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A B S T R A C T

To achieve the 8000-h proton exchange membrane fuel cell stack (PEM FCS) life target set by the U.S DoE and
promote fuel cell hybrid electric vehicles (FCHEVs) massive introduction in the automotive market, using multi-
fuel cell stack (MFCS) systems instead of single-fuel cell stack systems seems to be an interesting solution that
deserves to be explored. MFCS systems’ concept combines several small FCSs modules instead of using a single
high-powered FCS module. The modularity in such systems can be exploited through energy management to
improve their durability and extend their good energy-efficiency power range. However, FCSs’ multiplicity
makes it challenging to implement effective energy management strategies (EMSs). This paper proposes a
remaining useful life (RUL) prognostic-based EMS to extend MFCS systems’ lifetime while keeping their
hydrogen consumption reasonable. For this purpose, a prognostic algorithm is developed to predict PEM FCSs’
RUL in real-world automotive application scenarios. Then a rule-based EMS allocates the demand between stacks
using prognostic results. The proposed strategy’s performance is evaluated on a hybrid MFCS/battery system
using Matlab/Simulink’s environment. Simulation results show that implementing the proposed strategy instead
of conventional EMSs can extend MFCS systems’ lifetime by at least a factor of 2.35 while keeping their hydrogen
consumption reasonable. © 2001 Elsevier Science. All rights reserved.

1. Introduction

Using hydrogen through PEM FCSs as vehicle power sources is a
promising solution to decarbonize transportation [1,2]. However, their
low durability is a significant issue that hinders FCHEVs promotion [3,
4]. According to the U.S. Department of Energy (U.S. DoE), PEM FCSs’
lifetime, currently about 5000 h, must be increased to at least 8000 h to
promote FCHEVs massive introduction in the automotive market [5,6].
From this point of view, adopting the MFCS systems concept appears to
be an attractive solution. It should be noted that MFCS systems have
already been used in marine transport and aeronautics with the
U212A-class Todaro [7] and the four-seat H4Y aircraft [8] for example.
In fact, due to their high modularity, MFCS systems could offer more
degrees of freedom to EMSs to make energy management decisions that
can extend their lifetime, reduce their hydrogen consumption, and
improve their reliability [9–11]. MFCS systems concept advantages
could even go beyond these three criteria, by addressing the question of
cost from economies of scale’s angle.

The proof-of-concept of MFCS systems concerning the four criteria

(durability, energy efficiency, reliability, and cost) mentioned before
involves the implementation of efficient EMSs. Consequently, energy
management is the most addressed issue in the literature regarding
MFCS systems. MFCS systems’ EMSs that are proposed in the literature
can be divided into two categories: rule-based EMSs and optimization-
based EMSs. An optimization-based EMS and a rule-based EMS are
respectively proposed for MFCS systems in Refs. [12,13] to improve the
conventional Daisy-Chain strategy. Both strategies were found capable
of reducing MFCS systems’ hydrogen consumption respectively by 9.42
% and 7% compared to the basic Daisy-Chain EMS. However, the MFCS
systems’ lifetime has not been evaluated, so it cannot be concluded
whether these strategies improve MFCS systems’ durability or not.
Several other Rule-based EMSs [14,15] and optimization-based EMSs
[16–20] are designed to reduce MFCS systems’ hydrogen consumption
while durability consideration is suggested as a potential future work.
Even in research papers where FCSs’ degradation is considered in MFCS
systems energy management such as [21–26], the lifetime improvement
is not quantified.

The review of MFCS systems’ EMSs highlights the ability of most
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strategies to optimize MFCS systems’ hydrogen consumption. Further-
more, it shows that the literature lacks EMSs that are likely to enhance
MFCS systems’ lifetime. Therefore, this paper aims to contribute to
addressing this issue by proposing a health-conscious EMS for improving
MFCS systems’ durability.

FCS and MFCS systems’ health-conscious EMSs can be divided into
two categories: diagnostic-based EMSs and prognostic-based EMSs.

Prognostic-based EMSs are part of the Prognostic and Health Man-
agement (PHM) discipline [27], which consists of 7 modules: data
acquisition, data processing, condition assessment, diagnostics, prog-
nostics, decision-making, and human-machine interface. A detailed
description of each one of these modules can be found in Ref. [28].
Prognostic-based EMSs are complementary to diagnostic-based EMSs
[29–32], as they have more available information like FCSs’ remaining
useful life (RUL) for decision-making even if no operating anomalies are
detected. This allows them to adjust energy management rules before
faults occur, making them more efficient than diagnostic-based EMSs.
FCSs’ RULs are predicted by prognostic algorithms, which can be
implemented using different approaches: the model-based approach
[33,34], the data-driven approach [35–39], the hybrid approach [40,
41], or the experience-based approach [42].

It should be acknowledged that a great deal of progress has already
been made in terms of prognostic methods to help energy management
decision-making for FCS or MFCS systems. Two RUL prognostic-based
EMSs were proposed in Refs. [6,43] for a range-extender FCHEV. In
Ref. [44], an end-of-life prognostic-based EMS was applied to an MFCS
system made up of three PEM FCSs. By solving a multi-objective opti-
mization problem, this strategy extended the MFCS system’s lifetime by
around 25% compared to the Daisy-Chain strategy, without increasing
its hydrogen consumption.

Several other researchers in Refs. [45–47], found that RULs
prognostic-based EMSs have the potential to significantly enhance FCS
or MFCS systems’ durability. However, despite the abundance of prog-
nostic methods in the literature, the number of proposed
prognostic-based EMSs is very limited. This discrepancy can be attrib-
uted to the fact that integrating FCS prognostic methods into energy
management requires additional research, as these two fields of exper-
tise are distinct. Prognostic involves signal processing and data analysis
skills, while energy management demands expertise in systems engi-
neering. This paper proposes an EMS for MFCS systems based on RUL
prognostic, combining the strengths of these two fields of expertise to
enhance such systems’ durability.

The present paper will be structured as follows: a PEM FCS aging
model will be established in section 2 based on various researchers’ FCS
modeling works. In Section 3, an ANN-based FCS prognostic algorithm
will be proposed for real-world use in automotive applications to
investigate the prognostic-based energy management concept under a
real vehicle use scenario. An MFCS system RUL prognostic-based EMS
will be suggested in section 4. The strategy will be applied to a hybrid
MFCS system/battery in section 5 and the simulation results will be
presented and compared to two conventional EMSs’ results. In section 6,
the proposed EMS will be compared with a state of health (SOH)
estimation-based EMS, which appears as the reference EMS in this study
regarding the applied energy management principle.

2. PEM FCS model with aging consideration

In this paper, the PEM FCS model is established based on previous
modeling works that have been suggested in the literature for energy
management purposes.

2.1. PEM FCS static and dynamic models

• PEM FCS static model:

The static model is based on the polarization equation of an N-cell

PEM FCS.

V(iFC,TFCS,PO2 ,PH2 ) =N[Erev(TFC,PO2 ,PH2 ) − ΔEact(iFC,TFC)

− ΔEconc(iFC,TFC) − ΔEohm(iFC)] (1)
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ΔEohm(iFC) =RFC.iFC (5)

Where iFC is the FCS current density; V represents the stationary part of
the FCS output voltage; Erev is the reversible Nernst potential; ΔEact,
ΔEconc, and ΔEohm symbolize activation losses, concentration losses and
ohmic losses respectively. TFC is the operating temperature of the FCS;
PO2 and PH2 are oxygen partial pressure and hydrogen partial pressure
respectively. ΔS denotes the entropy variation while ΔH stands for the
energy released by the reaction taking place in the FCS. R and F are
respectively the gas constant and the Faraday constant.

• PEM FCS dynamic model:

In PEM FCS, during power variations, the temperature transient is
the slowest physical phenomenon to occur before stabilization in the
steady state. As a result, this study will only focus on thermal dynamics
modeling.

The slow dynamics effects of thermal phenomena on the FCS voltage
can be seen as an additional voltageN.Vdyn(t)which is characterized by a
transient and steady state [48]. The FCS output voltage VFCS(t) can then
be written as follows:

VFCS(t) =V + N.Vdyn(t) (6)

Where:

iFC(t)
τdyn

=
dVdyn(t)
dt

+
Vdyn(t)

τdyn
(7)

To approximate a real PEM FCS system dynamic, the time constant
τdyn will be set so that the steady state of the output voltage should be
established after 300 s. Thus, to preserve FCSs’ SOH in transport ap-
plications, it is important to filter the mission profile’s dynamics. In this
case, using a power source such as a battery to hybridize the FCS or the
MFCS system is necessary.

• Battery and DC-DC converter models for PEM FCS systems

An empirical battery model (Fig. 1) that includes an open-circuit
voltage source V0 connected in series with a resistance Rsbat , and a par-
allel circuit consisting of a resistance Rcbat , and a capacitance Ccbat is
adopted in this paper. The values of these parameters can be estimated
experimentally on the real battery that will be chosen after system
sizing.

From the equivalent electrical circuit illustrated in Fig. 1, the current
of the battery, ibat, can be expressed by the equation (8).

ibat =
V0 − Rsbat ibat − Vbat

Rcbat
+ Ccbat

d
dt

(
V0 − Rsbat ibat − Vbat

)
(8)

Equation (9) can be used to calculate the instantaneous state of
charge SOCbat(t) of the battery given its initial state of charge SOCbatinit ,
capacity Qbat , and current ibat. The initial state of charge SOCbatinit will be
set arbitrarily before starting each simulation in this study.
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SOCbat(t) = SOCbatinit −
100

3600Qbat

∫

ibatdt (9)

As the study focuses on FCS aging, battery aging is neglected due to
the longer lifetime of batteries compared to FCS (over 45,000 h vs.
approx. 5000 h). Therefore, battery degradation will not be modelled.
However, a boost DC-DC converter model is necessary to increase FCSs’
output voltage before connecting them to the DC bus and to regulate
their current.

If Lboost and Vboost represent the smoothing inductor and the converter
output voltage, respectively, the current iLboost flowing through the
inductor can be obtained by the equation (10), neglecting the effect of
the inductor’s internal resistance.

iLboost =
1
Lboost

∫

(Vbat − Vboost)dt (10)

Where the converter’s output voltage Vboost and output current Iboost
depend on its modulation ratio αboost and efficiency ηboost (equation (11)).
{
Vboost = αboostVbat
iboost = αboost IPACηboost

(11)

2.2. PEM FCS cycling aging model

PEM FCS degradation can be caused by several factors such as the
frequency or the number of start-stop cycles Nswitch(t), operating power
point PFCS(t), and mission profile dynamics dP(t)

dt [49]. Developing and
assessing a degradation model ΔFCS(t) that considers these main FCS’s
aging factors could be a good approach to simulate FCS aging due to

cycling. Where appropriate, the obtained degradation term can be
applied to the FCS’s maximum performance to reproduce its power loss
as it degrades. Fig. 2 illustrates this process.

In this study, the FCS degradation model is inspired by the one
suggested in Ref. [50], which considers the impact of both the number of
start-stop cycles and the operating point. The profile dynamics degra-
dation impact on the FCS’s SOH is not modelled in this study as the
MFCS system will be hybridized by a battery to filter the profile
dynamics.

The degradation term will be applied to the electrochemical active
surface area ECSAFCS(t) to update the FCS’s maximum performance. In
fact, the decrease in ECSA often represents the direct cause of FCS power
loss as it ages. As shown by equation (12), the ultimate ECSA
ECSAFCS deg(t) can be expressed as a function of the degradation term
ΔFCS(t) and the ECSAFCS(t), which only changes due to normal degra-
dation of the catalyst layer.

ECSAFCS deg(t) = [1− ΔFCS(t)].ECSAFCS(t) (12)

ΔFCS(t) =

∫ t

0
δ(t)dt + Nswitch(t).Δswitch (13)

δ(t) =
δ0

3600

[

1+
α

PFCSnom 2
(PFCS(t) − PFCSnom )

2
]

(14)

Where:

PFCSnom =

⎧
⎨

⎩

25%PFCSmax si PFCS(t) < 25%PFCSmax
PFCS(t) si 25%PFCSmax ≤ PFCS(t) ≤ 95%PFCSmax

95%PFCSmax si PFCS(t) > 95%PFCSmax
(15)

δ(t) denotes the degradation rate related to the FCS operating point.
In this study, [25%PFCSmax ;95%PFCSmax ] will be considered as FCSs’ safe
power range [51,52], i.e. the power range corresponding to the lowest
degradation rate (δ(t) = δ0

3600), as it delimits approximately the ohmic
losses region. In fact, using FCS in the ohmic losses region can prevent it
from the activation and concentration phenomena that accelerate aging.
If the FCS operates at low current densities, which means the operating
point is close to OCV, it may experience activation losses. The degra-
dation rate δ(t) is determined by the relative difference between the FCS
output power and the nearest safe power which is 25%PFCSmax . Similarly,
if the FCS delivers power very close to its maximum power PFCSmac , it is
subject to concentration losses. The degradation δ(t) rate is determined
by the relative difference between the FCS output power and the nearest
safe power which is 95%PFCSmax in this case.

Δswitch is the degradation caused by a single start-stop cycle, while

Fig. 1. Battery model.

Fig. 2. Cycling aging integration approach into PEM FCS model.
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Nswitch(t) denotes the total number of start-stop cycles that the FCS has
undergone since its first use. δ0, α, and Δswitch are empirical parameters.
Polarization tests will be conducted during simulations every 200 h to
assess FCSs’ SOH considering their slow aging process. The maximum
power PFCSmax will be considered as FCSs’ health indicator in this paper,
since the output voltage may not be reliable in dynamic current profile
applications. Furthermore, PFCSmax estimation will help determining
FCSs’ safe power range, which is defined regarding their maximum
power (equation (15)).

By estimating the maximum power regularly, its future temporal
evolution can be predicted over a specified prediction horizon for FCSs’
RUL estimation.

3. ANN-based prognostic algorithm for FCSs real-world use in
automotive applications

As shown in Fig. 3, the data-driven approach makes a good trade-off
between the precision, complexity, and applicability. Therefore, it will
be adopted for FCSs’ SOH prediction and RUL estimation in this study.

3.1. Backpropagation neural network-based prognostic algorithm for
FCSs real world use in automotive applications

As shown in Fig. 4, the basic architecture of a backpropagation
neural network (BPNN), typically comprises an input layer, one or more
hidden layers, and an output layer.

BPNN has been used in previous studies, such as in Refs. [35,53], to
develop prognostic algorithms for FCS RUL estimation. However, like
most data-driven RUL prognostic methods, these algorithms are imple-
mented and tested with the assumption that, the future operating con-
ditions {X2,X3, …,Xn} of FCSs such as current, relative humidity, gas
pressure, temperature, etc., relative to the prediction horizon (the time
vector X1) would be known in the prediction phase. This assumption
may not be acceptable in automotive applications, especially as RUL
prognostic requires a prediction over a very long horizon (~ several
hundred or even several thousand hours).

To address this issue, a BPNN-based RUL prognostic algorithm for
FCSs in real-world scenarios is developed in this study so that only the
time vector should be required as input to predict over a given horizon in
the prediction phase.

The learning phase involves two steps that enable the network to
characterize the FCS degradation trend: a forward propagation phase
and the error backpropagation phase. A detailed description of each
phase can be found in Refs. [35,53] with the related equations.

4. MFCS system RUL prognostic-based energy management
strategy

A rule-based approach is adopted for FCSs’ RULs prognostics

integration in MFCS systems energy management in this paper. The
proposed EMS will be referred to as the RUL prognostic-based adaptive
Daisy-Chain strategy.

4.1. Daisy-Chain principle

The Daisy-Chain principle is a basic strategy of operating an MFCS
system. It involves activating the FCS one by one until all the required
power is supplied, or until all the FCS are used.

This principle takes advantage of MFCS systems’ modularity, as it
always activates the minimum number of FCS needed to meet a power
demand. However, the non-delimitation of FCSs’ operating power
ranges accelerates their degradation. Additionally, since FCSs are al-
ways used in the same order, some FCSs may age faster than others due
to overuse.

In this paper, the RUL prognostic-based adaptive Daisy-Chain strat-
egy will ensure that all FCSs in the MFCS system reach their end-of-life
(EoL) at approximately the same time to prevent the MFCS system from
too early degraded mode operation. Operating in degraded mode sig-
nifies that the MFCS system is reaching its EoL, as it will eventually be
unable to meet the load requirements.

4.2. RUL prognostic-based adaptive Daisy-Chain energy management
strategy

For the FCSs to reach their EoL at almost the same time, their
degradation levels must be balanced throughout their operating time. To
do so, first, FCSs scheduling is updated in descending order of RULs each
time the RULs predictions are made, as shown in Fig. 5. RUL predictions
will be performed every 1000 h in this paper to allow the prognostic
model to learn FCSs’ degradation trend properly, considering that FCSs’
aging is a relatively slow process.

The obtained scheduling is updated a second time based on FCSs’
previous operating modes to assign to the most degraded FCS the rank
that would make it possible to slow down its aging. It should be noted
that the first FCS in the queue may not always age faster than the other
FCSs, under the Daisy-Chain principle, as the power requested from the
MFCS system would be greater than 0 W most of the time due to the
mission profile dynamics filtering. Actually, FCSs’ start-stop cycles could
be reduced by assigning each FCS the top position in the scheduling from
time to time. Therefore, after the first scheduling in descending order of
RULs, the following adjustments should be made to obtain the final
scheduling of FCSs.

• The FCS that has the biggest RUL, which is the first FCS in the queue,
must be moved to the rank previously occupied by the FCS that has
the lowest RUL.

• The FCS that has the lowest RUL must then move to the front of the
queue to slow down its aging process.

• If the FCS with the lowest RUL was the first FCS in the previous final
scheduling, all FCSs must be used in the same order as before. In fact,
since the first rank corresponds to the slowest degradation rate, if the

Fig. 3. Prognostic approaches classification according to precision, complexity,
and applicability criteria.

Fig. 4. Basic architecture of the BPNN.
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Fig. 5. Operating principle of the RUL prognostic-based adaptive Daisy-Chain EMS considering four FCSs and assuming that the FCS with the lowest RUL occupied
the third place in the previous final scheduling.

Fig. 6. Synoptic diagram of MFCS systems’ RUL prognostic-based energy management concept.
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FCS with the lowest RUL occupied the first rank previously, that
means that it is still more degraded than all other FCSs.

Fig. 5 illustrates the RUL prognostic-based adaptive Daisy-Chain
EMS considering four FCSs and assuming that the FCS with the lowest
RUL occupied the third position in the previous final scheduling. This
figure depicts the MFCS system EMS block that appears in Fig. 6.

In the next section, the performance of the proposed EMS will be
evaluated on a hybrid MFCS/battery system using the WLTP class 3
driving cycle and compared to two conventional EMSs’.

5. Simulation results

5.1. Hybrid MFCS/battery system design choices

Several design choices and assumptions have been made regarding
the hybrid MFCS/battery system to simplify the study [54,55].

⁃ Parallel fluidic and electrical architectures are adopted to make the
MFCS system as modular as possible, to offer the maximum degrees
of freedom to the EMS for decision-making.

⁃ The battery is connected directly to the DC bus, without using a
converter. This topology reduces the volume, weight, and cost of the
system. It also simplifies energy management between the battery
and the MFCS system.

⁃ The battery SOC variation range is restricted to 20% to limit DC bus
voltage fluctuations, as this voltage would be imposed by the battery
under the adopted topology.

⁃ The DC bus voltage is assumed to be 72 V to match the DC bus
voltage on the test bench.

⁃ The MFCS system consists of 500 W-FCS systems, to ensure that
power levels during simulations match those on the test bench.
Therefore, the power profile obtained by applying the Newton’s
second law of motion to a regular-sized car is rescaled while keeping
the dynamics.

⁃ The hybrid MFCS/battery system sizing is done regarding the power
profile under the WLTP class 3 standard, as this cycle reproduces real
driving conditions. Thereby, it is assumed that the hydrogen tank
always contains enough hydrogen, and that the vehicle’s range is not
limited.

⁃ The hybrid MFCS/battery system sizing is done based on mission
profile frequency decomposition technique. A low-pass filter with a
cut-off frequency of 10 mHz is used for this purpose. As a result, it
was found that at least four 500W-FCS and a 20 Ah-battery would be
necessary to respond to the WLTP rescaled profile.

The synoptic diagram of MFCS systems’ RUL prognostic-based en-
ergy management concept is presented in Fig. 6. The battery energy
management module makes sure that the battery’s SOC remains be-
tween 40% and 60% to limit fluctuations in the DC bus voltage. When
the battery gets discharged, it needs to be recharged with an additional
current of 4 A from the MFCS system. The charging current is based on
the recommended charging current range which is 10%–20% of the
battery’s nominal capacity. The modes that define the charged and
discharged states of the battery are summarized by the hysteresis cycle

depicted in Fig. 7.

5.2. Hybrid MFCS/battery system simulation results under the proposed
EMS

The distribution of PrequiredMFCS between the four FCS systems by the
RUL prognostic-based adaptive Daisy-Chain EMS proposed in this paper
is shown in Fig. 8. It should be noted that, from 0 h to 1000 h, the FCSs
were used in the same way under the equidistributional EMS, while the
first training data of the prognostic algorithm were collected to perform
the RUL prediction for the first time at t = 1, 000 h. From 1000 h to
2000 h, the FCSs were operated in the initial order, i.e., FCS N◦1, FCS
N◦2, FCS N◦3, FCS N◦4, as they had the same RUL at t = 1,000 h, which
is 37,000 h (Fig. 9). As shown in Fig. 10, using the FCSs in this order
resulted in more degradation on FCS N◦4 compared to FCS N◦2, whose
degradation was also important than that of FCS N◦3. The FCS N◦1,
which was the first FCS in the queue form 1000 h to 2000 h, had the
biggest RUL at t = 2, 000 h (Fig. 9), since it was never shut down in that
time range, making it the FCS that experienced the least start-stop cy-
cles. Consequently, at t = 2,000 h, FCSs scheduling in descending order
of RULs was FCS N◦1, FCS N◦3, FCS N◦2, and FCS N◦4. The second
scheduling had to be performed, as the RULs were not equal. The FCS
N◦4 with the lowest RUL had to be moved to the first position, while the
FCS N◦1 with the highest RUL had to be moved to the position that was
previously occupied by the FCS N◦1 from 1000 h to 2000 h, meaning the
fourth position. Thus, the expected operation order of FCSs from 2000 h
to 3000 h was FCS N◦4, FCS N◦3, FCS N◦2, and FCS N◦1. As can be seen
from Fig. 8, the FCSs were actually used in this order from 2000 h to
3000 h.

From 3000 h to 4000 h, the final operating order of FCSs was FCS
N◦1, FCS N◦4, FCS N◦2, FCS N◦3, as the first scheduling in descending
order of RULs at t = 3,000 h was FCS N◦3, FCS N◦4, FCS N◦2, FCS N◦1.
The first position occupied by the FCS N◦4 from 2000 h to 3000 h
enabled it to slow down its aging process, indeed (Fig. 10). This
degradation trend improvement was learned by the RUL prognostic
model as well, because at t = 3,000 h, the FCS N◦4 was no longer the last
FCS in the queue but the second one (Fig. 9). However, due to the small
amount of training data available at that time, the significant slope
variation observed from t = 2, 000 h in the degradation trend could not
be captured accurately by the prognostic model. As a result, FCS N◦3’s
RUL was higher than that of FCS N◦4 at t = 3,000 h. Actually, the FCS
N◦4 should have the best RUL at that moment. This error was rectified by
the prognostic algorithm at the next prediction session (at t = 4,000 h),
as new maximum power samples were added to the time series between
t = 3,000 h and t = 4,000 h. It is worth noting the consistency between
FCSs’ scheduling in descending order of RULs at t = 4,000 h, which is
FCS N◦1, FCS N◦4, FCS N◦2, FCS N◦3 (Fig. 9) and their scheduling in
ascending order of cycling degradation at t = 4,000 h (Fig. 10). The
final operating order of FCSs from 4000 h to 5000 h was exactly the
expected final scheduling (FCS N◦3, FCS N◦4, FCS N◦2, and FCS N◦1).

FCSs’ operating order was continuously updated every 5 h, first in
descending order of RULs and then regarding their previous operating
mode. After each final scheduling update, the power PrequiredMFCS required
from the MFCS system was distributed between FCSs according to the
advanced Daisy-Chain principle applied in this paper, until the MFCS
system reached its EoL at t = 12,422 h, as shown in Fig. 8. It should be
noted that, the MFCS system is considered at its EoL as soon as the
battery is discharged while the MFCS system is operating in degraded
mode. Indeed, when operating in degraded mode, the MFCS system is
undersized and cannot meet the requirements for a proper battery use,
healthily speaking. In Fig. 8, the degraded mode operation of the MFCS
system started at t = 12,200 hwhen the FCS N◦1 reached its EoL (loss of
10% of the maximum power) and the battery got discharged at t = 12,

422 h. Additionally, 982.4 kg of H2 were consumed over the lifetime of
the MFCS system to meet the load demand.

The hybrid MFCS/battery system’s energy management is alsoFig. 7. Battery’s charged and discharged states defined by a hysteresis cycle.
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carried out by the equidistributional and the Daisy-Chain EMSs to
highlight the performance of the proposed EMS. For the comparative
study to be fair, these conventional EMSs are revised to operate FCSs
only in their safe power range, as the proposed EMS did.

5.3. Hybrid MFCS/battery system simulation results under conventional
EMSs

When applying the equidistributional EMS and the Daisy-Chain EMS
to the MFCS system over the entire simulation time, the system reaches
its EoL after only 5000 h, and 5214 h, respectively. In addition to the
non-adaptive nature of these conventional EMSs, three reasons can
explain the lifetime improvement observed with the proposed EMS.

• Firstly, the proposed EMS is based on the Daisy-Chain principle. By
allocating PrequiredMFCS to the first FCS in the queue, one of the FCSs in
the MFCS system usually experienced very few start-stop cycles.

• Secondly, the proposed EMS updates FCSs operating order to balance
their degradation levels. This offers to each FCS the advantage of

being the first FCS in the queue, which results in a reduced frequency
of start-stop cycles.

• Finally, when the remaining power demand has to be supplied by a
FCS, but it is out of the FCS safe power range, the proposed EMS
optimizes the start-stop cycles of this FCS by checking it current state
(on or off) before deciding whether to operate it or shut it down.

In conclusion, operating the MFCS system under the equidistribu-
tional and the Daisy-Chain strategies instead of the proposed EMS, re-
sults respectively in a loss of 59.75% and 58.03% on the MFCS system’s
lifetime. However, the equidistributional strategy would make the
hybrid MFCS/battery system consume less hydrogen than the proposed
strategy for the same operating time. For 5000 operating hours, the
hybrid system consumed approximately 389.2 kg of hydrogen under the
proposed EMS versus 356.2 kg under the equidistributional strategy,
representing a reduction in hydrogen consumption of around 8.48%.
Indeed, the equitable distribution of power demand between FCSs
resulted in FCSs operating mostly in the low current density zone, which
is very close to the best energy efficiency zone for FCSs. On the other
hand, under the proposed EMS and the Daisy-Chain EMS, FCSs were

Fig. 8. Distribution of the power required from the MFCS system between the four FCS systems; battery power [RUL prognostic-based adaptive Daisy-Chain EMS].
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mostly operated in the high current density range to meet the power
demand using the minimum number of FCSs.

Tables 1–2 summarize respectively the comparative analysis of the
MFCS system’s lifetime and hydrogen consumption under the proposed
EMS vs. the conventional EMSs.

Before concluding this work, the proposed EMS should be compared
with the reference EMS, which is the SOH estimation-based adaptive
Daisy-Chain EMS, to check whether the potential errors in the RUL
prediction affects the ultimate lifetime of the MFCS system or not.

6. reference EMS simulation results

The SOH estimation-based adaptive Daisy-Chain EMS is a variant of

the proposed EMS, as FCSs’ operating order would be updated based on
their SOH estimations instead of their RULs. This strategy can be seen as
the reference EMS regarding the energy management principle applied
in this paper, since SOH estimations would be definitely more accurate
than RUL predictions. The prognostic algorithm may not be able to
capture significant changes in FCSs’ degradation trends accurately.
Although the resulting RUL predictions errors can be corrected as the

Fig. 9. FCSs’ RUL prognostic every 5 h [RUL prognostic-based adaptive Daisy-Chain EMS].

Fig. 10. FCSs’ cycling aging evolution [RUL prognostic-based adaptive Daisy-Chain EMS].

Table 1
MFCS system’s lifetime under the RUL prognostic-based adaptive Daisy-Chain
EMS vs. conventional EMSs.

EMS Proposed
EMS

Equidistributional
EMS

Daisy-Chain
EMS

MFCS system’s
lifetime

12,422 h 5000 h 5214 h

Gain – 2.48 2.38

Table 2
MFCS system’sH2 consumption under the RUL prognostic-based adaptive Daisy-
Chain EMS vs. conventional EMSs.

EMS Proposed EMS Equidistributional
EMS

Daisy-
Chain
EMS

MFCS system’s H2
consumption

t =

5000 h
389.2
kg

356.2 kg 404.4 kg

t =

5214 h
405 kg

t =

12,422 h
982.4
kg

H2 consumption
reducing compared to
the proposed EMS

– 8.48 % 0.15 %
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amount of training data increases, it could be hard to know if the post-
prognostic decisions adjustments were enough to extend the MFCS
system’s lifetime as much as it would be when using more accurate in-
formation like FCSs’ SOH estimations. To investigate this, the hybrid
MFCS/battery system simulation results under the reference EMS are
presented in this section.

In the reference EMS, FCSs’ maximum powers are resampled each 5
h so their operating order will be updated at the same frequency as in the
RUL prognostic-based adaptive Daisy-Chain EMS (proposed EMS).
Under the reference EMS, the MFCS system reached its EoL in 12,460 h,
which is just 38 h longer than the lifetime obtained under the proposed
EMS. Therefore, it is quite acceptable to conclude that the proposed
strategy extends the MFCS system’s lifetime as much as the reference
EMS, although RUL prognostics are not as accurate as maximum power
estimations.

Furthermore, the hydrogen consumption of the hybrid system under
the reference strategy from t = 0 h to t = 12,422 h would be around
984.6 kg (i.e., 2.2 kg more than the amount of hydrogen consumed
under the proposed EMS).

It can be concluded from these results that the comparative study of
the RUL prognostic-based energy management concept for MFCS sys-
tems and the SOH estimation-based energy management approach de-
serves further investigation. Using FCSs’ RUL prognostics in MFCS
systems energy management could simplify adaptive EMSs design
compared to the SOH estimation-based energy management approach.
In fact, the SOH of a FCS can only decrease over time, whereas its RUL
can actually increase between two consecutive prognostic sessions. This
makes the RUL a suitable parameter to analyze when making adaptive
energy management decisions.

7. Conclusion

A health-conscious EMS is proposed for MFCS systems in this paper
to improve their lifetime. This study is part of the PHM framework,
which has seen significant progress over the last decade in FCSs RUL
prognostic algorithm development for appropriate energy management
decision-making regarding FCSs’ durability. Therefore, an ANN-based
prognostic algorithm was proposed for FCSs real-world use in automo-
tive applications and combined with an advanced Daisy-Chain energy
management principle to investigate the prognostic-based energy
management concept under a real vehicle use scenario.

The proposed strategy was referred to as RUL prognostic-based
adaptive Daisy-Chain EMS. By integrating RUL prognostics into the
Daisy-Chain energy management principle, it was possible to balance
FCSs’ degradation levels, thus preventing the MFCS system from too
early degraded mode operation. Indeed, operating in degraded mode
signifies that the MFCS system is reaching its EoL, as it will eventually be
unable to meet the load requirements.

The RUL prognostic-based adaptive Daisy-Chain EMS has been
validated through simulations in Matlab/Simulink environment. The
simulations were performed on an MFCS system consisting of four 500
W-Horizon FCSs using the WLTP class 3 driving cycle.

A comparative analysis of the MFCS system performance was con-
ducted under the proposed EMS and two conventional EMSs (The
equidistributional and the Daisy-Chain EMSs). The results showed that
the proposed EMS can extend the MFCS system’s lifetime by over 2.48
and 2.38 times compared to the equidistributional and the Daisy-Chain
EMSs, respectively.

In terms of hydrogen consumption, the MFCS system consumed
almost the same amount of hydrogen under both the proposed EMS and
the Daisy-Chain strategy. However, approximately 8.48% of hydrogen
was saved under the equidistributional EMS, as FCSs were often oper-
ated in their best energy-efficient regions (low current density range)
due to the equitable distribution of power demand between them. It
should be reminded that under the proposed EMS and the Daisy-Chain
EMS, FCSs were mostly operated in their high current density range to

meet the power demand using the minimum number of FCSs.
A last comparison study was conducted in this paper between the

proposed EMS and the reference EMS which is based on FCSs’ SOH es-
timations. The proposed strategy has been found as reliable as the
reference strategy although RUL prognostics may not be as accurate as
SOH estimations.

This work can be considered as a proof of concept. The next future
research objective in this area is to focus on integrating FCSs’ RUL
prognostics into MFCS systems energy management through an opti-
mization approach.
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process to manage useful life of multi-stacks fuel cell systems under service
constraint. Renew Energy 2017;105:590–600. https://doi.org/10.1016/j.
renene.2017.01.001.
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[54] Dépature C, Macías A, Jácome A, Boulon L, Solano J, Trovão JP. Fuel cell/
supercapacitor passive configuration sizing approach for vehicular applications. Int
J Hydrogen Energy 2020;45(50):26501–12. https://doi.org/10.1016/j.
ijhydene.2020.05.040.

[55] Zhou J, Liu J, Xue Y, Liao Y. Total travel costs minimization strategy of a dual-stack
fuel cell logistics truck enhanced with artificial potential field and deep
reinforcement learning. Energy 2022;239(Part A):121866. https://doi.org/
10.1016/j.energy.2021.121866.

W.R. Bankati et al.

https://doi.org/10.1016/j.ijhydene.2016.06.111
https://doi.org/10.1016/j.ijhydene.2016.06.111
https://doi.org/10.1016/j.jclepro.2021.129807
https://doi.org/10.1016/j.apenergy.2022.120370
https://doi.org/10.1016/j.apenergy.2022.120370
https://doi.org/10.1109/TVT.2022.3205879
https://doi.org/10.1109/TVT.2022.3205879
https://doi.org/10.1016/j.ijhydene.2017.01.085
https://doi.org/10.1016/j.ijhydene.2018.09.181
https://doi.org/10.1016/j.ijhydene.2023.08.177
https://doi.org/10.1016/j.ijhydene.2023.08.177
https://doi.org/10.1109/VPPC53923.2021.9699348
https://doi.org/10.1109/VPPC53923.2021.9699348
https://doi.org/10.1016/j.apenergy.2021.118328
https://doi.org/10.1016/j.ijhydene.2023.11.241
https://doi.org/10.1016/j.ijhydene.2023.11.241
https://doi.org/10.1109/TTE.2022.3218505
https://doi.org/10.1109/TTE.2022.3218505
https://doi.org/10.1109/TMECH.2021.3105950
https://doi.org/10.1109/TMECH.2021.3105950
https://doi.org/10.1016/j.ijhydene.2023.09.297
https://doi.org/10.1016/j.ijhydene.2023.09.297
https://doi.org/10.1016/j.ijhydene.2022.08.024
https://doi.org/10.1016/j.rser.2024.114613
https://doi.org/10.1016/j.rser.2024.114613
https://doi.org/10.1016/j.apenergy.2021.118070
https://doi.org/10.1016/j.ijhydene.2010.08.005
https://doi.org/10.1016/j.ijhydene.2010.08.005
https://doi.org/10.3390/electrochem3040042
https://doi.org/10.3390/electrochem3040042
https://doi.org/10.1109/TSTE.2020.3042990
https://doi.org/10.1016/j.ijhydene.2021.07.004
https://doi.org/10.1016/j.ijhydene.2021.07.004
https://doi.org/10.1016/j.ijhydene.2013.10.054
https://doi.org/10.1016/j.ijhydene.2013.10.054
https://doi.org/10.1016/j.ijhydene.2020.02.085
https://doi.org/10.1016/j.ijhydene.2022.12.260
https://doi.org/10.1016/j.ijhydene.2022.09.160
https://doi.org/10.1016/j.ijhydene.2022.12.170
https://doi.org/10.1016/j.apenergy.2022.118835
https://doi.org/10.1016/j.apenergy.2022.118835
https://doi.org/10.1016/j.ijhydene.2023.08.191
https://doi.org/10.1016/j.egyai.2020.100017
http://refhub.elsevier.com/S0360-3199(24)03136-7/sref42
http://refhub.elsevier.com/S0360-3199(24)03136-7/sref42
https://doi.org/10.1109/TVT.2019.2937130
https://doi.org/10.1109/TVT.2019.2937130
https://doi.org/10.1177/1748006X221086381
https://doi.org/10.1177/1748006X221086381
https://doi.org/10.1016/j.renene.2017.01.001
https://doi.org/10.1016/j.renene.2017.01.001
https://doi.org/10.1109/RAMS48097.2021.9605719
https://doi.org/10.1109/RAMS48097.2021.9605719
https://doi.org/10.1016/j.enconman.2022.116598
https://doi.org/10.1016/j.enconman.2022.116598
https://doi.org/10.3390/en13133387
https://doi.org/10.1016/j.ijhydene.2023.06.215
https://doi.org/10.1016/j.ijhydene.2023.06.215
https://doi.org/10.1109/VPPC.2016.7791701
https://doi.org/10.1109/VPPC.2016.7791701
https://doi.org/10.1016/j.apenergy.2020.115293
https://doi.org/10.1016/j.apenergy.2020.115293
https://doi.org/10.1049/iet-est.2015.0023
https://doi.org/10.1016/j.enconman.2023.117668
https://doi.org/10.1016/j.ijhydene.2020.05.040
https://doi.org/10.1016/j.ijhydene.2020.05.040
https://doi.org/10.1016/j.energy.2021.121866
https://doi.org/10.1016/j.energy.2021.121866

	Remaining useful life prognostic-based energy management strategy for multi-fuel cell stack systems in automotive applications
	1 Introduction
	2 PEM FCS model with aging consideration
	2.1 PEM FCS static and dynamic models
	2.2 PEM FCS cycling aging model

	3 ANN-based prognostic algorithm for FCSs real-world use in automotive applications
	3.1 Backpropagation neural network-based prognostic algorithm for FCSs real world use in automotive applications

	4 MFCS system RUL prognostic-based energy management strategy
	4.1 Daisy-Chain principle
	4.2 RUL prognostic-based adaptive Daisy-Chain energy management strategy

	5 Simulation results
	5.1 Hybrid MFCS/battery system design choices
	5.2 Hybrid MFCS/battery system simulation results under the proposed EMS
	5.3 Hybrid MFCS/battery system simulation results under conventional EMSs

	6 reference EMS simulation results
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References




