
𝜋𝑚𝑎𝑥 − 𝜋𝑚𝑖𝑛

1 + exp
(
−𝑦𝑘 +𝑀

𝛼

) , (1)

here 𝑦𝑘 represents the aggregate consumption at time stamp 𝑘 ∈
, … , 𝑁}. This value corresponds to the sum of individual household ∑
5

ergy consumption, i.e. 𝑦𝑘 =
𝐻

𝑖=1 𝑢
𝑖
𝑘
, where 𝐻 represents the num- ag
Fig. 3. Proposed price generator function.

r of houses, and 𝑢𝑖
𝑘
is the energy consumption of the 𝑖th house at the 

e stamp 𝑘. Lastly, 𝛼 is a positive parameter that controls the rate 
 price change. To properly determine this value, exploration must be 
nducted by the DRA agent due to the lack of existing information 
ked to the relationship between the users’ elasticity and flexibility.
The proposed price generator function, 𝜋𝑘(𝑦𝑘), has some particular 
operties that make it suitable for reducing aggregate load peaks of 
e aggregated demand profile. In fact, the developed function estab-
hes a direct correlation between consumption and price at every time 
ot. This means that prices increase or decrease in the same way that 
gregate consumption does.
Furthermore, the function has an inflection point at 𝑀 that allows 
r a division into two convex regions, as shown in Fig. 3. Since users 
rticipate with their best responses, their energy payments either de-
ease or remain unchanged while reducing their consumption peaks. 
 a result, consumers try to avoid the high price region. This tendency 
akes max𝑘(𝑦𝑘) lie within a neighborhood centred at 𝑀 with a radius 
 𝑟 depending on the users’ elasticity level.

2. DRA agent

In the described scenario, the DRA takes into account the prevail-
g market regulations that impose restrictions on energy unit selling 
ices. Additionally, the proposed approach aims to mitigate consump-
n peaks considering the defined objectives set by the DSO regarding 
pacity constraints. These limitations are accounted for in the design 
 the price generator function. Consequently, the DRA endeavors to 
aximize its profit by avoiding exceeding the stipulated capacity limit, 
ilizing the feedback obtained from the interaction with the residential 

ents.
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This interaction between the set of residential agents and the DRA is 
odeled as a multiple-follower and one-leader Stackelberg game. In this 
odel, the leader seeks to optimize its usefulness which depends on the 
ofit from the electricity supply to customers and the cost of exceed-
g the power constraints of the system. The energy cost related to the 
ovider can be modeled by the quadratic function 𝐶(𝑦𝑘) = 𝑎𝑦2𝑘+𝑏𝑦𝑘+𝑐
at has been widely used in the literature [29,40]. For this analysis, we 
fine 𝑎 = 𝜋𝑚𝑎𝑥∕𝑀 and 𝑏 = 𝑐 = 0, considering the break-even point be-
een the cost function and the revenue produced by 𝜋𝑚𝑎𝑥. The profit 
pends on the price policy established by the DRA in (1), while the 
st is indirectly controlled through interactions between the followers 
d the leader. The DSO determines the DRA reward 𝜓 based on the 
st reduction concerning the initial aggregated consumption plan, i.e.,

=
𝑁∑
𝑘=1

𝐶(𝑦0,𝑘) −
𝑁∑
𝑘=1

𝐶(𝑦𝑘) (2)

Therefore, considering 𝝅 = {𝜋1, … , 𝜋𝑁} as the price policy for the 
xt interaction, the DRA benefit can be explained by the difference 
tween its income and the cost of exceeding the power constraint,

𝝅) =𝑤1

(
𝑁∑
𝑘=1

𝑦𝑘𝜋𝑘 +𝜓

)
−𝑤2( max

𝑘=1,…,𝑁
𝑦𝑘 −𝑀), (3)

here 𝑤1 and 𝑤2 are weighting factors to balance these two terms. 
 this case, each one of these factors is defined first by the inverse 
 the unweighted historical average of each term to guarantee a nor-
alized result; thereafter, these values are slightly modified to give 
ore importance to the cost per overrun. This function (3) is difficult to 
timize since it is not convex; thus, it cannot be treated by the classi-
l gradient-based optimization methods. Moreover, the deviation from 
e consumption plan by the residential agents during the DR practice 
idences the need for an algorithm with the ability to handle such un-
rtainty. Consequently, the RL method is implemented to deal with the 
tractability of the DRA price generation problem. RL algorithms have 
rong exploration capabilities that enable them to interact continuously 
ith an unknown environment and constantly update the agents’ expe-
ence towards an optimal decision [41]. Despite the drawback linked 
 the training time of RL algorithms, they offer the benefit of address-
g nonlinearities within optimization problems, as outlined in [42]. 
is study illustrates how RL methods have been utilized to overcome 
e necessity of acquiring the dynamics of nonlinear systems for imple-
enting optimal control strategies. The aforementioned demonstrates 
at employing the RL approach enables the optimization of the DRA’s 
icing strategy within the intended scenario.

2.1. An overview of the RL
RL algorithms are based on an agent interacting with an unknown 
vironment and performing actions to extract useful information. 
rough these interactions, the agent attempts to maximize its reward 
 realizing a trade-off between exploring new actions and exploiting 
ose that seem optimal [43]. This process starts by observing the state 
 the environment. The RL agent acts and receives an immediate re-
ard and the resulting new state from the environment. This is because, 
ring the iterative process of interactions between the RL agent and 
e environment, the action affects the environment causing a change 
 its state according to a given probability [44].
When starting the iterative process, the RL agent is unaware of the 
k between the action performed in a given state with the reward 
d the new state received as a response from the environment. In fact, 
e agent learns this knowledge by continuously interacting with the 
vironment. The acquired comprehension is used by the agent to max-
ize not only the immediate reward but also the expectation of the 
ture ones. It can be deduced that an RL algorithm is a trial-and-error 
6

proach that looks to optimize a decision-making process. sc
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2.2. RL representation of a dynamic pricing mechanism under capacity 
nstraints
The targeted scenario considers a multi-agent system composed of a 
t of residential agents and an RL-based DRA. The interactions between 
e residential environment and the RL agent are modeled by a Markov 
ecision Process. This decision-making formalism allows modeling an 
vironment as a set of states where the states of the environment are 
arkovian, and actions can be performed to control the system’s state 
r maximizing some performance criteria. This can be used to learn 
quential decision-making processes by mapping states onto actions 
 such a way that the expected outcome will produce the intended 
ect. These mapping strategies are called policies in this theory. Thus, 
e Markov Decision Process framework enables the gradual learning of 
timal policies through consecutive trials, applying different methods 
veloped in the literature [45]. According to the aforementioned, the 
odel is represented by a tuple ⟨𝑆, 𝐴, 𝑃 , 𝑅, 𝛾⟩, where 𝑆 and 𝐴 are the 
ts of states and actions, respectively. 𝑃 presents the state transition 
obability, 𝑅 is a reward function, and 𝛾 stands for a discount factor 
6].
The RL-based DRA defines the action 𝑎𝑡 ∈ 𝐴 at each step according 

 the state 𝑠𝑡 ∈ 𝑆 . 𝑠𝑡 = {𝜇𝑡,1, 𝜇𝑡,2, … , 𝜇𝑡,𝑁} is the normalized aggregate 
nsumption profile, where 𝜇𝑡,𝑘 =

𝑦𝑘

max
𝑘∈{1,…,𝑁}

{𝑦𝑘}
. The action 𝑎𝑡 modi-

s the price generator function to maximize the reward of DRA within 
e coordination loop. In this regard, 𝑎𝑡 = {𝜂, 𝛼} where 𝜂 is a parameter 
tablished to allow the DRA to transform the price generator function 
r dealing with residential agents’ deviations. As a result, the price gen-
ator function, 𝜋̇𝑘(.), utilized by the DRA and the reward function, 𝑅𝑡, 
fined for our RL set-up, can be described through (4) and (5), respec-
ely.

(𝑦𝑘, 𝜂, 𝛼) = 𝜋𝑚𝑖𝑛 +
𝜋𝑚𝑎𝑥 − 𝜋𝑚𝑖𝑛

1 + exp
(
−𝑦𝑘 +𝑀 − 𝜂

𝛼

) (4)

𝑡 = 𝜉(𝝅̇) (5)

The DRA agent determines actions that maximize its cumulative 
ward 𝐺𝑡 =

∑
𝑗 𝛾

𝑗−1𝑅𝑗 as the return over a number of steps named 
isode. In this case, an episode is equal to the coordination loop be-
een the DRA and residential agents.

2.3. Proximal policy optimization (PPO) method
The implemented RL algorithm is based on the PPO technique. This 
licy gradient means is used to optimize the policy 𝜙𝜃(𝑎𝑡, 𝑠𝑡) based 
 the parameter 𝜃. The policy describes the agent’s behavior as a rule 
 decide the action in a given state. This technique tries to stabilize 
e training process of the RL agent by avoiding parameter updates 
at can produce a high policy alteration in a single step. Additionally, 
attempts to keep old and new policies as closely as possible, ensur-
g reward enhancement and stability during the process [47]. For this 
rpose, the PPO scheme maximizes an objective function, 𝐽 (𝜃), with 
spect to 𝜃, i.e.

(𝜃) = 𝔼̂𝑡[min(𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃),1 − 𝜖,1 + 𝜖)𝐴̂𝑡)], (6)

here 𝐸̂𝑡 is the expectation over episode 𝑡, 𝑟𝑡(𝜃) presents the proba-
lity ratio between the new and old policies in terms of 𝜙𝜃(𝑎𝑡|𝑠𝑡) ∕
𝜃𝑜𝑙𝑑

(𝑎𝑡|𝑠𝑡). The PPO method uses 𝐴̂𝑡 = −𝑉 (𝑠𝑡) +𝛾𝑅𝑡+⋯ +𝛾𝑇−𝑡+1𝑅𝑇−1+
−𝑡𝑉 (𝑠𝑇 ) as the estimated advantage at episode 𝑡, where 𝑇 is the batch 
ze. This advantage function measures the performance of a selected 
tion given the current state. Finally, 𝜖 is the hyperparameter for clip-
ng. This parameter avoids large deviations in the 𝜃 updating process 
 setting the ratio in the interval [1 − 𝜖, 1 + 𝜖] [48]. The Algorithm 1
 Appendix A represents the utilized PPO technique for the targeted 

enario.
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3. Automated DR for residential agents

It is assumed that each residential agent is equipped with a home 
ergy management system (HEMS), which enables flexible demand. In 
is practice, flexible load refers to heating systems controlled by smart 
ermostats based on end-users’ comfort. The possibility to modify the 
ermal load provides the flexibility required for residential agents’ par-
ipation in the DR program. On the other hand, fixed load refers to 
her household appliances operating without the same strategy.
Subsequently, the heating consumption can be computed by maxi-
izing the individual welfare, expressed by,

aximize
={𝑢𝑖

𝑘
}𝑁
𝑘=1

𝐽 (u𝑖)

bject to 𝑥𝑖
𝑘+1 = 𝑔(𝑥

𝑖
𝑘
, 𝑥out
𝑘
, 𝑢𝑖
ℎ,𝑘

),

𝑥𝑖
𝑘
∈ [𝑥𝑖min, 𝑥

𝑖
max],

𝑢𝑖
𝑘
∈ [0, 𝑢𝑖max],

𝑢𝑖
𝑘
= 𝑢𝑖

ℎ,𝑘
+ 𝑢𝑖

𝑎,𝑘
,

(7)

here the vector u𝑖 = {𝑢𝑖1, ⋯ , 𝑢𝑖
𝑁
} is the consumption plan of the 𝑖th

use. The variables 𝑥𝑖
𝑘
and 𝑥out

𝑘
are the indoor and outdoor tempera-

res. 𝑢𝑖
ℎ,𝑘

stands for the heating energy consumption. The total energy 
nsumption of the 𝑖th house at the time 𝑘 accounts for the aggrega-
n of thermal and fixed loads, 𝑢𝑖

𝑘
= 𝑢𝑖

ℎ,𝑘
+ 𝑢𝑖

𝑎,𝑘
. The thermal model of 

e house, 𝑔(⋅), is a discrete linear model described in [49]. The setting 
 this model, based on real data, is presented in Section 3. The param-
ers 𝑥𝑖min and 𝑥

𝑖
max are the minimum and maximum allowed internal 

mperatures set by the user. The objective function, 𝐽 (u𝑖), is defined 
,

(u𝑖) =
𝑁∑
𝑘=1

𝑈 (𝑢𝑖
𝑘
) − 𝜋𝑘𝑢𝑖𝑘, (8)

here 𝜋𝑘 represents the energy price at 𝑘 and 𝑈 (𝑢𝑖
𝑘
) is the utility func-

n of the customer, which in this case is the thermal comfort, i.e., the 
al of the user is to maintain its comfort needs while reducing its bill.
According to the literature, several methods for modeling user com-
rt have been proposed as presented in [50]. These models are based 
 ISO and ASHRAE standards to determine which are more interest-
g [51]. Based on this, the Fanger model is a very common analysis, 
at utilizes the characteristic numbers Predicted Mean Vote (PMV) and 
edicted Percentage of Dissatisfied (PPD) to determine the thermal 
mfort of occupants, [52]. However, implementing these strategies im-
ies using a larger number of variables, needing the utilization of more 
mplex thermal models. This would result in a significant increase in 
gorithmic complexity. For this reason, without losing generality, a 
ear thermal model is implemented, which is computationally less de-
anding. The model 𝑔(⋅) for the thermal dynamics of the house, based 
 the indoor temperature 𝑥𝑖

𝑘
, the outdoor temperature 𝑥out

𝑘
and the 

ermal consumption 𝑢𝑖
ℎ,𝑘

is defined as follows, where 𝜷𝑖 = [𝛽𝑖1, 𝛽
𝑖
2, 𝛽

𝑖
3]

e the state transition coefficients:

+1 = 𝑔(𝑥
𝑖
𝑘
, 𝑥out
𝑘
, 𝑢𝑖
ℎ,𝑘

) = 𝛽𝑖1𝑥
𝑖
𝑘
+ 𝛽𝑖2𝑥

out
𝑘

+ 𝛽𝑖3𝑢
𝑖
ℎ,𝑘
. (9)

Then, the residential agents aim to minimize their thermal com-
rt dissatisfaction, i.e., the difference between the desired and indoor 
mperature has to be minimized [53]. With this in mind, since the res-
ential agent uses the thermal load as flexible demand, this function 
 determined based on thermal comfort parameters consisting of 𝑥𝑖

comf
 the set-point temperature and 𝛿𝑖

𝑘
as the comfort weight factor. This 

ement represents users’ ability to sacrifice comfort to reduce the bill. 
ccording to [49,54], the thermal comfort can be modeled with the 
llowing quadratic utility function,
7

(𝑢𝑖
𝑘
) = −𝛿𝑖

𝑘
(𝑥𝑖comf − 𝑥

𝑖
𝑘
)2, (10) w
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here 𝛿𝑘 can take two values from the set {0, 𝛿max}. In the case of 
= 𝛿max, occupants are interested in reaching their comfortable tem-
rature set-point. Indeed, the parameter 𝛿max advertises the price 
asticity of the heating energy. This strategy maximizes the flexibil-
 of the residential agent without compromising its thermal comfort 
nstraints. For instance, the agent can freely modify the internal tem-
rature under 𝛿𝑘 = 0 while respecting the constrain 𝑥𝑖

𝑘
∈ [𝑥𝑖min, 𝑥

𝑖
max].

Since the residential agents are simultaneously solving their opti-
ization problem in a selfish way, it is necessary to regularize their 
timization problems. According to theorem 3 in [29], this regular-
ed plan of the houses combined with the non-negative users’ payments 
anted by the price generator function guarantees the existence of a 
ash equilibrium in the proposed DR mechanism. The proximal decom-
sition can perform the regularization as a distributed algorithm [55]. 
 this regard, a regularization parameter, 𝜏 , is utilized to penalize the 
fference between consecutive defined consumption plans, i.e., penal-
e significant variations between episodes 𝑡 and 𝑡 − 1 [37]. As a result, 
e dual optimization problem to minimize the residential agents’ cost 
nction can be defined by (11).

inimize
={𝑢𝑖

𝑘
}𝑁
𝑘=1

𝑁∑
𝑘=1

𝛿𝑖
𝑘
(𝑥𝑖comf − 𝑥

𝑖
𝑘
)2 + 𝜋𝑘𝑢𝑖𝑘 + 𝜏(𝑢

𝑖
𝑡,𝑘

− 𝑢𝑖
𝑡−1,𝑘)

2

bject to 𝑥𝑖
𝑘+1 = 𝑔(𝑥

𝑖
𝑘
, 𝑥out
𝑘
, 𝑢𝑖
ℎ,𝑘

),

𝑥𝑖
𝑘
∈ [𝑥𝑖min, 𝑥

𝑖
max],

𝑢𝑖
𝑘
∈ [0, 𝑢𝑖max],

𝑢𝑖
𝑘
= 𝑢𝑖

ℎ,𝑘
+ 𝑢𝑖

𝑎,𝑘
.

(11)

Although all customers intend to report and consume the optimal 
mand, which minimizes their costs, deviations can appear during run 
e. Such deviations indicate that users consumed 𝑑𝑘 times their re-
rted plan, i.e., 𝑢̂𝑘 = 𝑑𝑘𝑢𝑘 at each time stamp [56]. In order to model 
e occurrence of such deviations, 𝑑𝑘 can be expressed as a random 
riable that follows a Log-normal distribution with parameters 𝜇 = 𝑒, 
d 𝜎 = 0.05.

 Validation setup

In this section, the proposed DR mechanism is validated through nu-
erical analyses. The experimental data used for constructing the ther-
al models is described. The validation procedure aims to investigate 
e ability of residential agents to modify their standard consumption 
tterns by exploiting their flexibility potential in response to the price 
ofile.
This work uses real-world data to construct thermal models and gen-
ate stochastic load profiles for a set of residential buildings. The data 
 related to 11 single-family detached houses, located in the city of 
ois-Rivieres, Quebec, Canada. The houses are equipped with electri-
l baseboards and thermostats for temperature control. The acquisition 
stem records indoor temperature, electrical heating power consump-
n, and outdoor temperature. The collected data spans four winter 
onths, from January to April 2018. Fig. 4 depicts the conditional den-
ty of the power consumption and the difference between the indoor 
d outdoor temperatures. The measurements have 15-minute sampling 
tervals. The data allows for constructing linear thermal models of 
rgeted houses. The ridge regression is utilized to determine the co-
cients 𝜷𝑖 = [𝛽𝑖1, 𝛽

𝑖
2, 𝛽

𝑖
3] for the linear model [57],

+1 = 𝑔(𝑥
𝑖
𝑘
, 𝑥out
𝑘
, 𝑢𝑖
ℎ,𝑘

) (12)

In addition, the power consumption of energy-extensive appliances 
her than electric baseboards is considered. This process aims to gen-
ate a stochastic aggregate load profile of non-flexible residential ap-
iances [58]. This profile is added to the simulated heating demand. 
g. 5 shows the conditional mean and 95% confidence interval of the 

eekly load profile for a single house. The data presented is utilized to 
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g. 4. Distribution of the ESH power consumption and the outdoor temperature 
r one house in Trois-Rivieres, Quebec.

g. 5. Average weekly power profile from 8 real houses (space heating load is 
t included).

tain the distributions needed to introduce realistic uncertainties for 
e HEMS optimization simulation process. It should be noted that sta-
tical information from a previous study on temperature preferences 
 residential buildings is utilized to derive sensible comfort desires for 
e simulation [59].
For the 𝑖th house, the comfortable temperature, 𝑥𝑖

comf
, is drawn from 

discrete distribution as the highest set-point. The generated value 
 used to compute the household utility function through (10). In 
is study, the discrete set accounts for four different set-point values 
tained by discretizing an empirical distribution over set-point tem-
ratures in Quebec dwellings [59]. The possible values of 𝑥𝑖

comf
are 

0, 21, 22, 23] in degree Celsius [C], and their corresponding proba-
lities, 𝑃 (𝑥sp), are [0.1, 0.3, 0.5, 0.1]. Besides, the value of the mini-
um allowed temperature for the same house is generated through 
in = 𝑥

𝑖
comf

−𝑥𝑖
sb
, where 𝑥𝑖

sb
is the set-back value. This quantity is taken 

ndomly from the set {1, 2, 3, 4} with 𝑃 (𝑥𝑖
sb
) = [0.1, 0.3, 0.4, 0.2], calcu-

ted by the same manner used for 𝑥𝑖
comf

[59]. Finally, the value of the 
rameter 𝛿max, required by the utility function (10), is assumed to be 
tracted from a log-normal distribution with the expectation, 𝔼(𝛿max), 
d variance, 𝑉 𝑎𝑟(𝛿max), equal to 5 and 1, respectively.

 Results

This section provides the simulation results of the proposed DR 
echanism by performing the analysis in three steps. First, validation of 
8

e consumption behavior of the residential agents is carried out with- ap
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Fig. 6. One-day aggregated power demand without DR.

t the DR mechanisms. Then, the effectiveness of the proposed price 
nerator function for different capacity limits is examined. Finally, the 
O-based RL technique is used to optimize the parameters of the price 
nerator function within the coordination loop to deal with the devia-
ns of the residential agents and maximize the DRA’s profits.

1. The scenario without DR

Fig. 6 shows the aggregated consumption profile of a set of 11 sim-
ated buildings during a cold day. The consumption behavior in the 
ure demonstrates that the models developed are in accordance with 
e expected power consumption pattern in Quebec’s residential sector. 
ch residential agent performs a model predictive control, meaning 
ey tend to anticipate comfort needs considering the price profile. 
erefore, agents will perform actions such as preheating the house 
fore the setpoint temperature changes to 𝑥𝑖

comf
. From Fig. 6 it can be 

served that in the absence of a management mechanism, high peak 
ads have occurred during morning and evening hours.

2. Coordination loop

The performance of the proposed price-based demand response 
rategy is evaluated utilizing the price generator function proposed in 
). Here, a constrained market is considered, where 𝜋𝑚𝑖𝑛 = 0.05$∕𝑘𝑊 ℎ

d 𝜋𝑚𝑎𝑥 = 0.20$∕𝑘𝑊 ℎ. The DRA agent starts the coordination loop by 
tablishing a flat price profile. Once aggregating the received response 
 the users’ consumption plan, the DRA agent uses the proposed price 
nerator function (1) to establish the new price policy. This process is 
rformed 10 times before reaching the agreement in the multi-agent 
stem. Fig. 7 shows the results obtained for the capacity constraints 
= 90, 80, 70𝑘𝑊 for an 𝛼 = 5. The Figure presents the step-by-step 
teraction between the DRA and the resistive agents. To be more pre-
se, each graph shows the aggregated profiles starting from the users’ 
nsumption plan before the DR program’s implementation and end-
g with the consumption profile of the agreement reached. The former 
 represented in each graph as a red time series and the latter as a 
ue time series. These results demonstrate that the proposed method 
lows the translation of a pricing policy into a desired maximum ca-
city value in a restricted market. Moreover, it can be observed that 
r higher values of 𝑀 , residential agents can keep their peak consump-
n further away from the capacity constraint to exploit further the low 
ice region of the price-generating function. However, as 𝑀 decreases, 
is difference is reduced because the users’ flexibility starts hitting the 
it.

3. RL for optimizing DRA pricing strategy

Finally, we evaluate the performance of the proposed PPO-based RL 

proach in defining the parameters of the price generator function (4)



Smart Energy 14 (2024) 100139A. Fraija, N. Henao, K. Agbossou et al.

Fig. 7. Performance analysis of the coordination method for different𝑀 values.
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ring the coordination loop. For this case, the capacity constraint will 
 established as 𝑀 = 75𝑘𝑊 . The RL-based DRA agent seeks to maxi-
ize its profit from electricity sales by setting the function’s parameters. 
owever, it must also deal with the problem of users’ deviations from 
e consumption plan during its execution. Users try to follow the con-
mption plan from the agreement as this is the one that maximizes 
eir profit. However, this consumption may deviate from the plan due 
 possible changes in their activities. Therefore, the DRA agent must 
 prepared against these changes to avoid being penalized by the DSO. 
ch RL episode is represented by a coordination loop, which will stop 
cording to criteria based on the change in the percentage of power 
neration cost reduction with respect to the initial cost and the change 
 the PAR from one iteration to another. In this case, the coordination 
ill stop when the cost change is less than 0.01%, and the PAR change 
 less than 0.01. According to the analyses conducted, the proposed cri-
ria are usually met after ten iterations. To better illustrate this, Fig. 8
esents the convergence curve of the coordination loop.
Fig. 9 presents the average curves resulting from the learning pro-
ss of the DRA agent. The blue curve shows the progression in episodes 
 the average reward, based on function (5), in red the improvement 
 PAR at the end of each coordination loop of each episode, and finally 
 green the aggregator’s profit for selling energy using the pricing pol-
y of the agreement. It can be seen that after 600 episodes, the agent 
proves the reward obtained at the end of the day. In addition, the 
ure shows how the agent improves its profit per sale of electricity by 
%. At the same time, it offers a reduction of the PAR, demonstrating 
e performance improvement of the proposed RL method.
Fig. 10 presents a coordination loop between the DRA agent and 
e residential agents after learning. It can be observed that the im-
ementation of the RL method in the parameter setting of the price 
nerator function enables the DRA agent to utilize the flexibility po-
ntial on the residential agent side to improve the aggregate power 
nsumption profile in comparison to the results obtained in Fig. 7. A 
9

markable point is the amount of electricity consumption shifted from lik
g. 8. Power generation cost percentage and PAR curves during coordination 
op.

e peaks to the valley. This type of behavior is due to the nature of 
e controllable load of the residential agents. In houses with electric 
ace heating systems exposed to winter temperatures, the set-point 
ofiles have a significant incidence on initial consumption peaks. For 
e control mechanisms, these values are used to determine the ther-
al preference profiles of residential users. This means that for higher 
t-point periods, the residential agent assumes that a greater need for 
ermal comfort is requested. Therefore, during lower values, these pe-
ods are used to give the residential agent the freedom to control the 
door temperature freely. This means that internally, the house must 
 preheated to a higher temperature than the higher set-point so that 
e need for heating is reduced during peak consumption. Because of 
is preheating, a greater increase in consumption during the valley is 

ely to be found to meet thermal comfort needs during the peaks.
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Fig. 9. Analysis of DRA agent performance during the learning process.
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Fig. 10. Coordination loop after RL learning process with𝑀 = 75𝑘𝑊 .

Fig. 11. Analysis of average capacity constraint overruns.

In terms of deviation, Fig. 11 The Figure presents the results re-
ted to the difference between the established capacity limit and the 
aximum peak consumption of the users after the execution of their 
nsumption plan. For this purpose, the final calculation of the reward 
nction is performed after the execution of the consumption plans, i.e., 
e calculation of the reward is made using the consumption profile 
. Considering those deviations in the plan, the blue curve represents 
e average spread of the differences between the maximum peak con-
mption during the 24 hours and the capacity limit. In addition, the 
d curve indicates the occurrence of exceeding this limit, measured in 
number of timesteps encountered in excess of the 𝑀 limit. These re-
lts illustrate that the DRA agent maintains a trend in decreasing the 
erage occurrence of exceeding the capacity constraint. In addition, 
10

e figure also shows that the agent decreases the power difference be- m
g. 12. Difference between actual aggregate consumption and the consumption 
an of the agreement under the established price profile.

een the constraint and the consumption peak throughout the learning 
ocess. Finally, Fig. 12 presents the profile of the aggregate consump-
n plan and pricing policy stipulated in the agreement, and the actual 
gregate consumption of the houses after the 600 episodes. The pro-
sed method demonstrates the effectiveness of the proposed strategy 
 dealing with uncertainty arising from deviations from the consump-
n plan of residential agents. As it is represented, the DRA even tries 
 accept a slight deviation from the consumption plan of the agreement 
 order to use these deviations to its advantage in the execution. This 
 order to obtain a higher profit from the sale of energy. However, this 
pe of behavior could be avoided by adjusting the values of 𝑤1 and 𝑤2
 equation (3).

4. Performance comparison

To determine the effectiveness of the selected approach, a perfor-
ance comparison was made for both the proposed price generator 
nction and the implemented RL mechanism. First, we compare the 
ice function (4) with a standard piece-wise linear function. This new 
nction was constructed based on the derivative of our sigmoid func-
n to ensure an approximate shape between them. Another winter 
y was selected randomly to verify the performance of the proposed 
nerator in exploiting the flexibility potential of a set of residential 
stomers. Fig. 13 provides a performance comparison within the coor-
nation loop, for 𝑀 = 70𝑘𝑊 . The results illustrate that the proposed 
gmoid function (1) is able to exploit, in a superior manner, the flexi-
lity potentials of the residential agents, considering the same environ-

ental conditions. This can be noticed by comparing overruns of the 
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Fig. 13. Performance analysis of different price generator functions.
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g. 14. Comparative performance of our PPO mechanism with A2C and DDPG.

pacity limitation 𝑀 . For instance, in terms of the number of over-
ns, the sigmoid function outperforms the piece-wise linear function 
 achieving 41% fewer overruns at the end of the coordination loop. 
rthermore, the power consumption over 𝑀 is higher in the piece-
ise linear function by 75%, evidencing the significant differences in 
rms of flexibility exploitation.
Taking into account the performance of the RL algorithm, the se-

cted PPO mechanism was compared with the popular Advantage-
ctor-critic (A2C) and Deep Deterministic Policy Gradient (DDPG) 
ethods. Fig. 14 provides the curves of the progression in iterations 
 the average reward, based on function (5). The results demonstrate 
at the selected approach provides better efficiency in dealing with the 
certainty of the scenario encountered. According to this Figure, the 
O and A2C algorithms are able to obtain better results than DDPG. 
rthermore, the PPO mechanism converges to a solution that provides 
reward 38% higher than the A2C method, meaning that by imple-
enting the PPO algorithm, the DRA agent will be able to capitalize 
 effort in terms of higher profits from energy selling and DSO reward 
ceived.
Finally, to better illustrate the performance of the proposed method, 
last comparison is performed, taking into account the uncertainty in 
e behavior of residential users. Fig. 15 provides a comparative result 
ter the training process during 20 days of the winter season. It is 
ssible to verify that the average results are almost the same in terms 
 DRA’s profit from energy sales. However, considering overruns of 
e capacity limit, there exists a significant difference as in the case 
ithout the uncertainty, the average cumulative daily power over the 
it is 0.05𝑘𝑊 , but in the case where the deviations are considered, 
11

e accumulated power is around 4𝑘𝑊 . This can translate to a better po
g. 15. Performance analysis related to the consideration of users’ deviations 
m consumption plans.

ploitation of the DSO’s reward and a higher DRA’s profit when this 
certainty is not considered.

 Discussions and future prospects

The optimal generation of pricing policies has been a critical aspect 
 implementing price-based DR programs. Moreover, the consideration 
 existing regulations would be an important issue in the implementa-
n of these programs. These regulations define limits on price sales 
r energy unit, creating new constraints for the optimization problems 
isting in the literature and affecting the optimality of their solutions. 
nother key aspect is the goal of these DR mechanisms in the residen-
l sector. Their goal is to exploit their flexibility potential to reduce 
nsumption peaks. However, implementing such strategies can result 
 imbalances and losses in the power grid if the system’s real needs are 
t considered [57]. In this regard, some studies have been conducted 
 the literature considering pricing policies where capacity limits are 
tablished [32], especially in the presence of electric vehicles [60]. 
owever, integrating these capacity limitations, taking into account 
her sources of flexibility from the residential sector, needs to be fur-
er explored. This is an important point as Smart Energy Systems are 
cused on merging the electricity, heating, and transport sectors with 
orage options to foster the adaptability required for accommodating 
gnificant amounts of fluctuating renewable energy [61]. This clearly 
presses the need for integrating electric heating systems with new 
xibility sources like battery electric vehicles in the same capacity-
nstrained scenario. Therefore, the aforementioned highlights the im-

rtance of developing new strategies, such as the one presented in 
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is paper, to facilitate the future integration of heating systems with 
erging technologies in residential smart energy systems.
The traditional fixed-rate pricing schemes have been widely imple-
ented around the world. However, the increase in price volatility has 
ade the retailers migrate to more dynamic pricing strategies like Time-
-Use programs. This means that we are at a stage where hourly rates 
e becoming a standard, and therefore, it is expected that the rate time 
solution will soon drop by 15 minutes, as is the case in Europe. [32]. 
r this reason, it is necessary to develop dynamic pricing mechanisms, 
ch as the one presented in this paper, to allow the management and 
timization of residential consumption in these evolving scenarios. In 
rticular, the consideration of the energy consumption of the heating 
ctor in this type of scheme facilitates the intended energy transition 
d contributes to limiting the need for new infrastructures, as shown 
 [62].
In this sense, it is important to define strategies that allow users to 
ordinate through these pricing policies. This represents a great ben-
t for entities such as the DSO, as presented in [29]. In this paper, 
e authors propose a dynamic pricing mechanism that significantly 
duces consumption peaks. This is achieved through a coordination 
op in which pricing policies proportional to the aggregate consump-
n profile are used, allowing users’ privacy to be respected. However, 
ice limits are not considered for generating the policies, hindering 
e possibility of their implementation under the existing regulations 
 the energy markets. This can also lead to significant decreases in 
ergy sales profits, as shown in [37]. For this reason, the approach 
oposed in this work considered the utilization of a dynamic price 
nerator function by a DRA to improve the ideas presented in [29]. 
is function performs a monotonic transformation of the aggregate 
nsumption profile, taking into account price constraints and capacity 
its, allowing the achievement of a reduction in peak consumption in 
more controllable manner. As a result, the way in which user flexibil-
 is managed enables the opportunity to offer capacity services to the 
SO, and highlights the benefits of exploiting the flexibility potentials 
 heating systems for the system.
The performance of this function is compared with a piece-wise lin-
r function, demonstrating how the proposed sigmoid-based function 
ovides better management of the residential flexibility by accomplish-
g significant results in terms of capacity overruns. However, it is not 
 easy task to determine the correct parameter settings of this func-
n, as any information from the demand side is known by the DRA. 
oreover, users can deviate from their stipulated consumption plans 
ring run time due to external variables or unexpected events that 
ay affect non-controllable load consumption. For this reason, a Deep-
 mechanism is proposed to handle the uncertainties related to the 
ck of this information. The results evidence that the RL-based DRA 
 able to set the parameters of the proposed price generator function 
operly in order to guarantee the capacity limit and price constraints 
hile maximizing its profit for selling energy. This significant achieve-
ent can contribute to the smart energy system transition by reducing 
e electricity demand consciously, which indirectly influences power 
neration. To illustrate, this could mean a reduction of biomass con-
mption, increasing the feasibility of carrying out energy transition 
rategies such as the one presented in [63].
In order to improve the obtained results, further considerations must 

 taken into account. For instance, the integration of energy storage 
stems may be very beneficial, as these systems can help with the ab-
rption of energy consumption deviations from the demand side. This 
n allow a better performance of the mechanism proposed in terms of 
ayers’ profits and increase flexibility opportunities within smart en-
gy systems. Furthermore, the integration of electric vehicles must be 
ospectively evaluated to analyze the effect of capacity limitations for 
ectric vehicle charging on the management of the heating sector. The 
plementation of the proposed DR program, based on dynamic pric-
g, should be carried out to evaluate the effect on demand response 
12

der the management of these two different types of loads. m
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 Conclusions

In this paper, a price-based DR program is proposed that incor-
rates power capacity and market constraints to coordinate a set of 
sidential agents. For this purpose, a price generator function is pro-
sed, considering existing market regulations that limit energy sales 
ices. This function allows translating the maximum desirable capac-
 into a pricing policy through a coordination loop in a Stackelberg 
me-theoretic framework, obtaining a mechanism that allows exploit-
g residential flexibility in a more controlled way. The price generator 
nction performance is demonstrated through a comparison against a 
ear piece-wise function, evidencing 41% fewer overrun and a power 
nsumption over the capacity limit 75% lower at the end of the coor-
nation loop. Furthermore, an RL-based DRA agent utilizes this price 
nerator to define pricing policies that maximize its profit in the con-
rained proposed scenario, where the DRA needs to deal with devia-
ns from users’ stipulated consumption plans. The proposed strategy 
as able to exploit residential agents’ flexibility, adjusting the parame-
rs of the price generator function within the coordination loop. More-
er, the proposed approach evidences the viability of exploiting the 
xibility potentials of electric space heating systems from the residen-
l sector, in such scenarios where capacity limitations are required 
om the DSO. The simulation results demonstrated that the proposed 
R strategy improved DRA’s profits by 35% while dealing with residen-
l agents’ deviations. The comparative study displayed the superiority 
 the proposed price-based DR program and the adopted PPO-based RL 
chnique converging to a solution that provides a reward 38% higher 
r the DRA than the well-known A2C and DDPG methods.
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ppendix A. PPO algorithm

Procedure for the implementation of the proposed dynamic pricing 

echanism based on PPO.
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Algorithm 1: PPO algorithm.
DSO communicates the desirable capacity limit 𝑀 .
The DRA asks residential agents for their stipulated consumption plan 
under a constant price.
DRA determines the initial state 𝑠0 .
for 𝑡 = 0, 1, 2, ... do

Define the action 𝑎𝑡 = {𝜂, 𝛼}. (Transformation of Price function (4)
defined by the aggregator agent)
Each Residential agent solves its own optimization problem 
expressed in (11).
Get the normalized state 𝑠𝑡 . (Aggregated residential agents’ response)
Calculate rewards-to-go 𝑅𝑡 based on (5).
Collect the set of partial trajectories {(𝑠𝑡, 𝑎𝑡, 𝑅𝑡, 𝑠𝑡 + 1)} on policy 
𝜙𝑡 = 𝜙𝜃𝑡 (𝑎𝑡, 𝑠𝑡).
Estimate advantage 𝐴̂𝑡 .
if 𝑡 mod 𝑇 = 0 then

Compute policy update by means of (6):

𝜃𝑡+1 = argmax
𝜃

𝑇∑
𝑗=0

𝐽 (𝜃)

via stochastic gradient ascent with Adam [48].
end

end
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