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The primary objective of an energy management strategy (EMS) in fuel cell (FC) hybrid electric 
vehicles (HEVs) is twofold: to minimize hydrogen consumption and to extend the lifetime of the 
power sources. However, these power sources are susceptible to degradation under various 
operational and ambient conditions, be it from cycling or calendar aging. To achieve optimal 
performance, the EMS must consider variations in the power sources' characteristics due to 
degradation. This paper succinctly discusses the necessity of employing a health-wise EMS and 
the indispensable tools it requires, such as health-monitoring techniques. Subsequently, the study 
investigates the impact of a health-wise EMS on the total operational cost of a low-speed urban 
FC-HEV truck through simulations. The simulation results demonstrate that health-wise EMSs can 
significantly reduce fuel consumption and mitigate FC and battery degradations, resulting in a 
noteworthy reduction in the total operational cost. 

Introduction 

Global warming, the shortage of fossil fuels, and air pollution caused by the transportation sector 
have motivated governments to legislate on the production of conventional vehicles. For instance, 
in most European countries, sales of fossil fuel road passenger vehicles will be banned by 2030. 
In response, car manufacturers have been encouraged to develop new generations of vehicles, 
ranging from hybrid electric vehicles (HEVs) to fuel cell (FC) and battery electric vehicles (BEVs). 
Figure 1 depicts the versatility of utilizing the new generation of vehicle types, categorized by their 
size and travel distance. As shown in the figure, BEVs are highly suitable for compact personal cars 
utilized on shorter daily commutes. Conversely, hydrogen emerges as a prominent option for 
vehicles requiring extended range and carrying heavier loads. Despite the automotive industry's 
rapid increase in the production of BEVs in recent years, the long charging time remains a concern 
and dissatisfaction for vehicle owners. 

To address the mentioned limitations, FC-HEVs have emerged as a promising alternative for eco-
friendly transportation, especially in heavy-duty applications or other specific applications 
(mining, ship transportation, rail, etc.). 

 

Figure 1 The use of different electrified vehicles in transportation. 
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While the development of FCs for light-duty vehicles has spanned over two decades, significant 
focus on heavy-duty applications has emerged only recently. This transition has been prompted 
by the distinctive scalability of FCs in terms of both power and energy. Scaling up the FC stack or 
hydrogen tank incurs a relatively minor weight penalty compared to lithium-ion batteries. 
Moreover, deploying heavy-duty vehicles commercially demands fewer infrastructure 
investments, as dedicated and more predictable routes necessitate fewer refueling stations. 

Nevertheless, certain challenges, such as the lack of infrastructure and high costs, continue to 
persist. Additionally, the long-term durability of the system, especially concerning the lifetime of 
the proton exchange membrane FC (PEM-FC) system and the variation of PEM-FC and lithium-ion 
battery characteristics, remains a significant concern. Consequently, the prediction of 
performance decay resulting from degradation, induced by cyclic loads, steep power transients, 
and ineffective control of electrochemical power sources, has been explored and could impede 
commercial acceptance in specific sectors. Addressing these drawbacks in FC-HEVs imposes the 
development of a health-wise energy management strategy (EMS) that considers performance 
decay, system efficiency, and energy distribution in a comprehensive manner.   

As the primary decision-maker of an FC-HEV, the EMS plays a crucial role in managing the power 
split among various power sources, aiming to minimize hydrogen consumption and the 
maintenance costs of power sources. Given that degradation alters the characteristics of both the 
battery and FC in a FC-HEV, these variations must be accounted for in the EMS design to achieve 
optimal performance. This forms the central concept behind a health-oriented EMS, which is 
currently in the pilot application stage. It utilizes typical measurement methods such as cell 
voltage monitoring, high-frequency resistance measurement, and total harmonic distortion for 
adaptation. 

The objective of this paper is to introduce the fundamental principle of a health-wise EMS. 
Subsequently, the required tools, such as health monitoring and state estimation techniques, for 
designing such EMS are concisely discussed. Finally, the impact of designing a health-wise EMS on 
the total trip cost of a FC-HEV using a hardware-in-the-loop setup is investigated, and a conclusion 
is given. 

Health-wise EMS in FC-HEVs 

EMS exploits a hierarchical supervisory control scheme to determine the reference power 
demand signals for the power source components. Each power source incorporates its own 
control loop to achieve the desired reference using feedback from the model parameters or the 
response variables.  

Some of the main parameters of the FC and battery employed in the EMS design in the automotive 
industry are summarized below.  

- Terminal Voltage: Measured in both FC and battery. 

- Current: Measured in both FC and battery. 

- Open Circuit Voltage: Estimated in both power sources while the vehicle is operating. It can be 
measured but not under operation.   

- State of Charge (SOC): Estimated in batteries. 



- Ohmic Resistance: Estimated while in operation and measured with specific protocols in both 
power sources.   

- Power: Measured in FCs and state of power is estimated in batteries.   

- Maximum Power: Estimated in FCs. 

- Efficiency: Estimated in FCs. 

Some of the required variables are measured, and some of them are estimated as they are not 
measurable or are tough to be measured. Therefore, state estimation is essential for both EMS 
and power sources' health monitoring purposes. In addition to the estimation, prediction is also 
highly important for determining some parameters known as health index (HI). For instance, 
voltage and power decay are two important HIs that can be useful for designing an EMS. State 
estimation and HI prediction typically rely on a model. However, if the parameters of the 
employed model are unknown or time-varying, the estimation/prediction may not be very 
reliable, and the EMS based on the false estimation/prediction may not yield the desired 
performance. The main reasons for the variation of the model’s parameters are degradation and 
changes in operating conditions. Since developing a comprehensive model that includes all 
phenomena, degradation, and operating conditions is highly difficult, estimation and prediction 
techniques assume a crucial role in ensuring accurate results. 

To address variations in the EMS due to model uncertainties, health-wise EMSs have been 
introduced by Kandidayeni et al. in a manuscript published in 2022. Figure 2 provides a schematic 
overview of the health-wise EMSs in FC vehicles. One of the key characteristics of the health-wise 
EMS is its capability for online health monitoring. This allows not only the estimation of required 
state variables but also the estimation or prediction of the health condition of power source 
elements. Online state monitoring and health estimation in FC vehicles are categorized as 
prognostic or diagnostic. In the prognostic-based EMS, which relies on prognostic health 
monitoring, a degradation model is employed and calibrated to capture the degradation of power 
sources and predict corresponding variations in the parameters affecting the EMS.  

In the diagnostic-based EMS, as depicted in Figure 2, the approach revolves around directly 
monitoring the actual health condition of the power sources and making decisions accordingly. 
Unlike the prognostic-based EMS, there is no prediction involved using a degradation model; 
instead, the health of the power sources is continuously monitored in real time. When utilizing a 
diagnostic-based EMS, the control actions are dependent on the designed strategy and the 
specific situation at hand. This may include implementing fault-tolerant control actions or 
updating preset values, such as maximum power or efficiency of the FC system, battery capacity, 
and so on, based on the information gathered from condition monitoring. Furthermore, if the 
situation is beyond controllable limits, the diagnostic-based EMS can trigger a maintenance 
request to address the identified issues promptly.  



 

Figure 2 Demonstration of steps for developing a health-wise EMS 

Health monitoring in fuel cells and batteries: 

Health monitoring techniques are crucial in extending the lifetime and enhancing the 
performance of FCs and batteries while minimizing repair needs. In fact, FC and batteries used in 
automotive applications experience performance attenuation over time. Despite being preferred 
power sources for vehicular application, dynamic conditions in automotive use have led to 
reduced energetic performance in these power sources.  

Given the multivariate nature of these electrochemical devices and their distinct conditions, 
diagnostic and prognostic actions become vital for fault handling and predicting remaining useful 
life (RUL).  

Prognostics:  

The elementary concept of prognostics involves predicting the RUL of a system based on its 
current State of Health (SOH) before it experiences failure. This process comprises two main steps: 
learning and prediction. Precise prognostics for PEM-FCs and batteries necessitate the use of 
appropriate HIs. 

For PEM-FCs, HIs fall into two main groups: measurement-based indexes (e.g., voltage, power, 
polarization curves, Electrochemical Impedance Spectroscopy (EIS) based indexes, and 
degradation model parameters) and component indexes (e.g., PEM indexes, electrode indexes, 
Bipolar plate indexes, GDL indexes, and sealing gasket indexes). Among these, voltage, power, 
and polarization curves are the most applicable HIs for PEM-FCs in EMS design as they indicate 
the macro-scale health states. The most commonly used HI for FC systems in energy management 
applications is the voltage failure threshold, which sets a target of 5000 to 8000 hours with less 
than a 10% voltage drop for the durability of a FC stack in a passenger vehicle. For heavy-duty 
vehicles like trucks, the target shifts to 25000 hours while maintaining less than a 10% voltage 
reduction. In batteries, the main HIs are capacity and internal resistance, and commonly used 



failure thresholds include reaching 80% of the initial capacity or a 1.3-time to 2-time increase in 
resistance value.  

Prognostic methods for PEM-FCs and batteries in automotive applications generally fall into three 
categories: model-based, data-driven, and hybrid methods.  

Model-based methods rely on mechanistic models, semi-empirical models (including equivalent 
circuit models), or fused models. Developing mechanistic multi-physics FC models necessitates a 
thorough understanding of the fundamental principles at play, resulting in a high level of accuracy, 
albeit with significant computational requirements. Semi-empirical models can be considered as 
less complex variants of white-box models, wherein certain intricate mathematical equations are 
replaced by empirical formulas or even mapping tables. The polarization curve-based models are 
a more prevalent form of semi-empirical models used for FCs, whereas equivalent circuit models 
find greater application in the context of batteries. Concerning fused models, their primary 
objective is to amalgamate different model-based approaches to extract a more comprehensive 
set of information.  

Data-driven methods utilize historical data to forecast degradation trends instead of delving into 
the details of analyzing mechanisms for model development. These methodologies harness 
intelligent approaches such as Artificial Neural Networks (ANNs), statistical examination, and 
signal processing to formulate degradation models and project patterns of device aging. A 
significant advantage is that they only require a substantial amount of raw data for accurate 
predictions. However, their robustness may be limited when encountering new conditions that 
were not present during their training phase. 

Hybrid methods combine the physical properties of model-based approaches with experimental 
data, often utilizing intelligent or adaptive techniques to leverage the advantages of both 
methods while overcoming their weaknesses. Therefore, various hybrid methods can be devised 
by combining the aforementioned approaches for PEM-FC and battery prognostics. 

Despite considerable progress in prognostic techniques, there are several challenges that remain 
untouched. Researchers often use laboratory data instead of field-based data, and there is a need 
for FC and battery degradation data under realistic working conditions and dynamic load profiles. 
Moreover, there is a demand for algorithms capable of generating preliminary forecasts with 
limited measured data, considering that current techniques frequently necessitate a significant 
portion of lifecycle data for parameter calibration or model training purposes.  

Diagnostics: 

The main concept behind diagnostic procedures is to continuously monitor the State of Health 
(SOH) to promptly detect and isolate any malfunctions or faults before the system experiences a 
complete failure. The diagnostic process, depicted in Figure 2, involves several steps. Initially, data 
acquisition captures and stores various information like voltage, current, and temperature from 
experimental measurements or high-fidelity simulation models. After processing, this data 
becomes available for model identification, fault characterization, and algorithm verification. 
Next, essential features are extracted through data preprocessing, feature representation, 
extraction, and selection. These extracted features form the basis for fault diagnosis. In the 
context of FC/battery fault diagnosis, the tasks are divided into three categories: fault detection 
(identifying if a fault has occurred), fault isolation (determining the type and/or location of the 
fault), and fault estimation (evaluating the magnitude/intensity of the fault). Finally, the fault-
handling module assesses the results from the fault diagnosis and makes decisions accordingly. 



These decisions may include issuing alarms, initiating fault-tolerant control mechanisms, isolating 
faulty components, or even disconnecting the power supply if necessary. The significance of 
effective diagnosis and fault handling has been evident in various situations.  

Diagnostic methods in FCs and batteries can be categorized into two main groups: model-free and 
model-based methods. 

Model-free methods can be further divided into two subgroups: measurement-based and data-
driven approaches. Measurement-based methods utilize regular measured variables (such as 
stack/cell voltage, flow rate, stack temperature, etc.) and special measurements (polarization 
curve, Electrochemical Impedance Spectroscopy (EIS), cyclic voltammetry (CV), current 
interruption) to accomplish diagnosis. Data-driven methods, on the other hand, leverage machine 
learning techniques (such as ANN, support vector machine, etc.), fusion methods, fuzzy logic, and 
signal processing to carry out the diagnostic process. 

Model-based diagnostic methods encompass parameter identification, observer-based 
techniques, and structural analysis. Parameter identification techniques frequently utilize 
analytical or semi-empirical models to pinpoint precise anomalies or performance discrepancies 
through the scrutiny of specific parameter values. Observers act as virtual sensors, relying on 
models, peripheral signals, and algorithms, to estimate internal states that are challenging or 
impossible to directly measure in the hermetic structures of PEM-FC and batteries. Structural 
analysis, on the other hand, uses parity relations to generate residuals, which help detect and 
isolate faults like flooding, drying, and compressor over-voltage. 

Among the discussed methods, parameter identification and observer-based techniques from the 
model-based category are the most widely used in EMS design due to their straightforward 
implementation process.  

However, despite the progress in diagnostic methods, there are several challenges that remain 
concerning FCs and batteries diagnosis: 

1-The intrinsic internal mechanisms and their relationships with outputs or operational 
parameters require careful examination, as different conditions can lead to the same fault. 
Understanding the coupling or interrelation between these mechanisms in FCs and batteries is 
still not well-established. 

2-Developing a comprehensive mathematical model that can simulate fault behavior from the 
micro time to macro system level remains an open problem in the field of FCs and batteries. 

3-The conventional measured parameters derived from batteries and FCs, encompassing 
variables like voltage, current, and temperature, do not yield a comprehensive comprehension of 
the intrinsic electrochemical processes. Consequently, the identification of pertinent attributes 
for articulating the inner states of electrochemical power sources persists as a daunting 
undertaking. 

To summarize, health-monitoring techniques, including prognostic and diagnostic methods, play 
a crucial role in tracking, estimating, or predicting specific time-varying FC/battery parameters. 
Parameters such as the maximum power and efficiency points of the FC system or battery SOC 
are essential for designing any type of EMS. Certain parameters require even a combination of 
estimation and prediction techniques (a mix of diagnostic and prognostic methods). For instance, 



battery SOC itself is typically obtained through estimation techniques like the Kalman filter, and 
its value is affected by the battery capacity fade or degradation.  

To exemplify the potential ramifications arising from the oversight of this updating mechanism, 
the subsequent section presents an illustrative case study assessing the profound influence of 
health state awareness on the operational cost of a FC-HEV. 

Comparison of health-wise and non-health-wise strategies  

To indicate the impact of the power sources’ health-state on the operating cost of an FCV, a brief 
yet precise study is carried out in this section. The employed vehicle model in this study is based 
on a low-speed electric urban truck (golf cart). This vehicle is equipped with a single ratio gearbox, 
a 5.6-kW induction machine, a 4-kW PEM-FC that is linked to the DC bus through a DC-DC 
converter, and a 72-V (40 Ah) lithium-ion battery which is directly connected to the DC bus. 

Hardware-in-the-Loop Platform 

A HIL set-up, as shown in Figure 3, is developed to assess the performance of the EMS in different 
scenarios. The real component of this set-up is a Horizon 500-W PEM-FC, and the other 
components are mathematical models. In this set-up, the FC is connected to a National Instrument 
CompactRIO through its controller. The FC controller controls the hydrogen valve, the purge valve, 
and the axial fan which has a dual role of cooling down the stack and supplying the required 
oxygen for the reaction. As mentioned earlier, the utilized electric truck vehicle model requires a 
4-kW FC system to run. In this context, the output power of the FC within the HIL configuration is 
amplified after the converter to fulfil the desired power demand. 

To highlight the importance of having awareness about the health state of the power sources 
while designing an EMS, two 500-W Horizon PEM-FCs with different degradation levels are 
deployed in this work.  

 

Figure 3 The developed HIL platform for testing the health-awareness influence over the EMS performance. Variables 
shown in the figure: 𝐼𝐹𝐶, 𝑇𝐹𝐶, 𝑃𝐹𝐶, 𝑉𝐹𝐶 (FC current, temperature, power, and voltage).    



 

Energy management strategy 

The requested power (𝑃𝑟𝑒𝑞) from the electric motor side is supplied by both of PEM-FC system 

and battery pack. Therefore, the relationship of 𝑃𝑟𝑒𝑞, FC power (𝑃𝐹𝐶), and battery power (𝑃𝐵) can 

be defined as follows in which 𝜂𝐷𝐶−𝐷𝐶  is the efficiency of the converter. 

 𝑃𝑟𝑒𝑞 = 𝑃𝐹𝐶 × 𝜂𝐷𝐶−𝐷𝐶 + 𝑃𝐵         (1) 

The energy management problem in a FC-HEV is in essence a nonlinear optimization problem. It 
can be solved by sequential quadratic programming (SQP), which has reached optimal/sub-
optimal results for a wide range of engineering optimization problems. In this work, SQP is utilized 
to minimize the trip cost, which is formulated using the following multi-objective cost function, at 
each step.   

Min: $𝑇𝑟𝑖𝑝𝑗 = 𝐶𝐻2
𝐻2𝑓𝑙𝑜𝑤,𝑗 + 𝐶𝐹𝐶∆𝐹𝐶,𝑗 + 𝐶𝐵𝑎𝑡∆𝐵𝑎𝑡,𝑗   𝑗 = 1,2,3 …    (2) 

Where 𝐶𝐻2
 is the cost of hydrogen in US dollars (2.3 $ 𝑘𝑔⁄ ), 𝐻2𝑓𝑙𝑜𝑤 is the hydrogen flow (𝑘𝑔 𝑠⁄ )   

𝐶𝐹𝐶 is the cost of the FC system (40 $ 𝑘𝑊𝑛𝑒𝑡⁄ ), ∆𝐹𝐶  is the FC power decay owing to degradation 
(kW), 𝐶𝑏𝑎𝑡 is the battery cost (178.41 $ 𝑘𝑊ℎ⁄ ), and ∆𝐵𝑎𝑡 is the battery degradation (𝑘𝑊ℎ). The 
FC power decay is given by:  

∆𝐹𝐶= 𝑃𝐹𝐶,𝑚𝑎𝑥(
𝑘1𝑡1

3600
+ 𝑘2𝑛1 + 𝑘3𝑛2 +

𝑘4𝑡2

3600
+

𝑘5𝑡3

3600
)                              (3) 

 
where 𝑃𝐹𝐶,𝑚𝑎𝑥 is the FC maximum power, 𝑘1 (0.00126 % ℎ⁄ ) is the degradation rate caused by 

operating in low-power condition (less than 5 % of 𝑃𝐹𝐶,𝑚𝑎𝑥), 𝑘2 (0.00196 % 𝑐𝑦𝑐𝑙𝑒⁄ ) is the 

degradation caused by one on/off cycle, 𝑘3 (5.93×10−5 % 𝑐𝑦𝑐𝑙𝑒⁄ ) is the degradation caused by 
violating the fast transient condition (more than 10% of 𝑃𝐹𝐶,𝑚𝑎𝑥 per second), 𝑘4 is the 

degradation rate caused by operating in high-power operation (more than 90 % of 𝑃𝐹𝐶,𝑚𝑎𝑥), 
and 𝑘5 (0.002 % ℎ⁄ ) is the natural performance decay rate. 𝑡1, 𝑡2, and 𝑡3 represent the duration 
of operations under low-power, high-power, FC activated states, respectively. Meanwhile, 𝑛1 
refers to the count of on/off cycles, and 𝑛2 indicates the quantity of transient load variations. As 
stated by the US Department of Energy (DOE), the end of life for FCs is characterized by a decrease 
in maximum power by 10%, with an operational goal of 5000 hours. The battery degradation is 
formulated as follows: 

∆𝐵𝑎𝑡= 𝐸𝐵𝑎𝑡 (𝑆𝑂𝐻𝐵𝑎𝑡,𝐼𝑛𝑖𝑡𝑖𝑎𝑙 −
|𝑖𝐵𝑎𝑡|

2𝑁𝐸𝑂𝐿(𝐶𝑟𝑎𝑡𝑒)𝑄𝐵𝑎𝑡

)        (4) 

𝑁𝐸𝑂𝐿(𝐶𝑟𝑎𝑡𝑒) = 
3600 𝐴ℎ

𝐸𝑂𝐿(𝐶𝑟𝑎𝑡𝑒)

𝑄𝐵𝑎𝑡
         (5) 

𝐴ℎ
𝐸𝑜𝐿(𝐶𝑟𝑎𝑡𝑒) = [

20

𝐵(𝐶𝑟𝑎𝑡𝑒)∗𝑒𝑥𝑝(−
𝐸𝑎(𝑐𝑟𝑎𝑡𝑒)

𝑅𝑇
)
]

1/0.55

       (6) 

𝐸𝑎(𝐶𝑟𝑎𝑡𝑒) = 31700 − (370.3 𝐶𝑟𝑎𝑡𝑒)         (7) 

Where 𝐸𝐵𝑎𝑡 is the battery capacity (kWh), 𝑆𝑂𝐻𝐵𝑎𝑡,𝐼𝑛𝑖𝑡𝑖𝑎𝑙 is the battery state-of-health with initial 
value of 1, 𝑖𝐵𝑎𝑡 is the battery current, 𝐶𝑟𝑎𝑡𝑒 is considered 1, 𝐵, which is a pre-exponential 
coefficient, is 25.652, 𝐸𝑎 is the activation energy, 𝑅 is the constant of ideal gas (8.31 J/mol), 𝑇 is 
the battery cell temperature (which is considered 298.2 K), 𝐴ℎ  is the amount of electric charge 



delivered by battery. From Arrhenius equation, the percentage loss of battery capacity  ∆𝑄𝐵𝑎𝑡 (%) 
is obtained by: 

∆𝑄𝐵𝑎𝑡 = 𝐵(𝑐𝑟𝑎𝑡𝑒). exp (
−𝐸𝑎𝑐𝑟𝑎𝑡𝑒

𝑅𝑇
)(𝐴ℎ𝑐𝑟𝑎𝑡𝑒)0.55       (8) 

The battery SOC is calculated by: 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) − 𝜂𝑐

∫ 𝐼𝐵𝑑𝑡
𝑡

𝑡0

3600 𝑄𝐵
        (9) 

where 𝜂𝐶  is the coulombic efficiency (𝜂𝐶 = 0.98 in charging and 𝜂𝐶 = 1 in discharging), 𝐼𝐵 is the 
battery current (A), and 𝑄𝐵 is the battery capacity (Ah). 

To ensure the operation of the power sources remains within acceptable limits, the following restrictions are 
taken into account: 
 
𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑗 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥                    (10) 
𝑃𝐹𝐶,𝑚𝑖𝑛 ≤ 𝑃𝐹𝐶,𝑗 ≤ 𝑃𝐹𝐶,𝑚𝑎𝑥                      (11) 
∆𝑃𝑅𝑖𝑠𝑒,𝑗 − 10% 𝑃𝐹𝐶,𝑚𝑎𝑥 ≤ 0                  (12) 
∆𝑃𝐹𝑎𝑙𝑙,𝑗 − 30% 𝑃𝐹𝐶,𝑚𝑎𝑥 ≤ 0                   (13) 
 

Where 𝑆𝑂𝐶𝑚𝑖𝑛 is the minimum battery SOC (50%), 𝑆𝑂𝐶𝑚𝑎𝑥 is the maximum battery SOC (90%), 
𝑃𝐹𝐶,𝑚𝑖𝑛 is the minimum Fc power which is zero, ∆𝑃𝑅𝑖𝑠𝑒 is the positive FC power variation, and 
∆𝑃𝐹𝑎𝑙𝑙 is the negative FC power variation. During the optimization process, the utilized EMS 
attempts to keep the FC power between 0 and 4 kW (or 0 and 500 W in the downscaled system). 

In order to investigate the impact of power sources’ health state awareness on the trip cost 
obtained by the EMS, the following scenarios have been tested: 

1-New power sources with a health-wise EMS (𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊): 

In this scenario, the utilized power sources in the optimization process are new and all the 
constraints and equations are based on the characteristics of these new power sources.  

2-Aged power sources with a health-wise EMS (𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊): 

In this scenario, the utilized power sources in the optimization process are aged. That means the 
old FC which is presented in Figure 3 (10% of decline in the maximum power) is used as the main 
power source and a battery pack that has experienced a 20% of capacity fade along with a twofold 
increase in the internal resistance is employed as the secondary source. During this test, the EMS 
is health-wise which implies that the constraints of the FC system (maximum power and power 
variation) are based on the characteristics of the old FC and the value of battery capacity in the 
SOC calculation is adjusted based on the aged battery pack.     

3-Aged power sources with a non-health-wise EMS (𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝑁𝐻𝑊): 

Similar to the second scenario, both of power sources are aged in this third attempt. However, 
the deployed EMS herein is health-unaware which means that the constraints of the FC system 
and the value of battery capacity for the calculation of the battery SOC are adjusted based on the 
characteristics of the new power sources while they are aged. This scenario imitates the behaviour 
of an EMS that has been tuned in the beginning of life of the power sources and its settings have 
not been updated although the power sources have become degraded.     



Results and discussion 

To assess the performance of the designed EMS, the class 3b of worldwide harmonized light 
vehicles test cycle (WLTC) is utilized in this work. This driving cycle is 1800 s and has been repeated 
four times consecutively for the purpose of this study. The driving cycle speed has been scaled 
down based on the top speed of the employed low-speed electric truck, which is 40 km/h. 

Figure 4 presents different achieved results under the WLTC driving cycle. Figure 4a represents 
the trip cost of each scenario for different battery SOC conditions. From this figure, it is obvious 
that regardless of the initial and final battery SOCs, 𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 scenario reaches the lowest 
trip cost, followed by the 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 and 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝑁𝐻𝑊 scenarios. Comparison of the 
achieved trip costs for the initial battery SOC of 70% indicates that when the power sources get 
aged, the trip cost of the vehicle increases by almost 13%, assuming that the vehicle is equipped 
with a health-wise EMS (comparing the 𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 with 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊). However, if the 
vehicle is not equipped with a health-wise EMS, this difference can be increased up to around 
25% (comparing the 𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 with 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝑁𝐻𝑊). To dig deeper into the analysis of 
these results, the variation of battery SOC, the extracted power from the FC system, and the 
drawn current from the FC system are shown in Figures 4b, 4c, and 4d respectively. From Figure 
4b, both 𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 and 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 scenarios are capable of respecting the defined 
constraint for the minimum battery SOC. In the 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 scenario, the EMS does not 
discharge the battery a lot in the beginning so that it can comply with the constraint. However, 
𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝑁𝐻𝑊 scenario cannot sustain the minimum SOC constraint although the level of 
degradation in the power sources of this scenario is the same as 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊. The reason why 
𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝑁𝐻𝑊 cannot sustain the minimum SOC constraint is that its settings (battery capacity 
and maximum power of the FC) are the same as 𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 scenario while its power sources 
are aged and cannot supply the same amount of power. Hence, it tries to follow a similar SOC 
trend as the 𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 (as shown in Figure 4a) but fails to sustain the minimum SOC level. 
According to Figure 4c, the policy of the EMS in the 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 is different with the other 
two scenarios. It turns on the FC at around 290 s (almost 300 s sooner than the other two 
strategies) and runs the FC at lower power level at the time peaks (e.g., between 1500 s and 2000 
s). Moreover, when the FC operates in a constant power level in other two scenarios (e.g., 
between 2000 s and 3000 s), the EMS of 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 operates the FC in higher power levels 
in average. Figure 4d indicates that the FC in the 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝑁𝐻𝑊 is reaching almost the same 
current level as the one in 𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊. However, since it is an aged FC, it can achieve the same 
power level as the scenario with new power sources. Operating the FC in such a high current level 
is the main reason that the trip cost of the 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝑁𝐻𝑊 is almost 12% higher than the 
𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 scenario.   



 

Figure 4 Performance evaluation of the health-wise (HW) and non- health-wise (NHW) EMSs. a) Trip cost comparison for 
different battery initial and final SOC levels, b) The variation of the battery SOC in different scenarios, c) The supplied power 
by the FC system, d) the drawn current from the FC.  

Conclusion  

This paper initiates by delineating a comprehensive methodology for infusing health monitoring 
techniques into EMS design, with a deliberate emphasis on the pivotal parameters and HIs 
tailored for this application. A subsequent concise survey is conducted, elucidating the prevailing 
prognostic and diagnostic methodologies for both FCs and batteries. Finally, a comprehensive 
simulation using a HIL setup is performed. The simulation investigates three scenarios under a 
standard driving cycle: 

-New power sources with a health-wise EMS (𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊) 

-Aged power sources with a health-wise EMS (𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊) 

-Aged power sources with a non-health-wise EMS (𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝑁𝐻𝑊) 

The simulation results demonstrate that the trip cost of the vehicle increases by almost 13% when 
equipped with a health-wise EMS (comparing 𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 with 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊). However, 
the difference can increase up to around 25% if the vehicle is not equipped with a health-wise 
EMS (comparing 𝑁𝑒𝑤𝑆𝑜𝑢𝑟𝑐𝑒−𝐻𝑊 with 𝐴𝑔𝑒𝑑𝑆𝑜𝑢𝑟𝑐𝑒−𝑁𝐻𝑊). The findings underscore the need for 
implementing health-wise EMSs to ensure efficient and cost-effective operation of FC-HEVs. 
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