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ARTICLE INFO ABSTRACT
Keywords: Triazenes, or amino-substituted diazenes, are organic compounds containing three contiguous nitrogen atoms,
Diazene that have potent biological activities. We previously demonstrated that triazenes, particularly those substituted

Therapeutic compounds with a phenyl or 3-pyridyl ring at the 1-position and a 2-pyridyl ring at the 3-position, exhibit anti-DENV

ﬁitrigiz: properties. Here, we evaluated the antiviral activity against a betacoronavirus (HCoV-OC43) and a lentivirus
Functgional groups (HIV-1). 1-(4-trifluoromethylphenyl)-2-imidazole-1-yldiazene (21) exhibited broad-spectrum activity (ECso =
Lentiviridae 6.6-6.8 uM) but was cytotoxic to THP-1 cells. Pyridyl triazenes (14, 15) were the most potent against HCoV-
Coronaviridae 0C43, while 1-(4-methoxyphenyl)-2-morpholin-4-yldiazene (6) and 1-(4-methoxyphenyl)3-(-6-methylpyridin-
Docking 2-yDtriazene (10) inhibited HIV-1 the most. Structure-activity relationship analysis, supported by molecular

docking, indicated that para-methoxy groups favored interactions with viral enzyme binding pockets, enhancing
antiviral potency, while meta and para-trifluoromethyl groups were associated with reduced activity and
increased cytotoxicity. These findings support the further development of triazenes as antiviral scaffolds.

used in animals to prevent infections caused by various protozoa [3].

In vitro and in cellulo, triazenes have demonstrated antibacterial
[4-7], antimalarial [8], and antifungal activities [9,10]. Triazenes’
antibacterial properties have been associated with their ability to
chelate metal ions in the microorganism’s cell wall, impeding its syn-
thesis [11]. The anti-cancer, antifungal, and antiparasitic properties
were linked, instead, to their ability to form reactive methyldiazonium
cations, capable of alkylating nucleic acids and proteins [12,13]. Despite
the possible implications of triazenes’ ability to block DNA synthesis and
interact with RNA, their role in combating viral infections remains
underexplored.

Recently, we demonstrated that derivatives, including phenyl,

1. Triazenes as antiviral compounds

Triazenes, or amino-substituted diazenes, are a class of organic
compounds characterized by one double-bonded and two single-bonded
nitrogen atoms. This unique chemical structure contributes to the
versatility of their functions, including their use as anti-cancer drugs,
primarily through their ability to alkylate DNA [1,2]. Dacarbazine and
temozolomide are two FDA-approved antineoplastic examples of tri-
azenes used in chemotherapy. Their success in cancer treatment has
spurred further investigation into their biological activity in other areas
of medical research. For instance, diminazene is an antiparasitic drug
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List of abbreviations

DENV  Dengue virus
HCoV-0C43 Human coronavirus OC43

HIV-1 Human immunodeficiency virus type 1

RdRp RNA-dependent RNA polymerase

RT Reverse transcriptase

Pro Protease

mPre Main protease

NS2B/NS3 Nonstructural proteins 2B and 3 (DENV protease)

CCso concentration leading to 50 % of cell death

ECso concentration leading to 50 % reduction of virus-
infected cells

SAR Structure-activity relationship

THP-1  Tohoku Hospital Pediatrics-1, human monocytic
leukemia cell line

HCT-8 Human colon tumor (adenocarcinoma) cell line

Huh7 Human hepatocellular carcinoma cell line

NN inhibitor Non-nucleoside inhibitor

CF3 Trifluoromethyl group

OCH;3 Methoxy group

Br Bromine

Cl Chlorine

kcal/mol Kilocalories per mole

phenyl-pyridine, imidazolo, and pyridyl, could impede cell infection
with the dengue flavivirus [14]. Here, we explore the in silico and in
cellulo effects of triazenes on infection by representative viruses from the
betacoronavirus and lentivirus families, which continue to pose signif-
icant threats to global public health.

2. Structural classification of included triazenes

This study includes an analysis of the synthesized compounds
described by Ref. [14], as well as novel derivatives 1-(4-methox-
yphenyl)-2-morpholin-4-yldiazene (6), 1-(3-pyridyl)-3,3-diethyltriazene
(22), 1-(3-pyridyl)-3-phenylethyltriazene (26), 1-(8-quinolinyl)-3,
3-diethyltriazene (27), and 1-(3-pyridyl)-2-indolin-1-yldiazene (29)
(Table S1 and S2 and Supplementary Material and methods, Fig. S1-5).
Triazenes were synthesized in aqueous media (1-21) (Table S1) or
organic solvents (22-30) (Table S2). The compounds were grouped into
four clusters (I-IV) to facilitate comparison based on structural similar-
ities, specifically variations in the R groups attached to the triazene core
(Fig. 1). Structures incorporating an imidazole group (20, 21), morpho-
line (28), indole (29), and quinoline (27) were named by considering
these triazenes as amino-substituted diazenes.

Group I, 1-phenyl- and quinoline or morpholine-containing triazenes,
is comprised of 1-phenyl-3,3-diethyltriazene (1), 1-(4-methoxyphenyl)-
3,3-diethyltriazene (2), 1-(4-trifluoromethylphenyl)- 3,3-diethyltria-
zene (3), 1-(4-trifluoromethylphenyl)-3-propargyltriazene (4), 1-(4-
trifluoromethylphenyl)-2-(8-aminoquinolin-5-yl)diazene (5), and,
(6), characterized by a phenyl group attached to the triazene back-
bone (Fig. 1). (27) has a quinoline group attached to the triazene back-
bone instead.

Group II, 1-phenyl-3-pyridyl triazenes, includes 1-phenyl-3-pyridin-
2-yltriazene (7), 1-(o-tolyl)-3-pyridin-2-yltriazene (8), and other de-
rivatives with a phenyl group at position one and a pyridyl group at the
third nitrogen atom of the triazene backbone, such as 1-(4-methox-
yphenyl)-3-pyridin-2-yltriazene (9), 1-(4-methoxyphenyl)3-(-6-methyl-
pyridin-2-yDtriazene (10), 1-(4-bromophenyl)-3-pyridin-2-yltriazene
(11), 1-(4-chlorophenyl)-3-pyridin-2-yltriazene 12), 1-(4-tri-
fluoromethylphenyl)-3-pyridin-2-yltriazene (13), 1-(3-bromophenyl3-
pyridin-2-yltriazene (14), 1-(3-chlorophenyl)- 3-pyridin-2-yltriazene
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(15), 1-(3-trifluoromethylphenyl)- 3-pyridin-2-yltriazene (16), 1-
phenyl-3-pyridin-4-yltriazene (17), 1-(4-methoxyphenyl)-3-pyridin-4-
yltriazene (18), and 1-(4-trifluoromethylphenyl)-2-pyridin-4-amino-
diazene (19).

Group III, 1-phenyl-3-imidazole triazenes, includes two compounds,
1-(4-methoxyphenyl)-2-imidazole-1-yldiazene (20) and 1-(4-tri-
fluoromethylphenyl)-2-imidazole-1-yldiazene (21), both featuring a
phenyl group attached to first nitrogen of triazene backbone (position 7)
and an imidazole encompassing the third nitrogen atom of the triazene
backbone.

Group IV, pyridine-containing triazenes, comprises (22), 1-(3-pyr-
idyl)- 3-methyl-3-isopropyltriazene (23), 1-(3-pyridyl)-3-methyl-3-(2-
methoxy-ethyl)triazene (24), 1-(3-pyridyl)-3-methyl-3-phenyltriazene
(25), 1-(3-pyridyl)-3-phenylethyltriazene (26), 1-(3-pyridyl)-2-mor-
pholin-4-yldiazene (28), 1-(3-pyridyl)-2-indolin-1-yldiazene (29), 1-(3-
pyridyl)-2-tetrahydroquinolin-1-yldiazene (30), all featuring a meta-
substituted pyridine attached to the first nitrogen of the triazene back-
bone, with various functional groups attached to the third nitrogen atom
of the triazene backbone.

3. Antiviral and cytotoxic activity

Compounds were tested for antiviral and cytotoxic activity at con-
centrations ranging from 0.4 to 121.5 pM. Group I compounds did not
display significant anti-DENV activity (Table S3, [14]); however, (2)
showed toxicity towards hepatocarcinoma Huh?7 cells, while (6) and (5)
were cytotoxic to adenocarcinoma HCT-8 cells (CCsg = 12.8-12.9 pM;
Table 1, Fig. 2A, Fig. S6A). (2) was the only one to display a weak but
specific inhibition of HCoV-OC43 infection levels (ECso = 20.6 pM),
while (2), (6), and (27) blocked VSV-G-pseudotyped HIV-1 vector
replication at noncytotoxic concentrations.

(20) and (21), from Group III, were previously shown to exhibit anti-
flaviviral activity [14]. Here, (20) inhibited HCoV-OC43 with EC5¢ =
3.1 uM and CCsp = 71 pM (Fig. 2A-Table 1). (21) reduced HCoV-OC43
and HIV-1 infection levels with similar EC5y (6.6 and 6.8 pM, respec-
tively), but the compound was toxic to THP-1 cells (CCsp = 19.7 pM)
(Fig. S6A).

Among Group II (triazene scaffolds with phenyl and pyridine rings)
molecules, (7), (9), (10), (11), (14), (15), and (18) were shown to
dampen DENVgpp infection (Table S3, [14]), and many could also
inhibit HCoV-OC43 (Fig. 2B, and Table 1). The most potent compounds
against the betacoronavirus were (14) and (15) (ECsp = 0.8 pM and 1.2
pM, respectively), followed by (7) and (8) (ECsp = 3.8 uM and 3.9 pM),
and by (10), (12) and (17) (ECso = 8.3, 7.1, and 7.8 puM, respectively),
while (9), (11) and (18) displayed inhibition at higher concentration
(ECsp > 25 pM) (Table 1). In the case of HIV-1, (10) and (18) were the
most potent (ECsg = 5 pM). Overall, compounds that inhibited the
coronavirus also inhibited the flavivirus, while fewer were able to
reduce HIV-1 infection levels. Most derivatives were cytotoxic to hep-
atocarcinoma cells (Huh-7, Table S3), but they did not display toxicity
towards adenocarcinoma (HCT-8) and leukemic myeloid cells (THP-1),
except for compound (7), with CCsy = 21 pM towards HCT-8 (Fig. S6B).

In group IV, pyridine triazene derivatives (25) and (30) were pre-
viously shown to display anti-flaviviral activity [14]. Only (26) consis-
tently inhibited HCoV-OC43 infection (EC5¢ = 3.8 uM), while (22) and
(26) displayed weak to moderate lentiviral inhibition (ECso = 15.9 and
34.3 pM, respectively; Table S4, Fig. 2C, Fig. S6C).

4. Structure-activity relationship (SAR), insights from
functional groups and molecular docking

To identify SARs among diverse triazene derivatives, we analyzed
antiviral activity data in conjunction with molecular docking to key viral
enzymes (Table S4-6, Fig. S8). Among group I compounds, only (2) and
(6) exhibited specific anti-HIV-1 activity. They both featured a para-
methoxy (-OCH3) substituent on the phenyl ring. This electron-donating
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Fig. 1. Triazene structures groups based on their substitution patterns. The main chain of Group I is a phenyl group attached to the triazene backbone’s first nitrogen
(position 7). In Group II, a phenyl group is attached at position 7 and a pyridine group is present at the triazene backbone’s third nitrogen (position 9). In Group I, a
phenyl group is attached to position 7 and an imidazole group to position 9 of the triazene backbone. In Group IV, the main chain features a meta-pyridine at position
7 of the triazene backbone, while different R groups are present in position 9.

Table 1
Antiviral activity of triazene derivatives.
HCoV-0C43 HIV
ECso (pM) CCso (M) SI ECso (pM) CCso (M) SI
2 20.6 £ 0.5 >100 >4 13.9 + 49 n.d. >7
5 18.2+ 0.3 129 <1 >100 >100 n.a.
6 26.4 + 0.5 12.8 + 0.1 <1 81+5.1 92.3 +£10.9 11
27 >100 >100 n.a. 22.6 £ 14.2 90.8 £ 13.0 4
Group II 7 3.8+ 0.5 21.0 £5.7 6 >100 >100 n.a.
8 3.9+0.8 >100 >25 >100 >100 n.a.
9 25.4 £ 4.7 >100 >3 55.6 £ 1.1 >100 >1
10 8.3+ 04 >100 >12 51+22 >100 >19
11 39.1 £ 0.4 >100 >2 >100 >100 n.a.
12 7.1+0.3 >100 >14 >100 >100 n.a.
14 0.8+ 0.4 >100 >125 >100 >100 n.a.
15 1.2+1.2 >100 >83 >100 >100 n.a.
17 7.8+19 >100 >12 >100 >100 n.a.
18 30.1+1.4 >100 >3 5.2 + 3.0 >100 >19
Group III 20 3.1+0.1 70.7 £ 11.0 23 n.t. n.t. n.a.
21 6.6 +£2.0 >100 >15 6.8+19 19.7 £ 15.5 >2
Group IV 22 >100 >100 n.a. 159 + 5.8 >100 >6
25 >100 >100 n.a. 64.9 £ 2.1 >100 >1
26 3.8+ 0.8 >100 >26 343+ 3.7 >100 >2
28 >100 >100 n.a. 55.0 £ 10.1 >100 >1
29 >100 >100 n.a. 29.5 + 0.9 >100 n.a.
30 >100 >100 n.a. 57+04 >100 n.a.

>100 means that activity was not detected at the highest concentration tested, n.t. not tested, n.a. not applicable. The ECs and CCs, values specific to 0C43 and HIV-1
of compounds (1), (3), (4), (13), (16), (19), (23), and (24) were all greater than 100 uM; therefore, they were excluded from the table.
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Fig. 2. Antiviral properties of triazene derivatives. HCT-8 cells and THP-1 cells were treated with Group I and III (A), Group II (B), and Group IV (C) triazenes.
Cells were either infected with OC43 or with HIV-1. Infection levels (% GFP-positive cells) were determined by flow cytometry.

group could promote target binding, possibly through hydrogen
bonding with active site residues, as observed with Asp29 and Asp30 in
the HIV-1 protease active site (Table S6), or enhance compound solu-
bility. By contrast, the presence of trifluoromethyl (CF3), a powerful
electron-withdrawing group, at the same position reduced antiviral ac-
tivity in (3), (4), and (5), possibly due to unfavorable electronic or steric
effects. The quinoline scaffold of compound (27) also conferred anti-
HIV-1 activity, consistent with known quinoline-based antivirals [15].
Within group I1I, the imidazole of 1-phenyl-3-imidazolium triazenes
(20) and (21) displayed potent anti-HCoV-OC43 activity. Docking re-
sults suggested that the imidazole participated in salt-bridge and
hydrogen-bond interactions with key substrate recognition site residues
in HCoV-OC43 protease (Fig. S8), consistent with the prediction of its
involvement in compounds inhibiting SARS-CoV-2 M’™ in recent
computational studies [16]. The imidazole group was also predicted to
form favorable interactions with catalytic Asp residues involved in RNA
template positioning and Mg?" coordination in the DENV and
HCoV-0C43 RdRp active sites (Fig. S7 and S8, Table S4 and S5) [17,18].
Our results suggest that this group could confer broad antiviral activity.
Replacing the O-CHs (20) with CF3 in (21) at the para position of the
phenyl ring maintained (HCoV-OC43) or increased antiviral activity and
conferred toxicity to THP-1 leukemic cells. CF3 has been shown to
enhance the lipophilicity of molecules, thereby facilitating their ability

to cross cell membranes and access intracellular targets, which may lead
to increased anti-cancer effects [19].

By contrast, in the case of 1-phenyl-3-pyridyl triazenes (group II),
inactive compounds, i.e. (13), (16), and (19), all contained a CF3 group
at the meta or para position of the phenyl ring, suggesting that it could
cause steric hindrance or alter electrostatic interactions at target sites
[20]. Triazenes with para-OCH3 groups, (10) and (18) with anti-HIV-1
activity docked within the non-nucleoside (NN) inhibitor (I) binding
pocket of RT, engaging in hydrophobic interactions with key residues
Tyr188 and Trp229, like (21), and known NNRTIs efavirenz and rilpi-
virine (Table S6, Fig. S8C) [21,22]. (14) and (15), which bear meta--
position halogens, exhibited the most potent anti-coronaviral activity in
cell-based assays. Blind docking placed these compounds near the RdRp
active site, where halogen groups enhanced hydrophobic packing and
helped orient the triazene scaffold toward catalytic residues involved in
de novo RNA initiation [23,24] (Fig. S8, and Table S4-5). Similar to most
triazenes, the docking scores and binding modes (involvement of
interaction with catalytic residues) were more specific towards the
RdRps or the RT than towards the viral proteases. (11) and (12), which
had these halogen groups at the para position, exhibited less activity,
confirming that the position-specific electronic or steric effects of the
substituents on the benzene ring affected the antiviral activity [25]. In
group IV, very few displayed antiviral properties, suggesting that the
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pyridine ring with a bulky hydrophobic tail in (23) and (24) may have
hindered target enzyme binding.

5. Conclusion

This study highlights the antiviral potential of triazene derivatives
against HCoV-OC43 and HIV-1. Several compounds, notably those with
para-methoxy and meta-halogen substitutions, showed specific antiviral
effects at non-cytotoxic concentrations. In contrast, trifluoromethyl
groups were associated with increased cytotoxicity and reduced efficacy
in most scaffolds. Docking analyses hinted that viral polymerases could
be the molecular targets of triazenes, but this remains to be character-
ized in future studies. This study positions triazenes as promising scaf-
folds for the development of antivirals with potential broad-spectrum
applications.
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