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ABSTRACT Flexibility from demand-side resources is increasingly required in modern power systems to
maintain the dynamic balance between demand and supply. This flexibility comes from elastic users manag-
ing controllable loads. In this context, controlling Electric Space Heaters (ESHs) is of particular interest
because it can leverage building inner thermal storage capacity to shift consumption while maintaining
comfort conditions. Some economic Demand Response (DR) programs have considered exploiting EHSs
flexibility potentials in recent years. However, these programs still struggle to engage customers due to the
complexity of processing price signals for inexpert users. Therefore, it is necessary to develop automated
tools for helping users to operate their loads. Accordingly, this paper presents a recommender system based
on Gaussian processes to discover users’ valuations of thermal comfort and perform the predictive control
of their ESHs. The proposed method enables customers to participate in DR programs and impose their
preferences through straightforward queries instead of directly changing control parameters. Validation
results demonstrate that users maximize their utility by supplying noiseless and consistent data to the
recommender system. Additionally, the suggested approach achieves a higher acceptance rate than other
methods from the literature, such as persistency and support vector machines.

INDEX TERMS Heating systems, predictive control, preference learning, recommender system, utility

maximization.

NOMENCLATURE Fy Set of n historical values of F'.
Acronyms I,xn Identity matrix of n x n dimension.

ESH  Electric space heater. K Covariance function.

DR Demand response. P Energy consumption of the ESH at time 7.

GP Gaussian process. Pnax  Capacity of the ESH.

HMI  Human-machine interface. Papp: Consumption of household appliances at time £.
MAP Maximum a posteriori. P,  Total solar irradiation at time f.

UX User experience. s Consumption strategy.

WTP  Willingness to pay. T Market period of f time slots.

. Uy User’s utility at time .
Variables
.. . XM Set of average values of m and 6, for a market

Ct Electricity cost at time f. .

F Scale factor of the thermal comfort valuation. period.

Xy Set of n historical average values of  and 6,,;.
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L Form factor of the thermal comfort valuation at
time 7.
m Electricity price at time f.

oy Standard deviation of the components of Xg.

oM Standard deviation of the estimation of F.
Op Standard deviation of the noise in Fy.

[ House indoor temperature at time f.

0,y  User’s preferred temperature.

Oextr  Outdoor temperature at time 7.

[on Thermal comfort valuation at time f.

I. INTRODUCTION

The world is experiencing an energy and technology transition
driven by environmental, social, and economic concerns. One
of the goals of this transition is to decarbonize electric power
generation by integrating renewable resources. However, it
becomes challenging to keep the dynamic balance of the grid
counting with these resources due to their intermittent and
stochastic nature. Therefore, it is crucial to increase the flex-
ibility of power systems to absorb imbalances and maintain
reliable, resilient, and secure energy supply [1]. Flexibility
can come from different sources like Demand Response (DR)
programs, fast generation ramping, grid reconfigurations, and
energy storage systems [2].

The interest in flexibility from DR programs is encouraged
by the adoption of new smart technologies, especially in the
residential sector [3]. This sector is also a huge energy con-
sumer in many countries, and modifying its demand patterns
can significantly improve the system operation. Accordingly,
different DR programs have emerged to manage residential
sector loads such as electric vehicles, Electric Water Heaters,
Air-Conditioners, and Electric Space Heaters (ESHs) [4], [5].
Some of these programs have also incorporated energy stor-
age systems to shift the demand without compromising the
comfort [6]. In this regard, ESHs are advantageous since they
can use building inner thermal energy storage to provide flex-
ibility.

According to the International Energy Agency, ESHs can
become a major source of flexibility in many regions [7]. Such
opportunity has stimulated regulators to develop codes and
standards for electrifying space heaters and accelerating the
adoption of smart technologies. However, it is still necessary
to engage customers and show them the economic advan-
tages of providing flexibility with their ESHs. Some barriers
to having more participants in DR programs are the lack of
customers’ knowledge, the technology cost, and the response
fatigue [8]. In order to address these problems, it is suitable
to automate the customers’ decision process rather than take
direct control of their loads. However, the automation is not
simple since each customer has a different valuation of com-
fort and experiences various conditions.

A. RELATED WORKS
It is desirable to focus the DR programs on customers’
preferences to avoid imposing conditions and to make the
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control actions more welcomed. In this context, the con-
venience of recommender systems for engaging residential
customers into DR programs has been explored in the lit-
erature [18]. Indeed, recommendations can facilitate users’
interactions with automated systems and help discover better
consumption strategies. Previous findings on the application
of recommender systems for residential energy management
are listed in Fig. 1. Those applications highlight the challenge
of collecting data from inconsistent user inputs even when
they act rationally with stable and monotone preferences.
This situation is due to noisy drivers like impatience, com-
fort bias, privacy concerns, and misperceptions. Accordingly,
recommender systems have to build training datasets aiming
to improve both the accuracy and serendipity of the sugges-
tions [19].

For the specific case of ESHs, recommender systems have
been used to aggregate energy consumption and infer thermal
comfort perception [20]. A common technique for these rec-
ommenders is collaborative filtering that collects data from
several users before suggesting control actions. These fil-
ters can identify average preferences and cluster customers,
so they are suitable for office buildings or groups of resi-
dences [21]. However, these techniques are not aware of the
specific context of each customer. Beyond that, they do not
examine the effect of individual preferences on elastic con-
sumption, which is crucial for customizing DR programs.

Aside from recommender systems, other strategies to in-
clude users’ preferences into ESH control require querying
customers directly about specific parameters. For active learn-
ing strategies, the control algorithm queries the customer
when it faces unknown conditions and uses Bayesian updates
to discover absolute preferences [22]. Then, customers must
know their willingness to pay (WTP), parametrize their de-
mand curves, and define temperature comfort limits explicitly
for answering the queries and participating in DR programs.
These scenarios are not practical to promote DR programs
among inexpert customers. Moreover, direct queries are not
handy for automating ESHs control since they do not tend to
reduce annoyance [23].

There exist also approaches that infer occupancy instead
of preferences to consider human-in-the-loop in ESHs con-
trol [24]. These intrusive methods require several sensors to
detect occupancy and model customers’ behavior. Avoiding
user queries makes it hard for the modeling process since
finding all variables that affect user behavior is not easy, and
general assumptions result in low accuracy predictions. [25].
Furthermore, control of heating systems based on occupancy
measurements becomes reactive and unsuitable for planning
DR programs [26].

B. PAPER CONTRIBUTIONS

This paper presents a recommender system that suggests ad-
equate thermal comfort valuations for practical participation
in economic DR programs. The recommender can be seen
as a regressor in a supervised machine learning framework
that takes previous users’ inputs to predict their preferences
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FIGURE 1. Findings of previous applications of recommender systems in home energy management systems.

TABLE 1 Characteristics of the Human-in-The-Loop Control Schemes for Residential ESHs

Allow customers to

Suitable for inexpert

Helps reducing

Approach 3 o5 Non-intrusive Context-aware ;
impose decisions customers queries (annoyance)

Comfort assumption [28] v v v

Direct queries [29] v v v

Occupancy modelling [26] v v v
Collaborative filtering [20] v v v

Active learning [22] v v v v

Proposed approach v s v v v

in future conditions [27]. In the proposed method, users can
accept or adjust the suggestions before automated control
mechanisms take action. The human intervention is reduced
in the long run as the recommender system learns users’ pref-
erences. Furthermore, the recommender presents user-friendly
information, making it easy for the users to impose their pref-
erences when they disagree with the suggestions. In this way,
the recommender learns the specific context of a customer
without querying for complex data or using intrusive methods.
The features of the proposed approach are summarized in
Table 1.

The proposed recommender system is integrated into a
predictive control technique for the ESHs to participate in
economic DR programs. This technique is based on a ther-
mal dynamics model to verify the feasibility of consumption
strategies. Previous studies have proved the feasibility of em-
ploying discrete-time linear models to represent thermal load
dynamics, even in multi-zone buildings [30]. Considering the
matters discussed concerning the proposed recommender sys-
tem, the contributions of this paper can be summarized as
follows:

VOLUME 3, 2022

® The design of a recommender system that helps cus-
tomers complete the information of a predictive control
scheme for ESHs. The system does not impose con-
straints but adapts the control mechanism to the users’
context without intrusive methods. The recommenda-
tions are made over the weights of a payoff function,
which reflects thermal comfort valuations and users’
price-elasticity. The developed method builds on Gaus-
sian process assumptions to update user preferences
when they provide new information.

® A straightforward querying method based on the gen-
eralized optimal-choice axiom to retrieve preference
information from inexpert users. The proposed method
deploys user-friendly information for customers to com-
pare similar options when making decisions. Then, they
can directly modify the parameters of an ESH control
mechanism and participate in DR programs. At the same
time, they improve the recommender system training
with relevant feedback. In contrast with the active-
learning methods, users are not committed to providing
information for each new DR condition.
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C. PAPER ORGANIZATION

The rest of the paper is organized as follows: Section II
presents the model-based predictive control formulation and
the effects of user preferences on DR programs. Section III
describes the recommender system, developed for the specific
case of ESHs, and the characteristics of the queries to the
users. Section IV discusses the case study and the validation
method, followed by the concluding remarks in Section V.

1. MODEL-BASED PREDICTIVE CONTROL OF HEATING
SYSTEMS

Economic DR programs send price signals to customers for
relevant time windows [31]. Next, customers trust the infor-
mation they receive and formulate their consumption strategy
with certainty. This procedure allows for considering DR
in planning and dispatching problems. Here, the DR con-
figuration assumes no communication between residential
customers, so their plans are not coordinated. For each cus-
tomer, the consumption strategy s* attempts to maximize the
individual utility as the difference between customer benefit
(thermal comfort) and electricity cost, as presented in (1). The
decision variables correspond to the consumption at each time
slot.

T
s* = argmax ) (4 —c¢) (1)
PL.P,..Pr i
st.: 0<P <Ppy Vt @
6o = Or 3)

where for ¢ time slots, u; is the benefit perceived from P,
energy consumption, and ¢, is the energy cost. T is the market
period and P,y is the capacity of the ESH system. The final
temperature, &y must be equal to the initial condition, 8y to
ensure the problem has an optimal substructure in the long
run. The cost function, ¢; with the known price signal, m;
is presented in (4) as a linear function since it is assumed
there is no economy of scale for residential customers. The
decision variable, P; is continuous considering that the control
signal can be modulated appropriately for thermostatically
controlled heaters or heat pumps.

¢ =P “4)

It should be noted that the utility function, u, is concave be-
cause there are no monotone preferences in temperature [32].
This function is not directly related to consumption but the
actual temperature of the indoor air mass, 6. In fact, there is
an optimal temperature, 6,,; that maximizes users’ comfort
so that the utility is proportional to the deviation from that
reference, as presented in (5). The factor, ¢; encompasses the
user’s arc price-elasticity to weight the user’s utility against
the cost.

Uy = — 01 (Oref — 6;)* 5)

In order to relate #; to the consumption, it is necessary
to include the thermal dynamic model of the system. For a
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FIGURE 2. Agreed cost as a function of the thermal comfort valuation.

single-zone structure, the dynamic response is similar to an
RC circuit as described in the standard ISO 52016 [33]. In
discrete-time, the thermal model is reduced to the state-space
equation, (6), where 6, is the external temperature, P,
is the total solar irradiation, and F,p,, is the energy con-
sumption of other appliances in the house. The coefficients
a1, a2, B1, B2, B3 can be found with a least-squares method
and updated adaptively when new measurements are avail-
able. For multi-zone buildings it is necessary to include the
heat transfer coefficients between zones [34].

6, = oy gexf,r + o261 + ﬁlPirr,t . ﬁZPapp,f =+ ﬂ'_"Pr (6)

The constraint in (3) can be relaxed to preserve the tractabil-
ity of the problem, considering that the optimization problem
has the form of a linear quadratic regulator with this thermal
model. Next, to perform predictive control, it is necessary
to acquire the forecasts for 6, and P, from external in-
formation services. Likewise, it is required to either make
a forecast for Pypp ¢, or gather such information from other
smart controllers in the house if available. All the forecasted
variables used to develop the consumption strategy repre-
sent a source of error. However, assuming a well-designed
DR mechanism, it is reasonable to formulate a risk-neutral
consumption strategy relying on the expected values of the
forecasted variables. [35].

Finally, the factor ¢; of the utility function must be set
according to the customer preferences. In this case, the choice
of this factor is automated by the recommender system tak-
ing into account the historical user choices. However, in the
automation, it is crucial to consider that the control problem
formulation imposes limits on this factor where its increase or
decrease does not change the final cost, as shown in Fig. 2.
The cost is maximum when the indoor temperature is equal to
the reference 6, r, and it cannot be zero due to the constraint
in (3). The curve in Fig. 2 can be stretched or contracted
depending on the parameters of the thermal model.

I1l. RECOMMENDER SYSTEM
Given the configuration of the economic DR mechanisms, res-
idential customers cannot collect data from their peers. This
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also preserve their data privacy. Thus, they cannot implement
collaborative filtering techniques to obtain values for ¢; [36].
Consequently, the option is to implement a content-based rec-
ommender considering only the previous choices of the same
customer. The thermal comfort valuation ¢; is divided into a
scale factor F' and a form factor §;, as presented in (7), to
capture context-aware preferences and intraday changes. The
exponential transformation allows covering a wide range of
values in compact numbers.

o =e T (7

Previous studies on ranking problems have shown that
users’ preferences fit Mallow’s model because a customer
tends to choose the same values under the same querying
conditions [37]. Thus, that model is frequently used for distri-
butions of ranked preferences with different distance metrics
of the permutations. Following the same principle of Mallow’s
model (law of large numbers), the continuous parameter, F
is modeled by a normal distribution, and the recommender
system becomes a Gaussian Process (GP). The feasibility of
modeling thermal preferences through a GP has been explored
formerly in [38]. For §;, which changes during the day, it
is convenient to set a profile in an interval between (0,1] to
capture household occupancy information. This profile is also
obtained from previous customer choices within similar days.

This content-based approach can face difficulties in the
early stages when there is not enough data for training. Some
solutions to this cold-start problem have been proposed based
on Bayesian optimization and inverse reinforcement learn-
ing [39], [40]. In both cases, it is necessary to use a prior
distribution of a function or its parameters and update it when
new observations are available.

A. DATA DISAGGREGATION

The user interface should display simple information since the
customer only needs to adjust thermostat set-points for the
next market period while inspecting the electricity cost. The
basic components of the user interface are presented in Fig 3.
From the user’s inputs, it is possible to obtain the ¢, profile for
the utility function using the Karush-Kuhn-Tucker conditions.
Next, it is necessary to disaggregate the values of F' and the
profiles of ;. To do this for a particular day, F is considered as

VOLUME 3, 2022

the maximum value of customer choices in the product (#5;)
since &; € (0, 1].

For the next market period, the recommended value F is
obtained from a GP regression. Then, §; forf € [1,...,T]is
taken by weighting previous values of similar days. Various
measures of similarity have been explored in [41] considering
several features. Since §; captures occupancy information, it is
suitable to consider similarity according to the day of the week
and to give more weight to the adjacent days. For instance, the
occupancy of the next Friday can be closer to the one of the
last Friday, or the occupancy of a Saturday can be similar to
previous weekends.

B. GAUSSIAN PROCESS

From the machine learning perspective, the recommender sys-
tem is a regressor that maps user preferences under given
conditions. The general formulation of the GP regressor is
presented in [42]. The parameter F is influenced by features
like the electricity price and the external temperature. There-
fore, its estimation, F' can be defined by (8) below. Since this
parameter is considered constant during the market period, i.e.
one day, it is suitable to use the daily average values &,,; and
7 as feature variables in the regression.

F :f(ﬁsgexf):f(x) (8)

In order to simplify the notation of the GP, the set of n days
historical features is outlined by Xy = [x1, ..., x,]7 € R"*2
and the next market-period features are xp € R1*2_ Likewise,
Fy =[F,..., F,] € R" stands for corresponding historical
observations of F obtained from previous user’s choices. The
GP is presented in (9),

Fyl KXy, Xp) + 0, pn K(Xer, Xr)
[F] N (”[ K (uw, Xir) K(xM,xM))) ®

where K is the covariance function that maps the feature
vectors, x, into Gram matrices, and o, represents the noise of
the observations. Since preferences are expected to be station-
ary, there is no need for a tracking system and the prior mean
is set to zero. This canonical notation is favourable for the GP
because the conditional distributions are well-known in the lit-
erature [42]. In this case, the interest is in the distribution of F
given Fy, Xy, and xpy, so the first and second-order moments
are presented in (10) and (11). In the GP, the expected value,
E[F|xpm, Xz, Fy] is also the maximum a posteriori (MAP) es-
timator of F, which is both an adequate solution for regression
problems and a good recommendation in some situations as
presented later in this document.

=i
E [F |xu, Xur, Ful = KCovt, X)) [K(Xr, X)) + 02 Lusen ]~ Fu
(10)

-1
oy = K(xu, xm) — K Gor, Xr) [K(Xu,Xn) + an]lnxn]
x K(Xy, xm) (11)

In practice, the inverse of [K(Xy, Xy) + crf][nxﬂ] is com-
puted with the Cholesky decomposition since the covariance

a3
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matrices are Hermitian positive-definite. For this case, it is
convenient to consider the radial basis function as the covari-
ance function, which has two parameters oy and L, presented
in (12). This function is helpful because user preferences are
expected to be stationary, discarding seasonal effects, vacan-
cies, and other long-run behavior changes [43]. Thus, the
covariance function is stationary considering only the simi-
larity in the features space.

1 Tr—1
k(x,x’) _ Jlllfe—z(x—x’) L' (x—x")

(12)

where L € R>?is a diagonal matrix in which large entries
imply a low correlation between the feature and the covari-
ance. d,f, corresponds to the expected value of the squared
norm of Xy elements. Then, the required Gram matrices are

composed as follows:

IVk(x],xl)---k(xlsxn)-I

K(Xy,Xn) = : . : (13)
k(xﬂ'sxl) . k(xﬂs xﬂ)

K(xp, Xp) = [k(xpg, X1)s - - -5 kK(Xpg, X)) (14)

K (xp, xp) = [k(xpr, X)) (15)

the set of parameters, L can be tuned by maximizing the
likelihood of historical data using quasi-Newton methods. The
likelihood for the formulated GP is presented in (16),

1 -1
log(P(Fit|Xu)) = — 3Fy [K(Xu, Xi) + onllnxn] " Fir
1
= E log (K(XHs Xu)+ Ufllnxn)

2 Jog(2 16
—Eog(r) (16)

where n is the number of samples in Fy. Subsequently, it
is possible to estimate the MAP estimator of F for the next
market period. At this point, it is necessary to analyze when
the MAP expresses an accurate recommendation. First, utility
functions are considered ordinal and users are assumed to be
rational, which means they have strict preferences for cost
savings [44]. Besides, customers can have a range of accept-
able temperatures for which the perceived utility is the same.
This means, in brief, a consumption strategy s; is strictly pre-
ferred over s (51 > s2) if it has a lower cost and manages the
temperature setpoints inside an acceptable margin. However,
this does not imply that the user knows what the optimal strat-
egy is. In fact, users can merely accept consumption strategies
cheaper than their WTP without searching for the optimal.
Therefore, recommending the MAP, obtained from historical
data, will lead to an acceptable value of £ but not to the best.

It is convenient to suggest the MAP when the GP becomes
stationary, assuming stationary preferences of rational users.
Conversely, it is favorable to suggest a higher value than the
MAP (lower-cost strategy) while the GP has not reached a
steady state. For example, the MAP plus one standard de-
viation. In this way, the recommender system improves the
serendipity by showing unknown alternatives to the user. The

84

Algorithm 1: Recommender Algorithm.
input : Previous accepted parameters (F'd,) with the
corresponding features (f.o¢, 7), future prices
and weather conditions for the next market
period
output: Parameters for the next market period (ﬁ‘é})
begin
Divide the historical user’s accepted parameters
into F" and &; € (0,1] ;
Compute the covariance matrix with the available
data using Eq. 12;
Compute E[F|zpr, X5, Fy] using Eq. 10;
Check weak-sense stationarity regarding the
previous statistical moments considering an
adequate threshold,
if The process is in steady state then
| P =E[Flzar, Xn, Fal;
else
| F= ]E[F|$M,XH,FH] + oG
Set 5; according to past similar days

end

statistical moments of the GP are compared before and after
an update through a pre-defined threshold to check stationar-
ity. The recommender system is summarized in Algorithm 1.

The process of moving from the MAP can be seen as an
exploration that is needed to find the optimal strategy from
stochastic feedback [39]. When the process converges, the
recommender system can stop the exploration and start the
exploitation of the acquired knowledge about user’s prefer-
ences, i.e. suggesting only the MAP. Accordingly, it is suitable
to move with the standard deviation, which is big when the
agent has few data points and gets smaller quickly when the
user gives consistent responses.

A drawback of the formulated GP is its application to online
learning because the covariance computation and the matrix
inversion are impractical for large datasets. The GP regressor
has O(n?) memory cost and O(n3) computational complexity,
where n is the number of samples [45]. This issue can be dealt
with a recursive estimation, similar to the Kalman filter, by
considering the previous posterior as the prior and using a
linear model, which relates states and observations [46]. In
this way, the recommender system can avoid storing extensive
historical data and keep only information from the last market
period.

C. CUSTOMER QUERIES

Considering that querying can create annoyance to the user,
it is not suitable to ask for approval of a suggested power
consumption plan at each time. Actually, when the customer
does not make corrections, it is assumed that it has ac-
cepted the suggestion, and the related data is stored to train
the recommender system. The customer interacts through a
Human-Machine Interface (HMI) that displays the suggested
DR agreement for the next market period (temperature set-
points and cost) and allows changing the set-points. Once the
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FIGURE 5. Flow chart of the user interactions.

user changes a parameter, it is necessary to recalculate the
cost. This interaction is sketched in Fig. 4.

As a result, at the start of each market period, the system
recommends a combination of temperature and cost to the
customer to either accept (do nothing) or refuse (adjust set-
points). At the end, the agreed parameters become data to train
the recommender system in both cases. This procedure is pre-
sented in Fig. 5. It is worth mentioning that the customer can
also modify the reference temperature, 6,.r. However, such
modification is not considered in the current market period but
in the next one. Consequently, a single parameter is queried
and the customer can compare similar options when making
decisions.

The HMI does not present penalties for deviation from the
DR agreement in the proposed approach because the system
is performing a predictive control. The ultimate goal of the
HMI is to present user-friendly information and allow users
to set their preferences. Thus, it is convenient to show only
the temperature set-points and the total cost, and let the user
modify just one of those. For more expert users, the HMI can
include penalties information, if it influences their decisions.

VOLUME 3, 2022
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IV. EXPERIMENTAL SETUP AND VALIDATION

Since a customer becomes committed to the DR mecha-
nism, the accuracy of suggestions is crucial in the proposed
mechanism. Therefore, the metrics for the recommender sys-
tem must consider both the decision support and the deviation
of the suggestions. In this case, we use the user’s accep-
tance rate for the decision support and the difference from
the final agreement in kWh as the accuracy metric. We per-
form an offline validation simulating the customer decision
process to validate the recommender system. Besides, we
compare the proposed approach with other two recommender
techniques frequently used in the literature, under the same
conditions:

® A persistency method that recommends user’s accepted

values for the last market period [47]. Considering sta-
tionarity in the preferences, a customer can choose the
same options for consecutive days when external fea-
tures (v and 6,,;) have slight changes.

® A Support Vector Regressor (SVR) that has the same ker-

nel (covariance function) as the GP [48]. For this case,
the acceptable margin from the hyperplane is set to 0.1,
the regularization parameter for deviations is considered
1, and the training stop criteria is a tolerance of 0.001.

The variables that influence customer behavior are depicted
in the decision network in Fig. 6. The reference tempera-
ture, 6.5, the temperature setpoints, 6;, the WTP, and the
impatience function are decision nodes for the user, while
the suggestion and the occupancy profile are chance nodes.
The impatience function is merely a step function. Thus, the
user stops interacting with the HMI after a defined number
of queries. Formally, the queries reduce customers’ comfort,
and they stop interacting when their utility starts decreasing at
each interaction [38]. Highly involved users adjust setpoints
until they find an appropriate agreement, giving less noisy data
to the recommender system. It is worth mentioning that the
offline validation presented here does not allow for measuring
the user experience (UX) with the HML.

The decision network is compiled for the simulated cus-
tomer in Algorithm 2. The decision process starts with
a predefined WTP and the range of acceptable tempera-
tures. The reference temperature is fixed beforehand. The
HMI specifies the step-size in which ¢, can increase or
decrease.

As a result, more patient customers with lower WTPs make
more changes in the HMI while very impatient ones with
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Algorithm 2: User Decision Process.
input : Minimum acceptable temperatures, WTP,
0rcr, Maximum queries
output: F§; profile
begin
Check the suggested agreement: temperature
setpoints and cost ;
while the queries are tolerable and the agreement
is not acceptable do
if the cost is higher than the WTP then
| increase all ', Ve [l,..,T]
if the setpoints are lower than the acceptable
temperatures then
decrease F'§; for all unacceptable

temperatures 0,

end
end

higher WTPs accept any suggested agreement at first. Due
to the interest in the acceptance rate, a sensibility analysis is
carried out with different values of WTP.

A. DATA DESCRIPTION

The weather data for 6,y and P, corresponds to 90 winter
days (20th December to 20th March, 2018) in the city of
Trois-Rivieres, Quebec, Canada. The P,,, data is related to a
real house in the same location. This data has been used to find
the parameters of the thermal model by ordinary least-squares
regression. The resulting values are presented in (17) below.
Bexs and 6, P,pp and P, and P, are expressed in Celsius
degrees, kWh, and kW /m?, respectively.

6, ~ 0.083166,,; ; + 0.991686,_; + 0.00016P,,,,
17
+0.07142P,,p; + 0.11064P;

The value of ¢; can vary from —10 to 10 at steps of 0.2.
Finally, the market period, T is 24 hours and the signals are
discretized at 5-minute intervals. The price signal corresponds
to the spot market in Ontario, Canada during the same days in
2018 [49]. This signal is presented in Fig. 7 for the simulation
period. The average price is 0.0532 CAD/kWh. The range of
acceptable temperatures, used to simulate customer’s behav-
ior, is the same every day, as presented in Fig. 8. The threshold
to check stationarity in the GP is 0.1 in the mean and 0.01 in
the variance. The recommendation for the first day is zero for
all recommenders, and thus, the prior for the GP is A/(0, 1).

B. RESULTS AND DISCUSSION

Given the price signal, performing a sensitivity analysis on
WTP from 1 to 5 CAD per day is reasonable. The maximum
number of queries is set at 20 to scan a wide range of ¢,. The
acceptance rate results during the 90 days for all combinations
are summarized in Table 2. he proposed GP recommender
leads to a higher acceptance rate in most cases, especially
when the user’s WTP is low thanks to the exploration process
that constantly looks for a lower cost. A user with a WTP
of 5 CAD/day accepts all the suggestions within the range
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of comfortable temperatures since the cost never exceeds that
value. This case is useful to validate that the recommendations
are fitting and do not diverge from training data.

A method with a higher acceptance rate does not imply
that it has the most accurate suggestions, as customers ac-
cept any consumption strategy that meets their temperature
and cost conditions. Thus, it is also relevant to consider the
recommenders’ deviations from the final DR agreement of
the customer. The energy deviations are presented in Fig 9
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TABLE 2 Acceptance Rate of the Recommender Systems

WTP Maximum

[CAD/day] queries GP SVR Persistency

1 6/90 0/90 0/90

1 5 46/90 0/90 0/90
10 51/90 0/90 0/90

20 54/90 12/90 1/90

1 7790 0790 1790

) 5 46/90 0/90 2/90
10 51/90 2/90 2/90

20 54/90 15/90 5/90

1 47790 43/90 30/90

3 5 60/90 44/90 46/90
10 64/90 46/90 47/90

20 67/90 46/90 47/90

1 83790 85790 6590

4 5 84/90 85/90 85/90
10 84/90 85/90 85/90

20 88/90 86/90 86/90

1 90/90 90/90 90/90

5 5 90/90 90/90 90/90
10 90/90 90/90 90/90

20 90/90 90/90 90/90

in absolute values. It is not appropriate to separate positive
and negative deviations since we are not considering penal-
ties on the DR configuration. The SVR method has a lower
variation for impatient customers because it does not make
exploration. When impatience ceases to be a relevant noisy
driver, the serendipity given by the GP method is beneficial to
find better consumption strategies. In all cases, the GP-based
recommender has a lower median deviation.

Patient customers give more consistent feedback the rec-
ommenders offer according to the WTPs. When it is not
feasible to have a consumption strategy cheaper than WTP,
users reject any suggestion and start changing temperatures. In
such situations, patient customers will lose time trying to find
other alternatives. An experienced user with some idea of the
feasibility of the consumption strategies may find it relevant to
have boundaries information on the HMI. For instance, indi-
cating the high prices period can reduce customer exploration
at that time.

Regarding the deviation in temperature, we present the
number of hours where the suggestion was outside the com-
fortable range in Fig. 10. For impatient customers, the GP-
based method suggest more uncomfortable temperatures be-
cause it is trying to reduce the cost. When the limit of queries
increases, the temperature deviation of all recommenders de-
creases, and the GP becomes similar to the SVR method. In
that scenario. the persistency method shows more tempera-
tures outside the comfort limits, even for high WTP.

The GP recommender seems to be a good option for most
cases. However, it requires a larger hardware infrastructure
than other methods like a persistency recommender that can
be implemented in a simple data buffer. Recommending the
last values of both F and §; can suit impatient customers since
their noisy inputs are inadequate for training other algorithms.
Conversely, this procedure results in significant deviations for

VOLUME 3, 2022

Max queries 1 Max queries 5 Max queries 10 Max queries 20

_ansntl

= =

1 CAD

Deviation [kWh]

WTP

-2 CAD

WTP

Deviation [kWh]
=

-
=

Eo=

= =]

=

-3 CAD

=

WTP=
- Deﬂatlon [kWh]
-
e
[—
-
.
| ey
-
-
.
[

6_
g|£4—
.
=E-FX : ;
-] : : :
0'7'%;—.—7.;—.—7%—:.—.—7
S & pE & pE & 28 &
S §F & 05 &

FIGURE 9. Daily consumption deviation between the suggested strategy
and the DR agreement.

patient users. Hence, it is advisable to acquire detailed in-
formation from customers and install a recommender system
depending on their specific context.

C. LIMITATIONS AND OPPORTUNITIES

The proposed approach allows incorporating a prior distri-
bution to improve the performance of the recommendations.
If there exists a characterization of residential demand price-
elasticity in a particular location, it is possible to pre-configure
the ¢, profile for that place. Besides, such information can be
used to weight F against §; instead of using the (0,1] range.
Collecting data from a group of users can help fit better the
preferences for individuals, as it happens in platforms like
Youtube [50].

One of the challenges for the recommenders is to deal with
Big Data. When the agent obtains more information from the
user, it is necessary to implement the recursive algorithms.
Another alternative way to deal with this issue is to implement
adaptive learning techniques and filter the training samples.
However, this also requires patient customers who give less
noisy data to train because their inconsistent preferences can
be treated as outliers.

The offline validation setup used here is suitable to analyze
the recommender system in controlled scenarios. In future
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FIGURE 10. Total duration of suggested temperatures outside the comfort
range in the 90-day simulation.

analysis, an online validation should be performed with clus-
ters of actual customers and A/B testing methods to check the
influence of external information and the HMI limitations. In
that case, the thermal model must be adapted to each customer
situation.

V. CONCLUSION

Space heater systems have the potential for becoming the
principal source of flexibility from the residential sector in
cold-weather countries like Canada. Demand response pro-
grams can exploit this flexibility to build a more sustainable
grid. However, residential customers lack adequate exper-
tise in controlling these devices according to market signals.
Therefore, it is necessary to provide automated tools that
engage users. These tools require knowledge about users’
preferences to reach convenient agreements. Accordingly, this
paper presents a recommender system that allows automated
systems to suggest an appropriate valuation of thermal com-
fort and make an agreement in the context of an economic
demand response program. The proposed method is based on
a Gaussian Process that explores cheaper options to increase
serendipity in the suggestions. This process is trained with the
customer’s previous choices. The information required from
the customer is reduced to a single scale parameter in each
transaction to provide simple queries and easily comparable

a8

options. In fact, in the presented approach, users need to
supply more information only when they refuse the recom-
mendation, not during all the training as in active learning
methods. The offline validation of the recommender system
shows that patient customers, who express more consistent
preferences, give less noisy data and have a higher accep-
tance rate. From this perspective, this work contributes to
analyzing recommender systems requirements according to
customers’ specific contexts. Future work focuses on integrat-
ing the proposed recommender system into complete home
energy management systems to fully automate residential de-
mand response.
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