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Abstract: Mining in Canada stands as one of the most energy-intensive sectors, playing a pivotal
role as a significant provider of copper, nickel, and cobalt to the international market. Anticipated
growth in the global population, coupled with the transition of several low-income economies to
middle-income status, is poised to escalate the demand for essential raw materials. This surge
in demand is expected to drive an increase in energy consumption across various stages of the
Canadian mining industry, encompassing exploration, extraction, processing, and refining. Due to
their geographical constraints, most Canadian mining operations rely heavily on fossil fuels such
as diesel and heavy fuel. Considering the global shift towards decarbonization and the pursuit of
net-zero emission targets, exploring avenues for adopting electrification solutions and integrating
renewable energy technologies, particularly in sizable surface mines, is imperative. Within this
context, our study delves into the challenges and prospects associated with infusing renewable
energy technologies and embracing electrification alternatives within Canadian mining practices.
This exploration encompasses a comprehensive review of pertinent literature comprising academic
research, technical analyses, and data disseminated by international entities and experts. The findings
underscore a prevalent trend wherein Canadian mining enterprises are prominently investing in
robust electric truck fleets, particularly for heavy-duty operations. Additionally, incorporating
renewable energy solutions is notably prevalent in remote sites with extended operational lifespans.
However, an in-depth examination reveals that the most formidable hurdles encompass successfully
integrating renewable energy sources and battery electric vehicles. Financial constraints, logistical
intricacies, and the imperative to enhance research and development competencies emerge as pivotal
challenges that demand strategic addressing.

Keywords: Canadian mining; mining decarbonization; mining electrification; future mining; renew-
able energy; clean-energy technologies

1. Introduction

The mining industry, which includes a wide range of activities like such as exploration
and extraction, as well as processing, sophisticated manufacturing, and recycling, is crucial
to Canada. For a variety of Canadian industries, including manufacturing, transportation,
construction, and energy, it is a crucial supply of the necessary materials. [1-3]. Never-
theless, akin to global trends in mining, the Canadian mining industry stands out for its
substantial energy consumption. Notably, as indicated by the Canadian greenhouse gas
(GHG) inventory, the industry’s GHG emissions surged from 4.3 million metric tons of
CO; equivalent to 6.4 million metric tons between 2015 and 2019. This upward trajectory
is predicted to persist until 2035, driven by the escalating demand for raw materials and
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the establishment of new mining sites in remote areas devoid of access to the public power
grid [4]. Energy consumption in the Canadian mining sector can be broadly categorized
into two main groups: off-grid and grid-connected operations. In on-site power generation
and transportation, off-grid mining activities primarily hinge on diesel fuel usage [5-7]. On
the other hand, grid-connected mining endeavors exhibit a certain reliance on fossil fuels,
particularly in transporting extracted minerals. Nevertheless, these mining operations
remain highly sensitive to fluctuations in fossil fuel prices, given that a considerable portion
of their expenses is directed towards energy production, a significant fraction of which
originates from fossil fuels.

A forecast indicates that by 2035, the energy demand for mining operations is poised
to surge by as much as 36% [8]. While acknowledging the significant risks climate change
poses to the mining sector, the Mining Association of Canada (MAC) has predominantly
focused on preventative measures rather than building resilience. A prevailing strategy
embraced by Canadian mining companies in addressing climate change involves the
reduction in greenhouse gas (GHG) emissions and the enhancement of energy efficiency.
This orientation is evident in various trade journal articles, encompassing topics such
as emission caps and legislative frameworks concerning carbon emissions [9], company-
specific initiatives aimed at emission reduction [10], adoption of GHG reduction strategies
based on the Kyoto Protocol [11], utilization of carbon emission trading schemes and
offsetting [12], deployment of technologies for emission mitigation [13], and the exploration
of carbon capture and storage technologies.

Due to Canada’s action on climate change, Canadian mining companies might en-
counter heightened short-term financial risks. Adopting strategies such as carbon pricing,
which involves taxing greenhouse gas (GHG) emissions, is gaining traction [14-16]. How-
ever, this taxation based on emissions can lead to cost inflation in mining activities for
specific mining operations characterized by high energy and fuel consumption levels. Si-
multaneously, the cost of securing financial resources is expected to rise as shareholders
and investors amplify their concerns about climate-related issues. Mining corporations
are experiencing growing pressure from pension funds, institutional investors, and the
environmental, social, and governance (ESG) investment community to demonstrate and
implement their commitments to adopting low-carbon technologies [17]. Some investors
have even indicated plans to delay investments in specific companies or entirely divest
from such entities if there is no observable progress.

In response to these multifaceted risks, the Canadian mining sector must shift towards
more sustainable practices [18]. This would showcase responsible behavior and serves
as a risk-mitigation strategy that benefits investors and businesses. This shift involves
investing in eco-friendly processing techniques that mitigate water-related risks and in-
tensifying efforts to reduce the industry’s carbon footprint. Investments in low-carbon
technologies, particularly within renewable energy, battery storage, and electric vehicles,
have significantly expanded.

Hence, the focus of this study is to document the recent endeavors undertaken by the
Canadian mining industry to adopt and implement clean technologies such as photovoltaic
(PV) solar plants, wind turbines, and geothermal energy. These efforts aim to achieve net-
zero scope 1 and 2 GHG emissions by 2050 or sooner, aligned with the objectives of the Paris
Agreement. Additionally, the study introduces existing electrification alternatives within
Canadian mining operations, highlighting both opportunities and challenges. However,
this literature review excludes oil and gas operations. It focuses only on mining operations
associated with metallurgical processes.

The remainder of this paper is organized as follows: Section 2 outlines the research
methodology. Current ongoing renewable energy (RE) development projects in Canadian
mining are presented in Section 3. In Section 4, opportunities for integrating RE into mining
operations are discussed. Section 5 provides an overview of electrification alternatives in
Canadian mines. Section 6 delves into the challenges associated with RE integration and
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The recommendation entailed a hybrid project with wind capacity ranging from 2 to 4.7 MW.
Large Li-lon batteries and a demonstration element for compressed air storage are integral
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amounting to CAD 2.5 million, coupled with a one-third reduction in GHG emissions [35]
Various ongoing mining projects [27-38] are actively evaluating the feasibility of
integrating renewable energy, as shown in Table 1. While the progress varies across these
projects, Canadian companies are firmly committed to transitioning toward sustainable
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energy sources. This shift is driven by the imperatives of curbing the impacts of climate
change and embracing a greener, low-carbon economy.

Table 1. A list of some Canadian off-grid mining companies that have integrated or are in the process
of integrating RE at their sites [27-38].

Project Operator/Owner Location Type of RE
Port Hope Simpson Search Minerals Inc. New Labrador Biofuels and/or hydroelectric
Raglan Mine Glencore Quebec Wind energy, solar energy, and
storage system
Zeus (Kipawa) Matamec Explorations Inc. Quebec Hydroelectric (downstream)
Ashram Commerce Resources Corp. Quebec Possibility of wind energy
Diavik Diamond Rio Tinto Northwest Territories Wind energy
Hope Bay Agnico Eagle Nunavut Wind energy, with a storage system
Goose Gold mine B2Gold Nunavut Wind energy, solar energy, and
storage system
Eléonore Goldcorp Quebec Geothermal energy
Cynthia Snowline Gold Corp. Yukon Solar energy

4. Opportunities for Integrating RE into Off-Grid Mining Operations

One of the foremost challenges in achieving sustainable development goals within
off-grid mining operations stems from the pivotal shift from fossil fuel combustion to
cleaner energy sources. Over the past decade, energy generation has witnessed remarkable
technological advancements and cost reductions, particularly in wind and solar photo-
voltaic (PV) generation, thanks to widespread deployment. Recent insights into energy
storage and renewable generation advancements suggest that the affordability of green
energy is on the rise, attributed to climbing fossil fuel costs, the enforcement of climate
change tax policies, and diminishing capital costs of eco-friendly generation and energy
storage technology [39—41].

In Canada, the synergy of solar and wind resources presents an attractive solution
for electrification and energy storage in remote areas. Notably, Canada’s prime wind
resource lies predominantly in the northern regions, where many off-grid mines are lo-
cated. The solar and wind source maps for Canada, as depicted in Figure 4 [42-44],
underscore this distribution. Among the provinces, the prairie provinces emerge as solar
energy production hotspots: Saskatchewan leads with 1330 kWh of energy per kW per
year, followed by Alberta with 1276 kWh/kW /yr, and Manitoba with 1272 kWh/kW /yr.
Comparatively, remote sites in Nunavut can generate around 1092 kWh/kW /yr, Quebec
around 1183 kWh/kW /yr, and Ontario around 1166 kWh/kW /yr. Notably, remote sites in
Newfoundland and Labrador (NEL.) and the Yukon present challenges for solar energy
production due to factors such as high annual cloud cover in NE.L. and a combination of
high latitude and cloudy weather in the Yukon.

Conversely, Canada’s wind resources showcase considerable promise in its northern
regions, aligning with the prevalent locations of remote off-grid sites. Wind speeds in these
regions range from 6 m/s to 8 m/s and, in some cases, surge up to 10 m/s at an 80 m
hub height. The abundance of such favorable wind resources lays a solid foundation for
integrating renewable energies into Canadian mining operations. This endeavor presents
businesses with a twofold opportunity: to decarbonize their operations and augment profit
margins while mitigating the risks linked to the volatility of fossil fuel prices.

Furthermore, adopting clean energy brings forth an array of additional benefits. It can
contribute to regional economic growth, bolster an organization’s social license to operate
by minimizing local noise and air pollution, foster mutually advantageous relationships,
establish a competitive edge with environmentally conscious clients and investors within
the environmental, social, and governance (ESG) realm, and even enable the establishment
of renewable energy projects on repurposed mine sites. Such projects generate land leasing
fees and contribute to community support after the mine’s closure.
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temperature heat production beyond 550 °C, wind- and solar-based solutions remain in
the research and demonstration phase at experimental sites, and their commercial imple-
mentation is yet to be realized.

The use of diesel fuel in power-reliant Canadian mining activities can be gradually
supplanted, at least partially, by harnessing renewable energy sources. Comminutidt{¢a

significantly energy-consuming mining process that involves mechanically reducing min-
erals and/or rock to predetermined sizes [48]. As per [49], comminution constitutes ap-
gaoxindsdty mitingf aheratiengs: Foguneriptinddiscoren thihimgsirad aitohledrédéividd ot
engyadRibh téakarebogighyotrdhsitivaiket torinralyble tendrgjosou roesriediativelnperatgie
Popeesedheat tleepeifervesdses dndetisigcthemisuitideid prrefdectfinantblieidierie. Motwever,
fior/bighduompeiiataol heatepsastactian begond AL Gimindvend sobar Satechsobutibns
et Hibiresesitivindsd evranivtat eipphpsaat prpsiseentitys densandshon corswereiag
ifpplgIpeniatiorely polvtoiperealizadll energy usage.

Category Technologies

Renewable sources

> Battery Storage >
e

Higwee . Qurant acessblle and «eomamical B tedhnstlngies-

Renesabledinsel fu@ i) growessrehanhpPansitigsotaninwgrattandeecdhdrengt adeadly,
supplaontedirpticestgraitiglhs biabhrsehstivnsaoewbbirichargly reonotesn(tongnoipartitoris.
a significantly energy-consuming mining process that involves mechanically reducing
minerals and/or rock to predetermined sizes [48]. As per [49], comminution constitutes
approximately 15% of the energy consumption for iron mining and around 21% for gold
extraction. Interestingly, transitioning to renewable energy sources is relatively straight-
forward for these processes because comminution is predominantly electric. Moreover,
investigations in [50] underscore that underground mining ventilation systems, such as
those found in gold mines, contribute significantly to electricity consumption, accounting
for approximately 20% of the overall energy usage.

Renewable energy (RE) sources, encompassing solar, wind, and geothermal energy,
are increasingly emerging as viable solutions for off-grid and remote mining operations.
The successful integration of clean energy to power the Diavik and Raglan mines in
Canada’s Arctic region exemplifies the potential of this approach. Another instance is
the repurposed SunMine mine in British Columbia, which capitalizes on solar energy.
Furthermore, geothermal energy as a sustainable power source has demonstrated its
efficacy, as evidenced by the Eléonore mine project in Quebec, which can cover up to 35%
of mining energy requirements. Notably, reference [51] highlights the potential impact
of employing 21 MW of geothermal energy, supplemented by heat pumps, resulting in
annual savings of 19,000 tons of carbon dioxide and CAD 1.5 million for Canadian mines.
Remarkably, fluid temperatures as low as 22 °C can suffice for this application.
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4.2. Replacing Diesel with RE for Transportation

To illustrate, a notable fraction of approximately 10% of the energy requisites for both
iron ore and gold mining is allocated to transportation and hauling operations [52]. Since
diesel fuel remains a prominent energy source for these functions, particularly in truck
hauling, integrating renewables into material handling presents notable challenges. In
Canada, employing biodiesel within mining encounters certain hurdles. High biodiesel
blends, particularly those derived from non-soy substrates, may undergo gelation in
cold weather conditions [53]. However, strategies that are employed to counteract cold-
sensitive compounds can also be applied to circumvent gelling issues. Several biodiesel
exporters currently employ this approach to warm personalized train carriages. Moreover,
storing biodiesel within heated, sealed, or underground tanks within mining sites is a
viable solution. Other tactics include housing biodiesel trucks within heated structures,
incorporating heaters for fuel line filtration systems, deploying additives that mitigate
the impact of cold temperatures, and adjusting blends based on seasonal variations. An
example is at the Stillwater Mine, where B70 is utilized for all vehicles during the summer,
transitioning to B20 for surface-parked vehicles in the winter.

However, a noteworthy development in the Canadian industry involves exploring
battery-powered trucks to curtail fossil fuel consumption [54]. This progressive shift aligns
with the industry’s pursuit of sustainable alternatives.

4.3. Making Hydrogen with RE

Hydrogen plays a multifaceted role within the mining sector, serving various purposes
such as high-temperature heat generation, electricity production, feedstock, fuel for vehicles
and mining equipment, and energy storage. Currently, the dominant sources of hydrogen
production are oil, coal, and natural gas [55]. Surplus energy can be efficiently transformed
into hydrogen and stored for later utilization. Notably, excessive electricity can undergo
conversion into hydrogen and be stockpiled for deployment in other mining operations
that possess the capacity to integrate intermittent-output renewable energy technologies,
such as solar and wind. For instance, the Canadian Raglan Mine has transitioned from
diesel to wind power and energy storage [56], exemplifying the industry’s shift towards
more sustainable energy alternatives.

4.4. Electrifying Communities Nearby

Mining enterprises have historically erected essential infrastructure to cater to the
needs of remote mining communities, including electricity supply for housing employees.
By leveraging this existing infrastructure, mining companies possess the potential to signif-
icantly enhance electrification efforts by extending these services to nearby villages [57].

Capitalizing on economies of scale, mining entities can leverage their substantial
power consumption and financial capabilities to establish larger-scale power plants than
required for mining operations. This approach enables the extension of electricity access to
adjacent communities at an economically viable rate. This endeavor could manifest as a
novel micro-grid initiative, where electricity generation from renewable sources is designed
to serve both the mine site and the neighboring populace. Alternatively, it could augment
existing power sources by contributing to a functional mini-grid setup. A pertinent example
is integrating renewable energy into a diesel-driven mini-grid that caters to a mining village.
This approach curtails diesel expenditures and bolsters system reliability [58].

5. Electrification Alternatives in Canadian Mines

The shift towards electrification within the Canadian mining sector is already under-
way. Both ongoing and upcoming mining ventures in Canada are actively transitioning to
renewable energy sources and incorporating battery energy storage to meet their electricity
demands. Numerous forward-thinking Canadian enterprises are channeling investments
into fully electric or hybrid electric vehicles to substitute diesel vehicles, curtail costs, di-
minish pollution, and embrace clean technologies for a more prosperous and ecological
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future [59-65]. However, this transition also ushers in infrastructure, maintenance, and
operational challenges mine operators must contend with. Currently, a predominant focus
within Canadian mining operations centers around electrifying their haulage systems. This
initiative is highlighted by converting several heavy-duty truck prototypes into electrically
powered alternatives actively integrated into service. Table 3 overviews Canadian mines’
most advanced battery electric vehicle (BEV) electrification projects.

Table 3. An overview of Canadian mines that have integrated a fully electrified vehicle.

Project

Operator/Owner Fleet Description

Borden Lake, Ontario

Canada’s first fully electric underground
mine (fully electric fleet)
Twenty-two battery electric scoops with

Goldcorp

Macassa Mine in Kirkland Lake, Ontario Agnico Eagle 6 x 750 trucks (a 50 tonne-battery-powered

haul truck)
An entire fleet of Epiroc battery-electric

Onaping Depth Nickel-Copper Project, mining equipment (scoop tram loader,
Ontario Glencore Canada Minetruck hauler, Boomer face drilling rig,
Cabletec rock bolting rig, and drill rig)
Lamaque Gold Mine, Quebec Eldorado Gold Two Sandvik TH550B battery-electric trucks
NMG open-pit, Quebec Nouveau Monde Graphite One x 40-tonne Western Star 6900XD
Brucejack Mine, British Columbia Newcrest Mining 12 electric haul trucks
Mcllvenna Bay Project, Saskatchewan Foran Mining Corporation Fleet of 20 BEVs, ;ﬁgi;ﬁﬁg trucks, loaders,
BHP Jansen Potash Project, Saskatchewan BHP Group Ten underground battery electric loaders and

one electric tethered loader

5.1. Installation of a Trolley-Assist System for Diesel-Electric Trucks

Trolley-assist technology has been in existence for a considerable duration. During
the energy crisis of the 1970s, sparked by events such as the Yom-Kippur War in 1973
and the Iranian Revolution in 1979, which disrupted oil supplies and led to scarcity and
price surges for Western nations reliant on Middle Eastern energy exports, various mining
companies explored trolley assist as a means to reduce their dependency on diesel fuel [66].
Although trolley assist offers advantages such as emission reduction, enhanced cycle times,
and increased productivity, it failed to gain widespread traction. Multiple factors have
contributed to the limited adoption of trolley assist, as outlined in [66]. Historically, diesel
prices remained lower than today, and until recently, the mining industry lacked substantial
incentives to mitigate its environmental impact.

However, the landscape has shifted with Canada’s recent adoption of stringent cli-
mate change regulations and the implementation of carbon taxes. This has prompted the
emergence of trolley-assist system installations in mines across the globe, including notable
instances such as the Boliden Aitik mine in Sweden [67]. In Canada, only one mine has
successfully integrated this technology into its operations. The Copper Mountain mine in
southern British Columbia introduced a one-kilometer electric trolley-assist system in the
spring of 2022. This innovative system aids 11 full-size hybrid Komatsu trucks in hauling
ore uphill from the main mining pit to the primary crusher of the operation [68], as depicted
in Figure 6.
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Table 4. Illustration of In-Pit Crushing and Conveying System Characteristics.
IPCC Type Fixed Semi-Mobile Fully-Mobile
Crusher type Jaw or gyratory Twin roll or sizer Twin roll or sizer
Relocation times Never or rarely Every 6-18 months As needed
Feed systems Shovel-trucks Shovel-trucks Shovel
and dozers
o Deep hard rock mine Not common in deep  Not common in deep
Application ore rock mine ore or rock mine ore or
waste waste

Compared to truck shovel (TS) options, IPCC systems offer a range of advantages

supported by research reviews and real-world production experiences at mine sites [75-77].
The benefits of IPCC systems include:

Energy Savings: Conveying minerals through conveyors inherently demands less
energy per unit weight than transporting them via trucks [78]. Notably, only 39%
of the energy utilized in a truck cycle is dedicated to moving the payload, with the
remaining 61% allocated to moving the vehicle’s weight. Additionally, by relying on
electricity-based methods, IPCC systems can reduce a mine’s reliance on diesel fuel.
Environmental Impact (Dust and Noise): Implementing IPCC systems can reduce
noise pollution as conveyors generate less noise than conventional diesel-powered
trucks. Moreover, reducing the number of trucks on the road can significantly diminish
the dust emissions sources, positively impacting the environment [78].

CO; Emissions: IPCC systems can substantially reduce CO, emissions by facilitating
fuel switching. A noteworthy example is found in a Brazilian iron ore mine that has
integrated two fully mobile IPCC systems, collectively capable of handling 7800 t/h,
resulting in an estimated reduction of 60 million liters of diesel consumption an-
nually [79]. This approach aligns with utilizing renewable energy sources, such as
hydroelectric, solar, and wind-based electricity, to transform IPCC into a decarbonized
transport mining system.

Operational Costs: As mining activities escalate, waste dumps grow, and the pit
becomes deeper. This progression leads to longer truck haul cycles and increased
demand for additional trucks to meet production requirements. Truck hauling is
frequently perceived as more costly than IPCC methods, particularly with increased
distances and elevation [80]. Embracing an IPCC system over a truck haulage system
can significantly reduce material transport operating expenses (OPEX), owing to
potential savings from energy conservation, workforce reduction, enhanced weight
efficiency, and lower maintenance costs.

Production Efficiency: The continuous transportation approach offered by IPCC sys-
tems often translates to increased production rates. This approach involves transport-
ing ore or waste materials to designated locations consistently and efficiently [81]. A
comprehensive comparison of the two systems (TS/IPCC) based on time utilization,
operational time, and useful operating time metrics underscores the greater produc-
tion efficiency associated with conveyor haulage when considering overall equipment
performance.
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Table 5. Land use by RE sources compared to fossil fuel [84].
Product Primary Energy Sources Land Use Intensity m>/MWh
Nuclear 0.1
Wind 1.0
. Geothermal 2.5
Electricity Solar PV 10
Solar-concentrated solar power 15
Biomass (crops) 500
Liquified Fuel Fossil fuel 0.4
Corn (maize) 230
Biofuels Soybean 400
Cellulose, short rotation coppice 500

Moreover, the potential of renewable energy (RE) is intricately tied to geographical
location, necessitating a meticulous analysis of site-specific variables. In remote areas
lacking proximate weather stations, procuring supplementary wind speed and solar rate
data spanning one to two years may be imperative. This extended data collection is
essential for establishing an accurate average production projection incorporating seasonal
fluctuations.

However, battery electric vehicles (BEVs) are not impervious to technical obstacles.
Notably, the frigid Canadian winter can extend charging durations due to its impact on the
electrochemical reactions within EV batteries, potentially resulting in decreased production
rates [85-87]. This could prompt companies to consider augmenting their electric fleet
and charging infrastructure to compensate for prolonged charging times and the increased
number of vehicles. Additionally, introducing high-voltage equipment, unfamiliar to most
employees, raises the specter of technical issues such as arcing and explosions stemming
from inadequate maintenance or mishandling of batteries [88-90].

6.2. Expertise and Logistics

While mining enterprises exhibit an unwavering commitment to elevating health
and safety standards—entrenched within the industry’s ethos—this diligence does not
uniformly translate to power management systems and energy conservation initiatives.
Mining conglomerates face a shortage of essential technical proficiency in renewable energy
(RE) and hybrid systems. The expertise in designing, operating, repairing, and maintain-
ing diesel-powered systems prevalent in off-grid mining operations lies predominantly
within the purview of mining professionals and established suppliers. Regrettably, this
scenario constrains the seamless integration of renewable power [91]. Although power
providers catering to the sector are gradually introducing hybrid options, only a few
mines in Canada, such as Raglan and Diavik, have embarked on the journey of amassing
experiential knowledge in RE implementation.

In logistics, Canadian mining corporations have mastered the formidable challenge of
supplying heavy fuel oil or diesel to remote mine sites, a feat particularly pronounced in
border regions such as the Arctic. Notably, the Diavik mine exemplifies this feat, where
ice roads remain the exclusive conduit for truckers and heavy machinery during certain
winter weeks. Integrating renewables in such locales can alleviate logistical complexities
and expenses associated with fuel transportation [92]. For instance, Diavik’s environmen-
tal sustainability report underscores the achievement of its 9.2 MW wind farm, which
contributed 11% of the mine’s power in 2014 and mitigated 5 million liters of diesel con-
sumption. Although seemingly impressive—equivalent to 37 fuel trucks traversing ice
roads—this achievement pales when juxtaposed against the aggregate fuel usage at the
mining site, encompassing electricity and other fuel-consuming operations such as the truck
fleet (Figure 8). Furthermore, the integration of renewable plants entails additional on-site
personnel and meticulous planning, exemplified by Glencore’s conscientious deliberations
concerning the transportation of wind farm components to its Raglan mining site and the
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Table 6. Viability of technologies as a function of mine lifespan [105].

Lifespan: 3-7 Years Lifespan: >10 Years
Diesel generators v v
Gas turbines v v
Solar PV Unlikely v
Wind turbines Unlikely v
Concentrated solar power Unlikely v

For a renewable energy project to yield cost-saving potential relative to less capital-
intensive power sources such as diesel, the projected lifespan of the mine should align with
the approximate 20-25-year operational span of a solar/wind plant. The allure of renewable
energy alternatives for off-grid mines diminishes with shorter mine lifespans [93,105].

6.4. Research and Development

The Canadian mining sector needs cost-effective solutions to embrace affordable,
long-duration energy storage systems for scaling up renewable energy adoption, as well as
for incorporating clean heat sources at high temperatures. Additionally, green hydrogen
production emerges as a promising avenue for low-emission heating or feedstock pur-
poses, offering the potential for research and innovation [106-108]. Similar prospects lie
in developing lighter batteries with enhanced autonomy for industrial applications [109].
Furthermore, the integration of Blockchain technology, which remains largely underutilized
in Canadian mines, could enhance transparency, simplicity, and security in investments.
Blockchain could also enable the tracing of “green” minerals, thereby contributing to
mining sector operations [110,111]. Instead of leading these initiatives from scratch, the
Canadian mining industry could achieve significant strides in RE adoption by embracing
technologies and processes proven effective in other sectors.

6.5. Business Models

The limited availability of flexible renewable energy solutions and the financial con-
straints many mining corporations face, especially smaller to medium-sized enterprises,
contribute to a sense of caution. Policy support will be pivotal in shaping agreements, such
as power purchase agreements, aligning incentives and legal frameworks, and fostering net
metering for grid-connected mining operations. Analyzing the advantages and disadvan-
tages of RE incorporation can aid governments and stakeholders, including the financial
sector, in making informed decisions to support these endeavors.

6.6. Main Challenges of Integrating RE and Electrifying Canadian Mine Sites

The primary difficulties of integrating renewable energies and electrification at Cana-
dian mine sites are summarized in Table 7 with the objective to better explain the findings
of Section 6.
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Table 7. Comparison of the main challenges to integrating RE and electrifying mine sites in Canada.

Decarbonization Solutions Main Challenges

Renewable energies

Electrification

May undergo gelation in cold weather

Require heated storage structure
Require a large plot of land

Dirt, snow, and ice accumulating on solar panels can
Solar PV block the sun’s rays, reducing the amount of
electricity generated.

Not profitable if mine lifespan is less than 10 years
Accumulation of ice on wind turbine blades resulting

in reduced power output and increased rotor loads
Cold weather shutdown to prevent equipment failure
Limited or reduced access for maintenance activities

Not profitable for a short mine lifespan (<10 years)
Longer haulage distances and steeper grades state a

challenge for more powerful transporting systems.
e  Keeping haul trucks as small as possible is also desired,

so power consumption goes to ore transport only.
e It produces excessive noise and light pollution that can

negatively affect the quality of life of humans and
IPCC wildlife nearby
° Generates thousands to millions of tons of waste and

requires a large disposal area to accommodate them.
e  Lack of experience among technicians, trainers and

mining engineers in dealing with
high-voltage equipment

e  The quieter operation of BEVs increases the risk of
collisions with workers

e  Battery efficiency is affected by cold climates

Biofuels

Wind turbines

TA

BEV

7. Conclusions

This review examines the progress of energy transition within Canadian mines as
they strive to meet the obligations of the Paris Climate Change Agreement. While several
active projects are underway to integrate renewable energy sources such as wind, solar, and
storage systems, particularly in off-grid mining operations, the predominant focus within
the Canadian mining industry is presently centered on electrifying their transportation
fleets through substantial investments in electric heavy-duty trucks. This emphasis is
driven by the substantial portion (30—40%) of operating costs for Canada’s mines, both
underground and open-pit, stemming directly from diesel usage in transportation systems.
Moreover, the ongoing RE initiatives at Raglan and Diavik mines, although commendable,
only account for a modest 10-12% of their energy requirements, indicating room for growth.

The review also highlights the numerous challenges in integrating RE into off-grid
Canadian mine sites. The spatial demands and operational intricacies associated with RE
installations and the perceived expertise and management hurdles present notable obstacles
for many Canadian mines. The complex logistics of implementing RE at remote sites further
complicate large-scale integration, impeded by transportation constraints, skilled labor
availability, infrastructure limitations, adverse weather conditions, and communication
challenges. Furthermore, the economic viability of RE implementation is profoundly
influenced by the projected lifespan of the mining operation, cautioning against introducing
RE solutions when a mine has a relatively short exploration horizon of 3-7 years. On the
contrary, it becomes more feasible to invest in RE systems when the mine’s operational life
extends beyond a decade.

While IPCC and trolley-assist (TA) systems hold promise for decarbonizing Canadian
mines, the review has encountered limited evidence regarding the widespread integration
of these decarbonization technologies. The integration of IPCC is yet to be entirely ascer-
tained, and TA integration remains limited, exemplified by a single instance at the Copper
Mountain mine in British Columbia.
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Finally, the review underscores the technical challenges posed by battery electric
vehicles (BEVs) pose. Concerns raised by experts in the field include the lack of experience
among technicians and mining engineers in dealing with high-voltage equipment, elevating
the risk of electric fires and battery-related accidents. The shortage of trainers in this
evolving field further compounds these challenges. Additionally, the quieter operation of
BEVs increases the risk of collisions with workers, necessitating the development of new
communication protocols and increased investment in cutting-edge technology to advance
toward a fully connected mine. It is worth noting that Canada’s harsh winter weather
conditions can impact production efficiency, as battery performance tends to decline in
colder temperatures compared to the summer months.
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