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Abstract

Canada has made significant contributions to the field of plant biochemistry, with numerous researchers actively focusing
on elucidating the biosynthetic pathways of plant specialized metabolites and producing these compounds in heterologous
systems, such as bacteria, yeast, or other plant species. The review aims to highlight the strengths of Canadian research
in this domain over the last three decades. It will describe advances in pathway elucidation, enzyme characterization, and
production of enzymes and metabolites in heterologous systems, particularly in the areas of alkaloids, terpenoids, and phenolic
compounds. Canadian researchers have not only made pivotal scientific discoveries but have also ensured the continuity of
scientific excellence by mentoring new generations of principal investigators in plant specialized metabolites. These advances
warrant recognition and financial support to retain future talent and to maintain Canada’s leadership in scientific progress

on the global stage.
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1. Introduction

Plants synthetize a wide arsenal of metabolites to protect
themselves against herbivores, pathogens, and parasites, and
abiotic stresses, or to attract pollinators. Humans use plants
as food and fuel, and exploit plants specialized metabolites
for medicines, cosmetics, and nutritional supplements. One
notable example of a phytometabolite with pharmaceutical
properties is Taxol™ (generic name paclitaxel), a diterpene
that was discovered in 1967 from bark extracts of the North
American tree Taxus brevifolia (Pacific yew) (Weaver 2014). Pa-
clitaxel was first approved by the USA’s Food and Drug Ad-
ministration (FDA) for the treatment of ovarian cancer in
1992, and is now also approved for the treatment of breast
and non-small cell lung cancer, as well as Kaposi’s sarcoma
(Weaver 2014). Another example is capsaicin (frans-8-methyl-
N-vanillyl-6-nonenamide), a phenolic alkaloid from Capsicum
spp. (e.g., chili peppers) native to the American continent
(Costa et al. 2022) that brings spiciness to food by caus-
ing a burning sensation in the mucous membranes of the
mouth. Besides its role in gastronomy, the compound is used
in medicine and has been approved for pain relief by both
the FDA and the European Medicines Agency (Sharma et al.
2013; Weaver 2014; Chung and Campbell 2016). Both metabo-
lites have biological relevance: paclitaxel acts against para-
sites and fungal attacks in T. brevifolia (Elmer et al. 1994), and
capsaicin repels mammal herbivores (Tewksbury and Nabhan
2001).
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In Canada, several research groups are dedicated to eluci-
dating how plants produce specialized metabolites of inter-
est. For instance, in 2013, a multi-laboratory effort led to se-
quencing, de novo assembly, and annotation of the transcrip-
tomes from 20 plant species of medicinal importance, en-
abling the identification of genes in biosynthetic pathways of
specialized metabolites, including valerenic acid, benzyliso-
quinoline alkaloids (BIAs), and the polyketide hypericin (Xiao
et al. 2013). A quick search on Scopus shows that, between
2019 and the first half of 2024, Canada was among the top
10 countries publishing on plant metabolism elucidation and
plant metabolic engineering, with Canadian researchers con-
tributing 142 research and review articles among 4538 pub-
lished worldwide.

In this review, we provide an overview of the advances
led by principal investigators (PIs) active in the domain of
plant specialized metabolism across Canada. Due to space
constraints, we focused on PIs whose research centres on
pathway elucidation andfor bioengineering of plant alka-
loids, terpenoids, and phenolic compounds, excluding phy-
tohormones. We apologize if we have inadvertently omitted
any PIs; our intention was not to offend anyone but to high-
light the significant contribution of Canadian researchers.
We have done our best to include everyone and would ap-
preciate it if you could inform us of any omissions so we can
include them in a future revision of this review. Additionally,
we listed researchers with at least three publications in the
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Fig. 1. Alkaloids and their plants of origin investigated in Canada, along with their main precursor: aromatic amino acids.
Numbers in parenthesis indicate the researchers that investigate the topic: (1.1) Vincenzo De Luca; (1.2) Peter ]. Facchini;
(1.3) Thu-Thuy T. Dang; (1.4) Yang Qu; (1.5) Vincent J] Martin; (1.6) Isabel Desgagné-Penix. Narcissus pseudonarcissus’ drawing
was done with Krita 5.2.9. The following images were obtained from Wikimedia Commons: Camptotheca acuminata: Auckland
Museum (CC BY 4.0) https://commons.wikimedia.orgfw/[index.php?curid=65765508; Ephedra sinica: By alexlomas (Flickr, CC BY
2.0) https://commons.wikimedia.orgfw/index.php?curid=6343381; Papaver somniferum: By Rachelhs (CCO) https://commons.wiki
media.orgfw/index.php?curid=34838409; Raulwolfia serpentina: By MAPeFY (CC BY-SA 4.0) https://commons.wikimedia.org/w/in
dex.php?curid=80304394; Vinca minor: By Ryan Kaldari, https://[commons.wikimedia.org/w/index.php?curid=6369683.
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filed within the last 5 years. Major breakthroughs in the field
over the past 30 years, as well as synthetic biology innova-
tions for producing plant specialized metabolites in heterol-
ogous systems, will be described.

2. Investigating alkaloids

Alkaloids, derived from amino acids such as phenylalanine,
tryptophan, and tyrosine, form the one of the largest groups
of specialized metabolites. This category includes the neu-
roactive caffeine (McLellan et al. 2016), the antitumoral vin-
blastine and vincristine (Dhyani et al. 2022), the anti-gout
agent colchicine (Dhyani et al. 2022; Stamp et al. 2024), and
the acetylcholinesterase inhibitor galanthamine (Kaur et al.
2022).

Canadian research teams have significantly advanced
the understanding of monoterpene indole alkaloids (MIAs)
and BIAs. Their work highlights the enzymes involved
in biosynthesis, plant defense roles, biological activities,
medicinal potential, and heterologous production meth-
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ods. International efforts have contributed to the elucida-
tion of the MIA pathway, with several reviews providing
comprehensive insights (O’Connor and Maresh 2006; St-
Pierre et al. 2013; De Luca et al. 2014; Pan et al. 2015; Salim
et al. 2023).

Meanwhile, in Canada, BIA research has primarily focused
on poppy species and Amaryllidaceae. Global studies predom-
inantly investigate alkaloids from Papaver somniferum (opium
poppy). but species of other orders have also been investi-
gated, with advances in gene discovery, expression, and pro-
tein characterization (Menendez-Perdomo and Facchini 2018;
Singh et al. 2019; Georgiev et al. 2020; Desgagné-Penix 2021;
Aghaali and Naghavi 2024; Aghaali et al. 2024; Liyanage et al.
2024).

This section reviews advancements in MIA metabolism led
by Professors Vincenzo De Luca and Yang Qu, contributions
by Professors Peter Facchini and Vincent J.J. Martin on poppy
alkaloids, Pr. Isabel Desgagné-Penix on Amaryllidaceae alka-
loids, and Pr. Thu-Thuy T. Dang’s research on cytochrome
P450s in alkaloid biosynthesis pathways (Fig. 1).
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2.1. Vincenzo de Luca

The legacy of Pr. Vincenzo de Luca (Brock University) in-
cludes his team’s major discoveries on alkaloids biosynthe-
sis and training of the next generation of Canadian plant
biochemists. His group focused on the elucidation of the
biosynthesis pathway of the MIA vindoline and vinblastine,
derived from tryptophan and secologanin (Salim et al. 2023),
mainly in Catharanthus roseus (Madagascar periwinkle). This
massive complex pathway of 31 steps was recently eluci-
dated in its entirety, with 17 enzymes being discovered and
characterized by Pr. De Luca’s team and other three be-
ing further characterized by them (Fig. 2; Kulagina et al

20512'}“& Luca’s team also researched MIA biosynthesis in In-
dian snakeroot (Rauvolfia serpentina), characterizing the role
of y-tocopherol-like N-methyltransferases (Cazares-Flores et
al. 2016; Levac et al. 2016) in ajmaline biosynthesis, and un-
covered the transporters involved in the export of vincamine
in Vinca minor (periwinkle) (Demessie et al. 2017). His group
has also reported on grapes and their glucosyltransferases,
flavonols, and esters (Wang and De Luca 2005; Hall and De
Luca 2007; Hall et al. 2011a, 2012).

In addition to the research achievements describe above,
the training of a new generation of accomplished researchers
in the area is also part of Pr. De Luca’s legacy. Several big
and emerging names in the plant specialized metabolites re-
search in Canada passed by his laboratory, including Pr. Peter
Facchini, Pr. Yang Qu, and Pr. Mehran Dastmalchi, whose re-
search works are discussed below.

2.2. Peter J. Facchini

Pr. Peter ]. Facchini’s (Calgary University) research
on the BIA pathway in Papaver somniferum (opium
poppy) started with the characterization of tyro-
sine/dihydroxyphenylalanine decarboxylases (TYDCs) and
the profiling of their expression in different tissues (Facchini
and De Luca 1994, 1995a, 1995b; Facchini et al. 1996a). In
the following years, his group tackled the identification
and characterization of enzymes in this pathway, includ-
ing transporters, as well as the expression profiles of the
genes encoding them, including berberine bridge enzyme 1
(Facchini et al. 1996b), TYDCs (Facchini et al. 1998), tyramine
N-(hydroxycinnamoyl)transferase (Yu and Facchini 1999),
norcoclaurine synthase (Samanani and Facchini 2001, 2002;
Samanani et al. 2004; Luk et al. 2007; Lee and Facchini 2010),
and many more (Bird et al. 2003; Liscombe and Facchini
2007; Hagel and Facchini 2010; Lee and Facchini 2011; Dang
and Facchini 2012; Hagel et al. 2012; Beaudoin and Facchini
2013; Dang et al. 2015; Chen et al. 2018; Dastmalchi et al.
2019a; Li et al. 2020).

Pr. Facchini’s team investigated the biosynthesis of BIA in
other species as well, including Thalictrum flavum, Eschscholzia
californica, Papaver bracteatum, and Glaucium flavum (yellow
meadow rue, California poppy, Iranian poppy. and yellow
horned poppy, respectively), which allowed the study of the
evolution of norcoclaurine synthase, berberine-bridge en-
zyme, and O-methyltransferases (Liscombe et al. 2005), and
the identification of new N-methyltransferases, including the
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first isolated enzyme in the pavine alkaloid branch pathway
(Liscombe et al. 2009; Samanani et al. 2005).

His group also performed a transcriptomic study of
Lophophora williamsii and elucidated the biosynthetic path-
way of tetrahydroisoquinoline and phenethylamine alka-
loids, including mescaline and pellotine (Watkins et al. 2023).
Facchini’s team also characterized aromatic aminotrans-
ferase implicated in ephedrine and associated alkaloids from
Ephedra sinica and Catha edulis (ephedra and khat) (Kilpatrick
et al. 2016; Morris et al. 2018). Through Pr. Facchini’s col-
laborations with the structural biologist Pr. Kenneth Ng, the
crystal structures of P. somniferum’s codeine reductase (Carr
et al. 2021), T. flavum’s pavine N-methyltransferase (Torres
et al. 2016), and G. flavum’s tetrahydroprotoberberine N-
methyltransferase (Lang et al. 2019) were resolved, contribut-
ing to our overall understanding of substrate recognition by
methyltransferases and reductases.

Finally, Pr. Facchini also trained recently established re-
searchers in the plant alkaloid research in Canada. For in-
stance, Pr. David Liscombe’s (adjunct assistant professor at
Brock University, Ontario, and researcher at Vineland Re-
search and Innovation Centre) recent study of the inva-
sive species Vincetoxicum rossicum led to an update on the
biosynthesis pathway of phenanthroindolizidine alkaloid
(Kempthorne et al. 2024). Pr. Mehran Dastmalchi, Pr. Thu-
Thuy T. Dang, and Pr. Isabel Desgagné-Penix, who are dis-
cussed below, are also among the specialized metabolism ex-
perts that were trained by Pr. Facchini.

2.3. Thu-Thuy T. Dang

Pr. Thu-Thuy T. Dang recently established her laboratory at
University of British Columbia (UBC), where her team uses
a combination of genomics and biochemistry to understand
plant alkaloid biosynthesis. The group published abundantly
on the topic (Bui et al. 2023; Kwan et al. 2023; Nguyen and
Dang 2021, 2022; Nunes et al. 2022), as well as with Canadian
and international collaborators (Dang et al. 2012, 2017; Tatsis
etal. 2017; Stavrinides et al. 2018; Carqueijeiro et al. 2018; Bui
et al. 2023). Additionally, Pr. Thu-Thuy T. Dang’s team used
gene expression analysis to identify CYP encoding genes in
Camptotheca acuminata (Happy tree), and enzymatic assays to
show that the corresponding enzymes were able to oxidize
camptothecin, a quinoline alkaloid (Nguyen et al. 2021), re-
sulting in a patent (Dang et al. 2021). The patented innova-
tion highlights isolated cytochrome P450 sequences, as well
as synthetic biology application in plants, highlighting the
role of specific cytochrome P450s in plant defense and iso-
prenoid compound synthesis. The group was also the first to
identify and characterize CYP responsible for the formation
of two spirooxindole alkaloids using comparative transcrip-
tomics and enzymatic assays, namely MsCYP72056 from Mi-
tragyna speciosa (kratom) (Nguyen et al. 2023).

2.4. Yang Qu

Pr. Yang Qu previously worked with Pr. Dae-Kyun Ro (Uni-
versity of Calgary) on the biosynthesis of natural rubber in
lettuce (Chakrabarty et al. 2015; Qu et al. 2015b; Barnes et
al. 2021), and with Pr. Vincenzo de Luca on MIA metabolism
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Fig. 2. Enzymes from Catharanthus roseus monoterpenoid indole alkaloid pathway. Filled maple leaves indicate steps char-
acterized by Pr. De Luca’s research teams; hollow maple leaves indicate steps characterized by teams outside Canada, but
that were further characterized by Canadian teams. Numbers inside maple leaves indicate studies that characterized the
enzymes. (1) De Luca et al. (1989); (2) Salim et al. (2014); (3) Asada et al. (2013); (4) Murata and De Luca (2005); (5) Qu et
al. (2018a, 2018b); (6) Qu et al. (2019); (7) St-Pierre and De Luca (1995); (8) Levac et al. (2008); (9) Qu et al. (2015a); (10)
De Carolis and De Luca (1993, 1994); De Carolis et al. (1990); Vazquez-Flota et al. (1997); (11) Power et al. (1990). MVA:
mevalonic acid; GPP: geraniol pyrophosphate; GES: geraniol synthase; TDC: tryptophan decarboxylase; G8H: geraniol 8-
hydroxylase; CPR: cytochrome P450 reductase; CYB5: cytochrome B5; CYPADH: cytochrome P450 alcohol dehydrogenase;
7DLGT: 7-deoxyloganetic acid transferase; 7DLH: 7-deoxyloganic acid hydroxylase; LAMT: loganic acid methyltransferase; SLS:
secologanin synthase; STR: strictosidine synthase; SGD: strictosidine 8HGO: 8-hydroxygeraniol oxidoreductase; ISY: iridoid syn-
thase; 10: iridoid oxidase; SGD: strictosidine g-d-glucosidase; GS: geissoschizine synthase; GO: geissoschizine oxidase; Redox1/2:
protein redox 1/2; SAT: stemmadenine-O-acetyltransferase; PAS: precondylocarpine acetate synthase; DPAS: dehydropre-
condylocarpine acetate synthase; CS[TS: catharanthine/tabersonine synthase; T16H: tabersonine 16-hydroxylase; 160MT: 16-
hydroxytabersonine O-methyltransferase; T30: tabersonine 3-oxygenase; T3R: tabersonine 3-reductase; NMT: 3-hydroxy-16-
methoxy-2,3-dihydrotabersonine-N-methyltransferase; D4H: desacetoxyvindoline-4-hydroxylase DAT: deacetylvindoline-4-O-
acetyltransferase; PRX1: class III peroxidase. The colored boxes lines indicate strictosidine (blue), tabersonine/catharanthine
(yellow) and vindoline (red) modules. Adapted from Zhang et al. (2022).
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(Demessie et al. 2017; Kidd et al. 2019; Qu et al. 2018b,
2019; Williams et al. 2019). In De Luca’s lab, Pr. Qu bioengi-
neered yeast to produce vindoline (Qu et al. 2015a). He es-
tablished his laboratory at the University of New Brunswick
(New Brunswick) focusing on natural medicine biosynthesis,
including alkaloids and bibenzyls. Among his works on the

elucidation of biosynthetic pathways of specialized metabo-
lites is the characterization of vindolinine synthase, which
diverts tabersonine from vinblastine metabolism to the for-
mation of 195-vindolinine, 19R-vindolinine, and venalstonine
(Eng et al. 2022). His group also elucidated the biosynthesis
pathway of the analgesic mitragynine, from kratom, through
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the transcriptomic study of the latter and other species of Ru-
biaceae, leading to the identification of reductases and enol
methyltransferases that completed the pathway (Kim et al.
2023).

Finally, his team recently identified and characterized
the enzymes catalyzing the last two unknown steps of
the antiarrhythmic MIA ajmaline biosynthesis in Indian
snakeroot, namely vomilenine 1,2(R}reductase and 1,2-
dihydrovomilenine 19,20(S)-reductase, as well as a new iso-
form of the sarpagan bridge enzyme and two new isoforms
of the 17-0-acetylnorajmaline acetyl esterase (Guo et al. 2024).
The group succeeded in applying these findings for the de
novo biosynthesis of ajmaline in yeast. They also recently bio-
engineered yeast to produce multiple terpenoids and alka-
loids, mainly vinblastine and other Catharanthus metabolites
(Shahsavarani et al. 2023; Guo et al. 2024).

2.5. Vincent J] Martin

Pr. Vincent JJ] Martin is interested in bioengineering mi-
croorganisms to produce compounds of interest such as BIAs
at Concordia University. He collaborated with Pr. Facchini on
opioids and with Pr. Jay Keasling (University of California) on
cannabinoid pathway elucidation and heterologous produc-
tion. Pr. Martin’s recent work includes synthetic biology ap-
proaches to optimize microbial platforms, mainly yeast (Pyne
etal. 2020, 2023b; Dykstra et al. 2023), as well as pathway elu-
cidation efforts for multiple BIA compounds. For instance,
his team screened plant O-methyltransferase s, enabling de
novo synthesis of liensinine (Pyne et al. 2023a), and designed
an enzyme-coupled biosensor for reticuline upstream inter-
mediate L-3,4-dihydroxyphenylalanine (Fossati et al. 2014). Pr.
Martin is also a co-director of Concordia university’s Centre
for Applied Synthetic Biology, also known as the Concordia
Genome Foundry.

2.6. Isabel Desgagné-Penix

Lastly, our lab, at the Université du Québec a Trois-
Riviéres, has also made strides in medicinal plants special-
ized metabolism bioactivity and pathway elucidation, fo-
cusing on Amanyllidaceae alkaloids (AAs), cannabinoids, and
vanillin. Early and more recent de novo transcriptomic stud-
ies of Narcissus pseudonarcissus “King Alfred”, N. papyraceus,
Leucojum aestivum, and Crinum x powellii, led to the iden-
tification of candidate genes involved in the biosynthesis
of AAs (Singh and Desgagne-Penix 2017; Hotchandani et
al. 2019; Tousignant et al. 2022; Koirala et al. 2023). Fol-
lowing identification of candidates, our strategy involves
in-depth study of each specific step of the AA pathway.
This led to the characterization of norbelladine synthase
from N. pseudonarcissus (Singh et al. 2018), noroxomariti-
dine/norcraugsodine reductase in N. pseudonarcissus and L. aes-
tivum (Majhi et al. 2023), as well as of cytochrome P450s
(CYPs) cinnamate 4-hydroxylase, p-coumaroyl 3'-hydroxylase,
and ascorbate peroxidase/4-coumarate 3-hydroxylase from L.
aestivum (Karimzadegan et al. 2024). In addition to plants, we
also assembled the transcriptome of two fungal species, the
plant pathogen Armillaria sinapina and the medicinal fungus
Inonotus obliquus, and identified terpenoid biosynthesis genes,
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including squalene epoxidase and lupeol synthase (Fradj et al.
2019, 2020).

The research group also made strides in plant metabolite
synthesis in heterologous systems. In addition to using yeast
and bacteria (Majhi et al. 2023; Karimzadegan et al. 2024),
the team bioengineered microalgae as platforms for special-
ized metabolite production and enzyme characterization. Al-
though the process may be more tedious, it could lead to a
more sustainable platform (Slattery et al. 2018; Diamond et
al. 2023). The group succeeded in achieving stable expres-
sion of different Cannabis sativa and bacterial enzymes in
the diatom Phaeodactylum tricornutum for the production of
olivetolic acid, cannabigerolic acid and other cannabinoids
(Awwad et al. 2023; Fantino et al. 2024). They have also opti-
mized techniques to bioengineer other microalgae, including
Chlamydomeonas reinhardtii and Chlorella vulgaris (Carscallen et
al. 2023; Desgagné-Penix et al. 2023; Beauchemin et al. 2024).

3. Investigating terpenes

Terpenes, derived from dimethylallyl pyrophosphate and
isopentenyl pyrophosphate produced via the mevalonate and
methylerythritol phosphate pathways, play critical roles in
plant development, stress responses, and pollinator attrac-
tion (Singh and Sharma 2015; Pichersky and Raguso 2018;
Boncan et al. 2020). Many of these compounds, such as pacli-
taxel, menthol, and artemisinin, are utilized in the food, cos-
metic, and pharmaceutical industries (Wagner and Elmadfa
2003; da Silva-Santosa et al. 2005; Yang et al. 2020). Given
the identification of thousands of terpenes and terpenoids,
numerous research teams focus on characterizing the en-
zymes responsible for their synthesis (Kajikawa et al. 2005;
Chen et al. 2011; Cornish 2014; Boutanaev et al. 2015; Singh
and Sharma 2015; Lau et al. 2016; Huang and Osbourn 2019;
Kopaczyk et al. 2020; Zhou and Pichersky 2020; Amerik et al.
2021; Long et al. 2021; Jaramillo-Madrid et al. 2022).

This section details the contributions of professors Dae-
Kyun Ro, Soheil Mahmoud, Jorg Bohlmann, Tariq A. Akhtar,
and Reinhard Jetter in characterizing terpene synthases in
gymnosperms and angiosperms. Additionally, it covers the re-
search by professors Ro, Bohlmann, Akhtar, and Valerie C.A.
Ward on the production of terpenoids in heterologous sys-
tems, including yeast, microalgae, and plants (Fig. 3).

3.1. Dae-Kyun Ro

At the University of Calgary, Pr. Dae-Kyun Ro studies the
biosynthesis of terpenes, proanthocyanidins and natural rub-
ber. His group used transcriptomics to identify Pisum sativum
anthocyanidin, leucoanthocyanidin, and dihydroflavonol re-
ductases, and characterized these enzymes in vitro, show-
ing that they synthesize cis- and trans-flavan-3-ols (Ferraro et
al. 2014). His research on sesquiterpene biosynthesis led to
the identification and characterization of several enzymes in
different pathways. In Lippia dulcis (Aztec sweet herb), they
characterized (+)epi-a-bisabolol synthase, which catalyzes
the first step in the biosynthesis of hernandulcin, and bornyl
diphosphate synthase, involved in the formation of camphor
(Attia et al. 2012; Hurd et al. 2017). In Valeriana officinalis (vale-
rian), the group characterized three sesquiterpene synthases
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Fig. 3. Variety of terpenoids, and the plants that produce them, investigated in Canada and their main precursors, dimethy-
lallyl phosphate and isopentenyl phosphate. Numbers in parenthesis indicate the principal investigators that research these
topics. (2.1) Dae-Kyun Ro; (2.2) Soheil Mahmoud; (2.3) Jorg Bohlmann; (2.4) Tariq Akhtar; (2.5) Valerie CA Ward; (2.6) Reinhard Jet-
ter. Partenium argentatum’s photo was modifed from Rousset et al. (2021). The following images were obtained from Wikimedia
commons: Adonis aestivalis: By Osnat Ravid Amir (CC BY-SA 4.0) https://commons.wikimedia.orgfw/index.php?curid=151799697;
Arabidopsis thaliana: By Charles Andreés (CC BY-SA 3.0) https://commons.wikimedia.orgfw/index.php?curid=22510218; Centella
asiatica: By Md. Siddiq Hasan (CC BY-SA 4.0) https://commons.wikimedia.orgfw/[index.php?curid=114909062; Lavandula x inter-
media: By Photo by David ]. Stang (First published at ZipcodeZoo.com, CC BY-SA 4.0) https://commons.wikimedia.org/w/index.
php?curid=61171226; Silena latifolia: By Loz (L. B. Tettenborn, CC BY-SA 3.0) https://commons.wikimedia.org/w/index.php?curi
d=4506347; Valeriana officinales: By Ivar Leidus (CC BY-SA 4.0) https://commons.wikimedia.org/w[index.php?curid=106650217.
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which synthesize germacrene C and D, valerena-4,7(11)-diene
and (-fdrimenol (Pyle et al. 2012; Kwon et al. 2014). They
also identified and characterized two germacrene A synthases
from Barnadesia spinosa (espino santo or “holy thorn”), and one
from Lactuca sativa (lettuce) (Nguyen et al. 2016). While study-
ing two sesquiterpene oxidases from Artemisia annuam, they
showed that germacrene A and amorphadiene oxidases are
involved in the biosynthesis of a widespread and species-
specific sesquiterpenes (Nguyen et al. 2019). They also iden-
tified and characterized a CYP that converts kolavenol to
crotonolide G, a savonorin-related compound (Kwon et al
2022b). Finally, they characterized the promoters of L. sativa’s
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Germacrene A Synthase 1 and 2, showing that these genes are
expressed in parenchyma cells adjacent to laticifers (Kwon et
al. 2022a).

The group’s research on natural rubber biosynthesis in-
cludes works with Parthenium argentatum (guayule) and L.
sativa, from which they identified and characterized cis-
prenyltransferases (CPT) and CPT binding proteins (Lakusta
et al. 2019; Barnes et al. 2021). In L. sativa, they show that
CPT binding protein 2 (LsCBP2, previously named CPTL2) teth-
ers CPT3 to the endoplasmic reticulum and synthesize cis-
polyisoprenes in vitro (Qu et al. 2015b). Additionally, they
identified the promoter region of these genes responsible for

Genome 68: 1-23 (2025) | dx.doi.org/10.1139/gen-2024-0099




Genome Downloaded from cdnsciencepub.com by Univ Québec a Trois-Riviéres on 05/28/25

their laticifer-specific expression (Barnes et al. 2021). Lastly,
by expressing CPT3 from P. argentatum and Solidago canadensis
(goldenrod) in natural rubber-deficient lettuce, they showed
that these proteins can synthesize better quality natural rub-
ber in the heterologous cell context, suggesting the quality
of this compound is not dependent on CPT alone (Kwon et al.
2023).

In addition to the terpenoid pathway elucidation in planta,
Pr. Ro has made important advances in the metabolic engi-
neering of yeast as a platform to produce SMs during his grad-
uate studies, and as a group leader or a collaborator. For in-
stance, he succeeded in enhancing the carbon flux in meval-
onate pathway through the expression of acetyl-CoA syn-
thetase variant from Salmonella enterica with the aim of pro-
ducing amorphadiene, precursor of the high-value sesquiter-
pene artemesin (Shiba et al. 2007). Pr. Ro’s group designed
modular multiplex genome-edit-CRISPR platform to enhance
feruloyl-CoA pathway in the aim of producing curcumin and
other alkaloids in yeast (Utomo et al. 2024). Finally, his team’s
achievements in planta include works in Nicotiana benthami-
ana (a tobacco relative), and pea plants. In N. benthamiana, his
group was able to increase the yield of sesqui- and triterpenes
(e-bisabolol, amorphadiene, valerenadiene and g-amyrin) in
tobacco (Lee et al. 2019). This was achieved by discovering en-
zyme crosstalk and using push-pull strategies between dif-
ferent pathways. They recently targeted the pea plant gene
B-amyrin synthase with CRISPR/Cas9 system to obtain saponin-
free pea products, which are less bitter (Hodgins et al. 2024).

3.2. Soheil Mahmoud

An associate professor at UBC, Pr. Soheil Mahmoud has
worked in the elucidation of monoterpene metabolism.
From the transcriptome of Coriandrum sativum (coriander),
his group identified and then characterized two monoter-
pene synthases, S-linalool synthase, and y-terpinene synthase
(Galata et al. 2014). Nevertheless, his research focuses on the
biosynthesis of Lavandula spp. (lavender) essential oils. His
efforts led to the publication of a draft genome for L. an-
gustifolia, the first sequenced genome in the genus (Malli et
al. 2019). He has used gene expression techniques, includ-
ing expressed sequence tags, microarray, and RNA sequenc-
ing to identify and characterize terpene synthases in Lavan-
dula spp. These include L. angustifolia B-phellandrene syn-
thase (Demissie et al. 2011), borneol dehydrogenase, an en-
zyme in camphor biosynthesis pathway (Sarker et al. 2012),
1,8-cineole synthase (LiCINS) (Demissie et al. 2012), 9-epi-
(E)-caryophyllene synthase (Sarker et al. 2013), lavandulyl
diphosphate synthase (Demissie et al. 2013), two BAHD acyl-
transferases (Sarker and Mahmoud 2015), 3-carene synthase
(Adal et al. 2017), S-linalool synthase (LiLINS) (Adal et al. 2019),
geranyl diphosphate synthase, geranylgeranyl diphosphate
synthase and farnesyl diphosphate synthase (Adal and Mah-
moud 2020), and (+)-bornyl diphosphate synthase (Adal et al.
2023) from L. x intermedia. The team also identified and char-
acterized several transcription factors from this hybrid that
associate with the promoters of LiLINS and/or LiCINS (Sarker
et al. 2019).
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3.3. Jorg Bohlmann

Pr. Jorg Bohlmann started to investigate TPS while he
was at the Max Planck Institute for Chemical Ecology in
Germany, where he analyzed the expression profile of a
Nicotiana attenuata gene encoding for a 5-epi-aristolochene
synthase (an enzyme involved in capsidiol biosynthesis)
(Bohlmann et al. 2002). He also identified and character-
ized a TPS from Arabidopsis thaliana (Bohlmann et al. 2000)
that synthesizes myrcene, as well as (E)-8-ocimene. At UBC,
his group performed in silico analysis of predicted TPSs
from A. thaliana (Aubourg et al. 2002) and later character-
ized a (E}-B-ocimene synthase from this species (Faldt et al.
2003a).

Subsequent works of his group focused on terpene synthe-
sis in gymnosperms. In addition to understanding the role of
terpenes in conifer defense against pathogens and pests and
how this response is affected by methyl jasmonate (Faldt et al.
2003b; Huber et al. 2005; Miller et al. 2005; Ro and Bohlmann
2006; Zulak et al. 2009, 2010; Hall et al. 2011b), they identi-
fied many genes and functionally characterized TPSs in Pseu-
dotsuga menziesii (Douglas fir) (Huber et al. 2005), Pinus taeda
(loblolly pine) (Ro and Bohlmann 2006), Picea abies (Norway
spruce) (Faldt et al. 2003b; Martin et al. 2004; Keeling et al.
2011a), Picea glauca (white spruce) (Keeling et al. 2010), Abies
balsamea (balsam fir) (Zerbe et al. 2012), and Picea sitchensis
(Sitka spruce) (Hamberger et al. 2011; Roach et al. 2014). In
a single study, his group identified and functionally charac-
terized 15 monoterpene synthases from spruce, including 4
sesquiterpene synthases and 2 diterpene synthases of Sitka
spruce, white spruce, and hybrid white spruce (Keeling et
al. 2011b). They also characterized and performed evolution-
ary studies of cytochrome P450s involved in diterpene resin
acid biosynthesis in different conifers, including enzymes of
the CYP720B, CYP750B, and CYP76AA subfamilies (Ro and
Bohlmann 2006; Hamberger et al. 2011; Gesell et al. 2015;
Geisler et al. 2016).

Along with his work on conifers, Pr. Bohlmann's team also
worked with angiosperms, characterizing (-)-germacrene D
synthase from Populus trichocarpa x deltoides (hybrid poplar)
(Arimura et al. 2004); characterizing TPSs from Vitis vinifera
(grape) (Martin et al. 2010) and evaluating the relationship
between wine aroma and terpene biosynthesis (Martin and
Bohlmann 2004; Martin et al. 2009, 2012); identifying and
characterizing CYPs that synthesize sesquiterpenols of San-
talum album (sandalwood) oil (Celedon et al. 2016; Diaz-Chavez
et al. 2013); and identifying and characterizing TPSs from
C. sativa (Booth et al. 2017, 2020). Pr. Bohlmann also con-
tributed to plant synthetic biology through the identification
of cannabinoid glycosides and participating in reconstruc-
tion of pathways in yeast and N. benthamiana (Giilck et al.
2020).

Finally, his group elucidated the biosynthesis pathway of
MontbretinA, identifying and characterizing several UDP-
dependent glycosyltransferases, BAHD-acyltransferases, 4-
coumaroyl-CoA ligases, and acyl activating enzyme (Irmisch
et al. 2018, 2019, 2020; Sunstrum et al. 2021). They finally
reconstructed the whole pathway in N. benthamiana (Irmisch
et al. 2020).



Genome Downloaded from cdnsciencepub.com by Univ Québec a Trois-Riviéres on 05/28/25

‘Canadian Science Publishing

3.4. Tariq A. Akhtar

Pr. Tariq Akhtar is an associate professor at University of
Guelph, where he investigates plant metabolism. His work
with specialized metabolism started with Pr. Eran Pichersky
(University of Michigan) on the identification of the tomato
CPT gene family (Akhtar et al. 2013). The investigation of
polyprenols led to the characterization of CPT from tomato
and A. thaliana, both located in the chloroplast stroma, which
elongate geranylgeranyl diphosphate (Akhtar et al. 2017; Van
Gelder et al. 2018). Furthermore, they showed that the biosyn-
thesis of the polyprenol dolichol requires a CPT and an acces-
sory protein which localizes in the ER and Golgi system in
tomato (Brasher et al. 2015) and reconstructed the pathway
in N. benthamiana (Van Gelder et al. 2021).

His group expanded on his initial work with Pr. Picher-
sky on veratrole biosynthesis in Silene latifolia (white cham-
pion) (Akhtar and Pichersky 2013; Gupta et al. 2012), show-
ing that salicylic acid is catabolized into veratrole white
champion, with catechol and guaiacol as intermediates
(Van Gelder et al. 2020). Finally, his team also proposed
the biosynthetic pathway of bibenzyls and cannflavins A
and B in C. sativa (Boddington et al. 2022; Rea et al
2019), along with the identification of the enzymes of both
pathways.

3.5. Valerie CA Ward

Pr. Valerie CA Ward is an assistant professor at the Univer-
sity of Waterloo at the Chemical Engineering Department.
She works on metabolic engineering of microorganisms
for isoprenoid production (Edgar et al. 2021) and finding
efficient process for high yield extraction from wet biomass.
Dr Ward’s team bioengineered E. coli to produce astaxan-
thin, expressing genes from the pg-carotene pathway of
the gram-negative bacteria Pantoea agglomerans and genes
from the plant Adonis aestivalis (summer pheasant’s eye)
encoding for p-carotene hydroxylase and ketolase (Roth
and Ward 2023). Dr Ward, in collaboration with Pr. Gre-
gory Stephanopoulos from the Massachusetts Institute of
Technology, has also worked with other organisms to pro-
duce fat-soluble isoprenoids, including the lipid-producing
yeast Yarrowia lipolytica (Stephanopoulos et al. 2019;
Edgar et al. 2021) and the microalga Chlorella vulgaris (Roushan
et al. 2023).

3.6. Reinhard Jetter

Though his main focus is on plant cuticle composition
and plant-insect interaction (Greer et al. 2007; Hegebarth
et al. 2017; Sun et al. 2020, 2021, 2023), it is important to
highlight Pr. Jetter’s (UBC) contributions in the triterpenoid
biosynthesis research. His group identified and characterized
two CYPs from Centella asiatica (Indian/Asiatic pennywort), in-
volved in the biosynthesis of the saponin asiaticoside (Kim et
al. 2018), as well as oxidosqualene cyclases from Ricinus com-
munis (castor bean) (Guhling et al. 2006), Kalanchoe daigremon-
tiana (mother of thousands) (Wang et al. 2010), Solanum lycop-
ersicum (tomato) (Wang et al. 2011), and Quercus suber (cork
oak) (Busta et al. 2020).

4. Investigating polyketides and
phenolic compounds

Phenolic compounds and polyketides have similar origins,
with acyl molecules, from acyl-coenzyme A substrates, as pre-
cursors. Phenolic compounds, such as phenolic acids and
lignans, are synthesized from the acetate-malonate or the
shikimate pathway, with malonyl-coenzyme A, erythrose 4-
phosphate, and phosphoenolpyruvate as primary metabo-
lite precursors (Babenko et al. 2019; de la Rosa et al. 2019;
Zagoskina et al. 2023). Meanwhile, polyketides, such as
cannabinoids and flavonoids, are formed through the exten-
sion of an initial acyl molecules (such as acetyl, malonyl,
and hexanoyl) by condensation of malonyl units by type III
polyketide synthase, followed by the cyclization of the result-
ing chain (Abe and Morita 2010; Lussier et al. 2012). In plants,
these compounds contribute to structure and defense, scav-
enging of reactive oxygen species, and attraction of pollina-
tors (Di Ferdinando et al. 2012; Dias et al. 2020; Juca et al
2020). With antioxidant and anti-inflammatory properties,
these metabolites are of interest in medicine for targeting
cancer, diabetes and other diseases (Al Jitan et al. 2018; Zhang
et al. 2018b).

From 1983 to 2021, more than 20 chalcone synthase (CHS)
genes had been characterized (Niu et al. 2021) and there have
been many efforts to understand their evolution and that of
CHS-like enzymes across the plant kingdom (Han et al. 2014;
Naake et al. 2021; Guo et al. 2022). We described below the
contributions of Pr. Dae-Yeon Suh’s team to our understand-
ing of polyketide synthase evolution and function in both
bryophytes and angiosperms (Fig. 4). On a different front,
the research on phytocannabinoid biosynthesis has included
transcriptomics of C. sativa, evaluating transcription factors
and stresses that regulate the production of cannabinoids
and other specialized metabolites (Braich et al. 2019; Jalali et
al. 2019; Zager et al. 2019; Apicella et al. 2022; Kim et al. 2022);
and population studies, which have identified several mark-
ers related to morphology and productivity, cannabinoid con-
tent (Adamek et al. 2023; de Ronne et al. 2024; Dehnavi et
al. 2025). This fundamental research is the basis for improv-
ing the production of the desired metabolites through breed-
ing efforts, gene silencing, or synthetic biology (Geissler et
al. 2018; Zirpel et al. 2018; Luo et al. 2019; Giilck et al. 2020;
Thomas et al. 2020; Matchett-Oates et al. 2021; Ma et al. 2022;
Awwad et al. 2023; Desgagné-Penix et al. 2023; Fantino et al.
2024). These studies were made possible by the pioneering
contributions of Pr. Page’s team on cannabis genomics, which
are described below (Fig. 4).

Canadian researchers have identified genes and enzymes
involved in the metabolism of phenolic compounds in crops
like beans and poplar, focusing on transcription factors con-
trolling their biosynthesis and catabolism. Global research
has similarly elucidated mechanisms driving phenolic com-
pound accumulation in these plants, including transcrip-
tomic and genomic studies identifying phenolic compound-
associated loci (Kosonen et al. 2012; Cho et al. 2016; James
et al. 2017; Perez de Souza et al. 2019; He et al. 2021; Bryant
et al. 2023; Campa et al. 2023; Celebioglu et al. 2023; Chen
et al. 2023; Li et al. 2023; Ma et al. 2023, 2024; Tian et al.
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Fig. 4. Polyketides and other phenolic compounds investigated in Canada, along with their precursors and plants that produce
them. Numbers in parenthesis indicate principal investigators working in the subject. (3.1) Dae-Yeon Suh; (3.2) Jonathan E. Page;
(3.3 and 3.4) Gale G. Bozzo and Sangeeta Dhaubhadel, respectively, who work on isoflavonoids and anthocyanins in beans; (3.5)
C. Peter Constabel; (3.7) Nikola Kovinich. Cannabis sativa’s drawing was done with Krita 5.2.9. Illustrations for Glycine max and
Phaseolus vulgaris were obtained from Vecteezy; Physcomitrium patens’s drawing was obtained from Lang et al. (2018). Populus
tremuloides’ photo was Wikimedia Commons (By I, Hugo.arg (CC BY-SA 3.0) https://commons.wikimedia.org/w/index.php?curi

d=2268194).
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2021; Tapia et al. 2024; Zhang et al. 2018a, 2023, 2024). For
detailed insights, readers are referred to comprehensive re-
views (Pourcel et al. 2007; Cheynier et al. 2013; Corso et al.
2020; Ma and Constabel 2021; Li et al. 2022q; Pratyusha and
Sarada 2022; Sunil and Shetty 2022; Islam and Dhaubhadel
2023; Trush and Pal’ove-Balang 2023).

This section discusses the efforts of Professors Gale Bozzo,
Sangeeta Dhaubhadel, and Mehran Dastmalchi on antho-
cyanin and flavonoid metabolism, and Professors C. Peter
Constabel and Nikola Kovinich on transcription factors in
polyphenol metabolism (Fig. 4).

4.1. Dae-Yeon Suh

Having previously worked on chalcone synthases with Pr.
Ushio Sankawa in Japan (Kojima et al. 2000; Okada et al.
2001; Suh et al. 2000a, 2000b, 2000c; Yamazaki et al. 2001),
Pr. Dae-Yeon Suh established his research team at Univer-
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sity of Regina, where they work on both bryophytes and
angiosperms and their CHS enzymes. His group performed
evolutionary studies on plant enzymes of the thiolase su-
perfamily and CHS family (Jiang et al. 2008), collaborated
with Pr. Sankawa in analysing the effects of mutating highly
conserved arginine residues in CHS (Fukuma et al. 2007)
and characterized a CHS from the spreading earthmoss (Phis-
comitrium patens) (Jiang et al. 2006). Later they used expressed
sequence tags from the bryophyte and identified a gene
encoding for Anther-Specific CHS-Like Enzyme, which was
shown to play a role in sporopollenin biosynthesis, like its
ortholog in arabidopsis, which is essential for reproduction
(Colpitts et al. 2011; Daku et al. 2016). They also character-
ized 2-oxoalkylresorcinol synthase in P. patens, an enzyme
proposed to be similar to ancestral type Il polyketide syn-
thases, showing that it plays a role in cuticle formation, and
therefore is necessary for resistance to dehydration (Kim et
al. 2013; Li et al. 2018; Aslam et al. 2022). His group has also
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performed genome-wide analysis of spreading earthmoss’
class III peroxidase gene family, with 49 members, and CHS
gene superfamily, with 17 putative members (Aparato et al.
2024; Koduri et al. 2010). While the CHS gene superfamily’s
expansion was proposed to be through segmental duplication
(Koduri et al. 2010), the group hypothesized that the expan-
sion of class Il peroxidase gene family was due to whole-
genome duplication (Aparato et al. 2024). Finally, another
CHS involved in sporopollenin biosynthesis that the group
characterized was Polyketide Synthase 1, from the angiosperm
St John’s wort’s (Hypericum perforatum), showing that the en-
zyme uses medium to very-long chain fatty acyl-coenzyme A
substrates to produce triketide and tetraketide alkylpyrones
and that, in nonanther tissues, it could be involved in the
biosynthesis of components of cell wall (Jepson et al. 2014).

4.2. Jonathan E. Page

A professor at the Department of Botany of UBC, Jonathan
E. Page, has carried out works on tobacco, Humulus lupu-
lus (hop) and Cannabis spp., investigating the biosynthesis of
alkaloids, flavonoids, and cannabinoids. In N. benthamiana,
his group analyzed expressed sequence tags from methyl-
jasmonate-treated roots, gene silencing, and gene overexpres-
sion to identify two basic Helix-Loop-Helix transcription fac-
tors acting as positive regulators of nicotine biosynthesis in
response to jasmonate (Todd et al. 2010). This work led to two
patents, one on the uses of N-methylputrescine (Page and Liu
2023), and the other on the transcription factors impacting
the production of alkaloids in this plant (Page and Todd 2023).
In hop, the group applied expressed sequence tags and tran-
scriptome sequencing for the identification of a methyltrans-
ferase that synthesizes xanthohumol (Nagel et al. 2008), and
of genes involved in branched-chain amino acid biosynthesis
and catabolism (Clark et al. 2013). Pr. Page’s team also filed
two patents on specialized metabolism of hops plants (Nagel
and Page 2010; Page et al. 2013).

Pr. Page’s team has contributed significantly to the
cannabinoid metabolism research, starting with the draft
genome and transcriptome assembly of C. sativa “Purple
Kush” in 2011 (van Bakel et al. 2011). Later, they generated a
genetic map of the species by crossing this strain with hemp
“Finola” strain, finding the genes cannabidiolic acid and
tetrahydrocannabinolic acid synthases (CBDAS and THCAS, re-
spectively) in a retrotransposon-rich region. Moreover, study-
ing strains of marijuana and hemp using genotyping-by-
sequencing, his group showed the greater heterozygosity in
hemp, and the differences in many loci, not only in the CB-
DAS|THCAS genes (Sawler et al. 2015). Finally, they identified
and characterized two acyl-activating enzymes able to syn-
thesize hexanoyl-CoA (Stout et al. 2012) and olivetolic acid
cyclase (Gagne et al. 2012) from expressed sequence tags ob-
tained from glandular trichomes of cannabis flowers, and
identified three transcription factors that regulate THCAS ex-
pression (Liu et al. 2021). Pr. Page has three patents related to
cannabinoid biosynthesis enzyme characterization (Page et
al. 2020; Page and Stout 2020; Page and Gagne 2024). These
patents were widely used by companies (including Intrexon,
Gingko Bioworks, Hyacinth, and Demetrix) or research insti-

10

tutes to produce cannabinoid compounds in vivo or in vitro
(Awwad et al. 2023).

4.3. Gale G. Bozzo

Pr. Gale G. Bozzo is an associate professor at the University
of Guelph interested in controlled atmosphere storage and
specialized metabolism, mainly phenylpropanoids. His work
with cranberry beans (Phaseolus vulgaris L.) showed that dark-
ening of seed coat postharvest was associated with increased
expression of proanthocyanidins biosynthesis genes, includ-
ing Anthocyanidin Reductase 1, which converts cyanidin to epi-
catechin and catechin (Freixas Coutin et al. 2017). With com-
mon beans, the team showed that expression of isoflavone
biosynthetic genes and concentration of isoflavones were
up-regulated in a line resistant to common bacterial blight
(caused by the bacterium Xanthomonas axonopodis), but not in
the susceptible line (Cox et al. 2021). In addition, they dis-
covered a -glucosidase from Arabidopsis (BGLU15) which ca-
tabolized flavonol rhamnosides in nitrogen-deprived plants
exposed to low temperatures (Roepke and Bozzo 2015),
and later they showed that flavonol rhamnosides are also
catabolised in radish stored in cold temperature and that this
could be associated with the activity of an e-rhamnosidase
(Unterlander et al. 2022).

4.4. Sangeeta Dhaubhadel

Pr. Sangeeta Dhaubhadel, a researcher at the Agricul-
ture and Agri-Food Canada and adjunct professor at the
University of Western Ontario, works on the metabolism
of phenylpropanoids, isoflavonoids, and anthocyanins in
legume species, including common bean and soybean (P. vul-
garis and Glycine max, respectively), along with her research
on soybean defense (Khatri et al. 2022; Scott et al. 2021,
2022). Her team showed that soybean embryos can synthe-
size isoflavonoids de novo (Dhaubhadel et al. 2003) and that
the genes encoding for chalcone synthases 7 and 8 are more
expressed in a cultivar that accumulates more isoflavonoids
(Dhaubhadel et al. 2003). Later, they identified the transcrip-
tion factor GmMYB176, which regulates the expression of
GmCS8 (Anguraj Vadivel et al. 2019; Yi et al. 2010), showing
that it interacts with 14-3-3 proteins, affecting its localization
in the cell (Li and Dhaubhadel 2012), and with GmbZIP5, in-
volved in isoflavonoid and phytoalexin metabolism and ac-
cumulation (Anguraj Vadivel et al. 2021). In another study,
they identified two genes encoding flavonoid-metabolizing
enzymes, flavonoid 3'-hydroxylase and dihydroflavonol 4-
reductase, which compete for substrates with isoflavonoid
biosynthesis pathway and were highly down-regulated in
isoflavonoid-rich cultivars (Dastmalchi et al. 2017). In addi-
tion, her group identified and characterized three soybean
genes encoding for cinnamate 4-hydroxylases (Khatri et al.
2023).

Similar to what was shown by Pr. Bozzo’s team (Freixas
Coutin et al. 2017), her team revealed a correlation between
the slow darkening of the seed coat of pinto beans, and the
decrease in biosynthesis and accumulation of proanthocyani-
dins (Duwadi et al. 2018). Later, they found that the vacuo-
lar transporter PmMATES is down-regulated in the slow dark-
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ening cultivar compared to the regular darkening cultivar,
and that there is possibly a feedback regulation between the
biosynthesis of proanthocyanidins and their accumulation in
the vacuole (Islam et al. 2022).

4.5. C. Peter Constabel

Pr. C. Peter Constabel, from University of Victoria, has
performed extensive research on poplar’s defense mecha-
nisms against herbivores and fungal pathogens. His group
evaluated the impact of wound and herbivory on the ex-
pression of a hybrid poplar polyphenol oxidase (Constabel
et al. 2000) and later showed, in Populus tremuloides (quak-
ing aspen), that this enzyme contributes to plant defense
by oxidizing catechol (Haruta et al. 2001). They also iden-
tified a UDP-glycosyltransferases, which co-expressed with
proanthocyanidin biosynthesis genes, able to glycosylate the
flavonols quercetin and kaempferol (Veljanovski and Consta-
bel 2013) and a gene, encoding a dihydroflavonol reductase
whose induced expression by herbivory led to increased accu-
mulation of condensed tannins (Peters and Constabel 2002).
Moreover, Pr. Constabel’s team identified several MYB tran-
scription factors that regulate proanthocyanidin biosynthe-
sis genes, among others such as shikimate pathway genes,
including the activators MYB134 (Mellway et al. 2009), which
was shown to act mainly in the leaves (Gourlay et al. 2020),
MYB115 (James et al. 2017; Liu et al. 2023), MYB117 (Ma et
al. 2021), and the repressors MYB182 (Yoshida et al. 2015),
MYB165 and MYB194 (Ma et al. 2018). His group also showed
that the apple transcription factor MYB9 has a similar func-
tion to poplar’s MYB134 (Gesell et al. 2014).

Besides his work on flavonoids, he also works on salici-
noids, which are phenolic glycosides of the Salicaceae fam-
ily. The team characterized several enzymes involved in the
biosynthesis of these metabolites, including: a salicyl ben-
zoate acyltransferase and a benzyl benzoate acyltransferase
(Chedgy et al. 2015); two UDP-glycosyltransferases involved
in the synthesis of salicortin, tremulacin, tremuloidin, and
salicin (Fellenberg et al. 2020); and a sulfotransferase that is
able to synthesize these newly identified sulfated salicinoids
(Lackus et al. 2020).

4.6. Mehran Dastmalchi

Pr. Mehran Dastmalchi previously worked with Pr.
Sangeeta Dhaubhadel on bean flavonoids (Dastmalchi
and Dhaubhadel 2015; Dastmalchi et al. 2019a), with Pr.
Vincenzo de Luca on Catharanthus metabolites, and Pr. Peter
J- Facchini on BIA metabolism (Morris et al. 2016; Dastmalchi
et al. 2018, 2019a, 2019b). After opening his own laboratory
at McGill University focusing on isoflavonoids biosynthesis
in Fabaceae and Apocyanaceae, he published several reviews on
his expertise on plant specialized metabolism (Dastmalchi
2020a, 2020b, 2021a, 2021b). Furthermore, his team showed
that the accumulation of the alkaloid akuammicine (a weak
opioid agonist and potential anti-diabetic drug) can be
increased in C. roseus using methyljasmonate, and that nat-
urally formed lesions in a mutant had more of this alkaloid
(Li et al. 2022b). Pr. Dastmalchi’s team also identified and
characterized a transporter Multidrug And Toxic compound
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Extrusion 1, which imports secologanin (a key intermediate
in the synthesis of MIAs) into the vacuole, and revealed that
in its absence this monoterpenoid is reduced to secologanol
in C. roseus (Li et al. 2024).

4.7. Nikola Kovinich

Nikola Kovinich was appointed assistant professor at York
University in 2019, where he works on soybean responses
to biotic stress. Specifically, Pr. Kovinich is interested in un-
derstanding how biotic stresses affect soybean’s metabolism
(Yousefi-Taemeh et al. 2021) and the regulation of phytoalexin
biosynthesis mediated by MYB and NAC transcription factors
(Farrell et al. 2017; Kovinich and Durkin 2018; Jahan and
Kovinich 2019; Jahan et al. 2020; Lin et al. 2023b). In addition,
Pr. Kovinich has broadened his research on plant metabolites
to include the semi-synthesis of anticancer natural products
using soybean seed coats (Gary et al. 2018) and he has con-
tributed with methods for genetic transformation of soybean
(Lin et al. 2023a) and cannabis (Ahmed et al. 2021).

5. Biofoundries and incubators

In addition to the uplisted research teams, Canada is home
to two biofoundries: Centre for Applied Synthetic Biology
(Concordia Genome Foundry) and the BioFoundry at UBC.
Both offer metabolic and enzyme engineering incubators in
an academic environment to achieve more sustainable and
profitable pharmaceutical production of molecules of inter-
est. Concordia Genome Foundry allowed companies to use
high-throughput genomic techniques and develop metabolic
engineering host cells producing isoprenoids and cannabi-
noids (Keasling et al. 2007; Keasling et al. 2011).

The BioFoundry at UBC is led by Pr. Vikramaditya G. Ya-
dav, an Associate Professor in the Department of Chemical
& Biological Engineering, and the School of Biomedical Engi-
neering UBC. The group collaborates with several companies
and works on enzyme optimization and drug development.
Among the fruits of these collaborations are innovations in
the synthesis of cannabinoids (Ayakar et al. 2020; Yadav et al.
2022).

6. Conclusion

Canada is a fertile environment for advancing plant
metabolomics and platforms to produce plant specialized
compounds due to active researchers and their previous men-
tors. These include one of the pioneers of the Canadian re-
search on plant specialized metabolism, Pr. G.H. Neil Towers
that mentored Pr. Ragai K. Ibrahim, who then trained Pr. Vin-
cenzo de Luca. Though this review focused on researchers
directly working on pathway elucidation and metabolic en-
gineering of plant specialized metabolites, many advances
have also been supported by interdisciplinary collaborations.
Researchers such as Pr. John T. Arnason (Binns et al. 2001),
Pr. Jiirgen Ehlting (Carrington et al. 2018; Adams et al. 2019;
Alber et al. 2019), Pr. Abdelali Hannoufa (Yu et al. 2007, 2008;
Bhinu et al. 2009; Ben-Abdallah et al. 2018; Carrington et al.
2018), and Pr. Charles Goulet (Bulot et al. 2022; Liscombe et
al. 2022), to name a few, have significantly advanced our un-
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derstanding of specialized metabolism and its applications
across various fields, including plant stress responses, ecolog-
ical interactions, and agricultural innovations.

Canadian research institutes are offering new insights into
plant biochemistry and synthetic biology every year. A pan-
Canadian research collaboration could allow major advances
in this field and help young researchers to obtain funding,
which would help Canada to retain talent of the new scien-
tific generation.
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