
Received: 28 December 2021 Revised: 30 May 2022 Accepted: 2 June 2022 IET Image Processing

DOI: 10.1049/ipr2.12562

ORIGINAL RESEARCH

Attention transfer from human to neural networks for road object

detection in winter

Jonathan Boisclair Sousso Kelouwani Follivi Kloutse Ayevide Ali Amamou

Muhammad Zeshan Alam Kodjo Agbossou

Hydrogen Research Institute, Université du Québec
á Trois-Riviéres, Trois-Riviéres, 3351 des Forges,
Trois-Riviéres, QC G9A 5H7, Canada

Correspondence

Jonathan Boisclair, Hydrogen Research Institute,
Université du Québec á Trois-Riviéres,
Trois-Riviéres, 3351 des Forges, Trois-Riviéres, QC
G9A 5H7, Canada.
Email: jonathan.boisclair@uqtr.ca

Funding information

Canada Research Chair Program; Natural Sciences
and Engineering Research Council of Canada

Abstract

As an essential feature of autonomous road vehicles, obstacle detection must be executed
on a real-time onboard platform with high accuracy. Cameras are still the most commonly
used sensors in autonomous driving. Most detections using cameras are based on convo-
lutional neural networks. In this regard, a recent teacher–student approach, called transfer
learning, has been used to improve the neural network training process. This approach has
only been used with a neural network acting as a teacher to the best of our knowledge.
This paper proposes a novel way of improving training data based on attention transfer
by getting the attention map from a human. The proposed method allows the dataset size
reduction by 50%, which leads to up to a 60% decline in the training time. The experimen-
tal results indicate that the proposed method can enhance the F1-score of the network by
up to 10% in winter conditions.

1 INTRODUCTION

In order to achieve a level 4 or 5 of the international standard
J3016 [1], cars must be able to detect road elements in all pos-
sible conditions, especially harsh winter conditions. More than
200 million people are living in countries1 where snow is present
for more than 60 days per year. The most commonly used sen-
sor for road elements detection is the monocular camera [3, 4].
However, aerosols such as snow and rain scatter light through
a wide range of angles and disrupt the vision making it difficult
for object detections [5]. Such scattering may degrade the detec-
tion of outdoor vision systems. [6] Moreover, slim objects such
as pedestrians become hard to detect as they become heavily
altered and occluded with such aerosols [7]. Current car wipers
leave raindrops and snow on the windshield, obstructing the
drivers’ visions and cameras inside the vehicle. As a result, the
visibility of road objects such as traffic signs, vehicle, and pedes-
trians are gravely reduced [8]. R. Sato et al. [8] demonstrate an
example of image alteration done by rain in [8, Fig. 2]. This
statement can also be applied to snow, which deposits on the

1 Russia (144.4), Canada (37.6), Sweden (10.3), Finland (5.5), Norway (5.3) and every
country above the 43rd meridian [2].
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windshield. Ershadi et al. [9] have demonstrated that traditional
approaches’ accuracy decreases from 95% [9, Table 5] to 75%
[9, Table 7] in snowy conditions. It supports the dramatic impact
of winter on object detection. Ziadia et al. [10] also observed
that winter conditions reduce pedestrian and distant vehicles’
detection rate. Chebrolu et al. [11] have mentioned that most
models fail to predict pedestrians in a dark environment. Win-
ter increases dark environments’ durations. As camera-based
environment detection mainly uses neural networks (NNs) for
detecting the environment around autonomous vehicles, it is
highly affected by such conditions. As NNs are based on cam-
era systems, adverse conditions heavily affect their detections.
However, a high detection rate is required for path planning
[12, 13] and maneuvers [14] of these vehicles. Improving the
recognition in adverse conditions is possible by training the NN
with specialized deformation, like snow or rain [15]. However,
each possible occlusion of the image must be learned to improve
the network. Learning all these variations could lower the F1-
score (17) [16, 17] and also results in fewer detections in stable
conditions or a slower inference time for more extensive net-
works. For an occlusion like snow, an infinite number of image
deformations exist depending on the location and shape of the
snowflakes. Since each possible adjustment must be learned, the
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infinite number places the learner in an impossible position.
While training a network in normal conditions, where the vis-
ibility is not obstructed by snow or ice, the large number of
datasets [18–32] available for standard cameras allow the train-
ing for broad recognition. Per contra, the preparation of such
datasets is itself a big challenge because it requires the collection
of the images and their time-consuming labelling [33]. The easi-
est way to upgrade detection accuracy is to increase the training
set size. However, increasing the size of the dataset results in
an augmentation of training time, which is not suitable for all
applications. For instance, long-time training is not viable for
autonomous cars in which the situation may constantly change
by confronting new cars of different shapes and pedestrians
with new clothes. When working with a very specific recog-
nition set, the datasets that can be used become very scarce.
Thus, increasing the amount of data in the training set becomes
expensive. The last way of improving the training data is to use
artificial data. Artificial data can be a solution to create data from
simulations. However, utilizing artificial data may cause a drop
in quality as the transformation may not suit the current prob-
lem. Hence, the size of the datasets must be kept small enough
to be trained in a reasonable time.
In order to reduce the size of a dataset, researchers around the

globe have worked on transfer learning [34–36]. The most pop-
ular transfer learning technique is the use of a sizeable generic
dataset as a pre-training, then a small application-specific dataset
for the top-up training [35]. The pre-training of the network
using the data outside the recognition set can increase the clas-
sification performance [34] by inducing specific patterns shared
with the detection set. These patterns, such as corners, are com-
mon to many real-life objects. This technique has the drawback
of high computational time caused by the vast training size.
Moreover, shapes with rare occurrences will have lower detec-
tion accuracy. Xi et al. [35] state that selecting an appropriate
subset of the dataset for pre-training could produce a high-
performance trained network in the same way as a large amount
would do.
Transfer learning has also evolved into a second branch. The

previously reserved task-to-task transfer using pre-training has
been extended for a network-to-network transfer. Network-to-
network transfer can be done via automatic image annotation
[37–40] or weight transfer such as pre-training and sharing a
backbone. Srinivas et al. [41] adapted this concept for pedes-
trian detection, allowing the research community to access the
teacher–student networks for autonomous driving. In short, by
using a high discriminative network as a teacher to a high capac-
ity one, it is possible to obtain a high-capacity network. Seeing
that the datasets can be small again, the problem shifts to recog-
nition accuracy. This accuracy can be enhanced by changing
the training method, dataset quality, and dataset size. Regarding
the improvement of recognition accuracy in harsh conditions,
the choice of the source network is vital for the transfer. A
particular approach, named human-attention transfer from the
transfer learning family, can be used with fewer drawbacks.
The human-attention transfer is still used to teach amore spe-

cific and smaller network [42]. There have been many papers

that consider attention in NNs [43–46]. Howbeit, these papers
approach attention as a detection problem. Attention during
detection cannot solve severe condition limitations as it is not
ground truth. During detection, attention acts as a heuristic.
It is preceded by Grad-CAM++ [47] which states that with a
slight decrease in detection accuracy, it is possible to hide parts
that are not highly activated. In Grad-CAM++, the process is
applied to the validation part of the network where no training
is involved. Unlike Grad-Cam++, which uses a neural net-
work to generate attention maps, human-attention transfer acts
on the training step instead of understanding the network like
Grad-CAM++. As proposed by Xiao et al. [48], attention can
be described in two levels, object-level attention and part-level
attention. Object-level attention is a high-level consideration
also called saliency in the literature. These methods are based on
detecting which part of the image is essential. Part-level atten-
tion methods are based on the decomposition of the object into
smaller ones. As such, it is considered highly supervised. Each
part will be highly activated on the map.
Human-attention transfer works at a previously undefined

third level. That level is located between the object level
and the part level. It contains feature-level saliency with only
object-level annotation. Human-attention is located on that
layer and brings relevant parts in the decision process to
higher weight without identifying named bounding boxes for
those2.
In the light of the discussed papers, the main contribu-

tion of this paper is to put forward a new annotation process
for transferring the knowledge from humans to a NN. This
new transfer format is easily obtained from humans and dra-
matically helps the computer learn the appropriate pattern.
That novel annotation format improves each picture’s value in
the dataset, allowing for smaller datasets. This effective trans-
ferring increases the accuracy or decreases the training time
even under challenging conditions, like a winter storm. This
increase in accuracy facilitates autonomous car driving under
challenging winters.
The rest of the paper is organized as follows. Section 2 elab-

orates on the proposed approach. Section 3 demonstrates the
results, and finally, the conclusion is provided in Section 4.

2 PROPOSED ATTENTION PROCESS

A tool named Digital Representation of Attention Labeler
(DRAL) is proposed in this work for handling attention. A train-
ing method that best utilizes the new pre-processed data set will
be presented afterward.

2.1 An overview of the novel approach

Typically, object detection is performed by drawing bounding
boxes around objects of different classes to guide the network

2 Video example available at https://youtu.be/rAnMiux725Y
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according to the object shape. This approach is complemented
by an attention pre-step, similar to semantic labelling. Seman-
tic labelling tags every pixel in the image with the correct
category instead of bounding boxes that guide the network
according to the object shape. Instead of the class, attention
adds a weight of importance to each pixel. It guides the network
toward learning which pixels in the object are the most essen-
tial. Although semantic attention is achievable, the proposed
method uses attention with bounding boxes. The proposed
approach is a teacher and student system based on transfer
learning. Typical teacher and student processes use one or more
NNs as teachers. In this case, the teacher will be an ensemble
of humans which will be named masters further in this article.
Multi-source training is needed since there are multiple mas-

ters. By collecting the attention maps from several humans, it
should be possible to extract a common attention map by aver-
aging [44]. Once the maps are created, the following steps are
equivalent to the traditional method, as seen in Figure 1. The
proposed method adds attention to the labelling step, which
comes first. This approach is based on humans as attentionmust
be extracted from a human line of sight. The learned pattern
must be the same since the network mimics the brain. Using
humans prevents adding training data dynamically in the trans-
fer, as the process is not automated. In the case of having a large
enough sample of images, dynamically adding images can be
neglected.
The usage of attention is highly suitable for winter, in which

many occlusions are not part of the detected object. Attention
could hide these pixels by assigning them a weight close to zero.
Here, attention is coming from humans. They tend to stop for
a short period on important regions of an object while skip-
ping the less essential ones. During winter, when there are many
occlusions, humans tend to look for the remaining parts of the
object for longer, creating a subset of essential elements. Atten-
tion is extracted from an image instead of a video to create the
attention-images from humans. Image-based attention finds the
essential parts of the images.
Hiding some unnecessary details, such as a license plate,

advertisements on a bus, or snow covering windows during
wintertime, reduces the number of counterexamples to show
the network to prevent learning unnecessary information. As
opposed to video-based methods, image-based methods do
not use Long Short Term Memory (LSTM) networks and
have multiple important points. Video-based methods gener-
ally extract the most important point of the image, as seen in
BDD-Attention [31].

2.2 Novel way of creating the attention
maps

2.2.1 Definition of an attention value

By tracking a human line of sight, it is possible to learn what
parts of the image are the most important. However, analyzing
the human gaze through a camera is challenging since it depends
on the disposition of the devices [49]. By using a camera, the

FIGURE 1 Flowchart of the training process

gaze can only be approximated with a high margin of errors
[49]. In this regard, a computer interface that simulates the gaze
is used to create the attentionmap. In human vision, neurons are
the most sensitive units, located in a small region in the centre
of the view. This region appears to be circular and is called fovea
[50]. There is no standard formula to describe the density of the
fovea. Hence, this paper proposes an empirical equation, based
on a sigmoid, for this purpose as follows:
The inverse of a sigmoid function on the absolute value of

the distance follows the density of the cones in the human
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FIGURE 2 Visual representation of the attention factor from equation 1

eye.

𝛼Δs =

⎧⎪⎨⎪⎩
2 ×

(
1 −

1.5(8×Δs−1)

1.5(8×Δs−1) + 1

)
if Δs < 1

0 if Δs ≥ 1
, (1)

where 𝛼Δs represents the distance factor, Δs represents the nor-
malized distance from the centre of the circle, 1.5(8×Δs−1) is a
sigmoid argument with experimental values, and one represents
the outer edge of that circle as follows:

Δs =

√
(Δx )2 + (Δy)2

r
, (2)

where Δx represents the normalized horizontal difference on a
scale of minus one to one, Δy denotes the normalized vertical
difference of location, and r is the radius of vision (a constant
defined by the size of the vision hole). It should be noted that r
is represented as 100px, but can be any values small enough to
display only a part of the image. The resulting factor can be pre-
sented in the form of a map, as shown in Figure 2. The choice of
100px was made for a 1920×1080 screen for the smallest object
detectable to be slightly smaller than the vision hole. This size
allows for proper labelling of the attention while still being fast
enough for the master.

2.2.2 Attention map

This method improves the training set to transfer knowledge
from human to machine. First, all inputs are displayed to the
masters under a specially developed software (DRAL). The entire
image is covered with a black mask, and the human user scans
the image with the computer cursor. A small circle (vision hole)
is shown to the user, and it follows the cursor. In order to add
a context view, a thumbnail of the picture is also shown on the
right side. Its size is not large enough to view details. The weight
of the pixels overlapping the vision hole in the attention map is

FIGURE 3 Example of the vision hole

based on the time cursor spent on this location. A short video
has been prepared to demonstrate the attention map generation
process effectively3. Contrary to camera-based methods, using
the cursor eliminates the imprecision on the target [49] since
only a tiny portion of the image is displayed (Figure 3). The
whole image is scanned by the user using a pattern of his choice.
As humans tend to look at essential objects for longer, the vision
hole will stay at that location for a more significant duration.
The software records the image’s part in that circle and shows

its duration. It then creates an attention map of where the per-
son was looking according to the distance factor (𝛼Δs). If the
same picture is presented to multiple masters, an average of the
attention map is calculated for even further improvement [44].
An example of the output of the process is available in Figure 4.
In this figure, the effects of snow are demonstrated. Partially
melted snow is present in the middle of the image, making
frontal vision blurry and distorted. Distant objects are hidden
under a white cloak similar to fog. Cars are partially covered
in snow, and all road markings are hidden. Only the objects
are considered in this figure since the current approach was
meant for this. Road boundaries are not in the attention map
extracted considering object detection. They use a different kind
of network and would require a separate training process and
separate dataset for training. It is viable to use attention on road
boundaries; however, attention is focused on object detection.
Each point (x, y) in the attention image has a time (T ) in sec-
onds defined by a weighted sum obtained from the following
equation:

Tx,y =

⎧⎪⎨⎪⎩
∑
k

Δtk × 𝛼Δs (x, y,Cx,k,Cy,k ) if < Amax

Amax else
, (3)

where Tx,y is the time of attention in seconds for a point located
at x, y, k is a movement of the cursor, Δtk is the amount of
time the cursor stays there for the movement k multiplied by
𝛼Δs , Cx,k and Cy,k are the centres of the vision hole on both
horizontal and vertical axes, and Amax is a constant defined as
the maximum of attention at a single location. For the learning

3 https://youtu.be/rAnMiux725Y
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FIGURE 4 Application of attention transfer from human; images from
the proposed dataset

purpose, it was supposed that Amax = 5 sec. Placing the max-
imum prevents the annotated parts from disappearing on the
normalization filter in case the master gazes at a fixed point for a
long time.
Once the attention map is created, it is normalized between

zero and one to serve as the alpha band of the input:

Nx,y =
Tx,y

max T
, (4)

where Nx,y is the normalized point at location x, y, and T rep-
resents the ensemble of all Tx,y. Normalization acts as a way of
letting each of the 16 masters be equally useful while averaging.
The input image is then overlaid on a gray inactivated back-
ground of 0.5. Images are fed to the training set with the original
annotations of bounding boxes. In this way, the NN can only
learn the contents that should be learned instead of learning
all the content in the bounding box, including the background
and occlusions. During winter, parts like license plates and ici-

cles will have an attention weight close to zero, transforming the
output as inactivated (0.5).
Each channel c in the image, such as red , blue, green, is fed into

the following weighted sum:

Fx,y,c = Nx,y × Ox,y,c + 0.5 × (1 −Nx,y ), (5)

where O represents the original image, N is the normalized
attention map, F is the final improved image using attention,
and x and y represent the location of a single point. This equa-
tion allows the image to be used in any NN without editing
the network itself. This weighted sum requires a single weight
between zero and one.

2.2.3 Bounding boxes

The second part of the transfer is refining the bounding boxes.
By using the already labelled data, such as the Berkeley Deep
Drive (BDD), it is possible to improve the boxes with atten-
tion transfer. It allows the conversion of poor datasets into
high-quality ones. X-Means [51] is used to cluster the atten-
tion map into object proposals. X-Means has been utilized as
it is simple and, unlike the NN-based clustering methods, does
not require any training. On the other hand, X-Means is slower
than other options, which is not a problem for this work. While
using X-Means as the region proposal method, it is possible
to separate the attention image into multiple clusters. Those
distance-based and attention-based clusters must be filtered to
become usable semantically. The first filter will separate any
clusters containing multiple non-touching regions. The second
filter will merge smaller clusters embedded inside the larger
ones. X-Means needs vectors as input. The attention map is
converted into three-dimensional vectors whereX ,Y represent
its position in the image, and Z represents the normalized atten-
tion ranging from 0 to 1. X-Means expects different parameters
to be equal in range. A weighted function is required to recreate
that assumption by normalization. The distance function used
for these points is the weighted Minkowski:

ΔMINKOWSKI =

p

√
𝜔x × |X2 − X1|p + 𝜔y × |Y2 −Y1|p + 𝜔z × |Z2 − Z1|p

(6)

where

0 ≤ 𝜔z ≤ (Iw
2 + Ih

2) (7)

|X1 − X2| ≤ Iw (8)

|Y1 −Y2| ≤ Ih (9)

|Z1 − Z2| ≤ 1 (10)
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𝜔x = 1 (11)

𝜔y ∈ {1, Iw∕Ih} (12)

where Iw is the image width and Ih is the image height.
Ideally, each vector component must have the same or sim-

ilar scale for X-Means to work without bias. However, a bias
is required in the current case since attention and locations
are fundamentally different. A 𝜔z greater than or equal to the
diagonal length of the image would make the X-Means only
consider the attention. The bias against Z would be conse-
quentially larger than X or Y . 𝜔z is ideal at 𝜔z = Iw in a way
that the representation becomes close to a cube, eliminating the
bias. A perfect cube would require that the size follows either
Iw = Ih or 𝜔y = Iw∕Ih. The algorithm is run for five combina-
tions of parameters as described in Table 3. These five pairs of
parameters are chosen based on the similarity of their output to
the ground truth and the number of boxes they introduced. In
short, a low 𝜔z has a bias against the location. A high 𝜔z , on
the other hand, has a bias against the intensity of the attention.
It is needed to divide those patches since our attention cannot
jump from one object to another. Moreover, it may let a mea-
ger activation trail that a threshold cannot always filter without
removing important parts.
Adjustments to labels are made by consolidating the origi-

nal bounding boxes from the dataset with the proposed regions
from the X-Means operation. Since the region proposal can sep-
arate objects more than needed. Amerging algorithm is required
to compare the objects with the manually marked ones. That
algorithm can be defined in four steps:

1) Identifying the proposed boxes that have an Intersection
over union (IoU from (13)) of more than a specified
threshold (TU) and accepting them as new boxes.

2) Identifying the proposed boxes in which the Intersection
over smallest (IoS from (14)) is above a second threshold
(TS ) and expanding the initial bounding box to completely
include the smallest one.

3) Identifying all boxes that are inside the original one and
shrinking the original one to fit them. Shrink if it is less than
TShrink.

4) Concerning the boxes that do not match with the proposal,
keep the original bounding box

IoU (A,B) =
A ∩ B

A ∪ B
(13)

IoS (A,B) =
A ∩ B

min{A,B}
(14)

The fourth step allows boxes that do not have a proposal for
improvement to be considered sufficient. Those objects are
essential to detect, but the region proposal did not produce any
suggestions for improvement. No improvement will be made

to those boxes. However, improvements made by attention
will remain.
Similarly, this method can also be used for unlabelled datasets.

It was previously stated that the method could improve the
bounding boxes because X-Means act as a region proposal. The
region proposal can be used even with some loosely tagged
labels by defining the attention map before labelling. The user
labels images faster since the proposal is present, and it does not
need to be precise. Using these box proposals and an attention
protocol makes it possible to label images efficiently. The pro-
tocol may be as simple as one sentence: “Look for cars in the
image.” The attention map created by that instruction can then
be used for the automatic tagging of cars. Moreover, the exist-
ing NNs function as secondary teachers and verify whether a car
with high confidence is in reality or not. By using attention, it is
possible to employ multiple teachers. The first step would form
an attention map for a specified class by each teacher. Then that
map would be merged with all masters of that class by utilizing an
average. The latter junctions would create a final attention map
for an image based on all classes. The attention for the second
junction would be Fx,y = max (Aix,y ), where Ai is a category of
objects, i is the index of the category, and Fx,y is the resulting
value for that location. Proposals may be either before or after
the second merge. Proposing boxes before the second merge
would help the algorithm produce accurate bounding boxes for
intricate groups of objects with different categories.
In short, the creation of an attention map using DRAL

was demonstrated. Subsequently, a method for improving the
labels was proposed. Finally, a particular way for labelling
images so that the work overhead would be minimal was pre-
sented. With the adequately prepared data, the network can be
efficiently trained.

2.3 Training

Within the deep learning framework, many convolutional NNs
exist [52–57].
To test attention, YOLOv3 [58], SSD [59] and Faster-RCNN

[60] are used in conjunction with almost all of PyTorch’s opti-
mizers. This approach should work with any network that
learns patterns with many neurons, including any recent con-
volutional NN. YOLOv3 and SSD have been chosen because
they are small networks with good results that can operate at
a frequency faster than a real-time camera [4]. Faster RCNN
has been chosen for its completeness and great performance.
PyTorch is used for its simplicity, completeness, popularity, and
open-source availability.
As for a training protocol, four types of input data exist. By

combining those input data, 15 different types of training data
are obtained. However, only six of them are deemed valuable,
which are defined in Table 1, and are used for the training pur-
poses of the CNN presented in this article. As an input, there
are the regular from BDD (BDDR), attention-based from BDD
(BDDP), regular from UWD (UWDR), and attention-based
from the new dataset (UWDP). The set of all attention-based
images is DSP, and all regular is DSR. DSA consists of every
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TABLE 1 Number of images per dataset used. The Source column represents where the data is coming from, Berkeley Deep Drive(BDD), UQTR(Data
captured by our team), or Russian traffic sign dataset(RTSD). The R/P column represents regular or proposed data. The size represents the number of pictures in
each data section. The conditions column represents the weather conditions of the specific section of the dataset.

ID Source R/P Size

Max

Precision

Max

Recall

Max

F1 Conditions

DSA all R+P 14381 19 65 29 Clear/Summer Winter
(Light+Heavy)

BDD BDD R+P 10999 16 72 26 Clear/Summer Winter
(Light)

BDDP BDD P 1000 18 72 29 Clear/Summer Winter
(Light)

DSP all P 2691 – – – Clear/Summer Winter
(Light+Heavy)

UWDP UQTR +RTSD P 1691 13 64 22 Clear/Winter (Heavy)
Clear/ Winter (Heavy)

UWDR UQTR+RTSD R 1691 17 66 27 Clear/Winter (Heavy)
Clear/ Winter (Heavy)

BDDR BDD R 9999 18 72 24 Clear/Summer Winter
(Light)

DSR all R 11690 – – – Clear/Summer Winter
(Light+Heavy)

image from attention-based and regular. All images and atten-
tion maps are available on our github4. The novel part of the
dataset named UWD will be presented in Section 2.4.
The network is trained up to a threshold 𝛽 of epochs on

the improved dataset and then (1 − 𝛽) on the regular dataset
(DSR). This first step allows learning the appropriate filters.5

It is then trained on the regular labelled data for the remaining
epochs to reduce the number of false positives. This method
is the same as a pre-training [62] except that in the current sit-
uation, the pre-training dataset is the same as the training one
with the alteration. The (1 − 𝛽) regular epochs let the network
adapt to real-world images without attention to guide it. A 𝛽 too
low would cancel all benefits that our attention-based images
did; a 𝛽 too high would create overfitting. For the test purposes,
𝛽 has been set to 80% following multiple tests. It was the per-
centage resulting in the best training. For the epochs preceding
the 𝛽 cut, only 𝜆pre = 80% of the selected dataset is used for
training, and in the later epochs, 𝜆late = 80% of BDDR is used.
𝜆 is separated into two parameters since both datasets could
share different proportions of data in training. The validation
metrics are always calculated against 𝜈 = 20% of DSR. BDDR
and UWDR are the only datasets sharing images between train-
ing and validation. For those two, BDDR is altered to omit the
used images, which are scarce. As attention-based data can drive
particular patterns into training, overfitting is in its nature. The
latter part of the training, where BDDR is pushed back into
the training, reduces overfitting resulting from those patterns by
presenting all the information. Too much regular data and sec-
ond overfitting will be created based on the full images and lose

4 Available at https://github.com/irh-ca-team-car/attention-data
5 Appropriate to be classified as expert input [61].

every benefit of those forced patterns. Attention works with any
convolutional NN.
For the proof of concept, the basics of the networks were

not changed except for some minor required adjustments. One
of the applied changes was to remove batch normalization to
allow the network to run multiple sub-batch before running an
optimizer. A batch size of 32 was used, with a sub-batch of the
highest number of images that fit in the VRAM6 up to 32.

As for the calculation of the loss, the original loss calcula-
tion was kept for each network. In YOLOv3, the loss function
is a combination of a mean squared error (MSE), binary cross
entropy (BCE), and cross entropy (CE) loss. The loss for the
boxes’ locations was calculated using MSE, confidence was
computed using BCE, and classes using CE. Layers up to 75
are part of the Darknet-53 network, which is the backbone of
YOLOv3. For Faster-RCNN and SSD, the Multibox loss was
used. Multibox loss is a loss function that combines a smooth L1
loss for the regression of the boxes and a BCE for classification.
The metrics used for evaluating the network are the standard

precision (15), recall (16) and F1-score (17) from a confusion
matrix. Even if more metrics exist for detection networks, such
as mean average precision (mAP), they are more complex and gen-
erate similar results compared to the simple metrics. Precision,
recall, and F1-score (17) are defined by the following equations:

Precision =
Relevant ∩ Retrieved

Retrieved
(15)

Recall =
Relevant ∩ Retrieved

Relevant
(16)

6 Video ram
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F1 − score = 2 ×
Precision × Recall

Precision + Recall
(17)

where retrieved is the set of detected objects and relevant is the
ground-truth objects.
Training is done for every required epoch and each compati-

ble optimizer. Each step of training is defined in Figure 1 where
parts in black are untouched, parts in green are added, and a
two-step training inspires parts in pink.
It is feasible to upgrade data by using attention and merg-

ing an attention map with the training data. It is also possible
to improve the data training at a considerable small cost. That
cost could be even further reduced by labelling the images in an
attention format [33].
Creating the attention map for a single image takes an aver-

age of 31 seconds from the display to the generation on disk.
The average for the bounding boxes calculation is around three
minutes of computing time on a 3.9 GHz Xeon W-2133 with a
single core. Using another region proposal, this 3-min computa-
tion can almost be reduced to none. X-Means takes an extended
processing time but does not require training. This paper has
used it to demonstrate the proof of concept regarding the pro-
posed method. Other region proposals, such as NNs, can detect
objects almost instantly but require training. The third step of
labelling takes an average of 14 s per image, which is faster
than labelling alone. This is because the attention step obscures
parts of the images, resulting in less work for the individual tag-
ging. Moreover, since the box proposals are generated utilizing
attention, the process of person labelling does not need to be
precise. Bounding boxes will be adapted to the proposals as well.
Labelling time is evaluated using regular images, and labelling
alone takes an average of 27 s, which is almost twice as slow as
the proposed method. This approach adds an operational over-
head of 18 human seconds per image while tagging and 180
computer seconds for the region proposal. These times are cal-
culated based on the tagging of the first 500 images from BDD
and the first 252 new images for a proposed dataset.

2.4 New winter dataset: UWD

Following the proposed method, a small dataset named UWD
has been set up for training. An electric Kia Soul 2017, as visible
in Figure 5, is used for creating the new dataset. For captur-
ing the dataset, 5160 HD frames at 60 Hz were obtained from
a GoPro as training requires a higher resolution than opera-
tion. One image is taken every 20 frames for the dataset from
these frames, resulting in 258 images. On top of these images,
more than 500 frames were taken from the RTSD dataset [63],
and more than 500 from the dashcam of the author’s Tesla
during snowstorms.
In the first step, attention maps are developed using 16 mas-

ters. Then, the computer determines the proposals, and finally,
the images are labelled by 16 other people for bounding boxes.
16 masters are sufficient to remove human subjectivity. The
attention mapmade by the 16 masters has less than 5% difference
from the ones produced by the neural network experts. This

FIGURE 5 The car used for the UWD dataset

TABLE 2 Classes index

Class Index Class descriptions

0 traffic-related objects

1 engine

2 bi-wheeled

3 humanoid

TABLE 3 Minkowski distance parameters used for box proposal. Two
hundred and fifty-five represent the maximum value of a grey in an eight-bit
image. 𝜔y has a weight calculated to convert the image to a square so a cube
can be achieved

p wx wy wz

1 1 1 3 × 255

1 1 Iw∕Ih 1 × Iw

4 1 1 3 × 255

4 1 1 4 × 255

4 1 Iw∕Ih 1 × Iw

dataset is driving-oriented and contains four classes to learn.
The four classes are traffic-related objects (signs, traffic lights,
constructions, barriers), engine (car, bus, truck), bi-wheeled
(bicycle and motorcycle), and finally humanoid (person, man-
nequins). The four categories are ordered by the ascending level
of threat to the target, meaning that traffic-related objects are
harmful to the car and dangerous to humanoids. These classes
are determined by the type of action for the ego vehicle instead
of visual clues. Miscategorizing a car as a truck does not penalize
the detection process. Those classes are presented in Table 2.

3 RESULTS

The results of the attention transfer from an individual to a
machine will be presented first, followed by examples from
UWD in winter.
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FIGURE 6 Labels improvement for TU = 0.9, TS = 0.9, T3 = 0.25

3.1 Bounding boxes

DRAL (Digital Representation of Attention Labeler) recal-
culates bounding boxes utilizing the attention map. This
recalculation allows for more accurate bounding boxes exploit-
ing only still discernible elements. However, since the details of
the objects are omitted, it is obvious that the bounding boxes
will not be useful for a human anymore. Omitted details could
be the front vent of the three cars, as shown in Figure 4.
These new bounding boxes are visible in Figure 6. Most of

the bounding boxes in the image have been modified by less
than 10% of their area and location. In Figure 6b, all the propos-
als from the region proposal are visible. Since X-Means output
an enormous amount of proposals and to improve figure clarity,
color code has been used to differentiate different boxes from
each other. The region proposal produced many proposals in
the top right corner, mostly unused as they did not match with
actual bounding boxes. The police minivan in Figure 6 also has
a noticeable change in its box. The air vent and tires are now
mostly excluded. Most smaller vehicles have not been modified

FIGURE 7 Precision and recall evolution based on epochs for both
regular (BDDR) and attention-based (BDDP) data, calculated on training set.
𝛽 = 80%

as no proposal has been found for them. The number over the
boxes are the classes as defined in Table 2.

3.2 Training

The network learning uses the annotated images with an
improved version based on the proposed tool (DRAL) for the
training enhancement. In the validation set, the trained network
on the upgraded data converges faster than the original data. It
also has lower precision and recall on the training set. The size
of datasets and subsets are defined in Table 1.
The network that is trained on original data maximizes at a

precision of 59% and recall of 87% (Figure 7). The network
trained on the attention-based data maximizes at a precision
of 74% and a recall of 98%. The comparison between BDDR
and BDDP presented in Figure 7 is valid as both datasets are
composed of the same images with or without the attention
process applied.
An example of training results using the Adamax optimizer

is presented in Figures 8 and 9. Figure 8b shows the recall of
the same set. Finally, Figure 9a represents the F1-score (17) on
the validation set. All those figures are the average of the train-
ing of YOLOv3, SSD, and Faster-RCNN. The blue (BDDR)
and pink (UWDR) curves mark the original data, and the black
(BDDP) and red (UWDP) curves represent the data created
by the improved attention-based method. The turquoise curve
(DSP) illustrates both Berkeley Deep Drive in attention format
(BDDP) and UWDP. Finally, the green curve (DSA) represents
all data from Berkeley and all UWD. It is important to note that
BDD contains some rare winter images, but UWD contains
winter images exclusively. Moreover, DSA and BDDR contain
images taken during winter, while UWDP and UWDR are exclu-
sively winter-based. BDD has images taken by the University
of Berkeley in New York city. New York winters are not as
harsh as Canadian winters, resulting in non-optimal detection
during Canadian winter. Harsh winter images are required to
test the autonomous cars that will operate in that condition. For
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FIGURE 8 Average validation metrics across networks. DSA is split
equally between matching regular images and attention-based images. Half the
amount of images is used as they are doubled by the attention process in this
dataset

FIGURE 9 Average validation summary across networks. DSA is split
equally between matching regular images and attention-based images. Half the
amount of images is used as they are doubled by the attention process in this
dataset

this training to be fair compared to datasets, 1000 images from
each were used. Since the DSA dataset contains both regular
and attention-based images, they are separated equally between
each data type. This means that only half the amount of data is
necessary when using attention-based mixed with regular

FIGURE 10 Newly tagged image from our winter dataset

images, as each image is present two times, with and without
attention. Datasets that contains attention or are exclusively
attention such as DSP, DSA, BDDP and UWDP results in
higher F1-score (17). The usage of winter attention such as
UWDP results in an improvement in the training time from
25 epochs to 9 epochs to obtain the maximum F1-score (17).
DSA, which both attention and regular data in both summer
and winter contexts rank as one of the top F1-score (17) in
a concise amount of epochs. It is also noted that the sudden
change in all graphs for epoch 80 is caused by the change of
dataset at 𝛽 = 80%. To validate that the network will perform
better during winter conditions, all training was validated against
the R dataset. Figure 7 shows that the proposed method has
been able to improve the accuracy of recognition as opposed to
regular training. Summer data using attention topped up 60%
F1-score (17), while regular data only topped 55% for the same
amount of data.
An example of a newly tagged winter image is included in

Figure 10. This image has been captured and tagged directly in
the attention format instead of improving the existing labels. As
seen in Figure 10, the boxes created by labelling directly in the
attention format are similar to the boxes from Figure 4. Such
similarity between attention applied before and after labelling
the boxes indicates that both existing and new datasets could be
used with the proposed method. However, labelling images with
the attention method first increases the labelling speed. This
image clearly shows that the contents of both the window and
the license plates have been hidden to improve the image quality
since these parts contain patterns that must not be learned. The
number over the bounding box are the classes associated with
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the object as defined in Table 2. To validate this method, the
network has been trained on the four classes, driving-inspired
dataset introduced in Section 2.4.

4 CONCLUSION

This paper puts forward an approach for improving object
detection in autonomous vehicles based on the attention mech-
anism. The proposed tool, called DRAL, has shown convenient
utilization and compelling results for extracting attention from a
person’s gaze through several tests. Attention has been merged
with regular images and bounding boxes recalculated to develop
an artificial high-quality training set. This approach has been
motivated by the closeness of neural networks to the human
brain, and humans normally drive with almost full recognition
of the environment. The proposed technique has been used
to create a 1691-image driving oriented dataset published on
Github7.

As a medium for transfer learning, attention has demon-
strated compelling accuracy in object detection for autonomous
cars, even during harsh conditions like winter. Even with an
increase of 50% of labelling time per picture, the proposed
method can cut a dataset size by half. This reduced-sized dataset
results in 25% less total time passed in labelling. On top of the
reduction in labelling time, the proposed method also reduces
training time by reaching the maximum F1-score (17) in about
half the number of epochs. This approach has successfully
trained multiple neural networks with higher detection accu-
racy than its regular counterparts. A total of 1691 images have
been proposed in a novel dataset regarding the attention for
autonomous land vehicles.
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