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ABSTRACT In flexibility markets, aggregators serve as crucial intermediaries by consolidating and selling
consumer flexibility to grid operators or distribution system operators (DSOs). They are essential for grid
management, offering load reductions based on power limits, and estimating expected consumer load in
demand response scenarios. However, the inherent uncertainty in consumer behaviour poses a significant
challenge, leading to deviations between projected and actual power consumption. In this context, this paper
proposes a methodology for quantifying forecast uncertainties in power profiles at the aggregator level. The
proposed methodology introduces a model-based approach to provide a more comprehensive representation
of uncertainty and investigation of load variations. It provides load forecast values as comprehensive
distributions, which are then sampled to generate newly sampled data from which the probability density
function is extracted to quantify uncertainty, expressed by confidence intervals around the expected output.
This approach aids in identifying the flexibility requirements for aggregated household power consumption,
assists in quantifying uncertainties, and determines the flexibility needed for accurate forecasts of such
consumption, which is essential for informed decision-making. The effectiveness of the proposed strategy
is demonstrated using a synthetic dataset to assess its capability to quantify uncertainties in probabilistic
forecasts. Additionally, a potential case study with a neighborhood of 14 houses connected to the same
distribution transformer is presented to validate the proposed method. A comparative investigation of
quantified uncertainties is presented by employing the Additive Gaussian Process (AGP), the Prophet
forecasting, and the quantile regression, highlighting the usefulness of the proposed approach in flexibility
markets. The results demonstrated the superiority of AGP-based load forecasts and flexibility needs with
precise prediction accuracy. The comparative study demonstrates that the proposed method with AGP
presents a minimum uncertainty when forecasting the total residential load than other benchmark models
with a percentage of 26% and 21% in mean absolute error, respectively, for the different datasets. The
continuous ranked probability score also revealed a 39% increase in the accuracy of probabilistic forecasts
via the proposed method in contrast to others.

INDEX TERMS Additive Gaussian process, facebook Prophet model, flexibility markets, forecasting
analysis, uncertainty analysis.

The associate editor coordinating the review of this manuscript and
approving it for publication was Dinesh Kumar.

NOMENCLATURE
PARAMETERS
α Percentile.
ℓEQ,ηEQ Hyperparameters of EQ.
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ℓM ,ηM Hyperparameters of M.
ν Positive hyperparameter.
σ Variance.

VARIABLES
βτ Regression coefficients specific to the quantile τ .
ϵt Error Term.
O(N 3) Covariance matrix.
u Residual.
X Covariates.
xc Vector calendar variables.
xw Vector weather variables.
y Aggregated power (kW).
ylim Power limit (kW).

FUNCTIONS
0 Gamma function.
ρτ loss function.
F−1 Inverse Cumulative Distribution Function.
g(t) Trends of non-periodic changes.
kc Kernel calander fucntion.
kw Kernel weather function.
kso Second order kernel function.
s(t) Nonlinear function on a daily, weekly or yearly.

ABBREVIATIONS
AGP Additive Gaussian Process.
ANN Artificial Neural Network.
CDF Cumulative Distribution Function.
CI Confidence Interval.
CRPS Continuous Ranked Probability.
DSM Demand Side Management.
DSO Distribution System Operator.
EMS Energy Management System.
EQ Exponential Quadratic kernel.
KDE Kernel Density Estimation.
MAE Mean Absolute Error.
M Matérn kernel.
PDF Probability Density Function.
PICP Prediction Interval Coverage Probability.
QR Quantile Regression.
RMSE Root Mean Squared Error.
sMAPE squared Mean Absolute Percentage Error.
STLF Short-Term Load Forecasting.
SVM Support Vector Machines.
VarS Variogram Scores.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Uncertainty in forecasts in recent years has been an important
aspect of many fields, including statistics, economics,
weather prediction, and machine learning. It reflects the
inherent unpredictability or variability in future outcomes,
and it’s crucial to understand and quantify this uncertainty

to make informed decisions [1]. However, uncertainty arises
from various factors, including seasonal variations, weather
conditions, economic fluctuations, customer behaviour, the
model’s parameters, and unforeseen events. Therefore, it is
essential to develop forecasting models and methodologies
that can handle these uncertainties and provide reliable
forecasts [2]. On the other hand, electricity grids in cold
regions face unique challenges compared to those in milder
climates. Electric space heating significantly complicates the
energy demand profile, especially in cold regions.

In these areas, the energy demand is further complicated
by the heavy reliance on electric space heating and water
heating. Occupant behaviours can also significantly impact
electricity consumption patterns, and the unpredictability of
these behaviours introduces uncertainty in load forecasting.
For instance, daily routines throughout the day, changes
in work schedules, sleep patterns, and other activities can
vary, leading to fluctuations in electricity usage. Addition-
ally, the increasing use of electric vehicles (EVs) adds
to the fluctuating energy demands [3]. This creates a
demanding landscape that experiences both seasonal and
daily peaks. Cold winters contribute to significant seasonal
spikes in power consumption, while daily patterns add
further variability, putting a strain on local distribution
networks [4], [5], [6]. In the context of local flexibility
markets that enable the trading of resources that can provide
flexibility to the electricity grid, it is crucial to tackle
these challenges, particularly the uncertainties surrounding
load [7]. These markets serve as vital channels for making
real-time adjustments to electricity consumption, offering
potential solutions to congestion management and peak
shaving [8]. Making these real-time adjustments becomes
imperative to maintain grid stability and ensure uninterrupted
power supply during periods of high demand [9]. Within this
ecosystem, the accuracy of the aggregated load estimation
in a neighbourhood is paramount [10] for cold weather
regions, as inaccuracies can lead to economic inefficiencies
and potential grid challenges. If overestimated, it might fail to
reduce consumption as promised, which can lead to penalties
and grid instability. On the other hand, underestimating
flexibility means missing out on market opportunities and
potential revenue [11]. While traditional methods of load
estimation have their merits, they increasingly fall short
when confronted with the daily consumption intricacies in
cold regions. The combined impact of electric space and
water heating systems, the rising tide of EVs, and the
nuanced changes in consumption caused by the vicissitudes
of cold climates necessitate an approach to the prediction of
aggregated load with uncertainties [12].

Short-Term Load Forecasting (STLF) serves as a pivotal
tool in addressing load demand for optimal electricity
market planning, as demonstrated by its extensive application
in delivering usage plans [13]. Furthermore, its efficacy
extends to the Energy Management System (EMS), playing
a crucial role in real-time load consumption prediction for
the implementation of effective Demand Side Management
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(DSM) programs aimed at enhancing energy efficiency [14].
The primary goal of such initiatives is the reduction of
end-user electricity consumption by strategically modifying
load patterns, particularly during peak times [15]. However,
upon a critical examination of the current state of the art, cer-
tain gaps and inadequacies come to the forefront, particularly
when viewed through the lens of modern smart grids [16].
The existing body of literature predominantly explores
STLF using deterministic or probabilistic models [17].
Additionally, the surge in popularity of machine learning
techniques, particularly neural networks and data-driven
methods like Artificial Neural Networks (ANN) [18], Sup-
port Vector Machines (SVM) [19], and Gaussian Process
(GP) [20], has been noteworthy in recent years for forecasting
aggregated load. These techniques promise the ability to
capture non-linear patterns but reveal a common weakness
in uncertainty quantification when subjected to a critical
evaluation.

Despite their proficiency in forecasting, these machine
learning models often struggle to provide reliable uncertainty
estimates. Their inherent ‘‘black-box’’ nature, combined
with the risk of overfitting, introduces unpredictability into
forecasts, particularly in the face of anomalous events or
rapid grid changes. Furthermore, the reliance of supervised
learning algorithms on training datasets with precise forecasts
introduces uncertainties that limit their practical application.
This leads us to a fundamental question: How can uncer-
tainties be effectively incorporated into forecast models to
enhance their reliability and applicability in dynamic energy
environments?

B. LITERATURE REVIEW
Point or deterministic forecast methods have been widely
used historically because of their simplicity and understand-
able employment [21]. However, these deterministic methods
are gradually replaced by probabilistic methods that respond
to the stochastic factors corresponding to the system’s
flexibility [22]. The methods proposed by those works suffer
from two issues: the first is the accumulation of errors due
to the stochastic behaviour of end-users, and the second is
the insufficiency of the model to provide reliable forecasts
of users with different power patterns for an ensemble
of houses since uncertainties can significantly impact the
actual demand [23]. Various advanced probabilistic load
forecasting methods have prominently emerged in recent
years. While prior research has not explicitly addressed
uncertainty propagation from systems, notable progress has
been made in this forecasting domain. For instance, [17]
investigates the propagation of input uncertainty, recognizing
the challenges involved in predicting outputs. In this context,
[16] examines the outputs of machine learning algorithms
to quantify uncertainty in determining future power demand
changes.

On the other hand, the application of Gaussian processes
network-based models, as highlighted in [24], stands out for

its ability to generate empirical distributions by sampling
multiple predictions. This method is effective, and analyt-
ical distributions prove valuable for gradient-based design,
by minimizing the need for extensive predictions. Focusing
on a forecast horizon of 24 hours, this approach estimates
load confidence intervals based on quantiles derived from
past forecast errors. This method’s adaptability extends
to security analyses of power systems, demonstrating its
capacity to generate demand scenarios at specified risk levels.
The primary objective of this analysis is to understand
system reactions to electricity use ramps and periods of low
load [25], [26]. In practice, three strategies are often used to
communicate uncertainty in load forecasts that allow a more
comprehensive exploration of uncertainties in load predic-
tions: scenario forecasting [32], interval forecasting [27], and
quantile forecasting [2], [28].

Table 1 provides a comprehensive overview of how each
reference navigates the complexities of uncertainty within
the context of load forecasting. By examining the entries
in the table, one can discern the diverse methodologies
and approaches employed by different authors to address
uncertainties. Reference [31] incorporates neural network
models and applies confidence interval-based uncertainty
quantification for electricity price forecasting. The authors
combine different analyses for time series analyses (statis-
tical) by applying uncertainty to clustered data for power
to better detect trend shift (concept drift) and handle the
noise in data more precisely. Another study [28] builds
upon methodologies from competition winners, integrating
quantile regression and neural networks for load and price
forecasting. Authors in [7] emphasize the robustness of a
model in handling missing data and outliers and adapting
to trend changes. The authors thoroughly examine the
model’s mechanisms for estimating uncertainty, providing
confidence intervals, and evaluating reliability in scenarios
where uncertainty plays a pivotal role [33].

While quantifying forecast uncertainty may support better
decision-making in the energy industry, there have been
few journal articles published on quantifying forecast uncer-
tainty [34]. Uncertainty in load stems from various exogenous
factors such as temperature, humidity, and solar radiation.
It is also attributed to the temporal dynamics, encompassing
seasonality, trends, and cyclic patterns [17]. Several works
have been carried out [16], [29], [31] encompassing tem-
poral dynamics or exogenous factors; however, a notable
distinction is made regarding the application of uncertainty
quantification that did not explicitly consider the practical
implementation or utilization of their uncertainty quantifi-
cation methods. The interplay of these factors introduces
variations in the data quality and quantity incorporated into
the forecasting models. As emphasized in the literature,
the impact of exogenous factors on uncertainty analysis
is significant, and understanding this relationship becomes
paramount in refining forecasting methodologies [35]. Strik-
ing a balance between the richness of data and the potential
influence of exogenous variables is essential, given that an
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TABLE 1. The effective elements of uncertainty in forecasting procedures according to the relevant literature.

increase in observed data may mitigate model noise, yet
the inherent process noise remains linked to the underlying
data-generating process, maintaining its level of uncertainty,
especially when data points are scarce [36].

C. CONTRIBUTIONS AND ORGANIZATION
The main objective of our study is to predict load patterns
while accurately representing and quantifying the uncertain-
ties inherent in the power consumption forecasting process.
As mentioned earlier, the inherent presence of uncertainties
stemming from various sources necessitates a forecasting
methodology with uncertainty quantification. This quan-
tification is crucial for calculating flexibility requirements
for aggregators in the energy markets. Accordingly, the
contributions of this work are twofold:

Proposing a methodology for load forecasting that incor-
porates the estimation of uncertainties. This methodology
not only generates forecasts but also provides measures
of uncertainty associated with each confidence interval.
By leveraging the probabilistic nature of the Additive
Gaussian Process (AGP), our approach inherently quantifies
the uncertainty in predictions, offering detailed insights into
the reliability of the forecasts.

Forecasting load and their associated uncertainties are
analyzed for each 15-minute forecast interval over a 24-hour
period. By utilizing probabilistic models to generate posterior
predictive samples, we gain a more precise understanding of
the reliability of the load forecasts. This approach supports
informed decision-making processes by transparently report-
ing conditional expectations and confidence intervals, which
is essential for effectively conveying flexibility requirements.

This transparency aids in managing loads and reducing the
Distribution System Operator’s (DSO) network operational
costs.

The proposed methodology utilizes the AGP for perform-
ing load forecasting, and uncertainty quantification [37],
[38], [39]. To evaluate its efficacy, a comparative study is
presented with a modular regression model, also known
as the Prophet model [40] and quantile regression [28],
[41]. The modeling accuracy is evaluated through several
metrics for scoring the forecasting methods. Subsequently,
the uncertainty quantification calculating the flexibility need
is carried out utilizing the confidence interval width and
inverse CDF. Comparative analysis is effectuated on two case
studies: (i) on the synthetic dataset of 1000 houses located
in Quebec and (ii) on a low voltage network consisting of
14 houses fed by the same transformer.

The rest of the paper is organized as follows: Section II
presents the proposed methodology in detail. Section III
formulates the forecasting models utilized in the methodol-
ogy. Section IV presents results and discussions of the two
case studies. An investigation of uncertainty quantification
has been presented for two case studies, followed by the
conclusion in Section V.

II. METHODOLOGY
The proposed methodology is aimed to address net demand
uncertainty that requires a careful evaluation of various
factors to ensure effectiveness and suitability. Also, it helps
mitigate risks associated with net demand uncertainty and
assesses its ability to provide actionable insights and support
decision-making. The proposed methodology introduces
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a model-based approach that offers load forecast values
as comprehensive distributions, allowing a more nuanced
understanding of uncertainty by capturing the variability
and range of possible outcomes. Moreover, in the context
of flexibility markets, where aggregators play a crucial
role in managing load and providing flexibility services,
understanding uncertainty is paramount. This methodology
enables stakeholders to identify and quantify flexibility
requirements based on probabilistic forecasts. This informs
decision-making processes, allowing for better allocation of
resources and mitigation strategies for potential deviations
between projected and actual power consumption.

Figure 1 shows the methodology to tackle the task
of forecasting household power consumption, focusing
on quantifying uncertainties and calculating the flexibility
needs. It is divided into four distinct phases. The first
phase starts by gathering historical power consumption
data and capturing diverse load patterns and trends during
winter. The consumption data includes both flexible and
non-flexible loads as well. A flexible load refers to the
electricity consumption that can be adjusted or shifted
in time without significant inconvenience or cost. This
contributes mainly to the flexibility process and can be
exploited by the aggregator to balance the grid, especially
during peak demand periods. Examples of flexible loads
include space and water heating, washing machines, and
dryers. Non-flexible loads, on the other hand, are those
that cannot be easily adjusted or shifted without causing
significant disruption, for instance, essential lighting systems.
In addition to consumption data, this process considers
external factors such as weather conditions and calendar
time. Note that the node locations are not considered as they
increase the complexity of the models under investigation
with larger datasets. Analysis of uncertainty was incorporated
to capture these insights and to determine the solution to
such a problem in order to have an accurate forecast for
decision-making. Initial data analysis is facilitated through
non-parametric statistical techniques based on a forecasting
model to uncover underlying patterns and variances in the
dataset. Here, the learning process involves training themodel
using historical data, where hyperparameters are estimated
to optimize forecasting accuracy. The yield of the first phase
is a tuned forecast model. In this work, AGP [37], [38] and
Prophet [40] and quantile regression models are considered
for load forecasting with uncertainties. The second phase
consists of utilizing the tuned forecasting model predictions
in the sampling process.

As AGP is a probabilistic model, this phase is crucial in
understanding the mechanics of the forecasting model that
captures the inherent uncertainty in the function estimation
by including probabilistic components. Leveraging the power
of Bayesian statistics, AGP provides a flexible framework
for capturing uncertainties and relationships in the data.
When utilized for prediction, AGP generates point estimates
and also provides a complete posterior distribution for the
predicted values from the priors and the likelihoods by

FIGURE 1. Flowchart of the proposed methodology.

incorporating the uncertainties. The posterior distribution
encapsulates a range of plausible outcomes, reflecting the
model’s uncertainty about the true values of the predictions.
By sampling from this distribution, we generate a multitude
of potential scenarios, each respecting the uncertainty
present in the model. These sampled data points, often
referred to as posterior predictive samples, enable a more
comprehensive understanding of the potential outcomes and
aid in making informed decisions. This Bayesian approach
not only provides a point forecast but also equips us with
the tools to assess the range of possibilities and make robust
decisions based on the inherent uncertainties in the data. Note
that for the Prophet there are three sources of uncertainty
in the forecast: uncertainty in the trend, uncertainty in the
seasonality estimates, and additional observation noise. The
uncertainty in the seasonality estimates can be extracted by
Bayesian sampling to get the posterior predictive sampled
data.

In the third phase of analyzing the uncertainty, the sampled
data (posterior predictive samples), with its components
of conditional expectation and confidence intervals, plays
a pivotal role in conducting uncertainty analysis within a
Bayesian modeling framework. The conditional expectation
serves as a central tendency measure, representing the
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average prediction for new, unseen data points. However,
acknowledging the inherent uncertainties in real-world data,
confidence intervals derived from the posterior predictive
distribution become invaluable. These intervals provide
a quantifiable range of plausible values for predictions,
effectively expressing the uncertainty associated with the
model. They encapsulate the spectrum of potential out-
comes and offer decision-makers insights into the variability
inherent in the predictions. Consequently, in this work,
this comprehensive uncertainty analysis, incorporating both
conditional expectation and confidence intervals, empowers
users to make informed decisions on the possible power
profiles, considering the full spectrum of possibilities and
acknowledging the uncertainties inherent in the underlying
data and modeling assumptions.

The fourth phase utilizes a critical maximum consumption
threshold (power limit). This threshold, influenced by grid
capacity, consumer demand patterns, and environmental
factors, is essential for evaluating flexibility in energy
markets. By quantifying the difference between forecasted
power consumption and this maximum threshold, we assess
the required flexibility. This investigation enhances flexibility
load calculation, addressing potential reductions in power
consumption proactively. This calculation, relying on con-
ditional expectation and confidence intervals, reveals the
flexibility needed for the ensemble of houses by taking
into account the inherent uncertainty. These insights guide
further actions by the aggregator in participating effectively
in the flexibility market, ensuring power demand stays within
manageable bounds.

III. FORECASTING MODELS
A. ADDITIVE GAUSSIAN PROCESS FORECASTING MODEL
AGPs are a class of models that have gained popularity
in machine learning and statistics. Realizations from an
AGP correspond to random functions, and consequently,
AGPs naturally provide a prior for an unknown regression
function that is to be estimated from data. By definition, the
prior probability density of AGP function values f (X ) =

(f (x1), f (x2), . . . , f (xN ))T for any finite number of fixed
input covariates X = (x1, x2, . . . , xN ) where xi ∈ X
is defined to have a joint multivariate Gaussian distribu-
tion [42]:

f (x) ∼ N
(
0, KX ,X (θ )

)
(1)

The elements of the N -by-N covariance matrix are deter-
mined by the AGP kernel function, denoted as [KX ,X (θ )]i,j =

k(xi, xj|θ ), where θ represents the parameters. In general,
the mean in 1 can depend on X , but in practice, a zero
mean is often assumed. The covariance, also known as
the kernel function, of the normal distribution governs the
smoothness of the function f , indicating how rapidly the
regression function can change. While AGP is formulated
such that any finite-dimensional marginal follows a Gaussian
distribution, AGP regression is considered a non-parametric
method since the regression function f lacks an explicit

parametric form [43]. More precisely, AGP encompasses
a countably infinite number of parameters that define the
regression function, corresponding to the function values f
at all possible inputs.

In this case study, the forecast is based on the AGP
approach, where the kernel (covariance) is expressed as a
sum of kernels. In this additive structure, each kernel models
the effect of individual covariates or their interactions. Intu-
itively, each AGP component f now represents a nonlinear
function that characterizes the corresponding effect, and the
cumulative impact of multiple covariates is the sum of these
nonlinear functions. This is achieved by employing specific
kernels tailored to different types of covariates. Subsequently,
the AGP model, resulting from this configuration, can be
explained by,

k(x) = kw(xw) + kc(xc) + kso(x), (2)

where kw and kc describe the weather and calendar-related
kernels, respectively, kso stands for the second-order kernel
compounds. The two first elements contain all first-order
composites about temperature, humidity, solar radiation, time
of day, and day of the week, based on the input dimensions.
In this regard, the calendar and weather variables are included
in the vectors, respectively. In (2), the vectors xw and xc
contain weather and calendar variables, respectively. More
details can be found in [37] and [38]. The hyperparameters of
the Exponential Quadratic kernel (EQ) continuous covariates
are dedicated to the weather-related component. The weather
kernel is depicted in (3),

kEQ(x, x′) = η2EQ exp

(
−
(||x − x′

||)2

ℓ2EQ

)
. (3)

However, Matérn 5/2 (M) functions would be the kernel for
the calendar component as shown in (4),

kM (x − x′) = σ 2 2
1−ν

0(ν)

(
√
2ν

x − x′

ℓM

)ν

Kν

(
√
2ν

x − x′

ℓM

)
.

(4)

In this kernel, ℓ and ν are both positive hyperparameters.
The Half Cauchy is utilized as the prior over the variance
σ . Gamma ℓEQ and ChiSquared ℓM distributions are used
as the prior over the hyper-parameters of the EQ and
Matérn functions, respectively. Particularly, they are used to
explain the lengthscales, ηEQ and ηM , of these covariance
bases. Additionally, The third symbolizes a compositional
first-order kernel that is intended for searching interactions
between multi-dimensional variables [37].

Additionally, the goal of Bayesian inference is to compute
the posterior distribution over the function f (x) evaluated at
arbitrary test inputs x. For Gaussian likelihoods, the posterior
distribution takes a convenient closed-form solution, thus
the predictive distribution at a test variable. However, it is
difficult to compute in practice when N is large. The compu-
tational cost of matrix inversion is in O(N 3). Naively, these
operations each incurO(N 3) computations, as well asO(N 2)
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storage for each entry of the kernel (covariance) matrix,
often starting with a Cholesky decomposition. To resolve
those issues in the configuration-based AGP a scalability
analysis has been applied. It should be noted that the choice
of the values of hyperparameters is the same as in our
previous work [37], which is random search method. While
in straightforward conditions, the Bayesian approach might
be unproductive, most applications of AGPs rely on engi-
neering sophisticated hand-crafted kernels involving many
hyperparameters where the risk of overfitting is pronounced.
A more robust solution is to incorporate confidence intervals
that reflect these uncertainties in the model choice. Initially,
we have a prior distribution that predicts the aggregated
power. As the data is gathered, we refine this to include
only functions that align with the observations, creating a
posterior distribution. This posterior is essentially an updated
prior, incorporating new data. Each new piece of data further
improves this process. The AGP, in this context, describes a
probability distribution across a range of potential functions
that match a given set of points. This model allows us
to determine mean values for these functions and assess
the confidence of these predictions through variance. The
function (posterior) is continuously updated with new data.
The AGP represents then a probability distribution across
possible functions, where any subset of these functions
follows a joint Gaussian distribution. Meanwhile, for the
regression predictions, the mean function derived from the
posterior distribution is used. More in-depth details of AGPs
are available in [37] and [44].

B. PROPHET FORECASTING MODEL
Amodular regression model popularly known as the Prophet
model was developed by Facebook [40]. It is built to handle
time-series data with varied seasons [45], [46], and offers
a versatile framework for deriving confidence intervals to
determine the uncertainty inherent in the prediction system.
Specifically, it is based on an additive model composed of
three components: the trends g(t) simulating non-periodic
changes in the data, the seasonality s(t) describing nonlinear
behaviour on a daily, weekly, or yearly basis, and the third is
the error term εt represents the distinctive features of the data
improving the accuracy. Prophet is significant for forecasting
comparison as it is well-known for time-series prediction.
Power forecasting often exhibits trends and seasonal patterns.
Prophet explicitly models these trends and seasonality
(daily, weekly, yearly) and can incorporate holidays and
events, making it a good contrasting comparative model.
Mathematically, in this study, the decomposed time-series
model comprising two fundamental components is utilized
to scrutinize power consumption patterns across a group of
households [47]:

y(t) = g(t) + s(t) + εt . (5)

Equation (5) doesn’t use traditional logistic regression for
its growth modeling, but it employs an adaptive approach to
effectively capture the growth patterns in the data. The trend

function g(t) is a nonlinear saturating function modeled using
the logistic growth function, given by:

g(t) =
c(t)

1 + e−k(t−m)
, (6)

where c(t) is a time-varying consumption per day, k denotes
a varying growth rate and m is the offset parameter. The
periodic effect of yearly seasonal variations is modeled using
the Fourier series; hence, an approximate smooth seasonal
effect is tied with a standard Fourier series represented as:

s(t) =
∑N

n=1

(
an cos 2πnt

p + bn sin 2πnt
p

)
, (7)

where p is the period of the seasonality, it can be 365.25 or
7 for yearly andweekly seasonality, respectively. The Prophet
model is designed to auto-tune the hyperparameters with grid
search/cross-validation, and the training splits the data in two:
(i) timestamps containing the time and date details, (ii) the
logged values.

C. QUANTILE REGRESSION FORECASTING MODEL
Quantile regression (QR) offers distinct advantages over ordi-
nary regression models, particularly when dealing with data
that exhibit high variability in response measurements [48].
QR estimates conditional quantiles, making it more robust in
scenarios where the data are heteroscedastic or not normally
distributed.

In the context of time series power data analyzed in
this paper, QR involves modeling the relationship between
predictor variables (matrix x) and the dependent variable
(vector y) across different quantiles of interest. The input
variables representing the predictors include weather-related
components, namely temperature, humidity, and solar radia-
tion, as well as calendar-related variables, such as the hour
of the day and the day of the week. To characterize the
periodicity, the time index is mapped onto a two-dimensional

input through
(
cos(g(t))
sin(g(t))

)
. The periodicity is controlled by

the function g(t) =
2π t
τ
, where τ is a period. Normally, τ

is fixed to match weekly and daily patterns. Two different
periods are used in this work τ = 24 and τ = 24 × 7 to
generate 4 calendar variables as proposed in [6].

The QR model [49], generalizes the linear regression
framework by allowing the estimation of conditional quan-
tiles. Specifically, for a given quantile τ of the dependent
variable y, the linear QR model is expressed as:

Qτ (y|x) = xβτ , (8)

where Qτ (y|x) denotes the τ -th quantile of y, x is the matrix
of predictor variables, and βτ ) represents the regression
coefficients specific to the quantile τ .

To estimate βτ , QR solves the following optimization
problem using an asymmetric loss function ρτ :

β̂τ = argmin
β

n∑
i=1

ρτ (yi − xTi β), (9)
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where yi and xi are the i-th observations of y andx,
respectively, and ρτ is defined as:

ρτ (u) = u(τ − I (u < 0)). (10)

This loss function ρτ penalizes deviations differently depend-
ing on whether u (the residual) is negative or positive relative
to τ . In summary, QR provides a flexible framework for
analyzing the relationship between predictors and a response
variable across different quantiles, thereby capturing the
variability and distributional characteristics of the data more
effectively than traditional regression methods.

IV. RESULTS AND DISCUSSION
A. CASE STUDY - 1000 HOUSES
1) DATA AND ANALYSIS SETUP
In this work, simulations are conducted using load data
sourced from aggregate simulated end-user profiles of
1000 residential houses. The database with a sampling
interval of 15 minutes is administered by Hydro-Québec,
a research institution situated in Québec. The specified time
covers the period from December 1, 2018, to December
31, 2019. Additionally, this study incorporates temperature,
humidity, and solar radiation data from the same geographic
location within demand areas. As illustrated in Figure 2,

FIGURE 2. Power consumption by flexible and non-flexible loads within
the total load of the 1000 houses for a specific day.

it is evident that flexible loads, namely air conditioners
and heating systems, constitute the major part of the rated
building load. The remaining loads are assumed to be
non-flexible to facilitate Demand Response (DR). Figure 2
presents the cumulative stacked graph with a peak load of
3000 kW observed at 5 AM, which encompasses the total
electrical demand, including both flexible and non-flexible
loads. To analyze variations in these load profiles, statistical
methods were applied to the dataset. Initially, the focus of the
forecasting and uncertainty estimation was on non-flexible
loads, a process that introduced a certain level of additional
uncertainty into the results. Later, the analysis was expanded
to include the entire aggregated load, thereby covering both
flexible and non-flexible load types.

2) FORECASTING PERFORMANCE
Forecasting load demand depends on factors like the num-
ber of households and various infrastructure components.
However, consumption related to non-flexible loads, namely
lighting, major household appliances, and electronics, for a
horizon of 24 hours, follows a highly stochastic pattern. The
overall demand in a neighborhood can be quite uncertain,
primarily due to the presence of significant non-flexible
loads, posing significant challenges for grid management
and the behaviors of occupants that change depending on
the calendar variables. Consequently, error and uncertainty
are interconnected yet separate facets in measurement
characterization. An error signifies the variance between a
measurement outcome and the actual value of the power.
In contrast, uncertainty gauges the confidence in the assertion
that the power forecasting result accurately reflects the power
value, encompassing various factors influencing reliability.
These terms jointly define the precision of measurements.
Hence, this work performs load forecasting with uncertainty
through AGP and the Prophet model for aggregated power
consumption profiles encompassing flexible and non-flexible
loads and aggregated non-flexible loads for an ensemble of
1000 houses.
Accuracy’s metrics: The efficiency of the two employed

models is evaluated using a variety of statistical parameters.
Table 3 presents the mean of the metrics of all the generated
predicted profiles, including mean absolute error (MAE)
(11), root mean square error (RMSE) (12), coefficient
of determination (R2) (13), and squared mean absolute
percentage error (sMAPE) (14).

MAE =
1
N

N∑
t=1

|yt − ŷt | , (11)

RMSE =

{
1
N

N∑
t=1

(̂yt − yt)2
}1/2

, (12)

R2
= 1 −

∑N
t=1(yt − ŷt )∑N
t=1 (yt − ŷt )2

, (13)

sMAPE =
100%
N

N∑
t=1

|̂yt − yt |
(|̂yt | + |yt |)/2

, (14)

where ŷ and y present predicted and actual power usages
for N discrete-time samples. Moreover, to evaluate the accu-
racy of probabilistic forecasts, Prediction Interval Coverage
Probability (PICP), Continuous Ranked Probability (CRSP)
[50],and Variogram scores [51]. PICP metric evaluates the
coverage of prediction intervals by measuring the proportion
of observed outcomes falling within the forecasted prediction
intervals.

PICP =
1
N

N∑
i=1

1 (yi ∈ [Li,Ui]) , (15)

where N is the total number of observations. yi is the actual
value for observation. Li and Ui are the lower and upper
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bounds of the prediction interval for observation. 1 is the
indicator function, which returns 1 if the condition inside
is true and 0 otherwise. CRPS measures the discrepancy
between the Cumulative Distribution Function (CDF) of the
forecast distribution and the CDF of the observed outcomes.
It quantifies the overall accuracy of probabilistic forecasts,
providing a more nuanced assessment.

CRPS =
1
N

N∑
i=1

∫
∞

−∞

(P(y ≤ t) − 1{yi ≤ t})2 dt, (16)

where N is the total number of observations. yi is the actual
value for observation i. (P(y ≤ t) is the (CDF) of the
predictive distribution at point t . And 1{yi ≤ t} is the
indicator function.

To effectively measure the representation of the temporal
correlation structure in the predicted values, we use VarS
presented as:

VarS =
1
L

L∑
l=1

1
2(N − l)

N−l∑
t=1

(
(ŷt+l − ŷt )2 − (yt+l − yt )2

)2
,

(17)

where L presents the Number of lags and observations
considered respectively. The ŷt and yt are the predicted and
actual value at time t respectively [52].

FIGURE 3. A sample day-long hourly AGP-based probabilistic load
forecast, indicating uncertainty with different % of confidence interval
(Date: DEC 1, 2019) case aggregated loads.

FIGURE 4. A sample day-long hourly AGP-based probabilistic load
forecast, indicating uncertainty with different % of confidence interval
(Date: DEC 1, 2019) case of aggregated non-flexible loads.

Prophet model forecast: By applying the Prophet model
with the proposed method, the uncertainties of power

FIGURE 5. A sample day-long hourly Prophet-based probabilistic load
forecast, indicating uncertainty with different % of confidence interval
(Date: DEC 1, 2019) case of aggregated loads.

FIGURE 6. A sample day-long hourly Prophet-based probabilistic load
forecast, indicating uncertainty with different % of confidence interval
(Date: DEC 1, 2019) case of aggregated non-flexible loads.

FIGURE 7. A sample day-long hourly QR-based probabilistic load
forecast, indicating uncertainty with different % of confidence interval
(Date: DEC 1, 2019) case of aggregated loads.

forecasting, and load forecasting with various probability
indices (from 55% to 95%) for a day-ahead forecast are
represented in Figures 5 and 6 for total aggregated load and
aggregated non-flexible load, respectively.
AGPmodel forecast: Figure 3 shows the hourly forecasting

result for the aggregated load of 1000 houses in a 24-
hour day-ahead scenario. It elaborates the posterior analysis
through AGP to display the degree to which data generated
from the model could deviate from data generated from the
true distribution. Multiple sample trajectories in Figure 3
visually portray the potential range of load scenarios. The
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FIGURE 8. Execution time comparative results of all models.

FIGURE 9. Probability density function of the selected hour(19:30) using
both a histogram and a kernel density estimate. The upper and lower
limits of power at 95% confidence levels, as well as a power limit value,
with vertical lines with AGP model case of aggregated loads.

FIGURE 10. Probability density function of the selected hour(20:00) using
both a histogram and a kernel density estimate. The upper and lower
limits of power at 95% confidence levels, as well as a power limit value,
with vertical lines with AGP model case of aggregated non-flexible loads.

different confidence intervals ranged between 55%, 65%,
75%, 85%, and 95%, represented by the shaded area around
the forecast curve, emphasizing the variability and poten-
tial outcomes. This visualization illuminates the inherent

uncertainty in the forecast, offering a detailed perspective on
potential load fluctuations within the specified confidence
bounds, helping to achieve accurate demand response in
the face of uncertainties and variations between predicted
and actual electricity consumption. Since our predictive
distribution is Gaussian, this quantity enables us to form,
for example, a 95% credible set representing the beliefs
about the interval, which is 95% likely to contain the
truth function compared to the other confidence intervals.
As shown in Figure 3, the power uncertainty is higher
during the midday period. Conversely, the uncertainty is
less during the morning (from 6:00 to 10:00) and afternoon
(from 17:00 to 21:00). The depicted Figure 4 represents a
day-long hourly probabilistic forecast, focusing specifically
on the Aggregated non-flexible loads. The forecasted values
are presented as probabilistic distributions, with distribution
shapes indicating the forecasted range of heating load values
for each hour of the day. Variations in distribution shapes
reflect the level of uncertainty in the forecasts, with less
sharp distributions indicating higher uncertainty. Various
percentiles of the confidence interval represent distinct levels
of uncertainty. The power limit is indicated by the black
line depending on the requirement for flexibility it is fixed
for the aggregated and the Aggregated non-flexible loads
to 3800kW and 800kW, respectively. Additionally, it is
determined using granular time interval data to mimic the
dynamic shape of a customer’s demand. It closely follows
the actual demand (black line) leading up to and following
the event.

As shown in Figure 5, the uncertainty of power forecasting
is higher in the middle of the day, when the occupants
are at home utilizing more power. While in the morning
and afternoon, the uncertainty is less. Power forecasting
uncertainty increases and decreases with power increase and
decrease, respectively. Also, the uncertainty is increased
when the time horizon is larger. For example, at 10:00 and
17:00, power outputs are almost at the same level (about
5000 kW) with higher uncertainty. Figures 5 and 6 illustrate
a posterior distribution over a power load variable, which
represents the power consumption over time. A solid black
line indicates a power limit as a reference, suggesting a
constant power level of 2500 kW throughout the depicted
period. The shaded regions, delineated by varying levels of
transparency, represent different confidence intervals (CIs),
such as 95%, 85%, 75%, 65%, and 55%, showing the
uncertainty in the power load predictions. A solid black line
indicates a power limit as a reference, suggesting a constant
power level of 3800kW and 800kW for total aggregated
and aggregate non-flexible load, respectively. Additionally,
Figures 5 and 6 include two important lines: one in red
representing the actual power load observed over time, and
another in orange representing the predicted median load.
The intersection of these lines with the shaded regions
provides insight into the model’s accuracy in estimating
power consumption at different levels of confidence. These
figures provide a comprehensive visual representation of the
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TABLE 2. Accuracy metrics for a day ahead forecast with confidence interval 95%.

TABLE 3. Probabilistic accuracy metrics.

uncertainty associated with power load predictions and a
comparison to the actual observed load.
Quantile regression model forecast: Figure 7 shows a

day-long hourly forecast for aggregated load using the
quantile regression model. For the brevity of the presentation,
the quantile regression is displayed only for the aggregated
load. However, Tables 2 and 3 depict the accuracy metrics
using quantile regression for all the cases of total load,
heating load, and other load. The model is based on quantile
regression and then enhanced with a temporal dependence
structure. A semi-parametric methodology for generating
such densities is presented; it includes a time-adaptive
quantile regression model for the 5%-95% quantiles [41],
[53]. The accuracy of these models is assessed for various
load types, with the results summarized in Tables 2 and 3.
The average sMAPE for 1-day forecasting horizons for
different load types is found to be 8.27%, 15.36%, and 5.19%,
respectively. VarS of the proposed method for different
load types is found to be 15.94, 17.10, 15.03, respectively.
Importantly, the AGP model outperforms the Prophet model

and quantile regression when applied to the aggregated total
load and the aggregated non-flexible loads, respectively. This
work underscores the variation in electricity consumption
forecast based on different load types and the importance
of considering weather and calendar variables in peak
load demand forecasting. The AGP model demonstrates
superior performance in short-term load forecasting with
uncertainties, offering valuable insights for grid management
and flexibility analysis as compared to the Prophet model.
Moreover, the execution time (Figure 8) also shows the
superiority of the proposed method.

3) UNCERTAINTY QUANTIFICATION AND FLEXIBILITY
DEMAND CALCULATIONS
The statistical analysis to assess the forecasted uncertainty
and flexibility calculations can be leveraged by DSOs to eval-
uate the system security level or assess the demand flexibility
for the considered day. Specifically, in the flexibility markets,
it can often be used to manage consumption by setting
capacity limit thresholds or limiting power consumption [54].
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Hence, extracting uncertainty distributions for specific times,
guided by selected confidence intervals by establishing a
power limit, such as 3800 kW for 1000 households, becomes
pivotal in making decisions to adjust consumption. The
hourly probability distribution obtained from the forecast
errors represents the likelihood of power consumption being
less than or equal to a specific value in kilowatts (kW).
Statistically, the Probability Density Function (PDF) can help
determine the appropriate threshold based on the desired level
of risk.

The PDFs provide a visual tool for assessing the likelihood
of extreme events to perform risk assessment [27]. This
section provides the discussions related to the uncertainty
quantification and flexibility calculations by effectuating the
proposed methodology with two employed models, namely
AGP and Prophet forecasts. Additionally, a comparative
analysis is achieved by plotting the hourly distribution of
the load forecasts resulting from two models for identifying
trends and anticipating the flexibility needs. Since the sam-
ples are taken from the posterior distribution, their probability
density also needs estimation. Hence, we use Kernel Density
Estimation (KDE) to achieve the nonparametric probability
density, where we center a smooth scaled kernel function
at each datapoint and then take their average [55]. Note
that it is an empirical distribution that cannot be expressed
analytically. The forecasting uncertainty can be represented
as upper and lower-boundmargins around the power forecast.
The probability density can be drawn according to the
selected samples from the predictive analysis since the
forecast errors can be expressed as a percentage of the rated
power. The bound margins are extracted from an inverse
cumulative distribution function [27]. By CDF, we denote
the function that returns probabilities of aggregated power y
bounded lower to a value yα , i.e.,

prob(y ≤ yα) = F(yα), (18)

where α is the desired percentile. Now, the inverse of the CDF
gives a value yα for which the F(yα) will return α, i.e.,

F−1(α) = yα. (19)

From (18) and (19), we can get surpassed aggregated power
(flexibility requirement) by which it exceeds the power limit
(ylim), i.e. 1y = yα − ylim.
AGP Forecasting: Figures 9 and 10 depict the probability

distribution at a particular hour for aggregate total load and
aggregated non-flexible load for the forecast resulting from
the AGP forecasting model. The kernel density estimated
value is represented by the orange line, reflecting a specific
power at that point and representing how the PDF values
change across the band. It comprehends data distribution,
sets thresholds, evaluates risks, and calculates how much the
aggregated power consumption can cross the upper capacity
threshold. The upper and lower bounds are defined at 95%
confidence levels of the aggregated power consumption.
This confidence level quantifies the associated uncertainty
of power values. This visualization aids in understanding the

probability distribution of power values and the influence of
confidence levels In Figure 9, the visualization for a one-day
ahead at 19:30h with the upper bound of power 3881.55kW
and the lower bound of power 3558.06kW is shown to exceed
the power limit (ylim) fixed to 3800kW by 81.55kW. Note that
in this case study, the power limit is established at specific
values: 3800 for the scenario involving an aggregated load of
1000 houses and 800 for the scenario concerning non-flexible
load. A similar analysis is carried out in Figure 10 for the non-
flexible loads.

FIGURE 11. Hourly uncertainty based on a day-ahead forecast of
aggregated loads from AGP-based method.

FIGURE 12. Hourly uncertainty based on a day-ahead forecast of
aggregated non-flexible loads from AGP-based method.

Figures 11 and 12 illustrate uncertainty quantifications
resulting from the AGP forecasted results for every hour
in a 24-hour day-ahead scenario. It can be observed from
Figure 11 that the capacity threshold is crossed during the
peak hours of a typical day, i.e., from morning 7:00 to
10:00 a.m. and from 5:00 to 8:00 p.m. For the aggregated
non-flexible load (Figure 12) the duration of crossing the
capacity threshold is limited to the evening hours, indicating
the heavy use of non-flexible loads during this period.
Prophet and quantile regression forecasting: Similar to the

uncertainty analysis performed for the results for the AGP
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FIGURE 13. Probability density function of the selected hour(19:30) using
both a histogram and a kernel density estimate. The upper and lower
limits of power at 95% confidence levels, as well as a power limit value,
with vertical lines from the Prophet-based model in case of aggregated
loads.

FIGURE 14. Probability density function of the selected hour(20:00) using
both a histogram and a kernel density estimate. The upper and lower
limits of power at 95% confidence levels, as well as a power limit value,
with vertical lines from the Prophet-based model in case of aggregated
non-flexible loads.

FIGURE 15. Hourly uncertainty based on a day-ahead forecast of
aggregated loads from the Prophet-based method.

model forecast, Figures 13 to 16 correspond to the forecasting
results from Prophet model. Additionally, Figures 17 and 18
correspond to the forecasting results from quantile regression

FIGURE 16. Hourly uncertainty based on a day-ahead forecast of
aggregated non-flexible loads from the Prophet-based method.

FIGURE 17. Probability density function of the selected hour(19:30) using
both a histogram and a kernel density estimate. The upper and lower
limits of power at 95% confidence levels, as well as a power limit value,
with vertical lines with Quantile Regression model case of aggregated
loads.

FIGURE 18. Hourly uncertainty based on a day-ahead forecast from
Quantile regression model case of aggregated loads.

for aggregated total load case. Comparative results for AGP
and Prophet models are depicted in Figure 19 and 20
for aggregated total and aggregated non-flexible loads,
respectively. Note that for comparative analysis, both the
models are trained on the same set of synthetic data of
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FIGURE 19. Probability density function of the selected hour(19:30) using
both a histogram and a kernel density estimate. The upper and lower
limits of power at 95% confidence levels, as well as a power limit value,
with vertical lines for aggregated loads.

FIGURE 20. Probability density function of the selected hour(20:00) using
both a histogram and a kernel density estimate. The upper and lower
limits of power at 95% confidence levels, as well as a power limit value,
with vertical lines for aggregated non-flexible loads.

1000 houses. The PDFs are plotted for the hour 19:30 for
the case of aggregated load and 20:00 for the non-flexible
load of peak usage and the quantified uncertainty for the
same day-ahead predictions is displayed. It is clear that the
flexibility needs prediction resulting from the AGP-based
method is much lower compared to the Prophet and quantile

FIGURE 21. Load profile of 14 households in the peak morning and
evening hours on Dec. 21, 2018, connected to the 100 kVA distribution
transformer.

FIGURE 22. Predicted aggregated end-user load (solid orange line) and
associated uncertainty obtained using the AGP on a typical winter day.

FIGURE 23. Probability density function of the selected hour (08:00)
using both a histogram and a kernel density estimate. The upper and
lower limits of power at 95% confidence levels, as well as a power limit
value, with vertical lines for aggregated load.

regression model-based results. This indicates the superiority
of theAGP-basedmethodology in short-term load forecasting
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FIGURE 24. Hourly uncertainty based on a day-ahead forecast of
aggregated loads from the AGP-based method.

FIGURE 25. Hourly uncertainty based on a day-ahead forecast of
aggregated loads from the Prophet-based method.

FIGURE 26. Probability density function of the selected hour (08:00)
using both a histogram and a kernel density estimate. The upper and
lower limits of power at 95% confidence levels, as well as a power limit
value, with vertical lines for aggregated load.

with uncertainties, which results in precise uncertainty
quantification.

B. CASE STUDY ANALYSIS OF 14 AGGREGATED HOUSES
To demonstrate the performance of the proposed approach
for effective demand response decision-making, we assume a
case study to forecast the aggregated power consumption of

FIGURE 27. Hourly uncertainty based on a day-ahead forecast of
aggregated loads from the Prophet based method.

14 households supplied by the same low-voltage transformer,
assuming the threshold capacity of 100 kW. In this case study,
the 14 consumers were randomly selected from a database
of 1000 houses. Three of the houses in this group consume
10 kW each, while the rest consume between 5 and 10 kW.
This study considers the peak period in winter December
2018. During peak usage periods, the network’s transformer
capacity is critical. To avert overloading, particularly in cold
weather conditions, the aggregator could anticipate the fluc-
tuations in demand using the forecasted power consumption
to instruct and encourage consumers to adjust their usage
patterns in response to changes in electricity prices, grid
conditions, or environmental concerns, and regulate their
electricity consumption according to the existing flexibility
scope. Figure 21 illustrates the aggregated power profile of
14 households on December 21, 2018, where the black line
denotes the maximum power limit (ylim), set at 100 kW.
To streamline our analysis and avoid repeating figures for
all scenarios, we focus specifically on the aggregated load
forecast analysis using AGP and Prophet models. Beginning
with the forecasting of the first model and following the
previously mentioned methodology, the uncertainty analysis
results for the case of 14 houses are determined. Forecast
and uncertainty analysis using AGP: The assessment of
uncertainty in demand forecasting was conducted using the
hourly probability density function derived from the forecast
errors. Subsequently, the hourly risk curve was developed by
incorporating all errors from these PDFs. Given that forecast
errors can be quantified as a percentage of the rated power,
the power consumption can be established based on the
inverse cumulative function. Figures 22 and 23 illustrate the
necessary variations, following the methodology outlined in
Section II. The result indicates that the uncertainty associated
with its data predictions remains within the aggregated power
limit set for the specified transformer and does not exceed the
upper power limit.
Forecast and uncertainty analysis using Prophet: Con-

versely, with the Prophet model, we observe (Figures 25,
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26 and 27) an approximate additional load (surpassed power
(1y) of 5 kW. This value represents the flexibility require-
ment, as determined within the 95% confidence interval.
In essence, this additional load reflects the extra capacity that
the system might require to handle unforeseen fluctuations,
ensuring reliability and stability in power supply to the group
of 14 houses under study. As demonstrated in Figures 24
and 27, there are noticeable differences in peak load predic-
tions during morning and afternoon periods between the two
models. This analysis highlights a dual perspective: Firstly,
compared to the Prophet method, the advanced forecasting
approach with AGP yields superior forecasting results for
the short-term horizon. Secondly, better forecasting by AGP
lays a robust foundation for strategic planning. That enables
organizations to craft flexible, well-equipped strategies to
handle various future scenarios. Applying this approach in
a real-world case study with real-grid constraints can help
create an efficient indicator for decision-making related to
demand response and energy consumption, allowing energy
utilities to have proactive communication with consumers
ahead of time about the expected demand response events
based on forecasted demand.

V. CONCLUSION
This study introduces a method for quantifying the uncer-
tainties and calculating the flexibility needed for aggregated
household power consumption forecasts. The methodology
utilized the AGP approach to perform short-term load
forecasting by considering uncertainties. A statistical inves-
tigation was conducted to quantify these uncertainties on an
hourly basis, leading to flexibility need calculations for peak
hours when the power load is most susceptible to exceed-
ing capacity limits. For comparative analysis, the Prophet
forecasting model and classical quantile regression were also
used to perform forecasting and quantify uncertainties. The
investigation was applied to a synthetic dataset comprising
1000 residential buildings in Québec, Canada, with a fixed
prediction window of 24 hours ahead. Additionally, a case
study involving 14 households connected to the same
transformer was conducted. The results demonstrated the
superior accuracy of AGP-based forecasts, with more precise
prediction and better hourly uncertainty and flexibility
requirement calculations compared to the Prophet model
and quantile regression. This work enhances grid capac-
ity limitation services by improving forecasting accuracy,
thereby supporting more informed decision-making. Future
research may explore detailed consumer behavior modeling
to better forecast energy demand and capture the variability
and complexity of energy consumption across different users.

ACKNOWLEDGMENT
The authors would like to thank Michael Fournier, Juan
Carlos Oviedo, and Luis Fernando Rueda Researchers with
the Laboratory of Technologies of Énergie (LTE Hydro-
Quebec) for their valuable discussions and cooperation in
providing the data that improved the quality of the results.

REFERENCES
[1] Z. Wang, Q. Wen, C. Zhang, L. Sun, and Y. Wang, ‘‘DiffLoad:

Uncertainty quantification in load forecasting with diffusion model,’’ Int.
J. Forecasting, vol. 5, p. 4714, May 2023.

[2] Y. Wang, G. Hug, Z. Liu, and N. Zhang, ‘‘Modeling load forecast
uncertainty using generative adversarial networks,’’ Electr. Power Syst.
Res., vol. 189, Dec. 2020, Art. no. 106732.

[3] A. W. Danté, K. Agbossou, S. Kelouwani, A. Cardenas, and J. Bouchard,
‘‘Online modeling and identification of plug-in electric vehicles sharing
a residential station,’’ Int. J. Electr. Power Energy Syst., vol. 108,
pp. 162–176, Jun. 2019.

[4] M. Neukomm, V. Nubbe, and R. Fares, ‘‘Grid-interactive efficient
buildings technical report series: Overview of research challenges and
gaps,’’ USA Dept. Energy, Tech. Rep. 2, Dec. 2019.

[5] S. E. Ahmadi, D. Sadeghi, M. Marzband, A. Abusorrah, and K. Sedraoui,
‘‘Decentralized bi-level stochastic optimization approach for multi-
agent multi-energy networked micro-grids with multi-energy storage
technologies,’’ Energy, vol. 245, Apr. 2022, Art. no. 123223.

[6] M. Blum and M. Riedmiller, ‘‘Electricity demand forecasting using
Gaussian processes,’’ in Proc. Workshops 27th AAAI Conf. Artif. Intell.,
2013, pp. 1–4.

[7] C. Heinrich, C. Ziras, T. V. Jensen, H. W. Bindner, and J. Kazempour,
‘‘A local flexibility market mechanism with capacity limitation services,’’
Energy Policy, vol. 156, Sep. 2021, Art. no. 112335.

[8] R. El Geneidy, B. Howard, and D. Allinson, ‘‘Implications of uncertainties
in energy demand baseline estimations on building energy flexibility,’’ Int.
Buildibngs, Loughborough U.K., Tech. Rep. 2020, 2020.

[9] S. Z. Tajalli, A. Kavousi-Fard, M. Mardaneh, A. Khosravi, and
R. Razavi-Far, ‘‘Uncertainty-aware management of smart grids using
cloud-based LSTM-prediction interval,’’ IEEE Trans. Cybern., vol. 52,
no. 10, pp. 9964–9977, Oct. 2022.

[10] C. Heinrich, C. Ziras, A. L. A. Syrri, and H. W. Bindner, ‘‘EcoGrid 2.0: A
large-scale field trial of a local flexibility market,’’ Appl. Energy, vol. 261,
Mar. 2020, Art. no. 114399.

[11] C. Silva, P. Faria, Z. Vale, and J. M. Corchado, ‘‘Demand response
performance and uncertainty: A systematic literature review,’’ Energy
Strategy Rev., vol. 41, May 2022, Art. no. 100857.

[12] The Demand Response Baseline, EnerNOC, Rome, Italy, Jan. 2009,
pp. 1–5.

[13] J. Xie and T. Hong, ‘‘GEFCom2014 probabilistic electric load forecasting:
An integrated solution with forecast combination and residual simulation,’’
Int. J. Forecasting, vol. 32, no. 3, pp. 1012–1016, Jul. 2016.

[14] W. El-Baz and P. Tzscheutschler, ‘‘Short-term smart learning electrical
load prediction algorithm for home energy management systems,’’ Appl.
Energy, vol. 147, pp. 10–19, Jun. 2015.

[15] M. Cao, J.-W. Xiao, H. Fang, Z.-W. Liu, and Y.-W. Wang, ‘‘A
novel similar-day based probability density forecasting framework for
residential loads,’’ Int. J. Electr. Power Energy Syst., vol. 152, Oct. 2023,
Art. no. 109253.

[16] M. R. Baker, K. H. Jihad, H. Al-Bayaty, A. Ghareeb, H. Ali, J.-K. Choi,
and Q. Sun, ‘‘Uncertainty management in electricity demand forecasting
with machine learning and ensemble learning: Case studies of COVID-19
in the U.S. metropolitans,’’ Eng. Appl. Artif. Intell., vol. 123, Aug. 2023,
Art. no. 106350.

[17] B. Ivanovic, Y. Lin, S. Shrivastava, P. Chakravarty, and M. Pavone,
‘‘Propagating state uncertainty through trajectory forecasting,’’ in Proc.
Int. Conf. Robot. Autom. (ICRA), May 2022, pp. 2351–2358.

[18] D. K. Chaturvedi, A. P. Sinha, and O. P. Malik, ‘‘Short term load
forecast using fuzzy logic and wavelet transform integrated generalized
neural network,’’ Int. J. Electr. Power Energy Syst., vol. 67, pp. 230–237,
May 2015.

[19] S. Li, X. Kong, L. Yue, C. Liu,M. A. Khan, Z. Yang, and H. Zhang, ‘‘Short-
term electrical load forecasting using hybrid model of manta ray foraging
optimization and support vector regression,’’ J. Cleaner Prod., vol. 388,
Feb. 2023, Art. no. 135856.

[20] J. Duan, Q. Tang, J. Ma, and W. Yao, ‘‘Operational status evaluation of
smart electricity meters using Gaussian process regression with optimized-
ARD kernel,’’ IEEE Trans. Ind. Informat., vol. 20, no. 2, pp. 1–11,
Feb. 2024.

[21] R. Bessa, C. Möhrlen, V. Fundel, M. Siefert, J. Browell, S. H. El Gaidi,
B.-M. Hodge, U. Cali, and G. Kariniotakis, ‘‘Towards improved under-
standing of the applicability of uncertainty forecasts in the electric power
industry,’’ Energies, vol. 10, no. 9, p. 1402, Sep. 2017.

VOLUME 12, 2024 138015



K. Dab et al.: Uncertainty Quantification in Load Forecasting for Smart Grids

[22] J. Li, L. Ren, B. Wang, and G. Li, ‘‘Probabilistic load forecasting of
adaptive multiple polynomial regression considering temperature scenario
and dummy variables,’’ J. Phys., Conf. Ser., vol. 1550, no. 3, May 2020,
Art. no. 032117.

[23] J. Domínguez-Jiménez, N. Henao, K. Agbossou, A. Parrado, J. Campillo,
and S. H. Nagarsheth, ‘‘A stochastic approach to integrating electrical
thermal storage in distributed demand response for Nordic communities
with wind power generation,’’ IEEE Open J. Ind. Appl., vol. 4,
pp. 121–138, 2023.

[24] A. Zeng, H. Ho, and Y. Yu, ‘‘Prediction of building electricity usage
using Gaussian process regression,’’ J. Building Eng., vol. 28, Mar. 2020,
Art. no. 101054.

[25] J. Munkhammar, D. van der Meer, and J. Widén, ‘‘Very short term load
forecasting of residential electricity consumption using the Markov-chain
mixture distribution (MCM) model,’’ Appl. Energy, vol. 282, Jan. 2021,
Art. no. 116180.

[26] H. Quan, D. Srinivasan, and A. Khosravi, ‘‘Uncertainty handling using
neural network-based prediction intervals for electrical load forecasting,’’
Energy, vol. 73, pp. 916–925, Aug. 2014.

[27] X. Yan, D. Abbes, and B. Francois, ‘‘Uncertainty analysis for day
ahead power reserve quantification in an urban microgrid including PV
generators,’’ Renew. Energy, vol. 106, pp. 288–297, Jun. 2017.

[28] W. Zhang, H. Quan, and D. Srinivasan, ‘‘An improved quantile regression
neural network for probabilistic load forecasting,’’ IEEE Trans. Smart
Grid, vol. 10, no. 4, pp. 4425–4434, Jul. 2019.

[29] M. Al-Gabalawy, N. S. Hosny, and A. R. Adly, ‘‘Probabilistic forecasting
for energy time series considering uncertainties based on deep learning
algorithms,’’ Electr. Power Syst. Res., vol. 196, Jul. 2021, Art. no. 107216.

[30] P. Laurinec, M. Lóderer, M. Lucká, and V. Rozinajová, ‘‘Density-based
unsupervised ensemble learning methods for time series forecasting of
aggregated or clustered electricity consumption,’’ J. Intell. Inf. Syst.,
vol. 53, no. 2, pp. 219–239, Oct. 2019.

[31] H. M. D. Kabir, A. Khosravi, S. Nahavandi, and A. Kavousi-Fard, ‘‘Partial
adversarial training for neural network-based uncertainty quantification,’’
IEEE Trans. Emerg. Topics Comput. Intell., vol. 5, no. 4, pp. 595–606,
Aug. 2021.

[32] D. T. Frazier, W. Maneesoonthorn, G. M. Martin, and B. P. M. McCabe,
‘‘Approximate Bayesian forecasting,’’ Int. J. Forecasting, vol. 35, no. 2,
pp. 521–539, Apr. 2019.

[33] P. Jiang, R. Li, N. Liu, and Y. Gao, ‘‘A novel composite electricity demand
forecasting framework by data processing and optimized support vector
machine,’’ Appl. Energy, vol. 260, Feb. 2020, Art. no. 114243.

[34] T. Hong and S. Fan, ‘‘Probabilistic electric load forecasting: A tutorial
review,’’ Int. J. Forecasting, vol. 32, no. 3, pp. 914–938, Jul. 2016.

[35] F. Amara, K. Agbossou, Y. Dubé, S. Kelouwani, A. Cardenas, and
S. S. Hosseini, ‘‘A residual load modeling approach for household
short-term load forecasting application,’’ Energy Buildings, vol. 187,
pp. 132–143, Mar. 2019.

[36] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya,
V. Makarenkov, and S. Nahavandi, ‘‘A review of uncertainty quantification
in deep learning: Techniques, applications and challenges,’’ Inf. Fusion,
vol. 76, pp. 243–297, Dec. 2021.

[37] K. Dab, K. Agbossou, N. Henao, Y. Dubé, S. Kelouwani, and
S. S. Hosseini, ‘‘A compositional kernel based Gaussian process approach
to day-ahead residential load forecasting,’’ Energy Buildings, vol. 254,
Jan. 2022, Art. no. 111459.

[38] K. Dab, N. Henao, S. Nagarsheth, Y. Dubé, S. Sansregret, and
K. Agbossou, ‘‘Consensus-based time-series clustering approach to short-
term load forecasting for residential electricity demand,’’ Energy Build-
ings, vol. 299, Nov. 2023, Art. no. 113550.

[39] D. Khansa, ‘‘Caractérisation électrique, thermique et comportementale
hiérarchisée d’un agrégat de résidences en vue de la prévision énergétique
à court terme,’’ Ph.D. thesis, Dept. Elect. Eng., Université du Québec à
Trois-Rivières, Trois-Rivières, QC, Canada, 2024.

[40] S. J. Taylor and B. Letham, ‘‘Forecasting at scale,’’ PeerJ Preprints, vol. 2,
no. 3190, Sep. 2017.

[41] S. Ben Taieb, R. Huser, R. J. Hyndman, and M. G. Genton, ‘‘Forecasting
uncertainty in electricity smart meter data by boosting additive quantile
regression,’’ IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2448–2455,
Sep. 2016.

[42] J. Wang, An Intuitive Tutorial to Gaussian Processes Regression.
Amsterdam, The Netherlands: Elsevier, Sep. 2020.

[43] J. Qui nonero-Candela and C. E. Rasmussen, ‘‘A unifying view of sparse
approximate Gaussian process regression,’’ J. Mach. Learn. Res., vol. 6,
pp. 1939–1959, Dec. 2005.

[44] C. E. Rasmussen and C. K. I. Williams, ‘‘Gaussian processes for
machine learning,’’ Massachusetts Inst. Technol., Cambridge, MA, USA,
Tech. Rep. 5, 2006.

[45] A. I. Almazrouee, A. M. Almeshal, A. S. Almutairi, M. R. Alenezi, and
S. N. Alhajeri, ‘‘Long-term forecasting of electrical loads in Kuwait using
prophet and holt–winters models,’’ Appl. Sci., vol. 10, no. 16, p. 5627,
Aug. 2020.

[46] A. Shakeel, D. Chong, and J. Wang, ‘‘Load forecasting of district
heating system based on improved FB-prophet model,’’ Energy, vol. 278,
Sep. 2023, Art. no. 127637.

[47] S. Dash, C. Chakraborty, S. K. Giri, and S. K. Pani, ‘‘Intelligent computing
on time-series data analysis and prediction of COVID-19 pandemics,’’
Pattern Recognit. Lett., vol. 151, pp. 69–75, Nov. 2021.

[48] C. Xu, Y. Sun, A. Du, and D.-C. Gao, ‘‘Quantile regression based
probabilistic forecasting of renewable energy generation and building
electrical load: A state of the art review,’’ J. Building Eng., vol. 79,
Nov. 2023, Art. no. 107772.

[49] Y. He and H. Li, ‘‘Probability density forecasting of wind power using
quantile regression neural network and kernel density estimation,’’ Energy
Convers. Manage., vol. 164, pp. 374–384, May 2018.

[50] J. E. Matheson, R. L. Winkler, J. E Mathesont, and R. L. Winkleri,
‘‘Scoring rules for continuous probability distributions scoring rules for
continuous probability distributions,’’ Manag. Sci., Atlanta, GA, USA,
Tech. Rep. 10, 1976.

[51] M. Scheuerer and T.M. Hamill, ‘‘Variogram-based proper scoring rules for
probabilistic forecasts of multivariate quantities,’’ Monthly Weather Rev.,
vol. 143, no. 4, pp. 1321–1334, Apr. 2015.

[52] J. Lemos-Vinasco, P. Bacher, and J. K. Møller, ‘‘Probabilistic load
forecasting considering temporal correlation: Online models for the
prediction of households’ electrical load,’’ Appl. Energy, vol. 303,
Dec. 2021, Art. no. 117594.

[53] T. Jónsson, P. Pinson, H. Madsen, and H. Nielsen, ‘‘Predictive densities
for day-ahead electricity prices using time-adaptive quantile regression,’’
Energies, vol. 7, no. 9, pp. 5523–5547, Aug. 2014.

[54] L. Lind, J. P. Chaves-Ávila, O. Valarezo, A. Sanjab, and L. Olmos,
‘‘Baseline methods for distributed flexibility in power systems considering
resource, market, and product characteristics,’’ Utilities Policy, vol. 86,
Feb. 2024, Art. no. 101688.

[55] S. McDonald and D. Campbell, ‘‘A review of uncertainty quantification
for density estimation,’’ Statist. Surv., vol. 15, pp. 1–71, Jan. 2021.

KHANSA DAB received the B.Sc. degree in
electronics and electric engineering and the mas-
ter’s degree in telecommunication and computer
sciences from the University of SUP’COM and
Pretoria, South Africa, in 2017, and the Ph.D.
degree in electrical engineering fromUniversité du
Québec à Trois-Rivières (UQTR), Trois-Rivières,
QC, Canada, in 2024. Her research interests
include modeling and quantifying the energy
flexibility of residential buildings, forecasting the

electrical loads, and building energy efficiency, statistical, and machine
learning methods.

138016 VOLUME 12, 2024



K. Dab et al.: Uncertainty Quantification in Load Forecasting for Smart Grids

SHAIVAL HEMANT NAGARSHETH received
the B.E. degree (Hons.) in instrumentation and
control engineering from Gujarat Technological
University, India, in 2014, the M.Tech. degree
(Hons.) from Nirma University, India, in 2016,
and the Ph.D. degree in electrical engineering
from the Sardar Vallabhbhai National Institute of
Technology (NIT Surat), India, in 2021. He is
currently a Postdoctoral Research Fellow with the
Smart Energy Research and Innovation Labora-

tory, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC,
Canada. His current research interests include the control and estimation of
energy systems, including home and building energy management of smart
grids. Hewas a recipient of the European Embedded Control Institute (EECI)
Overseas Grant for 2019-IGSC held at Automatic Control Laboratory, ETH
Zürich, Switzerland. He was also a recipient of the IFAC-Young Author
Support (YAS) Award for two papers at the 2020 IFAC World Congress,
Germany.

FATIMA AMARA received the Ph.D. degree
in electrical engineering from Université du
Québec à Trois-Rivières (UQTR), Trois-Rivières,
QC, Canada, in 2018. She holds a Postdoctoral
Researcher at Concordia University, in 2019,
and CanmetEnergy, in 2020. She has been a
Researcher at the Institut de Recherche Hydro-
Quèbec, since 2021. She works actually on a
transactive energy system, where customer partic-
ipants can trade electricity on the grid. Through

this system, traditional consumers of electricity can generate electricity and
sell their excess capacity back into the grid. Her research interests include
modeling and quantifying the energy flexibility of residential, institutional,
and commercial buildings, forecasting the electrical loads, and building
energy efficiency.

NILSON HENAO received the B.S. degree
in electronics engineering from Universidad de
los Llanos, Villavicencio, Colombia, in 2010,
and the M.Sc. and Ph.D. degrees in electrical
engineering from Université du Québec à Trois-
Rivières (UQTR), Trois-Rivières, QC, Canada, in
2010 and 2013, respectively. His research interests
include statistical and machine learning methods
with applications to residential energy manage-
ment, distributed optimization, multi-agent con-

trol, smart grids, intelligent energy planning, energy storage, and load
monitoring.

KODJO AGBOSSOU (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in elec-
tronic measurements from Université de Nancy
I, France, in 1987, 1989, and 1992, respectively.
He was a Postdoctoral Researcher and a Lec-
turer with the Electrical Engineering Department,
Université du Québec à Trois-Rivières (UQTR),
from 1993 to 1994 and from 1997 to 1998,
respectively. He was the Director of the Grad-
uate Studies in Electrical Engineering, UQTR,

from 2002 to 2004. He was the Head of the Department of Electrical and
Computer Engineering Department, UQTR, from 2007 to 2011. He was the
Head of the Engineering School, UQTR, from 2011 to 2017, where he is
currently the Hydro-Québec Research Chair of Transactive Management
of Power and Energy in the Residential Sector and the Chair of the
Smart Energy Research and Innovation Laboratory. He is a member of the
Hydrogen Research Institute and Research Group ‘‘GREI,’’ UQTR. He is
the author of more than 325 publications and has four patents and two
patents pending. His research interests include renewable energy, the use of
hydrogen, home demand side management (HDSM), integration of energy
production, storage and electrical energy generation systems, a connection of
electrical vehicles to the grids, and control and measurements. Since 2015,
he has been the Sub-Commitee Chair of the Home and Building Energy
Management of Smart Grid Technical Committee and IEEE Industrial
Electronics Society (IES).

YVES DUBÉ (Senior Member, IEEE) received
the Ph.D. degree from Université Laval, Canada,
in 1985. He is currently a Professor of mechan-
ical engineering with Université du Québec à
Trois-Rivières (UQTR). His research interests
include electricity consumption, power demand,
ANCOVA test, ANOVA test results, accuracy
metrics, air density, air temperature, anemometer,
atmospheric pressure, automated guided vehicles,
data center, depth of discharge, directed acyclic

graph, district heating dynamic graph, dynamic programming, energy
conservation, energy consumption, energy cost, energy efficiency, and
energy-efficient routing.

SIMON SANREGRET received the B.A.Sc. and
M.A.Sc. degrees in mechanical engineering from
the University of Sherbrooke, with a focus on
energy. He has been a Researcher with the Labora-
toire des technologies de l’énergie (LTE), Institut
de Recherche Hydro-Québec, since 2001. He is
currently a member of the Ordre des ingénieurs
du Québec. His expertise is related to energy
efficiency and demand response in the building
sector. In recent years, he has been devoted to

the development of simulation tools to improve the energy efficiency of
commercial and institutional buildings. He was responsible for the develop-
ment of simulation software called SIMEB, an interface to the EnergyPlus
Simulation Engine. He has published several scientific articles in connection
with the building energy simulation, model calibration, and visualization
of building performance data. He contributed to various projects related to
energy consumption and demand response in the residential sector. He was
on the Board of Directors of the Canadian Chapter of International Building
Performance Association (IBPSA-Canada), from 2010 to 2016.

VOLUME 12, 2024 138017




