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Abstract: To achieve a more ecologically friendly energy transition by the year 2050 under the
European “green” accord, hydrogen has recently gained significant scientific interest due to its
efficiency as an energy carrier. This paper focuses on large-scale hydrogen production systems based
on marine renewable-energy-based wind turbines and tidal turbines. The paper reviews the different
technologies of hydrogen production using water electrolyzers, energy storage unit base hydrogen
vectors, and fuel cells (FC). The focus is on large-scale hydrogen production systems using marine
renewable energies. This study compares electrolyzers, energy storage units, and FC technologies,
with the main factors considered being cost, sustainability, and efficiency. Furthermore, a review of
aging models of electrolyzers and FCs based on electrical circuit models is drawn from the literature
and presented, including characterization methods of the model components and the parameters
extraction methods, using a dynamic current profile. In addition, industrial projects for producing
hydrogen from renewable energies that have already been completed or are now in progress are
examined. The paper is concluded through a summary of recent hydrogen production and energy
storage advances, as well as some applications. Perspectives on enhancing the sustainability and
efficiency of hydrogen production systems are also proposed and discussed. This paper provides a
review of behavioral aging models of electrolyzers and FCs when integrated into hydrogen production
systems, as this is crucial for their successful deployment in an ever-changing energy context. We
also review the EU’s potential for renewable energy analysis. In summary, this study provides
valuable information for research and industry stakeholders aiming to promote a sustainable and
environmentally friendly energy transition.

Keywords: hydrogen; electrolyzers; fuel cells; hydrogen storage; aging behaviour; renewable energy;
dynamic modeling

1. Introduction

In order to achieve the objective of a sustainable and more environmentally friendly
energy transition (reducing greenhouse gas) through the use of green energy sources to
decarbonize major industrial, transportation, and other sectors by 2050, the European
Green Deal has been proposed in Europe [1]. The progress of this initiative is divided into
two main phases: Phase 1, from now to 2030, involves the installation of at least 6 GW
of electrolyzers by 2024, and between 2025 and 2030, the installation of at least 40 GW
of electrolyzers, resulting in respective production capacities of around 1 Mt (megaton)
and around 10 Mt of renewable hydrogen [2]. Phase 2, spanning from 2030 to 2050, is
characterized by the large-scale deployment of technologies based on renewable hydrogen
in major sectors that are challenging to decarbonize, such as the petroleum, transportation,
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chemical, and other industries [2,3]. Currently, 95% of hydrogen production is obtained
by methane reforming or coal gasification, and this type of hydrogen is known as “gray
hydrogen” or “brown hydrogen” [4]. Hence, the current production of “green hydrogen”
represents only 5% of global production, with 4% and 1% being respectively obtained
through water electrolysis and biomass processes. One of the primary causes of this
low percentage of green hydrogen production is the excessively high cost of electrolysis
systems [4—-6].

To evaluate the feasibility of this long-term energy transition, analyses of the potential
of renewable energy sources (RESs) for renewable hydrogen production worldwide have
been conducted [7,8]. Countries and regions considered leaders in this field are Australia,
the European Union (EU), India, Canada, China, the Russian Federation, the United States of
America, South Korea, the Republic of South Africa, Japan, and the countries of Northern Africa.
In the EU, of the 109 regions associated with hydrogen production, 88 regions have an
excess potential for RES generation after covering their annual electricity demand in all
sectors and after covering this power demand and the demand for hydrogen production.
Eighty-four of the eighty-eight areas with an excess of renewable energy output have more
than 50% RES electricity potential [9]. However, the work developed in [10] has made
it possible to assess the energy requirements necessary for green hydrogen production
through electrolysis powered by RES in the EU and United Kingdom (UK) at a regional level,
taking into account the electricity consumption and existing hydrogen demand to replace
hydrogen produced from fossil energy sources. The European Network of Transmission
System Operators (ENTSO-E) Transparency Platform [11] has made it possible to collect open-
access information regarding the load and generation of renewable electricity for each RES
technology (solar, wind onshore/offshore, hydroelectricity, etc.) in the Europe Statistical
Office of the European Union (Eurostat); ref. [12] provides monthly data on electricity
production in Europe, and the necessary data for assessing the volume of hydrogen required
for the energy transition can be obtained from various sources, such as the European Chemical
Industry Database and data from refineries that consume hydrogen for chemical production,
which are geolocated in the Geographic Information System (GIS). The findings show that
the electricity consumption for the EU and UK amounted to 2939.6 TWh in 2019. The
equivalent amount of electricity required for electrolysis to produce hydrogen (including
that for ammonia production) is estimated at 290 TWh, resulting in a total electricity
demand of 3229.6 TWh. In contrast, the combined technical potential of wind, solar, and
hydroelectricity is thought to be over 10,000 TWh/year, of which 819.9 TWh was produced
in 2019 [10].

Figure 1 illustrates the overall hydrogen production system and integrated applica-
tions. Genovese et al. [3] presented power-to-hydrogen and hydrogen-to-X systems for
the European industry, examining various water electrolysis technologies that facilitate
renewable hydrogen production from RESs, with a particular focus on PEM electrolysis.
They also addressed topics such as hydrogen storage and transport, highlighting the current
state of the hydrogen industry in relation to the energy transition (system limitations and
costs). This study identifies different areas requiring improvements, to ensure a constant
progression of knowledge and understanding of the limits and capabilities of hydrogen
technologies in various applications. Yue et al. [13] presented an overview of hydrogen-
powered energy systems, highlighting the role of hydrogen technologies (electrolyzers,
fuel cells, and storage) in the energy transition. They analyzed the current state of progress
in applying these technologies based on cost, consumption, efficiency, and sustainability
criteria. A technical-economic analysis was conducted to determine the prospects for these
technologies, aiming to reduce costs while ensuring system efficiency and sustainability.
Meng et al. [14] have established an energy management strategy that takes into account
the parameters and operation of each equipment in the power-to-hydrogen and hydrogen-
to-power system. They performed static modeling of the electrolyzer, fuel cell, compressor,
and hydrogen storage in the Matlab/Simulink environment, to optimize the use of wind en-
ergy through electricity-hydrogen-electricity conversion. An economic study of hydrogen
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Various technologies for electrolyzers and FCs are presented. Behavioral aging mod-
els of the electrolyzers and FCs are presented in Section 2. Section 3 presents the various
hydrogen storage units integrated into the hydrogen production system. An overview of
hydrogen applications in the EU is presented in Section 4, highlighting remarkable pro-
jects that have already been completed or are currently underway. Finally, the conclusitf 23
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resu

2.1.2. Proton Exchange Membrane Electrolyzer (PEMEL)

This electrolyzer technology was first introduced in 1960, to overcome certain problems
encountered in AEL systems [27]. PEMEL systems are based on the concept of water
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Table 1. Characteristics of different water electrolysis technologies. Adapted from [31,32].

Electrolyzers

Characteristics

Alkaline

PEM

SOEL

Anode reaction

20H™ — H, O+ 0.50; + 2e~

H,O — 2H™ +0.50; +2e~

0% = 050, +2e

Cathode reaction

2H,0 + 2e~ — Hy + 20H"

2H' +2e~ — H,

H,O+2e~ — H, + O*~

Opverall cell

H,O — H; 4+ 0.50;,

H,O — H; 4+ 0.50,

H,O — H; + 0.50,

Electrolyte Aq. KOH/NaOH Solid polymer electrolyte (PFSA) Yttria stabilized zirconia (YSZ)
Separator Asbestos/Zirfon/Ni Nafion Solid electrolyte YSZ
Electrode/Catalyst (hydrogen side) Nickel coated perforated Iridium oxide Ni/YSZ

stainless steel

Electrode/Catalyst (oxygen side)

Nickel coated perforated
stainless steel

Platinum carbon

Perovskites (LSCF, LSM) (La, Sr,
Co, FE) (La, Sr, Mn)

Gas diffusion layer

Nickel mesh

Titanium carbon cloth

Nickel mesh/foam

Stainless steel /Nickel-coated

Platinum/Gold-coatedtitanium

Bipolar plates stainless steel or titanium Cobalt-coated stainless steel
Nominal current density (A/cm?) 0.2-0.8 1-2 0.3-1
Voltage range (limits) (V) 1.4-3 1.4-25 1.0-1.5
Operating temperature (°C) 30-90 20-100 650-1000
Cell pressure (bar) <30 <200 <20
Cell area (m?) <4 <0.13 <0.06
Production rate (m3/h) <1400 <400 <10
H; purity (%) 99.5-99.9998 99.9-99.9999 99.9
Efficiency (%) 50-78 50-83 89 (laboratory)
Lifetime (stark) (Kh) 60-120 60-100 8-20
Energy consumption ~ 5.55 ~ 5.40 ~ 3.80
Degradation (%/y) 0.25-1.50 0.5-2.50 3-50
Development status Mature Commercialized R&D
Capital costs (stark) minimum 1 MW (USD) 270/KW 400/KW 2000/KW
Capital costs (stark) minimum 10 MW (USD) 500-1000/KW 700-1400/KW Unknown
v Well—estahhshed technology v Commercialized technology
v Commercialized for . . .
) - P v Operates higher current v High working temperature,
industrial applications i . .
v Noble-metal-free densities v High efficiency,
Advantages v’ High purity of the gases V' No need for noble metal
electrocatalysts &1 P &
. Compact design catalyst
v Relatively low cost v Quick response
v Long-term stability P
v Limited current densities
v Crossover of the gases v Cost of the cell components v Limited stability,
Disadvantages v Highly concentrated (5 M v Noble metal electrocatalysts v Small cell area,
KOH) liquid electrolyte v Acidic electrolyte v Under development
v High energy consumption
v Hydrogen-powered
Large-scale hydrogen vehicles. .
Applicati production v Stationary applications i gr(:f:ne::;n fnergy
pplications v Energy storage v Integration of RES v Larg((e;-yscale e% ergy storage
v Stationary applications v Large-scale hydrogen
production

The characteristics mentioned in this table are not inherent to each technology, but rather what has been demon-
strated in the cited research.

According to Table 1, AEL and PEMEL are the two electrolyzer technologies that can
currently be exploited for large-scale hydrogen production. However, even though PEMEL
technology is more adapted for combination with renewable energies due to its good
dynamic responses, it has several drawbacks that prevent it from further development,
including the high investment costs associated with using noble metals and a short lifespan.
Nevertheless, according to [28], most experts predict that PEMEL systems will replace
AEL systems by 2030 due to the latter’s competitive costs and increased operational
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flexibility. This is because the majority of large-scale hydrogen production systems use
AEL technology. In addition, experts predict that unless SOEL systems reach a lifespan and
cost level comparable to AEL and PEMEL systems by 2030, they will remain preferable.
AEL technology continues to be the most economical method for hydrogen manufacturing
since it is the most developed, has the lowest investment cost, has a steady operation, and
offers a long lifespan.

2.1.5. Behavioral Aging Model of the Electrolyzer

During their operation, constant, dynamic, and rapid variations in current; voltage
peaks; temperature fluctuations; high pressures; the quality of water used in the electrolysis
process; and other factors contribute to the degradation of the components and the system.
These factors accelerate the aging process of the electrolyzer, which is typically characterized
by a significant decrease in efficiency [35,36]. The aim of this part of the work is to
review the state-of-the-art in behavioral models of alkaline and proton exchange membrane
electrolyzer aging.

Behavioral Aging Alkaline Electrolyzer

F. Gambou et al. [37] reviewed the modeling of AEL from the electrical domain per-
spective, as well as a modeling approach considering the temperature and mass fraction
of KOH or NaOH, as their performance is closely linked to the specific conductivity of
the electrolyte in aqueous solution. Static and dynamic tests were carried out on a 150 W
alkaline electrolyzer in the laboratory, and an electrical circuit model of a cell (Figure 4a)
was then proposed to describe the electrolyzer’s static and dynamic behavior. The authors
in [37] advise using techniques such as regression analysis to evaluate the model parameters
based on various circuit equations and experimental data when determining the equivalent
circuit parameters, because these parameters are influenced by a number of different factors
(pressure, temperature, and current). Ursua et al. [38] analyzed the steady-state and tran-
sient behaviors of a “zero-gap” design for a 5 kW AEL. In order to reproduce the behavior
of the electrolyzer, a static characterization (Figure 4b) and a dynamic characterization (EIS)
with a direct current admitting a 5% Ipc disturbance were used. These characterizations
have permitted the representation of the polarization curve using 16 empirical coefficients
and the determination of parameters such as resistances (linked to charge transfer and
electrolyte) as well as capacitances (linked to the double layer phenomenon), both at the
anode and cathode. A. Iribarren et al. [39], following a multi-physics approach, developed
a dynamic alkaline electrolyzer model in Matlab/Simulink, and validated it with empirical
data from [38]. This model incorporated a gas production model, a temperature model,
and an electrochemical model. S. E. Amireh et al. [40] evaluated respectively the influ-
ence of current ripples on the efficiency of an AEL during operation under variable load
conditions, as well as the efficiency of the power supply (six-pulse thyristor converter).
Electrochemical models in laboratory-scale, based on a semi-empirical approach, were
adopted for the electrolyzers developed. Electrochemical impedance spectroscopy (EIS)
and chronopotentiometry were used for characterization at the laboratory scale for two
industrial-scale electrolyzers (Lurgi electrolyzer and BTU Cottbus electrolyzer). The mod-
els for the industrial electrolyzers were built using altered voltage performance data and
ohmic resistances, because EIS is based on low amplitude currents. The capacitive contri-
bution was determined based on the electrode materials using data from experiments and
the literature.

Figure 4a,b shows the electrochemical behaviour of the electrolyzer. In Figure 4a, the
resistances R;, R¢, Ry, and R, correspond respectively to the contact resistances at the
anode and cathode, membrane resistance, and electrolyte resistance. The terms Cy; , and
Carp,and Vyep o r and Vi ¢, E represent the double-layer capacities at the anode and cathode,
as well as the potential associated with the charge transfer phenomenon. In Figure 4b,
resistances Rg, Re, Ry, and R, are symbolized by a singular Ry, E to represent the ohmic
voltage drop at the anode and cathode, while the rest remains unchanged.
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points to predict their behavior, limiting their applicability in certain operating conditions.
To ensure proper operation when connected to renewable energy sources, it is necessary to
establish models that account for behavioral aging both at the laboratory and industrial
scales for large-scale hydrogen production and controlled degradation of the PEMEL.

2.2. Fuel Cell Technologies

A fuel cell (FC) is an electrochemical conversion device that converts the chemical
energy of a fuel (hydrogen) into electrical energy, without producing gas emissions (advan-
tageous for the energy transition), noise, or vibrations, making it an ideal component for
many applications [47]. The first functional FC dates back to the 1800s, thanks to the work
of Sir William Grove. He duplicated the reverse process of electrolysis by combining hydro-
gen (Hjy) and oxygen (O;) to produce electricity through his experimental demonstration of
water electrolysis [48]. It was not until 1959, when this field of study advanced, that the
Englishman Francis Thomas Bacom presented the first completely functional FC [36,49].

Nowadays, fuel cells are fully commercialized and have found applications in several
fields, including transport, stationary, portable, energy cogeneration, and electric power
generation, with modules ranging from a few kWs to several MWs. Among the different FC
technologies, only six are used explicitly for electricity generation, and these are the ones
considered in this paper. These include proton exchange membrane fuel cells (PEMFCs),
solid-oxide fuel cells (SOFCs), alkaline fuel cells (AFCs), direct methanol fuel cells (DMFCs),
phosphoric acid fuel cells (PAFCs), and molten carbonate fuel cells (MCFCs) [50]. An FC
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The Gemini space program for the Apollo missions used AFC, with specifications
such as an extreme Pt load of 40 mg/cm?, an 85% by weight KOH concentration, and tem-
peratures exceeding 100 °C at a pressure of 3 bars applied to 93 cells distributed among 3
FCs connected in parallel, resulting in a 4.5 kW AFC [54]. These are some examples of the
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2.2.1. Alkaline Fuel Cell Technologies

Alkaline fuel cells (AFCs) typically run at low temperatures (between 23 and 70 °C)
with pure hydrogen serving as the fuel and pure oxygen acting as the oxidant [53]. They
employ a liquid solution of KOH or NaOH as the electrolyte. The anion exchange mem-
brane fuel cells (AEFCs), which make use of a solid polymer electrolyte, are another type
of alkaline fuel cell. Due to its high conductivity, potassium hydroxide (KOH) is the most
commonly utilized electrolyte in AFCs.

The oxidation reaction of hydrogen, which is supplied at the anode, is then aided by
these hydroxide ions as they diffuse into the electrolyte, producing water and electrons [54].
The main advantages of AFCs are their high efficiency, yields of up to 0.6, easier heat
management, quick start-up, higher activity, relatively low cost, and rapid reaction kinetics
for oxygen reduction. However, there are several disadvantages associated with this
technology. The corrosive nature of the liquid KOH electrolyte makes it challenging
to maintain a gas-tight seal between the anodic and cathodic gases. AFCs also have a
low tolerance for CO,, which is a chemical byproduct in the case of hydrocarbon fuels.
KOH absorbs CO,, which lowers the electrolyte’s conductivity and negatively affects
performance and efficiency [50,53].

The Gemini space program for the Apollo missions used AFC, with specifications
such as an extreme Pt load of 40 mg/cm?, an 85% by weight KOH concentration, and
temperatures exceeding 100 °C at a pressure of 3 bars applied to 93 cells distributed among
3 FCs connected in parallel, resulting in a 4.5 kW AFC [54]. These are some examples of
the application of AFC technologies in specific production facilities. Currently operating
companies supplying AFC solutions include the UK-based company AFC Energy and
GenCell Energy in Israel. While the former still supplies AFCs at the > 10 kW to > MW scale,
GenCell announced in 2018 a commercial system including a 4 kW AFC employing cracked
ammonia (99.5%) as a hydrogen source (Project Alkammonia) [54,55] for a stationary off-
grid power supply. AFC Energy is a leading partner, as all their standard configurations
have the cracked ammonia as a fuel option.

2.2.2. Direct Methanol Fuel Cells (DMFCs)

DMFCs are low-temperature FCs, operating between 60 and 130 °C, that directly use
a fuel other than hydrogen, unlike most other fuel cell technologies [50]. The electrode-
membrane assembly, which is the main element of this technology, is created and arranged
similarly to that of polymer electrolyte membrane fuel cells (PEMFCs), with the exception
that the byproducts of DMFC processes contain carbon dioxide. A polymer membrane
serves as the electrolyte in DMFCs, similar to how it does in PEMFCs. However, the method
is made simpler by eliminating fuel reformation, by taking hydrogen directly out of liquid
methanol [50,56]. An aqueous methanol solution is oxidized at the anode during DMFC
operation, producing carbon dioxide and protons. It then discharges CO, into the anode
structure. The protons generated at the anode pass through the solid polymer electrolyte
(Nafion), while the electrons produced flow from the anode to the cathode through the
external circuit. At the cathode, the electrons and protons combine with the oxidant (air or
oxygen) to produce water (reduction) [56,57].

DMEC:s offer efficiencies of around 40% at an operating temperature of 130 °C. This low
efficiency is attributed to the “methanol crossover”, which is the cause of non-productive
methanol consumption in the process [57]. DMFCs offer several advantages, such as
short start-up time, cost-effective use of methanol, ease of production, direct utilization
of methanol in the FC operation, high energy density, and ability to power small-scale
installations (<5 KW), mobile devices, and laptops. However, the main disadvantage
associated with this technology is its low efficiency, around 40%, making it the least
efficient among FC technologies. Additionally, the catalysts employed in DMFCs are based
on precious and expensive metals such as Pt and Ru [50,53].
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2.2.3. Phosphoric Acid Fuel Cells (PAFCs)

Phosphoric acid fuel cells (PAFCs) are intermediate-temperature (medium) FCs that
operate within a temperature range of 150 to 220 °C, utilizing a liquid phosphoric acid
electrolyte, H3PO4 [50,58]. The materials used in PAFCs include platinum or platinum-
ruthenium for the anode and platinum for the cathode. The energy efficiency of this
technology varies between 35% and 40%. However, when employed in energy cogeneration
applications, the efficiency can reach around 85% [59,60]. Mainly developed for small and
medium power station applications (50 KW to 11 MW), PAFCs have the advantage of a
simple structural design and lower sensitivity to CO poisoning and electrolyte volatility,
employing suitable cell construction materials and ensuring stable operating conditions.
Disadvantages include low power density and high material costs, due to the corrosive
nature of phosphoric acid [50,53,58,60].

2.2.4. Molten Carbonate Fuel Cells (MCFCs)

MCECs are classified as high-temperature fuel cells, operating from 550 °C to 700 °C.
Their electrolyte consists of molten carbonate salts, primarily lithium, potassium, or sodium
carbonates [53]. These fuel cells offer a high energy efficiency of approximately 60%, which
can reach up to 85% in hybrid cycles with cogeneration. Various fuel types can be utilized
in MCFCs, including hydrogen, natural gas with oxygen or carbon dioxide as oxidant, and
other hydrocarbons [51,53]. Due to their high operating temperature, MCFCs do not require
noble catalysts such as platinum. Nickel is commonly used as a catalyst, reducing material
costs and contributing to overall system profitability. The high operating temperature also
enables reforming processes, as MCFCs can be directly fueled by natural gas and obtain
the necessary hydrogen for the internal reaction. Disadvantages include extended start-up
time, corrosion, and electrolyte degradation. These fuel cells are suitable for stationary
power generation (providing outputs of between 0.1 and 2 MW) and in hybrid cogeneration
systems, to enhance energy efficiency [50,59,60].

2.2.5. Solid-Oxide Fuel Cells (SOECs)

SOFCs are high-temperature FCs with an operating temperature range of 600 °C
to 1000 °C. Their electrolyte is composed of solid ceramic material, specifically yttrium-
stabilized zirconia [53,61]. Because of the high operating temperature, the cathode’s mate-
rials must meet specific requirements for thermal stability, stable ionic conductivity, and
catalytic activity. Typically, lanthanum strontium manganite (LSM) and yttrium-stabilized
zirconia-nickel (Ni-YSZ) are used for the cathode and anode, respectively [36]. Thanks to
their flat or tubular design, this technology can achieve energy efficiencies of >60% and
even 85% in the case of cogeneration applications, by utilizing the excess heat generated
during the process. This technology assists the reforming process, enabling direct fuel
supply to the FC, similar to MCFCs.

It also offers the possibility of using several fuel types, such as natural gas, hydrogen,
propane, etc. These fuel cells have found applications in portable systems, stationary
power generation ranging from a few KWs to several MWs, and energy cogeneration
systems [50,53,60].

2.2.6. Proton Exchange Membrane Fuel Cells (PEMFCs)

Proton exchange membrane fuel cells (PEMFCs) come in two categories: low-temperature
PEMEFCs and high-temperature PEMFCs [62]. They differ in terms of membrane composition
and the materials used for the anode and cathode. In the case of low-temperature PEMFCs,
the membrane or electrolyte is in the form of a solid polymer, with an operating tempera-
ture of between 70 and 80 °C, porous carbon electrodes (an anode and cathode, composed
respectively of platinum or platinum-ruthenium and platinum) and a platinum catalyst. In
high-temperature PEM-FCs, the membrane is composed of phosphoric acid-doped polyben-
zimidazole (PBI), with an operating temperature of around 200 °C and electrodes made of
carbon-supported platinum-ruthenium.



Energies 2024, 17, 130

12 of 23

Compared to the low-temperature technology, the high-temperature PEMFCs are more
tolerant of carbon monoxide and facilitate the utilization of heat produced in combined
heat and power (CHP) cycles [60,63].

With energy efficiencies ranging from 40 to 60%, these FCs offer high power density, a
compact and simple structure, rapid startup capabilities, a wide power range from mWs
to KWs, and scalability. This technology is used in various applications across diverse
fields such as transport, aeronautics, stationary, power generation, etc. However, it also has
several drawbacks, such as the need for high-purity hydrogen fuel, slow oxygen reduction
kinetics, and high cost due to using platinum as a catalyst [50,53,63,64].

2.2.7. Characteristics of the Fuel Cell Technologies

Table 2 below summarizes the characteristics of the FCs that have been developed
in [53,65,66].

Table 2. Characteristics of the fuel cells investigated.

PEMFC AFC PAFC DMEC MCEFC SOFC

Anode reaction H, H; +20H" Hp; — 2H" 4 2e~ CH;0H + H,0 CO? +H, 0, +H,

— 2H" +2e” — HyO +2e” — CO, + 6H" +6e~ — H,O +2e” +CO; — HyO +2e”

Cathode reaction 050, +2H* 0.50, + H,0 050, + 2H* 1.50; + 6H* CO, +2¢~ 050, + 2~
+2e~ = H,O +2e” — 20H" +2e” — 3H0 +6e” — 3H,O +0.50, — CO;~ — 0y

. . Ni-YSZ compos-
Catalyst layer Pt Pt or Ni alloys Pt Pt/Ru Ni or Ni-based alloys ite/Strontium
metals
LSM
Liquid alkali
Solid polymer KOH water Liquid phosphoric Solid polymer carbonate .
Electrolyte used (Nafion) solution/ AEM ! acid membrane (Nafion) (LiCO3/NaCO5/ Solid YSZ
K>CO3)
H,, CO, CH,,

Fuel used Pure H, Pure H Pure H Pure CH;OH by €O, LT other e

ydrocarbons h
ydrocarbons

Operating temperature 80 °C 23-70 °C 180 °C >60 °C 550 — 700 °C 600-1000 °C

.- C 50-70% 60-70% 55% 20-30% 55% 60-65%
Efficiency
S 30-50% 62% 40% 10-25% 45-55% 55-60%

Energy density

(KWh/m?) 112.2-770 172.2-462.09 29.9-274 25-40

Power density (KW/m3)  4.2-35 4.2-19.25 0.8-1.9 ~ 0.6 ~ 1.0 1.05-1.7

Life span (h) >4000 >10,000 >50,000 >4500 8000 7000-8000

<1kW-1 MW 5kW-3 MW

Power range 1 W-500 kW 10 W-250 kW 50 kW-1 MW 0.1 W-1 kW (250 KW module (250 KW module

typical) typical)

Power cost (USD/KW)) <10,200 481-8000 3000 15-125 ~1800 3500-4200
Backup power, Submarines, Auxiliary power, Auxiliary power,
portable power, il Distributed El ic devi lectrical utili electrical utility,

Applicati distributed military, space istril L'1te ectronic devices electrical uti '1ty,' laree-scal

pplications is e ge-scale
. graft, backup generation (laptops and phones) large-scale distributed O
generation, . distributed
. power generation .
transportation generation

I Anion exchange membrane: C: cell, S: system/stack.

Based on an analysis of Table 2 results and the application environment (distributed
generation and transportation), it can be inferred that FC technologies such as PEFC, PAFC,
MEFC, and SOFC are especially well-suited to these particular domains. However, it is
evident that efficiency is still constrained at less than 80% from a system perspective. When
FCs are integrated into energy cogeneration systems, particularly those that operate at
elevated temperatures (PEFC, PAFC, MFC, and SOFC), optimal performances are attained.
The maximum efficiencies, however, are shown by AFC and SOFC, at 62% and 60%,
respectively. PEMFCs are distinguished economically by having lower costs compared
to other FCs, which have greater expenses. When considering sustainability in terms of
operating hours, most cells show durabilities greater than 4000 h, although this depends
on the specifics of the operation.
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Finally, because the hydrogen used by many FC technologies comes from RESs,
MCEFCs, which are good at producing large quantities of power, produce carbon dioxide
when reacting hydrogen with their molten carbonate electrolyte. Therefore, this technology
cannot be used, as the objective is to achieve carbon neutrality by 2050. However, unless a
CO; capture device—which can produce hydrogen (H;) through a transformation process
that can be reused in the system [67]—is integrated into MCFCs, the system will remain
bulky and tedious to model, and it will suffer from a significant increase in system costs.
PEMEFCs, SOFCs, and PAFCs are also suitable for large-scale electricity production. How-
ever, compared to PAFCs and SOFCs, PEMFCs have a high power density, high efficiency,
rapid response times, low weight, no corrosive fluid, adaptability to dynamic load vari-
ations, and wide power range (ease of scaling), making them a priority over SOFCs and
PAFCs [63,65].

2.2.8. Behavioral Aging Model of the Fuel Cells

For ensuring re-electrification through FCs for energy injection into the grid, PEMFCs
and SOFCs are best suited. However, these SOFCs undergo degradation during their
operation due to severe operating conditions, typically influenced by temperature, current
ripple, pressure, and others. The degradation mechanisms of each component of the SOFC
(anode, cathode, and electrolyte), the characterization techniques, and the durability have
been studied in a review by S. Zarabi Golkhatmi et al. [68]. SOFCs had the largest lifespan
and low manufacturing costs; however, beyond 1000 h of operation, a voltage loss in the
fuel cell and a substantial increase in its resistance were observed. To enhance performance
and durability, various electrochemical characterization tools (I-V measurement, EIS, and
calendar-life tests), structural characterizations, and chemical characterization techniques
(Raman spectroscopy, FT-IR, XRD, XPS, SIMS, TGA, DSC, dilatometry, and microscopy
techniques) have been developed. However, the complexity of this characterization process
hinders definitive conclusions regarding long-term durability and stability, as the need for
a standard for extrapolating the results obtained from laboratory-scale solid-oxide fuel cells
to those operating on an industrial scale remains a barrier to understanding their aging
process. Moreover, the high operating temperature of SOFCs poses challenges for their
integration into the electrical grid.

The PEMFC behavior description models based on electrical circuits are summarized
by M. Nabag et al. in their study [69]. They proposed a dynamic model of the FC based
on the Randles circuit to evaluate the effects of current harmonics on its efficiency and
durability. Through characterization conducted on a 12-cell stack, they demonstrate that
low-frequency ripple currents applied to the PEMFC over an extended characterization
period accelerate the aging of the FC due to cathodic flooding and membrane drying.
K. J. Runtz et al. [70], similar to [54], also established electrical circuit-based models of
PEMFCs. To assess the potential performance degradation of the cell when in passive mode,
passive models of the cell are also displayed in addition to dynamic models. Fardoun
et al. [71] evaluated the impact of current ripple and oxygen compression on a 1.2 kW
PEMEC (modeled by A. M. Dhirde et al. in [72]).

The FC characterization method based on EIS allowed impedance to be plotted in the
Nyquist plane, along with the evolution of FC parameters (resistances and double-layer
capacitances). The model was validated by comparing the measured curves with those
fitted using the Levenberge-Marquardet algorithm, which is a non-linear least-squares
fitting algorithm. The compressor, with its slow voltage dynamics resulting from a dynamic
current load profile imposed on the FC, was modeled and added to the FC model, thereby
improving the FC voltage response. T. Jarry et al. [73] evaluated the impact of high-
frequency current ripples on the degradation of a high-temperature PEMFC consisting
of four cells, through characterization tests such as polarization curve, EIS, and cyclic
voltammetry measurements over a period of 2600 h. Among these four cells, two cells
operated with a triangular current profile (dynamic model), while the other two cells
operated with a constant current (quasi-static model). The study demonstrated that high-
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frequency current ripple did not significantly affect the specific degradation of the FC
throughout the specific test period. Emmanuel et al. [74] analyzed the impact of the relative
humidity gradient and pressure gradient on PEMFC performance, using a model based on
the cell’s electrical circuit, I-V polarization curve characterization, and EIS, to observe the
cell behavior of the FC by extracting circuit parameters such as mass transfer resistance,
electrolyte resistance, and double-layer capacitance as a function of the current density
and relative pressure. The study demonstrated that high relative humidity at the anode
reduces membrane and electrolyte resistance due to higher water content in the membrane,
improving FC performance. Compared with the anode, high relative humidification at the
cathode improves cell performance at low current densities (reduced ohmic polarization).
On the other hand, the higher the pressure gradient in the anode-cathode direction (low
pressure at the anode, high pressure at the cathode), the better the cell’s performance in dry
conditions, and vice versa in the cathode-anode direction, regardless of the conditions (wet
or dry). K. Meng et al. [75] analyzed the impact of dynamic cycling on the degradation of
a PEMFC through characterization techniques such as polarization curve, EIS, and cyclic
voltammetry (CV) measurements. The results show that cell degradation accelerates with
increasing cyclic charging rates, mainly due to the lack of hydrogen and oxygen in the
charging process. Y. Zhai et al. [76] analyzed the impact of sulfur dioxide (SO;) on the
performance of a PEMFC. EIS and an electrical circuit model were used to observe the
effects of SO, on the electrochemical reactions at the cell cathode. The study revealed that
during the irreversible SO, poisoning phase, sharp increases in charge transfer resistance
and diffusion resistance were observed, leading to a decrease in FC performance.

Several studies have been conducted on the behavioral aging of PEMFC, using various
characterization methods (as summarized in [77]) to determine the impact of operating con-
ditions on FC degradation. Since EIS is a characterization method based on low-amplitude
currents, high-power PEMFC (approx. 500 kW) cannot be characterized using this method.
Therefore, the fuel cells studied in most of the literature are low-power or based on a few
cells. It is imperative to apply a scaling factor when comparing laboratory results to those of
large-scale operating fuel cells, and to then apply series-parallel associations to achieve the
system’s required power and operating voltage. Generally, most analyzed systems do not
consider the combined impact of different degradation factors. It is, therefore, imperative to
incorporate various effects that may accelerate fuel cell aging within the system, to further
improve its performance by controlling these parameters that accelerate their degradation.

3. Hydrogen Storage Units in Hydrogen Production Systems

Figure 6 illustrates different energy storage technologies. It can be observed that
energy storage technologies such as super-capacitors or flywheels are used to store a limited
amount of power quickly and deliver it quickly. In contrast, energy storage technologies
such as compressed air energy storage (CAES), pumping hydroelectric energy storage
(PHES), or hydrogen storage are used on a large scale [78]. Developing large-scale hydrogen
storage technologies will play an essential role in the energy transition. Different hydrogen
storage technologies include high-pressure compressed gas, cryogenic liquid at very low
temperatures, and solid-state and underground storage [13,79,80]. Figure 7 summarizes
the other hydrogen storage technologies. The choice of a specific technology depends
on factors such as the volume of storable hydrogen, duration, discharge rate, location,
and cost.

3.1. Compressed-Gas Hydrogen Storage

The most common method of storing hydrogen directly is to store it in gaseous form
at high pressure to reduce storage volume, since storage capacity is proportional to volume.
Due to its very low density of approximately 0.089 kg/m3, hydrogen needs to be stored
at high pressures. Currently, pressures of 25-35 MPa are used for storage (for fuel cell
applications) and transport, and they can reach 70 MPa [81,82]. However, as pressure
increases, this hydrogen compression process consumes excessive energy, leading to an
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3.3. Liquid Hydrogen Storage

In its liquid form, hydrogen has a much higher density, considerably increasing its vol-
umetric energy density. The density of liquid hydrogen reaches around 71 g/L at —253 °C,
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where its energy density is equal to 8 MJ/L-Hj [79,81]. Hydrogen is liquefied at —253 °C
(the boiling point of hydrogen) to be stored at low pressure in liquid form in tanks; its size is
reduced due to its higher density, which is 1.5 to 2 times greater than that of compressed hydro-
gen at high pressure. Liquefied hydrogen’s global installed storage capacity is approximately
355 tons per day (tpd). Furthermore, today’s largest liquefaction plant has a capacity of 34 tpd.
However, this hydrogen liquefaction process is very energy-intensive, requiring around 30 to
40% of the stored gas energy to be invested in the process, resulting in a considerable increase
in costs. The problem of vaporization of escaping hydrogen is estimated at a rate of 1.5 to 3%
per day, and the volume and weight of the tanks are also significant drawbacks of this system.
Currently, liquid hydrogen has not been widely commercialized and is primarily reserved for
special applications such as space travel [13,81-87].

3.4. Solid Hydrogen Storage

Storing hydrogen in solid form solves the problems encountered in storing hydrogen in
liquid form (evaporation and energy requirements) and gaseous form at high pressure (storage
capacity due to tank weight, cost of materials, and energy requirements). Hydrogen can be
combined physically or chemically with certain solid materials to store it in a solid state by
absorption or adsorption [13,81,88]. Absorption allows hydrogen to be stored directly in the mass
of the material to form hydrides (metallic, complex, and chemical hydrides). Metal hydrides
(Ni, Li, Na, Mg, B, Al, etc.), compared with complex hydrides (NaAlH,, NaBHj, LiAlH,, LiBHy,
Mg(AlH,),, LaNisHg, NH3BH3, NH3BHj3, etc.) and chemical hydrides (LiH, NaH, MgHo, etc.),
have attracted considerable interest, due to their excellent hydrogen storage capacities, including
a high degree of safety, reversibility of hydrogenation/dehydrogenation, volumetric energy
densities of hydrogen (about three times higher than liquid or gaseous storage), low-pressure
equipment, and low energy requirements for stationary applications [78,88,89]. Several studies
have been carried out in the literature in terms of dynamic modeling for static and dynamic
characterization [90,91]. For the large-scale storage of metal hydrides, efforts are needed to
reduce material costs, address the low mass density issue, improve hydrogen kinetics, and
enhance the thermal management of the system [13,88].

Physical adsorption, also known as physisorption, enables hydrogen to be stored by
adsorption, by exploiting the Van Der Waals bonds between molecular hydrogen and a
material with a large specific surface area. The materials most commonly used for hydrogen
storage by adsorption are porous carbon-based materials, metal-organic structures, porous
polymeric materials, and zeolites [13,79,89]. Despite their reversibility and rapid kinetics,
these materials have a low hydrogen storage capacity under ambient conditions, requiring
extremely low temperatures for high storage capacity. This constraint significantly limits
the practical use of these materials in various applications. The low hydrogen storage
capacity through adsorption hinders its commercialization [13,92].

In [93], an economic analysis was conducted on large-scale hydrogen storage processes.
The study provides a detailed economic analysis of the cost of hydrogen in one of the French
regions and the case of underground storage in France; it revealed that the cost of hydrogen
storage ranges from 4.5 EUR/kg to 6.6 EUR/kg H;, with underground mass storage
costs remaining below 5% of the overall costs. In [94], a technical and economic analysis
was conducted on large-scale hydrogen production facilities in five Canadian regions,
producing approximately 4000 to 40,000 kgH, /day, or around 10 to 100 MW. The study
also compared two hydrogen storage processes and analyzed the associated costs. Results
showed that existing underground salt caverns had a relatively lower investment cost of
USD 18.70/kgH, compared to metal tanks with an investment cost of USD 720/kgH, for
hydrogen storage. It was also noted that the cost of hydrogen storage units is influenced by
various factors, such as technological, operational, geographical, and economic factors.

For large-scale hydrogen storage, various storage technologies have been employed,
including hydrogen compression and liquefaction. However, these methods have limita-
tions in terms of storage volume and safety concerns, due to the highly flammable nature of
hydrogen gas. To address these issues, underground hydrogen storage is a viable option as
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it offers high storage volume and is well-suited for large-scale hydrogen storage. Another
interesting option is solid-state hydrogen storage, which directly stores hydrogen in chemi-
cal or physical form within solid materials that can absorb and release hydrogen reversibly.
This technology has several advantages, such as high storage capacity, improved safety,
and reduced tank weight, which can help solve the storage volume problems associated
with traditional storage methods.

4. Different Projects Realized or Currently Underway on Large-Scale
Hydrogen Production

This section identifies the currently operational or ongoing power-to-gas projects in
Europe, to analyze the technological development of renewable energy-based hydrogen
production systems. The PHOEBUS project was one of the first power-to-gas projects in
Europe (1993-2003), located in Jiilich, Germany. This project aimed to study hydrogen
storage as an energy carrier produced through electrolysis coupled with a photovoltaic
field [95]. Since then, several other projects have been carried out worldwide.

The GrInHy project aims to supply green hydrogen by electrolysis using renewable
electricity and to provide grid management services as a reversible generator at the Salzgit-
ter Flachstahl GmbH (Salzgitter, Germany) steelworks. A reversible solid-oxide electrolyzer
(RSOEL) was scaled up with 150 KWel electrolysis power and 30 KWel output power in
reversible mode (FC operation with hydrogen), respectively, using 25 KWel with natural
gas. After 5000 h of operation, the efficiency targeted by the project was 80% LHYV in
electrolyzer mode, which achieved 78% LHYV at a flow rate of 40 Nm?/h. In the fuel cell
mode fueled by natural gas, the prototype supplied electricity to the grid with an efficiency
of 50% LHYV. The system also showed a degradation rate of less than 1% /1000 h, which
made it possible to predict its long-term functionality. The project started on 1 March 2016
and was completed on 28 February 2019 for EUR 4,498,150 [96].

The ROBINSON project aims to decarbonize industrialized islands by developing an
integrated, intelligent, and cost-effective energy system that combines thermal, electrical,
and gas networks to optimize the use of local RESs. Through the development of a smart,
modular, and optimized energy management system (EMS), the project will integrate
existing and newly developed technologies, such as a micro-gas turbine for combined heat
and power generation, an anaerobic digester assisted by bio-electrochemical systems for
converting liquid waste into bio-methane, an innovative mobile wind turbine, a gasifier
for recycling biological waste, and hydrogen-related technologies (electrolyzer and storage
system). The studies took place in Eigeroy, with a total duration of 48 months starting
in 2020, and the European Union funds the budget of EUR 8.37 million. This integrated
system will ensure a reliable and cost-effective energy supply while contributing to the
decarbonization of European islands by helping to reduce CO, emissions [97,98].

The Jupiter 1000 project is France’s first power-to-gas project on the natural gas transmission
network. Located in Fos-sur-Mer, this project ensures the production of green hydrogen through
500 W PEMELs and AEL electrolyzers, both coupled with RES. The capture of CO, on the
chimneys of a nearby industrial plant also enables, after a methanation process, the production
of SNG (substitute natural gas) of renewable origin, which can be mixed with hydrogen and
then injected into the natural gas transport network. The project officially began in 2016 and
ended in 2019, with an investment cost of EUR 30.8 million partially funded by the FEDER
(European Regional Development Fund), the PACA region, and funds from the ADEME (French
Environment and Energy Management Agency) Future Investments Program. The plant is
designed to produce up to 25 Nm?3/h of synthetic methane or 200 Nm?/h of hydrogen, with an
average production of 5 GWh over three years [97,99].

Table 3 gives an overview of power-to-gas projects in Europe using only renewable
energy sources [100-102].
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Table 3. Power-to-gas project in the European Union (2000-2022).

P Type of
. Type of . rogress Renew-
Name of the Project Eleg?r)olyzer Country  Commissioning of t.he able Capacity (MW,)  Nm®H,/h Kt.Hy/y  Project Cost
Project Source
Power to Green H; .
Mallorca Phase 1 PEMEL Spain 2021 OP SE 25 423.27 0.33 _
Power to Green Hj
Mallorca (GREEN Other type Spain 2022 ucC SE 7.5 1666.67 1.30 EUR 50 M
HYSLAND) Phase 1
Leuchtturmprojekt
Power-to-Ga PEMEL Germany 2020 or Hydro 13 250.00 0.19 _
BadenWiirttemberg
eFarm (5 production WF
sites in Norwegian PEMEL Germany 2020 or (onshore) 1.125 226.35 0.17 EUR16 M
Freize) onshore
Wyhlen hydroelectric AEL Germany 2020 oP Hydro 1 217.39 0.17 _
power plant
Windgas Haurup, 2nd PEMEL Germany 2021 oP WE 1 192.31 0.15 _
phase (onshore)
Y argarda Bostader AEL Sweden 2019 oP SE 0.276 60.00 0.05 B
ousing complex
Wind to gas PEMEL Germany 2018 or WE 24 450.00 0.35 EUR45M
Brunsbiittel (onshore)
HyBALLANCE PEMEL Denmark 2018 OP (On‘;\{lf)re) 1.25 230.77 0.18 EUR15M
Wind gas Haurup, 1st PEMEL Germany 2018 or WE 0225 4327 0.03 _
phase (onshore)
WindGas WF
HamburgReitbrook PEMEL Germany 2015 or (onshore) 15 288.46 0.22 EUR13.5M
RH2 Grapzow, WE
Mecklenburg AEL Germany 2015 or (onshore) 1 200.00 0.16 _
Vorpommern
Don Quichote AEL Belgium 2015 opr (On‘:ﬁ)re) 0.3 60.00 0.05 EUoRé[%]M’
H2BER (Berlin airport) AEL Germany 2014 op (On‘sf‘}’ire) 05 100.00 0.08 ~
Uniper/E-ON WE
WindGas Falkenhagen AEL Germany 2013 or (onshore) 1 180.00 0.14 _
Hydrogen Pilot Project onshore
JazMove, Fraunhofer PEMEL  Germany 2013 op Hydro 0.04 7.79 001 _
Energiepark Mainz PEMEL Germany 2014 or (on‘;\l]'ll(:)re) 6 1153.85 0.90 _
gl\e/[e?eT)E'Agk‘Stm Other Greece 2021 op HP 0.025 5.56 0.00 EUR5.75 M
1Hy°ffwmd Zeebrugge, Other Belgium 2022 uc WE 1 22222 0.17 _
st phase (onshore)
Hystock PEMEL Netherlands 2019 or Hydro 1 220.00 0.17 _
(EnergyStock)
HAEOLUS PEMEL Norway 2022 OP (OH‘S/\{IEI‘S) 25 500.00 0.39 EUR78M
H2RES—Orsted Wind WF
farms (offshore) AEL Denmark 2022 uc (offshore) 2 43478 0.34
SALCOS—WindH2 PEMEL Germany 2021 or (on‘s/\}lllz)re) 25 450.00 0.35 EUR 30 M
PtG-Fehndorf Other Germany 2021 ucC (on‘s/\}]11(:)re) 2 44444 0.35 _
Alliander
Qosterwolde—solar AEL Netherlands 2022 or Hydro 14 304.35 0.24 _
park of GroenLeven
FIRS CNH2 AEL Spain 2015 op Hydro 0.06 13.04 001  EURI50M
Puertollano
Duwaal PEMEL Netherlands 2021 ucC (on‘s/\k]ll(:)re) 2 384.62 0.30 EUR11.8M
Hysolar Green on Other Netherlands 2022 uc Hydro 2 44444 0.35 _
Road—Nieuwegein
H2 Green Steel (H2GS) Other Sweden 2030 ucC HP 800 177,777.78 138.60 EUR15B
Steklarna Hrastnik
glass manufactuing Other Slovenia 2019 or Hydro 0.15 33.33 0.03 EUR 34 M
plant
Hydrogen Mill Other Netherlands 2022 ucC (on‘;\l]'l](:)re) 2 44444 0.35 _
SoHyCal PEMEL Spain 2022 ucC Hydro 7.5 1442.31 112 USD 3.6 M
Sirea—Castres site Other France 2021 or Hydro 0.43 95.56 0.07 _
Lhyfe offshore Other France 2022 uC WE 2 444.44 0.35 EUR 28 M
electrolyser (onshore)
Lighthouse Project
PtG AEL Germany 2020 ucC HP 1 217.39 0.17 EUR45M
BadenWuerttemberg

OP: operational; UC: under construction; SE: solar energy; WF: wind farm; Hydro: hydroelectricity; HP: hydro-
electric Power.
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It should be noted that most recent projects use PEMEL electrolyzers to produce
hydrogen. This is because PEMEL electrolyzers are more efficient in the face of variations
caused by energy fluctuations imposed by RES. However, the alkaline electrolyzer remains
a reliable and affordable technology in terms of cost and has a satisfactory service life,
which is why it is still widely used today.

5. Conclusions

Producing “green” hydrogen from renewable energy sources aims to decarbonize
significant sectors such as transportation, industry, natural gas networks, electricity pro-
duction, and more. Large-scale hydrogen generation systems are the main topic addressed
in this paper. Studies have been conducted to compare the primary technologies for large-
scale hydrogen production (electrolyzers), storage hydrogen, and re-electrification (FCs).
Improvements in terms of cost, efficiency, durability, and materials used in the design of this
equipment are needed to facilitate the broader integration of hydrogen as an energy carrier
and to contribute to an energy transition towards a more sustainable and environmentally
friendly hydrogen economy.

This paper has also examined behavioral aging models for alkaline, proton exchange
membrane electrolyzers, and PEMFC for power-to-gas systems using data from different
literature sources. Integrating these behavioral aging models into large-scale hydrogen
production systems enables more efficient and sustainable management of this equipment
by optimizing their utilization, extending their lifespan, and minimizing maintenance
costs. However, behavioral aging models for large-scale electrolyzers and fuel cell systems
are limited by the lack of experimental data and standards to extrapolate results from
laboratory tests on low-power components. Nevertheless, continuous efforts are being
made in the behavioral aging modeling of these systems at a larger scale to improve their
accuracy. To show hydrogen’s economic and technical potential as clean energy and to
support the transition to more sustainable energy systems, power-to-hydrogen projects
at the European scale were presented. The perspective of this work is to establish online
or offline energy management strategies that consider the operating conditions of the
electrolyzers and FCs, to improve the system’s durability and efficiency, by incorporating
the behavioral aging model of battery storage, power electronic converters for energy
control and management, and a comparative technical and economic study of hydrogen
production solutions.
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