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ABSTRACT Demand response and distributed energy storage play a crucial role in improving the efficiency
and reliability of electric grids. This article describes a strategy for optimally integrating distributed energy
storage units within a forward market to address space heating demand under a Stackelberg game in isolated
microgrids. The proposed strategy performs distributed management in an offline fashion through proximal
decomposition methods. It leverages stochastic programming to consider user flexibility degree and wind
power generation uncertainties. Also, flexibility for demand response is realized through electric thermal
storage (ETS). The performance of the proposed strategy is evaluated via simulation studies carried out
through a case study in Kuujjuag, Quebec. Ten residential agents compose the demand side, each with
flexibility levels and economic preferences. The simulation results show that adapting ETS results in
economic savings for the customers. Those benefits increased in the presence of wind power, from 25%
to 40% on average. Likewise, coordinated strategies led the coordinator to obtain reduced operational costs
and peak-to-average ratio by over 35% and 56%, respectively. The proposed approach reveals that optimal
coordination of ETS in the presence of dynamic tariffs can reduce diesel consumption, maximize renewable
production and reduce grid stress.

INDEX TERMS Electric thermal storage (ETS), distributed demand response (DR), stochastic programming,
microgrids, co-simulation.

NOMENCLATURE EHP  Electric heat pump.
ETS Electric thermal storage.
FMUs Functional mock-up units.

Abbreviations GB Gas boiler.

BES Ba““”}’ energy storage. HEMS Home energy management systems.
CHP Comblr_led heat and power. MPC  Model predictive control.

cop C(.)ef.ﬁ(:}ent of performance. , OCP  Optimal control problem.

DCP  Disciplined convex programming. PAR  Peak-to-average ratio.

DHW  Domestic water heater.

RA Residential agent.

DR Demafld fesponse. TCL  Thermostatically controlled load.
EB Electric baseboard. )
TOU  Time of use.

EH Electric heater.
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WT Wind turbine.
Functions
E[-] Expected value.
Residential agent’s cost.
Utility’s payoff cost.
JI-] Residential agent’s payoff function.
PAR[-] Peak-to-Average ratio.
Proximal operator.
Residential agent’s utility.
Indices

i Index of iteration.

J Scenario index.
k Time slot index.
r Customer index.
z Thermal zone.
Parameters
o User’s elasticity.
Aw Wind speed under uncertainty.
;’),i User’s elasticity under uncertainty.
Hin Rated electrical consumption of the heating system.
T Electricity price.
k Wind power.
o} Standard deviation of the forecast error.
T Regularization parameter.
a, b, ¢ Diesel generator parameters.
H Houses.
TP"  Outdoor temperature.
Ther  Comfort temperature.
umEx EB’s maximal rated power consumption.
u,EnEx ETS’ maximal rated power consumption.
Sets

C Set of residential agents.
k  Set of time-slots.
N Set of scenarios.

Variables

! Electricity price at iteration i.

By Billing tarif.f.

Ly Aggregated demand.

Pfh ETS Charging power.

Pgh ETS thermal discharging power.

PAR Peak-to-average ratio.

SOCy ETS State-of-the-charge.

TI? Thermal zone z indoor temperature at time slot k.
e Electrical baseboard electricity consumption.
uy User’s optimal trajectory.

ufTsch ETS electrical charging power.

ufTS dsch ETS thermal discharging power.

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

In 2021, global electricity demand experienced the most sig-
nificant increase since the recovery from the financial crisis in
2010 [1]. The last year represented a critical period that has
created rebound effects in energy demand pushing electricity
prices. Besides, renewable sources increased significantly, but
electricity generation from fossil fuels reached record lev-
els [2]. Although renewables are set to fulfill increases in
global electricity, this trend boils down to plain emissions
from electricity generation. Therefore, the power sector plays
a critical role in the decarbonization of economies worldwide.

Distributed energy resources and demand response (DR)
programs drive the increased performance experienced by
smart grids over the last decade [3]. The migration from pas-
sive to active electrical networks allows users to participate
actively in DR programs [4]. Such programs enable dynamic
pricing tariffs that encourage customers to reduce electricity
bills. The literature have adopted game-theory and multia-
gent systems to model the interaction between end-users and
utilities [5], [6], [7], [8]. In this regard, many papers suggest
thermostatically controlled loads (TCLs) and lithium batteries
to alleviate grid stress by filling valleys and shaving peaks.
These have gained significant momentum since lithium pro-
duction prices experienced a sustained decrease in the last
decade [9].

During the last decade, tremendous efforts have been per-
formed on district heating systems, including combined heat
and power (CHP) and distributed heat pumps, since they rep-
resent the most efficient solution to:

1) increase demand flexibility;

2) facilitate DR;

3) reduce the running cost of power grids [10], [11], [12],

[13].

Although they promote energy efficiency and grid stabil-
ity, they do not make sense for every context. Scenarios that
behave: inadequate customer density (lack of aggregated ther-
mal load), limited interest from stakeholders (due to extensive
payback periods), hard-to-reach geographical conditions (in-
creased transportation and deployment costs), and low public
budget stand for critical cases in which they can be an imprac-
tical solution. Therefore, the necessity of technologies that
could overcome the last-mentioned limitations arises.

In this light, electric thermal storage (ETS) brings similar
advantages to lithium batteries. In fact, ETS exhibit lower
purchasing prices than the latter. Although having a unique
purpose (space heating), such a technology is a flexible
asset for customers [14]. ETS facilitates the integration of
renewable production and may reduce the need for additional
capacity of dispatchable generators. Previous studies have
consistently shown the ability of ETS to reduce customer
payments and energy costs, flatten the power curve, maximize
renewable generation, and provide a cost-effective solution
for DR programs [15], [16], [17], [18], [19]. All these studies
have considered deterministic and centralized approaches.
The utilization of deterministic methods considers complete
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FIGURE 1. Weather conditions during Winter in 2022 in Kuujjuaq.

information modeling, which is not a feasible scenario
due to inherent outdoor temperature and user preference
uncertainties. Subsequently, real-world circumstances make a
stochastic approach to ETS scheduling inevitable. Centralized
systems, in turn, are highly invasive, have no fault tolerance,
and exhibit poor performance at a large scale. Very few
attempts handle uncertainties in distributed management
contexts with ETS assets at the customer-level.

Microgrids allocated in remote regions experience harsh
conditions, especially during winter. In such regions, the heat-
ing load represents the higher electricity consumption (by over
70%) and is the primary driver of peak periods. Nordic remote
communities are characterized by their extensive dependence
on fossil fuels and often experience higher electricity prices
compared to urban scenarios. Furthermore, economic and
technical reasons impose many challenges for hard-to-reach
communities that often rely on diesel consumption. Canada
has around 280 isolated microgrids, most located in the north-
ern regions, characterized by a significant heating demand in
winter. Fig. 1 illustrates a typical day in Kuujjuag, a northern
community allocated in Nunavik, Quebec. The average out-
door temperature is —25 °C and fluctuates between —8 °C and
—35 °C. The wind blows constantly; hence, introducing wind
turbines is a potential opportunity. These communities face
high fuel and electricity costs compared to urban scenarios
in Canada. Unlike the rest of Quebec, inhabitants of such
regions are penalized after the first 40 kWh during a weekly
contract. In case household demand exceeds 40 kWh, they
are penalized for charging eight times the conventional rate.
Hence, building owners take a conservative behavior to avoid
paying expensive electricity bills. Consequently, the required
heating demand is supplied mainly by wood pellets, fuel oil,
gas, and electricity. Hence, the need for efficient energy man-
agement strategies arises to reduce such a dependency and
provide affordable electricity prices. A potential solution is
a strategy that exploits the salient features of ETS to reach a
reduced peak-to-average ratio (PAR) combined to maximize
renewable production. The optimal scheduling of distributed
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ETS units can enhance the power grid performance through
increased flexibility on the demand side. Such a strategy can
provide the following benefits:

1) reduced power losses;

2) lower electricity bills;

3) reduced greenhouse gas emissions.

This stands as a primary motivation for this article.

B. RELATED WORKS

Demand flexibility is possible from controllable loads and
storage assets. An optimal combination of them could reduce
grid stress and bring economic savings. Many researchers
exploit TCLs and lithium batteries as potential customer re-
sources to participate in DR programs [20], [21], [22]. On
the other hand, utilities manage the integration of any flex-
ibility vector through aggregators, which have been widely
accepted in the literature and real-life projects [23], [24], [25].
They provide aggregation load as the main service and coor-
dinate residential customers from incentive signals. Despite
DERs offering advantages for DR purposes, an uncoordinated
integration of these may result in adverse effects [26]. To
solve this problem, the literature has adopted demand ag-
gregators/retailers responsible for residential or neighborhood
coordination [27], [28].

Such coordination is performed mainly in the follow-
ing three ways: centralized, decentralized, and distributed.
Etedadi et al. [26] review these three concepts’ main ad-
vantages and disadvantages. In centralized schemes, utilities
control households’ electric appliances, and residential users
send information about power and preferences via smart me-
ters. This architecture has proved cost-effective in applications
including residential [29], [30] and electric vehicles [31].
However, this architecture has multiple drawbacks: it is highly
invasive, fragile to faults, and implies a huge computational
burden for large-scale applications. On the other hand, decen-
tralized and distributed architectures split large problems into
subproblems, mainly to reduce complexity. The distributed
architecture shares a common constraint amongst the house
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TABLE 1 Literature Classification Based on Techniques to Model Uncertainty

zea Management Uncertainty
Ref Molé]:ﬁling Flj’;?ﬁty strategy Source
. . Heat Elec. Elec. User’'s  Price
Cent. Dec. Dist. Environment Demand Demand  Price Pref. Elasticity
CHP, EHP,
(60] s EH, WT, v Solar,Text v P
BES
GSHP,
(45] SR GB, ¥ Solar v v
WT
[61] SP WT v Solar, Text
. Solar, Wind,
[48] Risk Averse WT & Text v
[46] E:::gm DHW v Solar
[49] Two Stage SP EHP, WT ¢ v v v v
Scenario
[62] sk WT, BAT v v
[50] Robust CS, WT v v Ref.:
(51] E:::;‘“" WT v Wind W7 v
[63] E:::;‘n" EHP, WT v Solar
[64] Stochastic MPC ~ EHP v v
[65] bs‘:amm © WT v Solar v v
[66] Deterministic EPH, EH v
[67] Deterministic gg (\:{,S,IHR i
[68] Deterministic "
[69] Stochastic MPC ~ EH v v v
[70] Two Stage SP EHP v Solar
Scenario Solar, Wind,
[47] based EHP v Text v v
(71] s EHP,WT v
This Scenario ;
approach  based ETS, WT v Wind v v v

Reference, Unc.: Uncertainty, Cent.: Centralized, Dec.:Decentralized, Dist.:Distributed, Elec.:Electricity, Occ.:Occupants, Pref.: Preference

agents. In DR programs, local home energy management sys-
tems (HEMS) are often exploited to schedule smart electric
appliances. HEMS aims to reduce electricity bills and con-
sider the information of users’ preferences. The scheduled
power profiles (computed by residential agents) are shared
with the utility/aggregator via smart meters [32]. Afterwards,
the utility broadcasts a price signal to residential users accord-
ing to the received aggregated consumption [33].

The literature has adopted game-theoretical approaches to
control the interaction between utilities, and customers [34],
[35], [36]. Stackelberg games have been widely adopted by
the literature; they model scenarios encompassing one leader
and multiple followers. In the residential domain, customers
are modeled as rational and price-aware agents aiming to max-
imize a specific utility, such as thermal comfort. An aggrega-
tor establishes a price policy according to the set of strategies
from residential agents. Utilities establish goals including:
flattening the power curve [37], [38], reducing fossil-fuel con-
sumption [39], maximizing renewable production [40], [41],
among others. Mediwaththe and Chathurika [42] proposed
an incentive-compatible energy trading strategy for neighbor-
hood area networks with shared energy storage. Their results
showed reductions up to 45% of peak demand at the maximum
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adoption of energy storage assets. Similarly, through game
theory, Tang et al. [43] handled power management at the
building cluster level. Findings of this work state that stor-
age units allow for a reduction by over 50% on aggregated
peak demand and electricity cost. A significant problem in
game-based approaches is how to distribute incentives. That
motivated researchers to propose an approach to estimate
them reasonably for optimal energy storage integration using
an absolute option game [44].

While deterministic approaches allow an excellent grasp of
decision-making at utility and user levels, they provide a static
picture of uncertain parameters in real-life scenarios. Conse-
quently, unpredictable events caused by uncertainties impose
challenges on the daily operations of smart grids. Table 1
classifies studies by the technique used to model uncertainties
and their respective sources, the flexibility vector, and the
control strategy. Stochastic optimization, i.e., two-stage [45],
[46], [47], two-stage robust [47], scenario-based [48], [49],
[50], [51], are well-adopted methods to tackle uncertainty. Re-
garding flexibility, many papers focused on CHP, heat pumps,
and borehole tanks. They drew special attention because of
their ability to reduce grid stress and their significant coeffi-
cient of performance. A group of studies modeled fluctuations
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in electricity demand and price, while another group of re-
searchers considered uncertainty from occupancy and thermal
user preferences. Most of these approaches rely on centralized
approaches, which is a primary drawback.

Martinez and colleagues reviewed the primary uncertainty
sources on the demand side [52]. They highlighted that elec-
tricity demand is primarily affected by fluctuations related to
thermal-economical preferences and occupancy. Such pref-
erences are often affected by users’ elasticity, duration of
DR events, and human behaviors, i.e., opening/closing win-
dows, turning ON/OFF lights, and cooking [53]. DR initiatives
with renewable assets, usually for utilities, consider uncer-
tainties from electricity demand and weather forecasting that
affects renewable production directly [54]. For customers,
such programs tend to model fluctuations over the only in-
formation the utility provides to them, the electricity price.
Fig. 2 summarizes the main sources that affect demand side
management.

Although user occupancy-related uncertainties can cause a
significant impact on energy consumption at the residential
level [55], such approaches often rely on Markovian models
in the context of control strategies. Their main drawback
is their dependence on every state and its corresponding
observed object. Alternatively, uncertainties associated with
user preferences can be introduced in cost functions through
weighted terms. These terms can capture information about
users’ ability to pay for guaranteed thermal comfort, repre-
senting their degree of flexibility. The latter plays a crucial
role in iterative-wised bilevel strategies, where users do not
reveal their objectives.

Researchers have dedicated efforts regarding ETS for
multiple purposes, including reduced diesel consumption,
frequency regulation, renewable power maximization, and
demand side management [56], [57], [58]. Unfortunately, only
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a few researchers have considered the impact of uncertainties.
Wong and Pinard in [14] elaborated a study to evaluate the
opportunities of ETS combined with wind power in electric
grids. Similarly, Sauther et al. [58] outlined a study to as-
sess the impact of ETS in low-voltage distribution networks
in northern communities” isolated microgrids. Their strategy
achieved meaningful reductions in operating costs (by over
23%) when integrating ETS. In [18], authors developed a tool
that enables feasibility evaluation of a DR program by ETS.
Unlike other approaches, they considered electricity prices
and power imbalance uncertainties through Monte Carlo sim-
ulations. The main remark of this article is that the benefits of
participating in the program are not enough, even if users are
willing to adopt ETS units. Hence, the utility must pass to the
asset owner at least 50% of the load reduction remuneration
to achieve payback in 15 years.

Kilkki et al. [59] introduced an optimized control of
price-based DR with electric storage space heating. Here, a
Stackelberg game underlies transactions between customers
and the retailer, where multiple pricing mechanisms were
considered, including spot price, time-of-use, optimized price,
and optimized price with discount. However, the authors did
not evaluate the effects of uncertainties in their approach.

Flexibility in multienergy communities with electrical and
thermal storage: A stochastic, robust approach for multiser-
vice DR.

In North America, space and water heating loads are ful-
filled mainly by electrical heating systems. Over the last
decade, ETS units have experienced a significant market up-
take. Table 2 describes data of 13 projects in Canada and
the United States. Here, information is summarized regarding
the range of rebates and rate discounts used and the ways
to control the ETS. Most initiatives have two goals: shifting
demand away from peak hours and facilitating the integration
of renewables. In some cases, it was the only way to enable
customer time of use (TOU) rates. Investors offer incen-
tives for either rebates or rate discounts to encourage people
to participate. A weakness of these initiatives is that most
are centralized architectures, which face multiple difficulties
nowadays with leading trends about decentralization and the
Internet of Things.

Regardless of the final purposes, when it comes to ETS,
literature-reported papers mainly focused on deterministic
optimization problems. Researchers made few attempts at
stochastic approaches considering uncertainties. Despite [18]
considering uncertainty for estimating the feasibility of an
ETS-based DR, the authors did not model rational residential
agents, which aim to reduce electricity bills or maximize indi-
vidual welfare. In this regard, uncertainties affect the user’s
strategy and the aggregated demand profile, which directly
alters the benefits of participating in a DR program.

C. CONTRIBUTIONS AND ORGANIZATION
The studies on optimal stochastic integration of ETS in DR
programs in microgrids are limited to date. Although the
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TABLE 2 ETS-Based Projects Conducted in Canada and United States

Communication Amount of people

Presence of

Controllable heating

Project wpology participating Incentive i systens Pros Cons Ohbjective
N . . . . - Utility have to control
PowesShift Atlantic Centralized Wind ETS, DHW the timing of clectricity use
- Installation was
£ < % - N nat covered Tmplement TOU rates for residential
Nova Scotia Power Centralized - 50% of reduction on TOU rates ETS room units (9 kW) - Utility have to control ek
the timing of electricity use
B " " = Utility have to control Shift demand away from peak hour
New Power c 100 (2013) Wind ETS room units the timing of electricity use  and renewables integration
City of Summerside, PEI  Centralized : ;gg :F& ;edmmu[x :}’m:, = itiHty e 4o cnitind
rate for 8 years. the timing of electricity use
Minnesota - Connexus - 50% of reduction on TOU rates s
energy cooperative and Centralized Wind ETS room units ;h:')llllr)' ha: o m[:::ul — Load-shifting
great river energy - 50 USD per installed kKW tioming of elepincity
- 100 USD per installed kW " - : .
2 i : ETS room units, - Utility have to control Meet the heating load with ETS
Concord Light Centralized - 58% of reduction on TOU rate T FRriE s
regarding the i s ASHP the timing of electricity use  as backup system
Bedford rural electric . = 75 USD per installed KW = Utility have to control
Co-op e - 58% of reduction on TOU rates ETS, DHW. the timing of electricity use
g - 25% of installation cost, e
South Kentucky rural - ¢ ipeg - 40% discount from resideatial ETS room units = LKy liuve fo octizcl

electric cooperative electricity rale.

the timing of electncity use

literature has reported the facilities that ETS brings about en-
hanced renewable integration and reduced operational costs,
the knowledge is scarce about:

1) the optimal management of ETS in a distributed fashion;

2) changes in ETS-related decision-making processes as a
consequence of uncertainties at the customer and sup-
plier level;

3) customer behavior toward an increasing share of pur-
chased ETS;

4) cost-effectiveness for customers.

Furthermore, in microgrids, the inherent fluctuations cre-
ated by renewable sources, combined with altered consump-
tion as a result of changes in the level of flexibility, impose
severe challenges in the operation of the power system.
Also, real-life projects exploiting ETS are characterized by
utilities controlling the ETS units in order to maximize re-
newable production, which makes such approaches highly
invasive. Although several studies have modeled renewable
production with inherent uncertainty, few approaches have
considered uncertainty on users’ elasticity, representing a
potential flexibility factor on the demand side. Hence, we
propose a strategy to close these gaps by exploiting stochastic
programming methods encompassing appropriate uncertainty
modeling concerning renewable production and users’ flexi-
bility. The mechanism performs distributed DR by exploiting
salient features of HEMS. The proposed strategy is based
on a forward market and a Stackelberg game, including a
local coordinator and a set of ten residential agents. The main
contributions of this article are as follows.

1) Optimal stochastic integration of ETS assets in the pres-
ence of wind power is effectuated on a small microgrid
in the context of a DR program. The proposed approach
allows exploring the potential of ETS and wind to meet
an isolated grid’s electric supply needs. Besides, uncer-
tainties from different sources are accounted for through
stochastic programming.

2) Modeling and characterizing the thermo-energetic envi-
ronment of a particular hard-to-reach Nordic commu-
nity. It exploits the development of simulation tools,
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cosimulation as well as statistical and stochastic models
to characterize production and consumption and their
dependence on environmental factors specific to remote
regions.

3) A hierarchical Stackelberg game between the coordina-
tor and a set of residential customers is proposed for
managing information exchange to establish a contract
within a forward market. Therefore, the interests of each
participant can reach an equilibrium value, and a nested
distributed DR strategy is achieved.

4) A market-efficient hypothesis is adopted, in which all
information is reflected in the price. Hence, instead of
centralized control, an optimal control mechanism at the
customer level (decentralized) is effectuated by propa-
gating the wind power availability toward the electricity
price.

The rest of this article is organized as follows. Section II
covers the methodology adopted in the article, including mod-
eling, game description, and optimization problem. Section I1I
presents the simulation results of the proposed strategy, while
its discussions are embedded in Section I'V. Finally, Section
V concludes this article.

I. METHODOLOGY

This section explains the proposed strategy to exploit the po-
tential of wind power and ETS to flatten the power curve of a
set of residential customers. The proposed strategy considers
that the coordinator belongs to the utility and is profit neutral.
Also, customers are connected to a single bus bar. Fig. 3
presents a sequential diagram of the methodology. First, the
physical modeling for ETS and house is achieved. Second,
distributed cosimulation is exploited to enable the interaction
between ETS and the house model. Details for the last men-
tioned stages can be found in a previous work [72]. As a
result, each house provides a historical energy consumption
in the presence of an ETS room unit. Subsequently, a learning
stage is effectuated to build a linear model to be controlled
by exploiting a model predictive control (MPC) controller.
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This procedure is repeated for every customer. Eventually, a
coordination loop starts with the set of residential agents.

Fig. 4 provides a unified picture of the proposed strategy.
Fig. 4(a) presents the sequential game between the set of
residential agents and the coordinator, where they exchange
price and power consumption data within a multistage game.
Fig. 4(b) and (c) shows local HEMS for proactive and tra-
ditional users; each has different preferences and flexibility
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levels. A proximal decomposition algorithm is used to en-
able distributed DR. At the utility level, the coordinator is
responsible for reducing diesel consumption and providing an
electricity price in terms of the availability of wind produc-
tion. This work considers the following.

1) Residential agents are willing and have the economic

means to purchase ETS units.
2) Constraints free electric network.
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TABLE 3 Main Characteristics of Modeled Houses

Dwelling characteristics

Location Kuujjuag

Housing type Twin Semi-detached
Approximated total surface 90 m?

Occupation 2 adults / 2 children
Space heating systems Baseboard heaters/ETS

3) ETS units discharge is modeled by forced convection
with fixed blower power consumption.

4) Since the strategy is within a forward market for short-
term optimal planning, upfront cost for ETS are not
included.

A. MODELING

Real-world data from hard-to-reach communities in the en-
ergy landscape is often limited. Therefore, the need to exploit
advanced energy modeling tools arises to capture valuable
information about consumers’ energy consumption patterns.
In this light, we exploit a stack of open-source tools and lan-
guages, including EnergyPlus, OpenStudio, and Modelica, to
generate information about households’ energy consumption
with heating systems composed of electric baseboards and
ETS units. More details can be found in [72].

The house models are developed with OpenStudio and
Energyplus; the ETS model is coded in Modelica. Both
were encapsulated as functional mock-up units to enable dis-
tributed cosimulation. They exchange information under the
FMI protocol, a well-accepted research method that enables
distributed cosimulation. The house leads the interaction, pro-
viding the internal temperature to the ETS. Then, given a
power consumption profile and the provided temperature, the
ETS releases a certain amount of heat Q previously stored
in the zone. Additionally, time orchestration is needed since
each model has its own solver, and they have different time
resolutions. Table 3 summarizes the characteristics of a typical
house in the targeted community. Here, the set point for each
thermal zone act as an input, while the power consumption
and internal temperature of each thermal zone act as the
model’s outputs.

A self-developed ETS modelica model that suits the com-
mercial STEFFES 2102 unit is utilized with maximum input
power of 3.6 kW and a storage capacity of 13.2 kWh. The
models’ inputs are the power consumption, the internal room
temperature, and the operational status (charging, discharging,
or self-discharging). The outputs of the ETS are the energy
consumption, the storage capacity, and the heat Q delivered to
the room.

B. GAME DESCRIPTION

Noncooperative games exploit the inclusion of multiple
decision-making agents, each of which attempts to maximize
its own benefits. The Stackelberg game is a noncooperative
game model and has a hierarchical structure. The leader has
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proactive features and sets its strategy first; then, the fol-
lower gives the optimal trajectory according to the leader’s
strategy. Afterwards, the follower passes the strategy to the
leader. However, due to incomplete information issues, multi-
ple iterations are needed to reach the system’s optimal value
and game equilibrium. The hierarchical Stackelberg game
including a coordinator and a set of residential customers is
constructed as follows.

1) Participants: Two set of agents with autonomous and
controllable capabilities (i) a coordinator and (ii) resi-
dential agents act as the participants of the game.

2) Strategies: During the game, the utility sets the sale
price; then, customers estimate their optimal consump-
tion using MPC. The equilibrium point is the optimal
strategy of the game, and the game leader cannot obtain
higher operating income by unilaterally changing the
electricity price strategy. At the same time, the followers
cannot obtain higher profits by adjusting their strategy.

3) Utility functions: While the coordinator tries to reduce
the microgrid’s running cost, the customers will maxi-
mize their comfort objectives.

C. UNCERTAINTY MODELING

1) USER’S PRICE-ELASTICITY

Usually, conventional approaches consider vertical fluctua-
tions in the electricity price value, which cause severe impacts
on residential agents’ strategies since their flexibility relies
largely on price signals in a DR program. According to Mar-
tinez [52], proper introduction of uncertainty arising from
time-related features of flexibility signals underline the future
need for smart controllers; nevertheless, very little attention
has been paid to users’ price elasticity uncertainties.

Particularly, flexibility event duration is usually experi-

enced from the consumers’ perspective; for instance, during a
setback event, i.e., modifying set-point preferences when the
user is absent [73], [74]. Often, this value is assumed to be
time-varying; however, real-life cases may differ significantly.
Other than variations in set-point, there are numerous factors,
which can affect the ability of customers to pay for their
comfort, including the following.

1) Presence of substitute goods: Substitute good is defined
as a product that satisfies the same need, even if it is not
similar. Therefore, the elasticity is expected to be more
significant in the presence of substitutes. For instance,
in this work, the demand becomes more elastic in the
presence of ETS room units as substitutes.

2) Price of goods concerning the consumer’s income: The
higher the price, the more elastic the demand, since it
implies a higher cost. On the other hand, lower price
constitutes inelastic demand. Furthermore, taking into
consideration the consumer’s income is also evident.
For instance, higher income consumers are less sensitive
to price, i.e., their demands tend to be inelastic.

3) Degree of necessity: An increase in the necessity of the
good lowers the elasticity (inelastic demand). On the
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FIGURE 5. Residential agents’ thermal preferences.

other hand, if the good is not essential, the demand is
more elastic.

4) Time horizon: Generally, demand is more inelastic in
short-term periods. Specifically, if the price of a good
suddenly rises, consumers may not have time to react.
Instead, in the long run, consumers adapt their con-
sumption habits, which makes the demand more elastic.

This article adopts a time-variant approach to introduce un-

predictable changes in users’ decisions. In order to introduce
uncertainties on the demand side, we introduce hourly fluctu-
ations over «, representing the flexibility level of customers,
depending on their deterministic elasticity level mentioned
above. Therefore, additive uncertainty is embedded in each
user with different variances as

W=+ (e

where F;"c ~N (0, &) is the price-elasticity for user r. While
high values of §; depict inelastic customers, low values rep-
resent flexible users aiming to reduce electricity bills rather
than guaranteeing their comfort preferences. Elastic users ex-
hibit higher variances, while inelastic customers show lower
variances. Different variance values are considered to create
heterogeneity on the demand side.

D. FOLLOWER PROBLEM: RESIDENTIAL HEATING DEMAND
Residential agents are decision-makers who perform actions
according to their preferences. In this work, preferences rep-
resent the comfort needs and the flexibility of the consumer
to pay for the latter. Fig. 5 illustrates user’s preferences. Each
customer performs MPC given the price established by the
coordinator. The resulting strategy for each agent follows dis-
ciplined convex optimization rules and, therefore, an optimal
trajectory. The proposed approach models two types of con-
sumers.
1) The Traditional—conventional consumers who depend
on electrical heaters to satisfy their needs.
2) The Proactive—conscious consumers interested in re-
ducing their electricity bills by introducing thermal
storage assets.

1) THERMAL PREFERENCES

Controllable loads are subject to the preferences and the set-
points of each customer. Such preferences can be modeled as
normal logarithmic distributions [75] with zero mean (p =
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0), standard deviation one (o = 1), and scaled by the terms
wy and py as

of =+ p - lognorm(yz, o). @)

In (2), higher values of a} represents inelastic users, i.e., low
flexibility to sacrifice its thermal comfort, and it is assumed as
@ = 3 while p = 1. Furthermore, the set-points of the heat-
ing system defined for each customer follow the preferences
previously defined in (2) as presented in Fig. 5.

2) THERMAL DYNAMICS

A linear model based on the EnergyPlus modeling is used
to estimate the thermal dynamics of the house in each ther-
mal zone. The state-space model for a residence with two
thermal zones for a fraditional and a proactive user can be
represented as

T T i
) a [B) o] eob]
+
T] Tl HEBI uErstch
k| A [k 4B %, |+c|% +D[T0ut]
I:Tk%rl] [Tkz] [“EBE L ¢
(3b)

where T} is the internal temperature, ?}EO“‘ is the outside tem-

perature. k is the time step. u} > and ufTSD“h models power

consumption for EB and thermal forced discharge for the
ETS. A, B, and C, D, E are coefficient matrices that are
computed by minimizing the sum-of-squares loss function
between (3a) and (3b) and the actual measured output over
a set of historical data.

3) UTILITY FUNCTION

To maximize the individual welfare of the customers, a mul-
tiobjective cost function is proposed to perform the optimiza-
tion process. The first term of the cost function guarantees the
occupants’ comfort, the second one minimizes the customer’
payments for any type of dynamic tariff and the third one
the operational cost for proactive users. The objective is to
maximize the individual welfare as the difference between the
utility Uy, that the user perceives from consuming energy, and
the cost Cy, that it has to pay in return, and the cost of running
an ETS unit (Proactive users). A mathematical formulation of
the optimal control problem takes the form

max By (T, u, y)l ~ 1/N ZTj ~Ui— G —Cf (4a)
k=1

b P ) (4b)

eI (40)

ufB = (108 i (4d)

U o0 ¢ [0, uETScny (4e)

up o0seh ¢ [0, PETSDsen (49
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xp = Initial State (4g)
up = Tnitial State (4h)
SOCy; 1 = SOCy + (uf o0 — uTDeh) A, (4i)
where
U = n(TE - Ti)? ®)
Ci. = miuy ©)
clf = (g™ — o) Ay - )
o S ®)
2n (ES — ES)

The term N is the number of scenarios, U, is the comfort
objective, Cy, stands for the cost term, and Cf is the operating
cost of running an ETS unit. Note that if the user is traditional,
C;(M equals zero. Cf is a parameter, where 7 is the total rated
cycles of the ETS unit, / is the upfront cost to purchase an
ETS, and ES is a parameter meaning a desired amount of
energy stored in kWh. The denominator is multiplied by two
(2) since a cycle is assumed to be the ETS charging to ES
and discharging to ES. These two were set to 80 and 20,
respectively.

Particularly, this formulation assumes that the residential
agents’ decision has a risk-neutral attitude as it implies that
potential losses are equally offset by potential gains, always
considering that the average value maximizes the expected
value.

A key consideration in solving the stochastic optimal con-
trol problem is the propagation of the mean and variance of
the random variable making the objective function stochastic.
The problem is subject to several constraints: Tj;, and Tiax
are the possible allowed temperature interval in the rooms
of the house (user-defined), uEIS and uEB, are the maximum
output power of the ETS for each thermal zone, xp and ug are
the initial conditions of each thermal zone regarding the in-
door temperature and the energy consumption of controllable
loads. Ay is a ratio to obtain the energy amount per time slot k.
SOCj4 is the current energy stored, SOCy, is the immediate

: ETSch : .
previous energy stored, u, is the ETS power consumption,

ETS
and u, >

is the heat delivered to the room.

E. LEADER PROBLEM: MINIMIZING ENERGY COST

Energy cost model is an incremental cost function that repre-
sents the cost of generating a unit of electricity by the energy
source at each hour. Widely used quadratic cost (for a diesel
generator) functions fit such criteria, i.e.,

Cr(Ly) = arL? + bl + cx )

where ai, b, and c; are > 0 at each hour. L; represents
sum of all sets of best strategies [u’f"‘, ug*. - uﬁ"‘]. The term
uﬁ* denotes the best strategy of the nth user. The cost function

adopted is strictly convex and represents an artificial cost tariff
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employed by the utility to perform proper demand control. For
instance, Hydro Quebec adopts a convex price model in the
form of a two-step piece-wise linear function to encourage
users inhabiting remote areas to consume more conserva-
tively. Such a function can be smoothed by a quadratic cost,
which is more suitable for optimization purposes.

In the presence of renewable production Ry, (9) becomes
stochastic due to the inherent variability of renewable sources.
We set by, and ¢, to zero for simplicity, and (9) is recast as

T

1
E(Co) ~ @i ) (L —Ro)*.
k=1

(10)

Additionally, residential customers are charged depending
on their own energy consumption, according to the following
billing tariff:

(1D

& i
B~ Y E(Ci)uf.

r=1 k=1

In this way, the expected billings reflect the user’s total
daily energy consumption and relate it to the total expected
energy cost of the system. Furthermore, economic savings for
the coordinator and residential agents were estimated as the
initial cost without DR versus the resulting final cost at the
game’s latest iteration in the proposed strategy.

F. DISTRIBUTED OPTIMIZATION (PROXIMAL
DECOMPOSITION)

In practice, sequential updating to ensure convergence of al-
gorithms can become a difficult task. Therefore, distributed
algorithms, such as proximal decomposition [14], [76], [77],
are preferable to overcome such issues. It allows users to
update their strategies simultaneously without sharing infor-
mation with their neighbors. As mentioned in Section II, the
problem is modeled hierarchically employing a Stackelberg
game. At customer level, each follower maximizes its own
convex local cost function, with a total amount of discrete-
time slots. Meanwhile, the leader aggregates the strategies and
establishes a new price depending on wind power availability
to encourage customers to coordinate their actions while bal-
ancing power demand and power supply.

An additional term in the consumers’ payoff function has
been designed to ensure the algorithm’s convergence under
tender conditions and the coordination between users. This
term is intended to penalize large variations between succes-
sive iterations in the decomposed optimization process [12].
Consequently, the final form of the consumer’s payoff func-
tion can be written as

(12)

where 7 and r stand for the iteration and user index, respec-
tively, T is a regularization parameter. The latter has been
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FIGURE 6. Impact of several uncoordinated thermal storage units.
chosen according to [77]
T=4(N—1)A. (13)

The value of A has been calculated and used as the initial
average price. The algorithm’s convergence has been modeled
as the situation where there are no significant variations in the
aggregated profile between two iterations. This convergence
criterion is defined as [31]

I — L7 ll2/ 1L 112 < 1072, (14)
G. COORDINATION

The conventional and individual DR of multiple agents may
decrease the grid reliability and the economic benefits for
both utilities and consumers. RAs are fully autonomous and
will always try to maximize their welfare. Hence, if given
the same signal price, they simultaneously schedule their
loads during off-peak hours, resulting in Prisoner’s dilemma.
That is reflected as ’'rebound peaks’ during low pricing
periods.

Fig. 6 demonstrates the effect of uncoordinated thermal
storage units on energy. Here, it is evident how each agent
performs actions to maximize its welfare, acting selfishly.
Comprehensively, the flexibility vectors connected uncoor-
dinatedly may cause undesirable effects on low-voltage dis-
tribution networks. Hence, harmonious coordination on the
demand side is needed to solve the rebound peak issues and
improve the reliability of distribution electricity networks.
Consequently, utilities warrant sharing a mechanism with res-
idential agents that encourages them to actively coordinate to
reduce power peaks (utility benefit) and their electricity bills
(consumer benefit).

I1l. SIMULATION RESULTS

In this article, the case study considered for simulation results
consists of a group of ten (10) residential consumers in Ku-
ujjuaq, a northern hard-to-reach community in Quebec. This
region faces extreme subzero temperatures during winter. The
microgrid is a single transformer powering a group of cus-
tomers, the capacity of the transformer is enough to meet the
demand without creating overcharging scenarios, and a large
diesel generator is considered along with centralized wind
power stands for energy carriers to power the community. The
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dwellings have the features listed in Table 3. Customers are
fully autonomous agents that can modify their consumption
patterns given an incentive signal from the coordinator. In
particular, we use the term adoption for purchasing an ETS
to cover heating needs for one of the two thermal zones.
Following is the list of preferences of each user.

1) HI: TC =22, o = 8.07.

2) H2: TC =21, a =3.54.

3} H3: 1€ =21; a0 = 3.58:
4) H4: TC =22, ¢ = 3.34.
3) H: TC€' =22 =537,
6) H6: TC =22, @ = 8.07.
7 HI: TC =21, @ = 3.54.
8) H8: TC =21, a = 3.58.
9) HO: TC =22, @ = 3.34.

10) H10: TC =22, ¢ = 5.37.

The performance of the proposed strategy is tested with
different rates of proactive users in 24 h with a time resolution
equal to 10 min. To calculate the energy cost, we set
by = ¢ = 0 in the quadratic cost function (9) and estimated
a, =09 centskahz, which remains constant throughout
the day. The performance is evaluated through PAR, i.e.,
calculated as PAR = (max(L)T)/Lg.

User strategies are based on convex optimization problems
where the objective is a sum of convex functions. The disci-
plined convex programming method is utilized to solve them
through the Python-embedded modeling language for convex
optimization [78]. Besides, we use the ECOS solver suitable
for solving massive convex cone programs to calculate the
optimal solution.

A. OVERALL PERFORMANCE

This case study describes how residential agents participate
actively under a price-based strategy proposed by a local co-
ordinator. From the coordinator, DS-3000’s vertical-axis wind
turbines represent nondispatchable resources. This wind tur-
bine has an output power of 3 kW based on the manufacturer’s
information. On the demand side, EBs and ETS account for
controllable loads. Also, incomplete information is consid-
ered with fluctuations in users’ flexibility and wind power
forecasting. Proactive households possess one ETS room unit
with 3.6 kW input power and a capacity of 13.2 kWh. To
estimate operational costs, we consider the asset service life
of 15 years and capital expenses of 2500 CAD. In addition,
it was considered that the customers are ETS owners and
the maximum power of electric baseboards was 2 kW. We
set the initial and final state-of-the-charge to 20% of their
capacity. Note that all users have the same model of ETS
installed.

Fig. 7 demonstrates the algorithm convergence for vari-
ations in ETS penetration over the first 20 iterations. It is
observed that the convergence is reached after 10 to 13 iter-
ations depending on the level of ETS adoption on the demand
side. Notably, higher ETS adoption values result in the slowest
convergence compared with lower ETS penetration levels.
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TABLE 4 PAR and Aggregated Cost Comparison

Uncertzinty Coordinated
MEte Case Uincoautingysd Share of proactive users (%)
0 20 40 60 80 100
PAR Demand 35 251 217 2.02 1.71 1.68 153
Demand +
Wind Power 3:5 252 2.37 2.23 2.15 1.96 1.89
Agg. Demand 106.71 7546 7295 7069 68.63 679 673
cost
Demand +
Wind Power 101.13 6437 61.15 5923 5750 57.10 569
5 users charged their ETS at low prices and released such power
G —=— Only Traditional Users during peaks.
S 10-11 —— 20% Proactive users
w —*— 40% Proactive users C. BENEFIT ANALYSIS
o .

5;;’ *— 60% Proactive users The cost-effectiveness of the proposed mechanism for cus-
o tomers and utility is also analyzed. Fig. 11 describes the
-2 — = . o "

g 1074 _ distribution of expected benefits for residential users with and
0 2 4 6 8 10 12 14 16 18 without wind power generatlon._The .results show that the

Iteration [i] proposed program brings economic savings, and the expected

FIGURE 7. Convergence of algorithm with termination criterion.

That is due to an increase in the overall degrees of freedom
of the problem, which increases the iterations to reach the
defined convergence criterion.

B. COMPARISON BETWEEN DIFFERENT PERCENTAGES OF
PROACTIVE USERS
The effectiveness of increasing the proactive users through
the proposed strategy is tested. Here, one user is considered
proactive by installing an ETS room unit that covers heating
needs for one of the two thermal zones. Table 4 condenses
results obtained for two parameters, including the PAR and
aggregated energy cost at each level of ETS adoption. Be-
sides, it summarizes results with and without wind production.
Results show PAR reduction of up to 56% is achieved when
all customers decided to purchase an ETS unit; ETS adoption
reduced the PAR with and without wind production. Never-
theless, the former results lower when wind power is absent.
Fig. 8 compares multiple aggregate loads as a result of the
sum of the user’s optimal strategies. That includes uncertainty
from the user’s flexibility without wind power production.
Also, it contains information about the resulting average elec-
tricity prices for each level of ETS adoption. We observed
that as the share of proactive users increased, the power
curve was more flattened, filling valleys, and reducing peaks.
Besides, the proposed strategy furnishes reductions in aver-
age grid price per kWh up to 26% (from 10 cents/kWh to
7.4 cents/kWh). Fig. 9 illustrates wind power production case
and their uncertainties. The demand curve is flattened as in
the previous case. Fig. 10 shows the resulting electricity price
and some users’ storage decisions by hourly blocks. Proactive
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benefits increase substantially in the presence of wind power.

Figs. 11-13 provide a picture of the evolution of user ex-
pected benefits with different rates of proactive users. When
all users are willing to purchase an ETS unit, payments
reduce significantly. Also, users with more degrees of free-
dom (proactive) and higher flexibility obtain higher savings.
However, as ETS adoption increases, users’ benefits increase
differently [14]. Note that traditional users (except users 8
and 9) obtain benefits close to 10%, less than proactive users.
Proactive users differ in economic savings because they ex-
hibit different user preferences and flexibility. That may affect
payments for the rest of the customers.

From the utility viewpoint, Table 4 shows how proactive
users can substantially reduce energy costs due to uncertain-
ties from demand and wind power. Fig. 14 depicts an example
of the expected average cumulative expense with and without
wind power generation at 40% and 60% of proactive users.

IV. DISCUSSION

Strategies for optimal integration of energy storage assets
in distribution systems have gained significant momentum.
That includes the courtesy of migration from passive to active
networks, embedding renewables, growth of particular sec-
tors (industrial, commercial and residential), and the changes
in consumers’ consumption patterns, among others. Users
have become more active on the demand side since utilities
encourage them to purchase flexible loads to participate in
DR programs. Even though literature has addressed the op-
timal integration of distributed energy storage resources, a
large share relies on fully deterministic approaches, which
are very far from real-life scenarios and may provide biased
results. DR programs, including electric batteries, such as
those proposed in [77] and [31], although based on complete
information, reported meaningful reductions in the aggregated
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FIGURE 10. Aggregate per-slot prices and SOC for 100% for a subset of proactive agents.

energy cost, the PAR. Simulations from [77] showed that 24%
of active users on the demand side create a reduction in the
PAR equivalent to 17.1%. Similarly, in [31], their findings
showed that full adoption of electric batteries on the demand
side substantially reduces the PAR, passing from 1.8797 to
1.3427 (40% improvement). Regarding economic benefits for
users, both approaches agreed that customers obtained bene-
fits depending on the amount of energy they contributed to the
whole energy volume, as they rely on a distributed approach.
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On the other hand, the proposed strategy demonstrated a
26% of PAR reduction and 56% of PAR reduction when ETS
penetrates all the housings. That is a significant achievement
in comparison to the work in the literature. A similar ap-
proach [79] considered variable generation costs; however,
it relies on complete information meaning that weather fore-
casting was perfect. Eventually, consistent with prior findings,
our approach showed comparable benefits for utilities and
customers without complete information (i.e., encompassing
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the stochasticity from wind power generation and user flexi-
bility). That shows the superiority of the proposed strategy in
comparison to others.

As the increased adoption of ETS led to reduced individ-
ual electricity bills, the proactive users putting substantial
effort than traditional ones should receive a higher incen-
tive. Consumers could receive such incentives as i) discount
rates, ii) rebates, or iii) reduction in electricity prices during
specific periods. Besides, a gradual increase in acceptance
of ETS units on the demand side does not necessarily pro-
vide a constant marginal reduction in the PAR nor constant
marginal increases in individual electricity bills. A particular
case of user 2 showed in Figs. 13 and 12 concords, where the
transition from 60% to 80% of ETS adoption resulted in a
loss of incentive of about 1.5%. That is consistent with real-
life cases [80], which clarifies some thoughts about dynamic
pricing work in a winter-peaking climate in a particular case
of Hydro-Quebec. Under the “rate flex™ tariffs (critical-peak
pricing), some users paid more than they would have at their
regular rate in winter conditions.

The results demonstrated that substantial reductions in PAR
could be achieved by adopting ETS on the demand side.
As ETS units on the demand side belong to customers with
specific thermal preferences and elasticity, savings for the
utility (regarding PAR reduction) may sometimes not fall sus-
tainably. Hence, in addition to a willingness to purchase an
ETS unit, exploiting the potential of the flexibility vector is
essential to shift the demand for lower pricing periods.

The proposed strategy demonstrated outstanding perfor-
mance in reaching equilibrium under uncertainties from users’
flexibility and wind power regardless of the nature of user
preferences (dynamic or constant set-points). Eventually, the
proposed strategy could be adapted for communities in-
tegrated with solar-PV and natural gas. However, it will
modify the resulting energy cost as multiple carriers appear
in the landscape. Consequently, customers’ decisions can
also be affected, as the price policy depends on aggregated
consumption.

Though techniques, such as robust optimization (RO) and
the information gap decision theory (IGDT), could be ex-
ploited to address similar problems; however, the former
is pertinent to exploit when probabilities can be tough to
model [81]. Additionally, it may not fit all demand-side
management strategies since it is based on the worst-case,
often leading to overconservative solutions. Similarly, IGDT,
a nonprobabilistic optimization technique, has shown a sig-
nificant ability to model uncertainties and reduce risks in
daily operations of smart grids [82], [83], [84]. Here, optimal
decisions are made without any assumptions for the prob-
ability of uncertainties. Nevertheless, the proposed strategy
utilizes historical data, enabling the characterization of the
probability distribution of essential variables over time. Fur-
thermore, the proposed approach is scalable as the strategy
performs distributed optimization with the proximal decom-
position method. This algorithm exhibits a linear complexity,
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meaning that its convergence time is proportional to the num-
ber of iterations needed to clear the market.

V. CONCLUSION

In this article, a practical approach utilizing the leader—
follower Stackelberg game and cosimulation methods to
explore the potential of ETS in the presence of wind power
generation to meet a microgrid’s electric supply needs is
presented. Notably, a day-ahead problem is formulated
whereby each active user on the demand side minimizes the
payoff function autonomously to cover their energy needs.
The proposed strategy relies on distributed optimization by
utilizing the proximal decomposition method, which permits
computing the best strategies for each user without violating
the user’s privacy. Stochastic programming is leveraged
to consider uncertainties from renewables and users’
preferences. Simulation studies were carried out over ten
RAs of a northern community in Quebec, possessing different
flexibility. Simulation results depict that partial adoption of
ETS units creates different benefit rates for users depending
on their degree of flexibility. This active participation of
users in the proposed strategy provided them with economic
savings. Besides, utilities significantly reduced the energy
costs in wind power generation. The simulation results also in-
dicated that the proposed strategy flattened the demand curve,
reducing the need for diesel fuel and expensive peaking power
plants. In the future, studies should consider prosumers and
local energy markets to empower coalitions among customers
rather than relying solely on utility negotiations. Furthermore,
a hardware implementation pilot would be interesting to cre-
ate a hybrid framework by controlling both simulated and real
houses.
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