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RÉSUMÉ 

La reconnaissance des gestes à l'aide d'images à faible résolution de signaux 

électromyographiques de surface à haute densité (HD-sEMG) et à résolution instantanée 

ouvre de nouvelles perspectives pour le développement d'interfaces ordinateur-muscle plus 

fluides et naturelles. Les méthodes actuelles de pointe utilisent des réseaux de neurones 

convolutionnels (ConvNet) complexes, profonds et larges, ou un ensemble de ces réseaux 

complexes pour la reconnaissance des images HD-sEMG. Ce qui nécessite que 

l'architecture du réseau soit préentraînée sur un ensemble de données d'entraînement 

étiquetées à grande échelle. Par conséquent, cela rend l'application en temps réel coûteuse 

en ressources et en puissance de calcul. 

Pour résoudre ce problème, les modèles légers S-ConvNet et All-ConvNet sont 

proposés, offrant ainsi un cadre simple, mais efficace pour apprendre les images HD-sEMG 

instantanées à partir de zéro pour la reconnaissance des gestes. Les résultats des 

expériences ont prouvé que les modèles proposés sont très efficaces pour apprendre des 

caractéristiques discriminatives pour la reconnaissance d'images HD-sEMG instantanées, 

en particulier dans des scénarios où les ressources et les données de qualités sont limitées. 

Les expériences menées sur quatre (4) ensembles de données HD-sEMG disponibles 

publiquement, sans utiliser des modèles préentraînés, ont montré que les modèles S-

ConvNet et All-ConvNet proposés présentent une précision de reconnaissance des gestes 

intrasession très compétitive par rapport aux méthodes de pointes actuelles plus complexes 

en termes de paramètres d'apprentissage. Ainsi, les modèles S-ConvNet et All-ConvNet 
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proposés ont un grand potentiel pour apprendre des représentations discriminatives 

permettant de reconnaître les activités neuromusculaires sur des appareils aux ressources 

matériels limitées. 

De plus, la variabilité des données entre les scénarios intersession et intersujet présente 

un défi important. Les approches existantes utilisent des réseaux de neurones 

convolutionnels complexes et profonds ou sur 2SRNN (2 étages de réseaux de neurones 

récurrents) basés sur des méthodes d'adaptation de domaine pour approximer le décalage de 

distribution causé par cette variabilité des données intersession et intersujet. Par 

conséquent, ces méthodes nécessitent également l'apprentissage de millions de paramètres 

d'entraînement et d'un ensemble de données de domaine source préentraîné et cible à la fois 

dans les étapes de préentraînement et d'adaptation. Par conséquent, le déploiement de ces 

méthodes gourmandes en ressources et coûteuses en puissance de calcul devient un défi 

pour les applications en temps réel. 

Pour résoudre ce problème, l'adaptation de domaine (AD) avec S-ConvNet est 

proposée. Les méthodes d'AD proposées avec S-ConvNet apprennent une représentation 

transférable sur l'ensemble de données HD-sEMG de domaine source et les adaptent au 

domaine cible, même avec très peu de données disponibles, démontrant ainsi des capacités 

de généralisation améliorées en cas de décalage de distribution. Pour mieux résoudre ce 

problème, un modèle All-ConvNet+TL léger est proposé, qui exploite un ensemble de 

neurones convolutionnels légers et l'apprentissage par transfert (TL) pour améliorer les 

performances de reconnaissance de gestes intersession et intersujet. Le modèle All-

ConvNet+TL se compose uniquement de couches convolutionnelles, offrant ainsi un cadre 

simple, mais efficace pour apprendre des représentations invariantes et discriminatives pour 
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résoudre les décalages de distribution dus à la variabilité des données intersession et 

intersujet. Des expériences menées sur quatre ensembles de données ont montré que la 

méthode d'AD proposée avec S-ConvNet, ainsi que le modèle All-ConvNet+TL, surpasse 

largement les approches existantes les plus complexes et établissent un nouveau record en 

matière de reconnaissance de gestes basée sur l'HD-sEMG dans des scénarios intersession 

et intersujet. Ces écarts de performance augmentent encore plus par rapport à l'état actuel 

de l'art lorsque de faibles quantités de données (par exemple, un seul essai) sont disponibles 

dans le domaine cible pour l'adaptation. Ces résultats expérimentaux exceptionnels 

fournissent des preuves que les modèles de pointe actuels peuvent être surentraînés 

inutilement pour les tâches de reconnaissance de gestes basés sur l'HD-sEMG en cas de 

variation entre les sessions et les sujets. 

En outre, dans une autre étude, nous examinons la question de l'extraction d'ensembles 

de caractéristiques distinctives, et proposons ainsi d'utiliser l'histogramme de gradients 

orientés (HOG) comme caractéristiques uniques pour la reconnaissance robuste de l'activité 

neuromusculaire, en adoptant des SVM (séparateur à vaste marge) appariés comme schéma 

de classification. Les résultats expérimentaux ont montré que le HOG représente des 

caractéristiques uniques à l'intérieur de l'image HD-sEMG instantanée et que, en ajustant 

finement les hyperparamètres des SVM appariés, une précision de reconnaissance 

comparable à celle des méthodes de pointe plus complexes peut être obtenue. 
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Abstract 

Gesture recognition using low-resolution instantaneous high-density surface 

electromyography (HD-sEMG) images opens up new avenues for the development of more 

fluid and natural muscle-computer interfaces (MCI). However, the current state-of-the-art 

methods employed very complex deep and wide convolutional neural networks (ConvNet) 

or an ensemble of these complex networks for HD-sEMG image recognition, which 

requires the network architecture to be pre-trained on a very large-scale labeled training 

dataset. As a result, it makes high-end resource-bounded and computationally very 

expensive for deployment in real-time applications.  

To overcome this problem, the S-ConvNet and lightweight All-ConvNet models are 

proposed, providing a simple yet efficient framework for learning instantaneous HD-sEMG 

images from scratch for gesture recognition. The experimental results proved that the 

proposed models are highly effective for learning discriminative features for instantaneous 

HD-sEMG image recognition, especially in the data and high-end resource-constrained 

scenarios. Experiments conducted on four (4) publicly available HD-sEMG datasets 

without using any pre-trained models, the proposed S-ConvNet and All-ConvNet 

demonstrate state-of-the-art or very competitive intra-session gesture recognition accuracy 

to the more complex current state-of-the-art, while significantly reducing the learning 

parameters. Hence, the proposed S-ConvNet and All-ConvNet have great potential for 
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learning discriminative representation for recognizing neuromuscular activities on resource-

bounded devices. 

Moreover, the data variability between inter-session and inter-subject scenarios presents 

a great challenge. The existing approaches employed very large and complex deep 

ConvNet or (2-Stage Recurrent Neural Networks) 2SRNN-based domain adaptation 

methods to approximate the distribution shift caused by these inter-session and inter-

subject data variability. Hence, these methods also require learning over millions of training 

parameters and a large pre-trained and target domain dataset in both the pre-training and 

adaptation stages. Therefore, deploying these high-end, resource-intensive, and 

computationally expensive methods becomes challenging for real-time applications.  

To address this problem, domain adaptation (DA) with S-ConvNet is proposed. The 

proposed DA methods with S-ConvNet learn transferable representation on the source 

domain HD-sEMG dataset and adapt them to the target domain, even with very limited data 

available, thus demonstrating enhanced generalization capabilities under distribution shift. 

To further address the problem, a lightweight All-ConvNet+TL model is proposed that 

leverages lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-

session and inter-subject gesture recognition performance. The All-ConvNet+TL model 

consists solely of convolutional layers, a simple yet efficient framework for learning 

invariant and discriminative representations to address the distribution shifts caused by 

inter-session and inter-subject data variability. Experiments on four datasets demonstrate 

that the proposed DA method with S-ConvNet, as well as the All-ConvNet+TL model 

outperform the most complex existing approaches by a large margin and set a new state-of-

the-art result on inter-session and inter-subject scenarios for sEMG-based gesture 



viii 

recognition. These performance gaps increase even more against the current state-of-the-art 

when a tiny amount (e.g., a single trial) of data is available in the target domain for 

adaptation. These outstanding experimental results provide evidence that the current state-

of-the-art models may be overparameterized for sEMG-based inter-session and inter-

subject gesture recognition tasks. 

Furthermore, in another study, we investigate the question of extracting distinctive 

feature sets, and thus propose to use Histogram of Oriented Gradients (HOG) as unique 

features for robust neuromuscular activity recognition, adopting pairwise SVMs (Support 

Vector Machine) as the classification scheme. The experimental results proved that the 

HOG represents unique features inside the instantaneous HD-sEMG image and by fine-

tuning the hyper-parameter of the pairwise SVMs, the recognition accuracy comparable to 

the more complex state-of-the-art methods can be achieved.  
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Chapitre 1 - Introduction 

1.1 Background 

Gesture or neuromuscular activity recognition based on surface electromyography (sEMG) 

signals has been a core technology for developing next-generation muscle-computer 

interfaces (MCIs). The major application domains of sEMG-based MCIs are non-intrusive 

control of active prosthesis [1], wheelchairs [2], exoskeletons [3] or neurorehabilitation [4], 

neuromuscular diagnosis [5] and providing interaction methods for video games [6], [7]. 

The conventional approaches for gesture recognition using sparse multi-channel sEMG 

sensors and classical machine learning methods – such as linear discriminant analysis 

(LDA) [8], support vector machines (SVM) [9], hidden Markov model (HMM) [10] – on 

windowed descriptive and discriminative time-domain, frequency-domain and/or time-

frequency-domain sEMG feature space [11], [12-16]. However, these sparse multi-channel 

sEMG-based methods are not suitable for real-world applications due to their lack of 

robustness to electrode shift and positioning [17], [18]. In addition, malfunction to any of 

these sparse-channel electrodes leads to retraining the entire MCI system. Deep learning-

based methods have recently been exploited for gesture recognition using sparse multi-

channel sEMG [19-20], [31-32], [61] but their performance is still far from optimum [64].  

To address this problem, designing and developing more flexible, convenient, and 

comfortable high-density sEMG (HD-sEMG) based myoelectric sensors and efficient 
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pattern recognition algorithms have been major research directions in recent years [17-18], 

[21-30], [36]. The HD-sEMG records myoelectric signals using two-dimensional (2D) 

electrode arrays that characterize the spatial distribution of myoelectric activity over the 

muscles that reside within the electrode pick-up area [21]. The collected HD-sEMG data 

are spatially correlated which enabled both temporal and spatial changes and robust against 

malfunction of the channels with respect to the previous counterparts [18]. However, the 

existing HD-sEMG-based gesture recognition methods [17-18], [28], [30] still rely on the 

windowed sEMG (e.g., range between 100 ms and 300 ms [33], [34]), which demands 

finding an optimal window length. The determination of an optimal window length 

represents a strong trade-off between classification accuracy and controller delay, both of 

which increase with an increase in window size.    

To further address this problem, distinctive patterns within instantaneous sEMG images 

were first discovered by Geng et al. [21] and Du et.al. [26] to develop more fluid and 

natural muscle-computer interfaces (MCIs). The instantaneous values of HD-sEMG signals 

at each sampling instant were arranged in a 2D grid in accordance with the electrode 

positioning. Subsequently, this 2D grid was transformed into a grayscale sEMG image. 

Therefore, an instantaneous sEMG image represents a relative global measure of the 

physiological processes underlying neuromuscular activities at a given time. Consequently, 

gesture recognition is performed solely with the sEMG images spatially composed from 

HD-sEMG signals recorded at a specific instant. Hence, the observational latency was 

reduced to only 1 ms, which would significantly decrease controller delay for the above-

mentioned MCI applications. 
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Geng et al. [21] employed a deep convolutional neural network (CNN or ConvNet) to 

recognize hand gestures from the sEMG images and showed high recognition accuracy on 

publicly available benchmark HD-sEMG datasets [15], [17], [26]. Du et al. [26] employed 

the same ConvNet as proposed in [21]; however, they applied adaptive batch normalization 

to this ConvNet to enhance the scalability of the classifier for sEMG-based gesture 

recognition. Motivated by these prior works, further studies have been conducted on this 

promising new research direction over the years [22-25], [27], [29], [36]. 

However, the state-of-the-art methods [21], [23], [24], [26], [61] for sEMG-based gesture 

recognition either employed very complex deep and wide CNN or an ensemble of these 

complex networks for improved gesture recognition performance. Despite the significant 

performance boost achieved by these state-of-the-art models [21], [23], [24], [26], [61] the 

heavy computational and intensive memory cost hinders deploying them on resource-

constrained embedded and mobile devices for real-time applications. Therefore, the 

demand for designing low-cost, low-latency and lightweight networks is highly increasing 

for low-end resource-limited embedded and mobile devices. 

Moreover, the problem of sEMG-based gesture recognition becomes significantly more 

challenging in operational conditions or in inter-session/inter-subject scenarios, where a 

trained model is deployed to recognize muscular activities in a new recording session 

involving the same subject or when encountering completely new or unseen subjects (i.e., 

inter-subject) [1], [26], [63]. 

Furthermore, the existing sEMG-based gesture recognition methods are typically evaluated 

using data acquired from able-bodied subjects. However, it is important to note that sEMG 

signals are highly specific to each individual, and in real-time sEMG-based MCI 
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applications such as assistive technology and physical rehabilitation [1-5], the target users 

are often elderly individuals, amputees, and patients. These differences between the source 

domain task (able-bodied subjects) and the target domain task (individuals with motor 

control impairments) pose a significant challenge [26], [63]. The main issue arises from the 

fact that sEMG-based gesture recognition in the target domain needs to be conducted with 

limited data availability due to the difficulty of acquiring data from amputees, elderly 

individuals, patients, and similar groups. 

1.2 Research Problems 

The current state-of-the-art methods [21], [23], [24], [26], [61] for sEMG-based gesture or 

neuromuscular activity recognition either employed very complex deep and wide CNN or 

an ensemble of these complex networks for improved intra-session (i.e., where train and 

test sEMG signals are recorded at the same session) gesture recognition performance. 

Therefore, these methods require learning over millions of training parameters and large-

scale labeled HD-sEMG training datasets for pre-training, making them computationally 

expensive and resource-intensive. 

The sEMG-based gesture recognition problem becomes more challenging in operational 

conditions or an inter-session scenario, wherein a trained model is deployed to recognize 

muscular activities in a new recording session for the same subject. The distributions of the 

sEMG signals captured in a new recording session deviate from those obtained during the 

training session due to electrode shifts, variations in arm posture, and time-dependent 

changes like fatigue and electrode-skin contact impedance [1], [17], [26], [63]. Inter-

session is referred to as inter-subject in cases where training and test data are obtained from 

different subjects [26]. However, in this thesis, inter-subject is considered only in cases 



5 

where training and test data are obtained from different subjects. In the inter-subject 

scenario, the data variability comes from the variation in muscle physiology between 

different subjects. Moreover, it is always challenging to force the users to maintain a certain 

level of muscular contraction force in real-time applications. Therefore, the developed 

methods must also cope with the distribution shift that occurred by this voluntary muscular 

contraction force level in addition to the distribution shift caused by inter-session and inter-

subject data variability.  

To approximate the distribution shift caused by these inter-session and inter-subject data 

variability, the current state-of-the-art methods [26], [57] employed very large and complex 

deep ConvNet or 2-Stage Recurrent Neural Networks (2SRNN)-based domain adaptation 

(DA) methods. Hence, these methods also require learning over millions of training 

parameters and a large pre-trained and target domain dataset in both the pre-training and 

adaptation stages. Therefore, deploying these high-end, resource-constrained, and 

computationally expensive methods becomes challenging for real-time applications. Also, 

the large computationally expensive models might significantly impede mobile and on-

device applications, where power consumption, data memory, and computational speed are 

constraints. 

Therefore, designing and developing efficient and resource-constrained robust domain-

invariant feature representations and classification techniques is highly demanded to 

accurately decode and discriminate movements for sEMG-based gesture recognition. 

1.3 Objectives 

The main objective of this project is to develop efficient and resource-constrained robust 

domain-invariant non-invasively feature representations and classification techniques for 
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improved sEMG-based gesture recognition using instantaneous values of HD-sEMG 

signals. To obtain this objective, the following sub-objectives are pursued:   

(i) Propose S-ConvNet: A shallow convolutional neural network architecture for sEMG-

based gesture recognition using instantaneous HD-sEMG images. 

(ii) Propose a domain adaptation method with low-latency shallow CNN to approximate 

the domain shift for enhancement of sEMG-based gesture recognition accuracy. 

(iii) Propose All-ConvNet: A lightweight All-CNN for sEMG-based gesture recognition 

using instantaneous HD-sEMG images. 

(iv) Introduce the All-ConvNet+TL model, a novel framework which leverages the 

lightweight All-ConvNet and transfer learning to address the distribution shift in 

inter-session and inter-subject sEMG-based gesture recognition. 

(v) Introduce a network pruning/trimming method based on the findings of the proposed 

weight (or feature) transfusion experiments to further optimize the proposed 

lightweight All-ConvNet+TL model. This involves selectively pruning the network's 

weights, leading to developing of a more efficient Lightweight All-ConvNet-Slim 

model. 

(vi) Study the question of extracting distinctive feature sets and propose to use Histogram 

of Oriented Gradients (HOG) as unique features for HD-sEMG image recognition, 

adopting pairwise SVMs as the classification scheme. 

1.4 Research Methodology 

This research is conducted in a systematic order. The research is carried out starting from 

literature review to identify the major problems in the current state-of-the-art methods and 
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their potential solutions for sEMG-based gesture recognition using instantaneous HD-

sEMG images.The current state-of-the-art methods [21], [23], [24], [26], [36], [61] either 

employed very complex deep and wide CNN or an ensemble of these complex networks for 

improved gesture recognition performance. For example, Geng et al. [21] and Du et. al. 

[26] exploited a DeepFace [35] like very large and deep CNN (dubbed as GengNet), which 

requires learning >5.63M (million) training parameters only during fine-tuning and pre-

trained on a very large-scale labeled sEMG training datasets. The complexity of this model 

grows linearly as the input size is increased due to the use of an unshared weight strategy 

[45], [27]. Wei et al. [23] employed an ensemble of eight (8) single-stream GengNet within 

their gesture recognition framework based on instantaneous HD-sEMG images. An 

ensemble of multi-stream GengNet and long-short term memory networks (LSTM) 

augmented with an attention module is proposed in [24]. Chen et. al. [36] employed 3D 

CNN for learning spatial and temporal representation of sEMG images. However, the 

employed 3D CNN requires learning over at least > 30 𝑀 parameters, which is not feasible 

for real-time MCI applications based on sEMG signals. Hence, these methods are not 

feasible for deploying on resource-constrained mobile and embedded devices for real-time 

applications. 

To address these challenges, this thesis introduces low-latency and parameter efficient 

shallow convolutional neural networks (S-ConvNet) model architectures, specifically 

targeting sEMG-based gesture recognition on resource-constrained low-end devices. S-

ConvNet is designed to learn sEMG image representation from scratch through random 

initialization. S-ConvNet consists of a network with simple convolution layers with the 

shared kernel, a fully connected layer with a small number of neurons, and an occasional 
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dimensionality reduction performed by stridden CNN, demonstrating state-of-the-art 

recognition accuracy on publicly available benchmark HD-sEMG datasets, while needing 

to be learnt ≈  1/4th learning parameters using a ≈  12 ×  smaller dataset outperforming 

the more complex and high-end resource-bounded state-of-the-art methods. 

In addition, striving to find a simpler and more efficient lightweight network, a new 

architecture called All-ConvNet is introduced that consists solely of convolutional layers 

and is designed to be more efficient and less computationally intensive than the existing 

state-of-the-art models for sEMG-based gesture recognition. Comparing the performance of 

All-ConvNet to other state-of-the-art models shows that it achieves competitive or state-of-

the-art performance on current benchmark HD-sEMG datasets, while being significantly 

lighter, more efficient, and faster to train and evaluate. The design of All-ConvNet was 

motivated by the finding of fact that when the units in the uppermost convolutional layer 

adequately encompass a significant region of the sEMG image, it becomes feasible to 

accurately recognize the content of the image, specifically the targeted gesture class. This 

results in the generation of predictions for sEMG image classes at various positions, which 

can then be easily averaged across the entire image. Hence, the proposed All-ConvNet 

becomes robust to translations and geometric distortions, which can be very effective in 

addressing the challenging electrode shift and positioning as well as electrodes 

malfunctioning problem in sEMG-based gesture recognition. 

Moreover, the existing methods (e.g., [21], [26]) reported gesture recognition rate as low as 

20% using the conventional classifiers such as support vector machines (SVM). However, 

in another study, this thesis argued that the conventional classifiers such as SVM can 

surpass ConvNet at producing optimal classification if well-behaved feature vectors are 
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provided. To present an alternative solution to the resource-constrained ConvNet, this 

thesis also delves into the question of extracting distinctive feature sets. This thesis propose 

to use Histogram of Oriented Gradients (HOG) as distinctive features for robust gesture or 

neuromuscular activity recognition, adopting pairwise SVMs as the classification scheme.  

Furthermore, the data variability between inter-session and inter-subject scenarios presents 

a great challenge. The current-state-of-the-art methods [26], [57] employed very large and 

complex deep ConvNet or 2SRNN-based domain adaptation methods to approximate the 

distribution shift caused by these inter-session and inter-subject data variability. Hence, 

these methods require learning over millions of training parameters and a large pre-trained 

and target domain dataset in both the pre-training and adaptation stages. Therefore, 

deploying these high-end, resource-constrained, and computationally expensive methods 

becomes challenging for real-time applications.  

To address this distribution shift problem, domain adaptation (DA) with shallow 

convolutional neural network (S-ConvNet) is proposed. DA leverages S-ConvNet to learn 

transferable representations in an efficient manner from a source domain task (or dataset) to 

target domain task (or dataset). 

To further simplify the distribution shift problem caused by inter-session and inter-subject 

data variability, a lightweight All-ConvNet+TL model is proposed by leveraging 

lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-session 

and inter-subject gesture recognition performance. The All-ConvNet+TL model consists 

solely of convolutional layers, a simple yet efficient framework for learning domain-

invariant and discriminative representations. The proposed DA method with S-ConvNet as 

well as All-ConvNet+TL outperformed the current state-of-the-art DA methods by a large 
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margin both when the data from single trials or multiple trials are available for domain 

adaptation. 

To achieve optimal performance by All-ConvNet+TL, a weight (or feature) transfusion 

experiment is conducted involving the partial reuse of pre-trained weights, the specific 

regions where valuable feature reuse manifests is uncovered and delve into the exploration 

of hybrid approaches for transfer learning. These approaches involve using a subset of pre-

trained weights and redesigning other parts of the network to make them more lightweight. 

Experiments and analysis were also conducted to justify the potentiality of these proposed 

methods. A series of experiments were carried out on four (4) publicly available benchmark 

HD-sEMG datasets [26] for sEMG-based gesture recognition in intra-session, inter-session 

and inter-subject scenarios. 

Finally, the proposed research methodology is summarized as follows: 1) Conduct an 

extensive literature review for sEMG-based gesture recognition in intra-session, inter-

session, and inter-subject scenarios. The research problems and major drawbacks in the 

current state-of-the-art solutions are identified, 2) Explore publicly available HD-sEMG 

datasets, and prepare the data scenarios, 3) Design and develop low-latency S-ConvNet 

model architectures targeting sEMG-based gesture recognition on low-end devices. 

Introduce a domain adaptation method with low-latency S-ConvNet to address the domain 

shift problem of sEMG-based gesture recognition in inter-session and inter-subject 

scenarios, 4) Design and develop a low-latency, memory/parameter efficient lightweight 

All-ConvNet. Explore an efficient transfer learning framework by leveraging lightweight 

All-ConvNet to address distribution shifts caused by inter-session and inter-subject data 

variability, 5) Introduce a novel HoG-based feature extraction method for sEMG-based 



11 

gesture recognition with classical machine learning methods, 7) Finally, compare the 

results with the current state-of-the-art methods using the same datasets and scenarios. 

1.5 Contribution of the study 

Based on the proposed methodology and research approach described, the main 

contributions of this thesis are as follows: 

1. Proposed low-latency S-ConvNet [25], [63], a shallow convolutional neural network 

architecture that achieved state-of-the-art performance on four (4) publicly available 

benchmark HD-sEMG datasets for intra-session gesture recognition tasks.   

2. Proposed a domain adaptation method with low-latency shallow convolutional neural 

network to approximate the domain shift and achieved state-of-the-art results for inter-

session and inter-subject gesture recognition tasks [100]. 

3. Proposed a low-latency and parameter/memory efficient All-ConvNet [27], A 

lightweight All-CNN that demonstrates highly competitive or even outperforms the 

most complex state-of-the-art methods, for sEMG-based intra-session gesture 

recognition tasks on a current benchmark HD-sEMG dataset. 

4. Introduced All-ConvNet+TL model [67], which leverages the lightweight All-ConvNet 

and transfer learning to address the distribution shift in inter-session and inter-subject 

sEMG-based gesture recognition and evaluate it against the more complex state-of-the-

art models. The All-ConvNet+TL model outperforms the state-of-the-art models by a 

large margin, both when the data from a single trial or multiple trials are available for 

fine-tuning/adaptation. 
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5. A weight (or feature) transfusion experiment [67] is introduced, where we partially 

reuse pre-trained weights. We uncover specific regions where valuable feature reuse 

manifests and delve into the exploration of hybrid approaches for transfer learning. To 

the author’s knowledge, this is the first study to conduct weight transfusion experiments 

for sEMG-based gesture recognition. 

6. Designing an efficient lightweight ConvNet architecture is crucial for optimizing 

computational and memory costs. Building upon the findings of weight (or feature) 

transfusion experiments, we introduce network trimming to further optimize the 

proposed lightweight All-ConvNet+TL model. This involves selectively pruning the 

network's weights, leading to the development of a more efficient Lightweight All-

ConvNet-Slim model [67].  

7. Proposed Histogram of Oriented Gradients (HoG) as a distinctive features 

characterization method [22] for unique representation of instantaneous HD-sEMG 

images, adopting pairwise SVMs as the classification scheme. To the author’s 

knowledge, this is the first study to propose HoG as a unique and discriminative feature 

for sEMG-based gesture recognition. 

8. More extensive experiments are conducted. A performance evaluation on four (4) 

publicly available HD-sEMG datasets was performed on three different sEMG-based 

gesture recognition tasks: intra-session, inter-session, and inter-subject scenarios. The 

results showed that the proposed methods outperformed the more complex state-of-the-

art models on various tasks and datasets.  
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1.6 Organization of the thesis 

The rest of the thesis is organized as follows: 

Chapter 2 provides a literature review on sEMG-based gesture recognition. It defines the 

state-of-the-art methods and identifies the research problems and major drawbacks 

associated with the current state-of-the-art solutions. Furthermore, it describes the database 

employed to evaluate the proposed methods and benchmark them against the current state-

of-the-art approaches. 

Chapter 3 presents S-ConvNet [25], [63] and its underlying design principles. It also 

presents a domain adaptation method with shallow convolutional neural networks [100] and 

compares it with the state-of-the-art methods. 

Chapter 4 introduces the lightweight All-ConvNet [27] and its design principles. It presents 

a transfer learning framework, leveraging the lightweight All-ConvNet (All-ConvNet+TL) 

[67], and compares its performance to state-of-the-art methods. 

Chapter 5 presents the proposed Histogram of Oriented Gradients (HoG) feature extraction 

method [22] with pairwise SVMs as the classification scheme. It discusses experimental 

results and analyzes the performance of HoG as distinctive features for sEMG-based 

gesture recognition. 

Chapter 6 provides conclusive remarks on the key findings, accomplishments, limitations, 

and identifies future research directions. 

 



Chapitre 2 - HD-sEMG-Based Gesture Recognition – 
State-of-the-Art 

Gesture recognition based on high-density surface electromyography (HD-sEMG) 

facilitates the non-invasive analysis and modeling of sEMG signals in both the temporal 

and spatial domains, opening up new avenues for the next-generation muscle computer 

interfaces (MCIs). Researchers have focused on developing high-accuracy gesture 

recognition algorithms. Various feature extraction and classification algorithms based on 

traditional machine learning methods have been proposed. In recent years, deep learning 

methods have been proposed for feature learning and to achieve high recognition accuracy. 

However, the availability of large datasets, power consumption, data memory, and 

computational speed are important constraints in this context. Researchers also address a 

more challenging problem of gesture recognition in inter-session and inter-subject 

scenarios, where different intrinsic and extrinsic factors present formidable challenges. To 

address this problem, domain-adaptation methods have been proposed for domain invariant 

feature representation. In addition to summarizing the current research and state-of-the-art 

on HD-sEMG-based gesture recognition, the research problems and major drawbacks in the 

existing state-of-the-art solutions are identified. The aims of this chapter are to give an 

overview of the current research and state-of-the-art on HD-sEMG-based gesture 

recognition. 
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2.1 Background 

A Muscle Computer Interface (MCI), also known as a Human-Computer Interface (HCI), is 

a technology that allows individuals to interact with computer systems or devices using 

their neuromuscular activity. It enables users to control and communicate with technology 

by detecting and interpreting the myoelectrical signals generated by muscles during muscle 

contraction and relaxation. A muscle is comprised of numerous motor units (MUs), with 

each MU consisting of a motor neuron and the muscle fibers it innervates. When a motor 

unit is activated or fires, it generates a distinct electrical signal called motor unit action 

potential (MUAP). The MUAP represents the cumulative effect of the individual 

contributions made by the muscle fibers within the motor unit. In essence, the MUAP is the 

combined electrical signal produced by the firing of all the muscle fibers associated with a 

specific motor unit. Surface electromyography (sEMG) records the muscle's electrical 

activity from the skin's surface, providing insights into the generation and propagation of 

motor unit action potentials (MUAPs) [68], [69]. Fig. 2.1 illustrates the generation and 

decomposition mechanism of sEMG signals. As physiological signals are closely 

associated with human motion, surface electromyography (sEMG) signals play a crucial 

role in human-computer interaction and serve as essential control signals in human-

computer interaction systems (HCISs) [11], [70]. sEMG-based gesture recognition has been 

the technical core of non-intrusive human-computer interfaces (HCI), which are often 

directed at controlling active prostheses [1], wheelchairs [2], [72], exoskeletons [3], [71], or 

neurorehabilitation [4], neuromuscular diagnosis [5] and providing an alternative 

interaction method for video games [6], [7]. 
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Fig. 2.1 Generation and decomposition mechanism of sEMG signals. Adapted from 
[96]. 

The existing sEMG-based gesture recognition methods can be categorized into sparse 

multi-channel sEMG and high-density sEMG (HD-sEMG) approaches. In sparse multi-

channel sEMG-based approaches, the continuous sequences of sEMG signals are usually 

divided into specific time windows and assigned gesture or muscular activity labels to each 

window. Afterward, different time-domain, frequency-domain and/or time-frequency 

domain features [73], [74] are extracted from each of these windowed sEMG signals [11-

16]. These windowed features, along with their assigned gesture labels, are used to train an 

appropriate classifier (e.g., LDA – linear discriminant analysis) [8], [76], SVM – support 

vector machines [9], HMM – hidden Markov model [10] and MLP – multi-layer perceptron 

[75]) to classify the new incoming sequential features into various neuromuscular activities 

or gesture classes during the evaluation or testing phase. A schematic diagram of sEMG-

based gesture recognition using conventional sparse multi-channel and windowed sEMG 

signals is shown in Fig. 2.2. For the evaluation of these developed methods for sparse 

multi-channel sEMG-based gesture recognition, the most widely accepted benchmark 
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database is NinaPro [15]. This database involves 67 subjects performing 52 different hand, 

finger, and wrist gestures, creating two separate databases (DB1 and DB2). However, the 

reported state-of-the-art recognition accuracy (75.32%) achieved by NinaPro DB1 [15] is 

not feasible for real-time muscle-computer interface (MCI) applications. Moreover, the 

sparse multi-channel sEMG-based methods are not suitable for real-world applications due 

to their limitations related to electrode shift and positioning. Hence, if any malfunction 

occurs with any one of these sparse multi-channel sEMG electrodes, the entire MCIs 

system would need to be retrained [17][18]. Deep learning-based methods have recently 

been explored for gesture recognition using sparse multi-channel sEMG [19-20], [31-32], 

[61], but their performance is still far from optimal [64].  

 
Fig. 2.2 Schematic illustration of sEMG-based gesture recognition by windowing 
sEMG signals. Adapted from [21]). 

To overcome the problem of sparse muti-channel sEMG based approaches, the HD-sEMG-

based methods have been proposed in recent years [17], [18], [97]. The HD-sEMG records 

myoelectric signals using two-dimensional (2D) electrode arrays that characterize the 

spatial distribution of myoelectric activity over the muscles that reside within the electrode 

pick-up area [17], [18], [97]. The collected HD-sEMG data are spatially correlated which 
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enables both temporal and spatial changes and is robust against malfunction of the channels 

with respect to the sparse multi-channel sEMG data [18]. The HD-sEMG-based methods 

have been used in biomedical applications for many years [77-79]. In addition to its use in 

biomedical applications, the HD-sEMG-based methods have recently been used for sEMG-

based gesture recognition and for the proportional control of the multiple degrees of 

freedom (DOFs) for muscle-computer interfaces (MCIs) [17-18], [21-30], [36], [80-81]. In 

this chapter, we concentrate only on the gesture recognition methods based on HD-sEMG 

approach since it is the current focus. 

The rest of this chapter is organized as follows. Section 2.2 provides an overview of feature 

extraction and classical/traditional machine learning methods used for HD-sEMG-based 

gesture recognition. Section 2.3 discusses current state-of-the-art deep learning methods 

explored for HD-sEMG-based gesture recognition. Section 2.4 presents state-of-the-art 

methods on inter-session and inter-subject scenarios. Section 2.5 provides an overview of 

the state-of-the-art CapgMyo HD-sEMG dataset. Finally, Section 2.6 provides some 

conclusive remarks. 

2.2 Feature Extraction and Classical Machine Learning (ML) Methods 

The conventional framework for gesture recognition using sEMG involves several key 

stages: data preprocessing, feature extraction, feature selection, and gesture classification 

[24]. Within this process, the feature extraction and gesture classification stages hold 

particular significance in the context of sEMG-based gesture recognition. sEMG signals are 

characterized by robust nonlinearity. To obtain unique attributes from these sEMG signals, 

it is typically imperative to extract discriminative features from the pre-processed sEMG 

signals within a specific time window [11],[82]. Therefore, conventional methods for 
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sEMG-based gesture recognition focused on extracting distinctive feature sets with domain 

knowledge. Currently, the following three primary methods are predominantly employed in 

the literature for sEMG feature extraction: time-domain feature, frequency-domain feature, 

and time-frequency-domain feature [73-74], [83]. Finding effective hand-crafted features 

that can discriminate sEMG signals corresponding to different neuromuscular activities or 

hand gestures is a challenging task. Researchers have spent decades exploring ways to 

capture both the temporal and frequency information of the sEMG signals. For a 

comprehensive overview of typical sEMG features and their applications, refer to [11], 

[74]. These time, frequency and time-frequency features can be summarized as follows: 

• Time-domain features-includes the root mean square (RMS), integrated EMG 

(iEMG), zero-crossing (ZC) points, waveform length (WL), variance (VAR), and 

mean absolute value (MAV). Among these various features considered, RMS and 

iEMG have been extensively utilized for feature extraction due to their ability to not 

only capture amplitude variations of sEMG signals in the time domain but also 

effectively reveal the biomechanical performance of muscles and the fluctuations in 

muscle energy during motion/movement. The RMS and iEMG features can be 

computed as follows [87]: 

 𝑅𝑀𝑆 =  (
1

𝑇
∫ 𝑥2(𝑡)𝑑𝑡

𝑡+𝑇

𝑡
)

1

2 (2.1) 

 𝑖𝐸𝑀𝐺 = ∫ |𝑥(𝑡)|𝑑𝑡
𝑡+𝑇

𝑡
 (2.2) 

where 𝑥(𝑡) represents sampling voltage at time 𝑡 and 𝑇 represents the sampling 

time. 
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• Frequency-domain features-includes power spectrum (PS), average frequency 

(MNF), intermediate frequency (MDF), frequency ratio (FR), cepstrum coefficients 

(CC), and autoregressive coefficient (AR). To quantitatively describe the power 

spectrum characteristics of sEMG signals based on the fast Fourier transform (FFT), 

the median frequency (MF) and the mean power frequency (MPF) are commonly 

utilized. They are computed as follows [87]: 

 ∫ 𝑃𝑆(𝑓). 𝑑𝑓 = ∫ 𝑃𝑆(𝑓). 𝑑𝑓
𝑓2

𝐹𝑚𝑒𝑑𝑖𝑎𝑛

𝐹𝑚𝑒𝑑𝑖𝑎𝑛

𝑓1
 (2.3) 

 𝐹𝑚𝑒𝑎𝑛 =
∫ 𝑓.𝑃𝑆(𝑓).𝑑𝑓

𝑓2
𝑓1

∫ 𝑃𝑆(𝑓).𝑑𝑓
𝑓2
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where 𝑃𝑆(𝑓) represents the power spectrum of sEMG signals obtained through the 

FFT, while 𝑓1 and 𝑓2denote the lowest and highest frequencies of the sEMG band. 

• Time-frequency domain features– include discrete wavelet transform coefficients 

(DWTC), discrete wavelet packet transform coefficients (DWPTC), continuous 

wavelet transform coefficients (CWTC) [88-90]. 

The above-mentioned features or combinations of these feature sets have been employed as 

inputs for classical machine learning methods which include (kNN) [92], LDA [8, 76], 

SVM [9, 16], HMM [10, 91], and MLP [75] for sEMG-based gesture recognition [61]. 

The following notable/significant works from the literature have exploited hand-crafted 

features with classical machine learning methods for HD-sEMG-based gesture recognition. 

Rojas et al. [80] utilized three electrode arrays, each with 128 channels. However, an 

average of 350 channels were used to record sEMG signals for each subject, aiming to 

cover the entire muscles of interest [93]. The in-house data for four different gestures 
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corresponding to three effort levels were acquired from the 12 subjects. In their approach, 

an HD-sEMG map is defined as the time-averaged 2D intensity map of HD-sEMG signals, 

in which each pixel is the root mean square (RMS) value of a certain channel in a time 

window (e.g., 500 ms). Then, the time-averaged 2D intensity map is divided into 3×3 grids. 

The different feature sets such as the center of gravity, mean and maximum intensities, the 

coordinates of the maximum are used to train a LDA classifier for gesture recognition. The 

average gesture recognition accuracy, ranging from 90% to 98%, is achieved when 

recognizing four different hand gestures corresponding to three effort levels. Nougarou et. 

al., [34] used two 8×8 HD-sEMG sensors (64 channel sEMG) at the posterior and anterior 

sides of the right forearm of a healthy subject near the elbow to discriminate between 9 

different gesture classes based on the wrist movements. They also defined an HD-sEMG 

map as the time-averaged 2D intensity map of HD-sEMG signals, as described in reference 

[80]. Then, the time-averaged 2D intensity map of HD-sEMG is divided into 3×3 sub-

images. The different feature sets such as the center of gravity, the mean amplitude and the 

percentage of influence from each of these sub-images are extracted. These feature sets 

were used to train an LDA classifier for gesture recognition. The gesture recognition 

accuracy of 99.23% is achieved on in-house data collected for a single subject. Amma et. 

al., [17], used an electrode array with 192 electrodes to record a high-density EMG of the 

upper forearm muscles. The RMS is computed over all windows of length 73.2 ms for each 

channel of the gesture segment and used as a feature to quantify the muscle activity.  The 

RMS value of an electromyogram shows a strong correlation with the muscle force 

generated, making it a suitable and commonly employed feature for measuring muscle 

activity. A baseline system for HD-sEMG-based gesture recognition was introduced, 

employing a naive Bayes classifier to differentiate among the 27 gestures performed by 5 
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subjects over five consecutive sessions. An average intra-session gesture recognition 

accuracy of approximately 90% is achieved. Stango et. al., [18] used 8×24 HD-sEMG 

sensors (192 channel sEMG) to discriminate 9 different hand gestures performed by seven 

able-bodied subjects and one unilateral trans-radial traumatic amputee. The spatial 

correlation of high-density EMG signals was computed on a defined time window (e.g., 50 

ms) using a variogram analysis, which measures the spatial variance information by 

computing the distance between EMG signals in a spatial grid and using them as a unique 

feature. Fig. 2.3 demonstrates the computation of spatial correlation features of HD-sEMG 

through variogram analysis. These extracted spatial correlations of HD-sEMG features 

were used to train a SVM classifier with a linear kernel for gesture recognition. An average 

intra-session gesture recognition accuracy of approximately 95% is achieved on in-house 

data for the recognition of nine different hand gestures obtained from seven able-bodied 

subjects. This research highlights that the spatial correlation computed through variogram 

analysis offers features that are more robust against noisy channels and electrode shift and 

positioning compared to the widely used RMS, time domain (TD), and time-domain 

autoregressive (TDAR) features in the literature for EMG pattern recognition. Khushaba et 

al. [84] proposed a framework for temporal-spatial descriptors (TSD) that involves 

extracting various time-domain features from the EMG signal within each channel over a 

specific time window, such as signal energy, spectral moments, zero crossings (ZC), 

number of peaks (NP), coefficients of variation (COV), and Teager-Kaiser energy operator. 

These time-domain features are then fused with spatial correlation features, computed by 

either computing the difference or summation of EMG signals between channels. The 

resulting fused TSD features are used to train LDA, kNN, and SVM classifiers respectively 

for gesture classification. The validation of the proposed TSDs was conducted using four 
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sparse-channel sEMG and an HD-sEMG dataset obtained from both able-bodied 

individuals and amputees, encompassing a wide range of hand and finger movements. The 

intra-session gesture classification results revealed significant error rates decreases 

compared to alternative methods that relied solely on time-domain features, exhibiting an 

average improvement of at least 8% across all subjects for sparse-channel EMG. 

Furthermore, the TSDs demonstrated satisfactory performance in HD-sEMG-based gesture 

recognition tasks. 

 
(a)                                                                (b)                                                                   

Fig. 2.3 Measurements of all pairs of distances at a)1-pont and b) 2-points apart 
along the 𝒙-directions for an HD-sEMG grid. Adapted from [18] 

However, the existing HD-sEMG-based gesture recognition methods depend on extracting 

features from windowed sEMG data, necessitating the search for an optimal window 

length. Determining this optimal window length presents a substantial trade-off between 

classification accuracy and controller delay, both of which increase with an increase in 

window size and can significantly influence classification accuracy and controller delay. 

This is particularly critical in applying assistive technology, physical rehabilitation, and 

human-computer interfaces [21], [26]. To address this problem and enable the development 

of more fluid and natural muscle-computer interfaces (MCIs) methodologies, a new feature 

extraction method based on Histogram of Oriented Gradients (HoG) [22] is introduced in 
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this thesis for sEMG-based gesture recognition. This method, presented in chapter 5, 

effectively characterizes and discriminates hand gestures solely captured by instantaneous 

HD-sEMG signals without needing windowed sEMG signals. 

Nevertheless, the classical machine learning methods often require strong reliance on 

domain-specific knowledge for tasks such as feature extraction, feature selection, and 

parameter tuning. The appeal of deep learning for sEMG-based gesture recognition lies in 

its ability to address these challenges by directly incorporating feature learning into the 

algorithm training process. The following section discusses the current state-of-the-art deep 

learning methods that have been explored for HD-sEMG-based gesture recognition. 

2.3 Deep Learning Methods for sEMG-based Gesture Recognition 

Over the past few years, there has been a gradual transition in sEMG-based gesture 

recognition, moving away from conventional machine learning approaches and towards the 

adoption of deep learning methods. Deep learning (DL) represents a category of machine 

learning algorithms that distinguish themselves from traditional ML methods by 

incorporating feature extraction as an integral part of the model definition, eliminating the 

requirement for manually engineered hand-crafted features described in the previous 

section. In the domain of gesture recognition using sparse multi-channel sEMG, there has 

been a recent exploration of deep learning-based methods [19-20], [31-32], [61]. However, 

their performance still remains suboptimal [64]. To address this problem, designing and 

developing more flexible, convenient, and comfortable HD-sEMG based myoelectric 

sensors and efficient deep learning-based pattern recognition methods have been major 

research directions in recent years [21], [23-27], [29], [36], [57], [63], [67]. 
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Geng et al. [21] present a deep learning methodology for gesture recognition using 

instantaneous sEMG images. The instantaneous sEMG images were spatially composed of 

HD-sEMG signals. Then, a deep convolutional neural network (CNN or ConvNet) was 

employed that resembles DeepFace [35] and trained with these spatially composed 

instantaneous HD-sEMG images for gesture recognition. Experiments were conducted on 

publicly available benchmark HD-sEMG datasets [15], [17], [26], and the results 

demonstrated state-of-the-art recognition accuracy. Fig. 2.4 illustrates the ConvNet 

architecture employed by Geng et al. [21]. Du et. al., [26] utilize Adaptive Batch 

Normalization (AdaBN) [37] to enhance the scalability of the classifier used in [21] for 

sEMG-based gesture recognition. 

 
Fig. 2.4 A schematic illustration of the ConvNet architecture employed by Geng et 
al. [21]. Adapted from [26]. 

Wei et al. [23] proposed a two-stage CNN with a multi-stream decomposition stage and a 

fusion stage to learn the correlation between certain muscles and specific gestures. The 

sEMG image is decomposed into different equally sized image patches based on the layout 

of the electrode arrays on muscles (e.g., each of eight 8×2 electrode arrays in the CapgMyo 

database [26] individually produces 8×2 equal-sized sEMG image patches). Then, each of 

these sEMG image patches is independently and in parallel passed through the convolution 

layers of a single-stream CNN [21], thereby forming a multi-stream CNN. The learned 
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features from all the single-stream CNNs that form a multi-stream CNN are aggregated and 

fed to a fusion network for gesture recognition. The reported results showed that multi-

stream CNN outperformed single-stream CNN by a small margin. Fig. 2.5 illustrates the 

multi-stream decomposition and fusion network. 

 
Fig. 2.5 A schematic illustration of multi-stream decomposition and fusion network. 
Adapted from [23]. 

Hu et al. [24] proposed a combination of CNN and recurrent neural network (RNN) called 

CNN-RNN network with an attention module to capture both spatial and temporal 

information of sEMG signals for gesture recognition. The recorded sEMG signals were 

decomposed into small subsegments using a sliding and overlapping windowing strategy. 

Each of these sEMG subsegments was converted into an sEMG image and simultaneously 

passed through a multi-stream CNN built upon [21] for feature extraction. Given the input 

sequence of the extracted features corresponding to each of the sEMG subsegments, a long 

short-term memory (LSTM) network was learned individually for gesture recognition. 

Then, the features learned by each of these LSTMs corresponding to each of these sEMG 
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subsegments were concatenated before being fed to a fully connected and SoftMax layer 

for gesture recognition. Experimental results indicate that a combined CNN-RNN network 

with an attention module outperforms the stand-alone CNN and RNN frameworks, 

respectively. Fig 2.6 elaborates on the CNN-RNN network with an attention mechanism. 

 
Fig. 2.6 A schematic elaboration of CNN-RNN network with an attention module for 
sEMG-based gesture recognition. Adapted from [24]. 

Encouraged by [38], Chen et al. proposed using 3D convolution in the convolutional layers 

of CNNs for spatial and temporal representation of sEMG images [36]. The 3D convolution 

is attained by convolving a 3D kernel to the cube formed by stacking multiple adjacent 

sEMG image frames. The feature maps in the convolution layers of a 3D CNN are 

connected to multiple adjacent sEMG image frames in the previous layer. Hence, the 

spatiotemporal information is captured. However, multiple 3D convolutions with distinct 

kernels are required to apply at the same location of the input to learn representative 

features, which makes 3D CNN computationally expensive. For example, the exploited 3D 

CNN in [36] requires learning over ˃30M (million) parameters when the length of the input 
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cube is set to 10 (i.e., the cube is formed by stacking 10 consecutive sEMG image frames). 

Fig. 2.7 describes the 3D convolutional neural network architecture employed by Chen et. 

al., [36] for sEMG-based gesture recognition. 

 
Fig. 2.7 A schematic diagram of the 3D convolutional neural network architecture. 
Adapted from [36]. 

However, the state-of-the-art methods [21], [23], [24] for sEMG-based gesture recognition 

either employed very complex deep and wide CNN or an ensemble of these complex 

networks for improved gesture recognition performance. For example, Geng et al. [21] 

exploited a DeepFace [35] like very large and deep CNN (dubbed as GengNet), which 

requires learning >5.63M (million) training parameters only during fine-tuning and pre-

trained on a very large-scale labelled sEMG training datasets. The complexity of this model 

grows linearly as the input size is increased due to the use of an unshared weight strategy 

[27]. Wei et al. [23] used an ensemble of eight (8) single-stream GengNet at the 

decomposition stage only. Hu et al. [24], used a two-stage ensemble network in which an 

ensemble of multiple single-stream GengNet was used for spatial feature learning, resulting 

in multiple sequences of 1-D feature representation. Then, these 1-D feature sequences 

were passed to an ensemble of LSTM networks before a SoftMax layer recognized the 

targeted gesture. Despite the significant performance boost achieved by these state-of-the-

art models [21], [23], [24], the high computational and intensive memory cost hinders 
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deploying them on resource-constrained embedded and mobile devices for real-time 

applications. Therefore, the demand for designing low-cost, lightweight networks is highly 

increasing for low-end resource-limited embedded and mobile devices. 

The next section presents several factors that bottleneck sEMG-based gesture recognition, 

especially in inter-session and inter-subject scenarios and outlines the current state-of-the-

art solutions to address this problem. 

2.4 Inter-Session/Inter-Subject Scenarios 

The sEMG-based gesture recognition approaches discussed in the previous section are 

usually investigated in intra-session scenarios because this is currently regarded as the gold 

standard in sEMG-based gesture recognition [17]. However, real-time human-computer 

interfaces (HCIs) based on gesture recognition using sEMG signals suffer from various 

intrinsic and extrinsic factors that result in data variability between the source domain task 

and the target domain task. In sEMG-based gesture recognition, the term 'source domain 

task' refers to the original task or sEMG dataset from which the model is trained. 

Conversely, the 'target domain task' involves deploying the model, trained on the source 

domain task, to a different task (e.g., new recording sessions or an unseen subject or 

dataset) that may originate from a different context or environment and can be significantly 

impacted by various intrinsic and extrinsic factors. The intrinsic factors refer to the 

elements that influence the generation of the EMG signal. These factors include individual 

differences, muscle fatigue, variations in contraction force, contraction patterns, and other 

related aspects. Extrinsic factors pertain to the elements that impact the process of 

collecting the EMG signal. These factors include variations in electrode placement, 

electrode-skin contact impedance, variations in downstream task requirements, etc. [94]. 
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Due to these intrinsic and extrinsic factors that deviate the source domain task from the 

target domain task, the sEMG-based gesture recognition in inter-session and inter-subject 

scenarios becomes a highly challenging task. 

• Inter-Session-in real-time applications, the models are usually built by training 

with the data collected from the previous sessions and deployed to new sessions for 

MCI using sEMG-based gesture recognition. However, the data distribution in these 

new sessions may differ due to various factors, such as variations in how gestures 

are performed, differences (shifts) in electrode placement, channel variations, and 

variations in muscle contraction force or muscle fatigue. Inter-session refers to the 

scenario when a classifier is trained using data obtained from participants during 

one session, and its performance is subsequently evaluated using data recorded 

during a separate session [26], [57], [63], [67], [94].  

• Inter-subject-EMG signals exhibit significant variation among individuals, which 

can be attributed to differences in subcutaneous fat distribution, muscle fiber 

diameter, and the different way of performing force/gestures. Inter-subject refers to 

the scenarios when a classifier is trained using data from a group of subjects, and its 

performance is evaluated using data from an unseen subject who was not included 

in the training data [26], [57], [63], [67], [94]. 

To mitigate the effects of electrode shift and displacements, Hargrove et al., [95] first 

identified all possible electrode displacement locations during the HD-sEMG data 

acquisition process. Then, the classifier was trained with the data acquired from all these 

electrode displacement locations to recognize gestures. Amma et al. [17] employed the 

Gaussian mixture model (GMM) along with a small amount of calibration data to address 
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the challenges posed by electrode shifts and displacements between two sessions. 

Implementing these techniques led to a significant improvement in the inter-session 

recognition accuracy of 27 gestures, increasing it from 58.9% to 75.4%. Khushaba [124] 

introduced a feature transformation approach based on canonical correlation analysis 

(CCA) aimed at reducing data variation in sEMG-based gesture recognition. Patricia et al. 

[16] present multi-source adaptive learning algorithms that leverage the Geodesic Flow 

Kernel with an SVM classifier. The experiments were conducted on the NinaPro dataset, 

which consists of sparse channel sEMG data, and achieved an inter-subject recognition 

accuracy of approximately 40% for 52 gestures [26]. Moreover, to address these intrinsic 

and extrinsic factors that cause inter-session and inter-subject data variability, currently 

[26] and [57] provide state-of-the-art solutions. Du et al. [26] proposed a multi-source 

extension to the classical adaptive batch normalization (AdaBN) technique [37] for domain 

adaptation, specifically designed to be used with CNN architecture. The drawback of this 

solution is that when dealing with multiple sources (i.e., multiple subjects), it is necessary 

to impose specific constraints and considerations for each source during the pre-training 

phase of that model [57]. Ketyko et al. [57] from Nokia Bell Labs, proposed a 2-Stage 

recurrent neural network (2SRNN), where a deep stacked RNN sequence classifier was 

used for pre-training on the source sEMG dataset. Then, the weights of the pre-trained 

deep-stacked RNN classifier were frozen. At the same time, a fully connected layer without 

a non-linear activation function was trained in a supervised manner on the target dataset for 

domain adaptation. More explicitly, the deep-stacked RNN classifier was used as a feature 

extractor by freezing its weight in the domain adaptation stage. However, ConvNet is more 

powerful at extracting discriminative features than RNN, even for classification tasks of 

long sequences [58], [59]. 
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To cope with the distribution shift problem, the current state-of-the-art methods [26], [57] 

employed very large and complex deep ConvNet or 2SRNN-based domain adaptation 

methods to approximate the distribution shift caused by these inter-session and inter-subject 

data variability due to the above-mentioned intrinsic and extrinsic factors. Hence, these 

methods require learning over millions of training parameters and a large pre-trained and 

target domain dataset in both the pre-training and adaptation stages. Therefore, deploying 

these high-end, resource-constrained, and computationally expensive methods becomes 

challenging for real-time applications. Hence, designing and developing efficient, 

lightweight domain-invariant feature representation methods are highly demanded for 

sEMG-based gesture recognition. 

2.5 CapgMyo Dataset 

Currently CapgMyo [26] and CSL-HD-sEMG [17] are the two most used HD-sEMG 

datasets for the evaluation of HD-sEMG-based gesture recognition methods. The CSL-HD-

sEMG dataset [17] was collected only from five (5) subjects. Whereas the CapgMyo 

dataset [26] were collected from twenty-three (23) subjects and divided into three sub 

datasets in order to evaluate sEMG-based gesture recognition methods in intra-session, 

inter-session and inter-subject scenarios. Therefore, the CapgMyo datasets were used to 

evaluate, and technical validation of the proposed sEMG-based gesture recognition 

methods discussed in the subsequent chapters. In addition, the CapgMyo database was 

adopted in this research because this is the first database that were developed and made 

publicly available especially for evaluating the performances of gesture recognition 

methods based on instantaneous HD-sEMG images. This dataset was developed with the 

objective of providing a standard benchmark database to explore the new possibilities for 
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studying next-generation muscle computer interfaces (MCIs). The acquisition device 

utilized in constructing the CapgMyo dataset consists of 8 EMG acquisition modules, each 

equipped with a matrix-type (8 × 2) array of differential electrodes, resulting in a 

combined total of (8 × 16) 128 sEMG channels. The sEMG acquisition modules were 

affixed to the subject’s right forearm using adhesive bands. The first acquisition module 

was positioned on the extensor digitorum communis muscle, aligned with the radio-

humeral joint, while the subsequent sEMG modules were evenly distributed in a clockwise 

direction from the subject’s viewpoint. Moreover, the CapgMyo database comprises 3 sub-

databases (referred to as DB-a, DB-b and DB-c). In DB-a, a total of 18 out of 23 subjects 

participated in the data acquisition process while performing 8 isotonic and isometric hand 

gestures. Each gesture in DB-a was held for a duration of 3 to 10 seconds and repeated 10 

times, with the EMG signals sampled at a sampling frequency of 1000 Hz. DB-b consists of 

the same gesture set as DB-a but was acquired from 10 out of the 23 subjects. Each gesture 

in DB-b was held for approximately three (3) seconds. Every subject in DB-b contributed 

two recording sessions executed on different days. It’s worth highlighting that the recording 

interval between the two sessions in Db-b of the CapgMyo dataset is greater than one week, 

and the placement of the electrode array varies at each recording session. Consequently, 

this benchmark dataset can also provide valuable insights into the effectiveness of various 

approaches under the scenario of electrodes variation [94]. In DB-c, 12 basic finger 

movements were obtained from 10 out of the 23 subjects. Each gesture in DB-c was also 

held for approximately three (3) seconds. It should be noted that the gesture set used in 

CapgMyo dataset was a subset of the NinaPro [15] database, with the shared objective of 

encompassing most of the finger movements encountered in activities of daily living. 

Additionally, this subset facilitated a comparison of the gesture recognition performance 
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based on HD-sEMG and sparse multi-channel sEMG signals. Tables 2.1 and 2.2 illustrate 

gestures in CapgMyo DB-a, DB-b and DB-c respectively.  

Table 2.1 Gestures in DB-a and DB-b (8 isotonic and isometric hand 
configurations). Adapted from [26]. 

 

Table 2.2 Gestures in DB-c 8 isotonic and isometric hand configurations). Adapted 
from [26].  
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2.6 Conclusion 

In this chapter, an overview of the current sEMG-based gesture recognition methods, 

including feature extraction and classical machine learning methods, current state-of-the-art 

deep learning methods, state-of the-art HD-sEMG datasets and the related issues including 

different factors that impede HD-sEMG-based gesture recognition in inter-session and 

inter-subject scenarios and its existing state-of-the-art solutions are discussed.  

Current state-of-the-art deep learning methods for gesture recognition based on 

instantaneous HD-sEMG signals are high-end resource intensive, therefore not feasible for 

deploying in real-time MCI applications due to on-device constraints of computational 

speed, data memory, power consumption and processing of large datasets. To overcome 

these problems, the next chapter introduces low-latency and parameter efficient S-ConvNet, 

along with a domain adaptation method leveraging S-ConvNet, for discriminative and 

domain-invariant feature representation for improved gesture recognition based on 

instantaneous HD-sEMG signals in intra-session, inter-session, and inter-subject scenarios.   



Chapitre 3 - Domain Adaptation with Low-Latency 
Shallow Convolutional Neural Networks 
for Improved Inter-Session/Inter-
Subject Gesture Recognition 

The concept of sEMG based gesture recognition using instantaneous HD-sEMG images 

and underlying deep representation learning opens up new avenues for the development of 

more fluid and natural muscle-computer interfaces. However, the existing approaches 

employed a very large and complex deep ConvNet architecture and complex training 

schemes for HD-sEMG image recognition, which requires learning of ˃5.63 million(M) 

training parameters only during fine-tuning and pre-trained on a very large-scale labeled 

HD-sEMG training dataset. As a result, it makes high-end resource-bounded and 

computationally very expensive for deployment in real-time applications. To overcome this 

problem, S-ConvNet models are proposed, a simple yet efficient framework for learning 

instantaneous HD-sEMG images from scratch using random-initialization. Without using 

any pre-trained models, S-ConvNet proposed demonstrate and set a new state-of-the-art 

performance while reducing learning parameters to only ≈ 2M and using ≈ 12 ×

smaller dataset for sEMG-based gesture recognition in intra-session scenarios. Moreover, 

the distribution shift is a challenging problem for gesture recognition in inter-session and 

inter-subject scenarios. To further address this challenging problem, a domain adaptation 

method with a shallow CNN is proposed. The proposed domain adaptation method with S-
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ConvNet outperformed the current state-of-the-art methods based on a very large and 

complex deep ConvNet or 2-stage Recurrent Neural Networks (2SRNN) by a large margin 

both when the data from single trials or multiple trials are available for domain adaptation. 

Experiments conducted on four (4) publicly available HD-sEMG datasets, described in 

Chapter 2, on different sEMG-based gesture recognition tasks such as intra-session, inter-

session and inter-subject scenarios validate the effectiveness of the proposed methods.  The 

state-of-the-art performance on various HD-sEMG datasets and tasks proved that the 

proposed methods are highly effective for learning discriminative and domain-invariant 

representations for instantaneous HD-sEMG image recognition, especially in the data and 

high-end resource-constrained scenarios. 

3.1 Introduction 

Gesture recognition based on instantaneous HD-sEMG signals is usually employed in 

portable, mobile, and wearable device applications within the context of real-time Muscle-

Computer Interfaces (MCIs). Hence, there is a high demand for designing and developing 

low-latency shallow CNN architectures to enable on-device inference on these mobile 

wearable devices while maintaining state-of-the-art accuracy. However, the current state-

of-the-art methods [21], [23], [24], [26] and [61] employed a DeepFace [35] like very large 

ConvNet architecture for gesture recognition based on sEMG signals, which requires to be 

pre-trained on a very large-scale labeled training dataset even for gesture recognition in 

intra-session/within session scenarios. For example, in [23], a multi-stream extension of the 

DeepFace [35] like ConvNet, as employed in [21], [26], is proposed. An ensemble of multi-

stream CNN built upon [21] and long-short term memory networks (LSTM) integrated with 

an attention module is proposed in [24]. In addition, Chen et. al. [36] used a 3D CNN for 
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learning spatial and temporal representation of sEMG images, however this model requires 

learning > 30 𝑀 parameters for instantaneous HD-sEMG image recognition. As a result, 

these state-of-the-art network models becomes only high-end resource bounded and 

computationally very expensive, making them impractical for real-world MCIs 

applications.  

Apart from that, the network architectures employed by the current state-of-the-art 

approaches [21], [23], [26], [61] are heavily rely on pre-training with large-scale HD-

sEMG training datasets (≈ 0.76 million), even for sEMG-based gesture recognition in 

intra-session scenarios. The conventional paradigm of using pre-trained models in the 

literature when the source task A is different from the target task B and when there are not 

enough target data available to make the training accomplishable alone on the target task B 

[39]. However, in the existing approaches for instantaneous HD-sEMG image recognition 

(e.g., [21], [23], [26] and [61]), both the source task A and the target task B are the same, 

and pre-training on large-scale HD-sEMG training datasets has been performed with the 

aim of preventing overfitting during re-training or fine-tuning using the data available for 

the target task B i.e., intra-subject and intra-session test. Therefore, it is not surprising to 

achieve high target task accuracy with these highly resource-based and fined-tuned network 

architectures for gesture recognition in intra-session scenarios. Also, this conventional 

wisdom of pre-training is recently challenged by He et al. [39], where pre-training does not 

necessarily improve the target task accuracy is proved to be claimed. Hence, we 

hypothesize that the requirement of initializing the target network using the pre-trained 

weights for intra-session gesture recognition is due to the large and complex deep models 

employed by these current state-of-the-art.  
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Following are the other critical limitations of using pre-trained networks for instantaneous 

HD-sEMG image recognition: 

(i) Constrained structure design space – pre-trained networks employed by [21], [23], 

[26] and [61] are very deep and large and trained on a large-scale HD-sEMG dataset, 

therefore, containing a massive number of parameters. Hence, there is a little 

flexibility to control/adjust the network structures (even for small changes) by 

directly adopting the pre-trained network to the target task. The requirement of 

computing resources and large-scale pre-trained datasets are also bounded by large 

network structures [25], [63], [99]. 

(ii) Domain mismatch – the existing sEMG based gesture/neuromuscular activity 

recognition methods are usually trained and evaluated on the data acquired from the 

able-bodied subjects. However, in real time sEMG-based MCIs applications (e.g., 

assistive technology, physical rehabilitation etc.) are most of the time designed for 

elderly people, amputees and patients. These differences impose a serious problem 

due to the varied sEMG distributions in the source and target tasks. Though the fine-

tuning of the pre-trained model can reduce the gap, however, it is still a serious 

problem, when there is a huge mismatch between the source and the target task [25], 

[63],[98].  

(iii) Learning bias – the distributions and the loss functions between the source task and 

the target task may vary significantly, which may lead to different 

searching/optimization spaces. Therefore, the learning may be biased towards a local 

minimum which is not optimal for the target task [25], [63],[99]. 
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However, it is legitimate to adopt a pre-trained network for sEMG-based gesture 

recognition in inter-session and inter-subject scenarios (considered as different tasks), 

where the distribution of the sEMG signals may be different/shifted from the sEMG 

signals used to train the model in the previous sessions or to an unseen new subject. 

To overcome these above-mentioned problems, this thesis work is motivated by the 

following research question- is it possible to train the sEMG-based gesture recognition 

model from scratch without any pre-training while still maintaining state-of-the-art 

performance? To achieve this goal, we propose a shallow convolutional neural network (S-

ConvNet) [25], [63] architecture, a simple yet effective framework, which could learn 

neuromuscular activity from scratch using only the makeshift HD-sEMG dataset available 

for the target task/subject. The S-ConvNet is reasonably flexible and can be tailored to 

various network structures for different computing platforms, such as desktops, servers, 

mobile devices, and even embedded electronics. Despite its simplicity and flexibility, the 

S-ConvNet achieves state-of-the-art performance across different sEMG-based gesture 

recognition tasks, including intra-session, inter-session, and inter-subject scenarios. 

Moreover, it outperforms the more complex current state-of-the-art methods while 

significantly reducing the number of learning parameters. 

Furthermore, with the equivalent or competitive accuracy to that of current state-of-the-art 

methods, S-ConvNet with fewer parameters has the following advantages [123]: (1) S-

ConvNet requires less communication across servers during distributed training. (2) S-

ConvNet require less bandwidth to export a new model from the cloud to mobile or 

wearable edge devices for executing a target gesture recognition task and on-device 
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inference. (3) S-ConvNet is more feasible to deploy on FPGAs and other hardware with 

limited memory. 

For instantaneous sEMG image-based gesture recognition, the challenge remains open 

because very limited research has been done on it. The main contributions of this chapter 

are summarized as follows. 

(1) We present S-ConvNet: A shallow convolutional neural network architecture [25], 

[63], according to the best of my knowledge, this is the first ConvNet framework 

that enables training instantaneous HD-sEMG based gesture recognition model 

from scratch without any pre-training and achieve state-of-the-art performance 

outperforming the most complex current state-of-the-art methods. 

(2) Propose a domain adaptation method with low-latency shallow convolutional neural 

networks [100] to approximate the domain shift for enhancement of sEMG-based 

gesture recognition accuracy in inter-session and inter-subject scenarios.  

(3) We perform extensive experiments on four (4) publicly available HD-sEMG 

datasets: CapgMyo DB-a, DB-b (Session 1), DB-b (Session 2) and DB-c [26] 

respectively on three different sEMG-based gesture recognition tasks: intra-session, 

inter-session, and inter-subject scenarios. The proposed S-ConvNet achieves 

superior performance for intra-session gesture recognition when trained from 

scratch on the target sEMG dataset and improves inter-session and inter-subject 

gesture recognition accuracy through domain adaptation.   

This chapter is organized as follows: Section 3.2 presents the proposed S-ConvNet 

framework, while Section 3.3 provides the model description, design principles and 
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training methodology for S-ConvNet, respectively. Section 3.4 presents experimental 

results and discusses the performance of the proposed S-ConvNet models and compared 

with the current state-of-the-art models for instantaneous HD-sEMG based gesture 

recognition in intra-session scenarios. Section 3.5 introduces domain adaptation methods 

with low-latency shallow convolutional neural network (S-ConvNet) for the enhancement 

of inter-session and inter-subject gesture recognition accuracy. Section 3.6 evaluates 

sEMG-based gesture recognition in inter-session and inter-subject scenarios and compares 

it against state-of-the-art methods. Section 3.7 offers some conclusive remarks. 

3.2 The Proposed Framework 

The proposed framework for sEMG-based gesture recognition using instantaneous HD-

sEMG images includes the following three major computational components: (i) pre-

processing and sEMG image generation (ii) architectural design of the S-ConvNet model 

and (iii) classification. A schematic diagram of the proposed framework of sEMG-based 

gesture or neuromuscular activity recognition by instantaneous sEMG images is shown in 

Fig. 3.1. First, the power-line interferences were removed from the acquired HD-sEMG 

signals with a band-stop filtered between 45 and 55 Hz using a 2nd order Butterworth filter. 

Then, the HD-sEMG signals at each sampling instant were arranged in a 2-D grid 

according to their electrode positioning. This grid was further transformed into an 

instantaneous sEMG image by linearly transforming the values of sEMG signals from mV 

to color intensity as [-2.5mV,2.5mV] to [0 255]. Thus, an instantaneous grayscale sEMG 

image was formed with the size of 16×8. Secondly, we devised different S ConvNet models 

which describe in Section 3.3. Finally, providing instantaneous HD-sEMG images and their 

corresponding gesture labels, the devised S-ConvNet model is trained offline to predict to 
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which gesture or muscular activity an instantaneous HD-sEMG image belongs. Then, this 

trained S-ConvNet model is used to recognize different gestures or neuromuscular activities 

at test time from the unseen instantaneous HD-sEMG images. 

 
Fig. 3.1 Schematic diagram of the proposed framework of muscular activity 
recognition by instantaneous sEMG images. 

 

3.3 Model Description– The Shallow Convolutional Neural Network (S-ConvNet) 

S-ConvNet network architectures differ from existing approaches for HD-sEMG image 

recognition in several key aspects. Firstly, S-ConvNet models are trained from random 

initialization i.e., from scratch without any pre-training for gesture recognition in intra-

session scenarios. The pre-training in the existing approaches (e.g. [21], [26] and [23], [61]) 

involves over 720k images acquired from 18 different subjects. However, considering the 

targeted application domains of sEMG-based gesture recognition (e.g., assistive 

technology, physical rehabilitation etc.), it is always difficult to gather such a large amount 

dataset required for the pre-training and fine-tuning of very large and complex deep neural 

network (DNN) models. We cannot expect an amputee or a patient to provide a large set of 

training examples over a multiple number of trials and sessions. Thus, acquiring such high 

quality abundant labeled data are often limited, expensive and inaccessible in the domain of 

sEMG analysis for training these complex state-of-the-art deep ConvNet models [94].  
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Moreover, there is currently no evidence if this specialized very large and complex DNN 

architecture is either required or needs to be pre-trained with large scale sEMG dataset for 

instantaneous HD-sEMG image recognition in intra-session scenarios. This work 

demonstrates that it is possible to attain state-of-the-art accuracy by the proposed simple yet 

efficient S-ConvNet network model architectures when being trained from scratch directly 

on target sEMG dataset for intra-session gesture recognition, outperforming the highly 

resource-intensive, pre-trained, and fined-tuned current state-of-the-art [21], [26], [23] 

network model architectures. Training from random initialization, S-ConvNet models 

require ≈ 12 × 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 than its pre-trained counterparts for HD-sEMG image 

recognition. Fig. 3. 2 shows the total number of images used during training for pre-training 

+ fine-tuning vs random initialization. 

Fig. 3.2 Total number HD-sEMG images seen during training, for pre-training + 
fine-tuning vs. random-initialization. 

Secondly, the network architecture of the existing methods for HD-sEMG image 

recognition requires pre-training using a large-scale HD-sEMG dataset. Therefore, the 

question arises of which components of CNNs are necessary for achieving competitive 

performance as per these existing methods from random initialization. Motivated by the 

work in [46], a first step towards answering this question is taken by studying the simplest 

architecture conceivable: a network consisting of convolution layers, with a maximum of 

one fully connected layer with a small number of neurons and an occasional 

dimensionality reduction by using a max/average pooling or using a stridden CNN. The 
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use of a small number of convolutions and fully connected layers in S-ConvNet greatly 

reduces the number of parameters and thus also serves as a form of regularization.  

Thirdly, the HD-sEMG image classifier requires normalization to help the optimization. In 

addition to deploying successful forms of normalized parameter initialization methods 

[52], [53], employing an effective activation normalization method is equally important 

when training an instantaneous sEMG image recognition model such as S-ConvNet from 

scratch. Batch Normalization (BN) [55] is a widely used activation normalization 

technique in the development of deep learning-based methods. BN is used to normalize 

features by computing the mean and variances over mini-batches of instantaneous HD-

sEMG image samples, which has also shown promise in many other applications for 

easing optimization and enabling deep networks to converge faster. Moreover, the 

stochastic uncertainty of the batch statistics provides some form of regularization which 

may yield better generalization [101]. In addition to BN, Dropout [56] is another most 

popular regularization technique and a simple way to prevent deep neural networks from 

overfitting. However, Dropout and BN often lead to worse performance when they are 

combined. This is due to the fact that the Dropout would shift the variance of a specific 

neural unit when the state of the network transfer from training to test. On the other hand, 

BN would maintain its statistical variance, which is accumulated from the entire training 

process, in the test phase. These inconsistencies in variance cause unstable numerical 

behavior when the signal goes deeper through the network, which may even lead to 

incorrect predictions [102]. Unlike the existing approaches, Dropout and BN applied 

separately in an initial experiment with the proposed S-ConvNet models and evaluated 

their respective performance. 



46 

3.3.1 S-ConvNet Architecture and Training  

The proposed S-ConvNet was trained on a multi-class sEMG-based gesture or 

neuromuscular activity recognition task to recognize a neuromuscular activity class through 

an instantaneous HD-sEMG image. The overall architecture of S-ConvNet models is 

described in Table 3.1. Starting from the simplest Model A, the depth and number of 

parameters in the network gradually increases to Model C. The instantaneous HD-sEMG 

image is passed through a convolutional (conv.) layer, where a small receptive field with a 

3×3 filters are used. The smallest receptive field with 3×3 filters is the minimum filter size 

to allow overlapping convolutions and spatial pooling with a stride of 2, which also capture 

the notion of left, right and center amicably.  

Table 3.1 The three S-Convnet networks Models for sEMG-based gesture 
recognition using instantaneous sEMG images. 

Model A Model B Model C 
Input 16×8 Gray-level Image 

3 × 3 Conv. 32 ELU 3 × 3 Conv. 32 ELU 3 × 3 Conv. 32 ELU 
3 × 3 Conv. 64 ELU 1 × 1 Conv. 32 ELU 3 × 3 Conv. 32 ELU 
3 × 3 Conv. 64 ELU 3 × 3 Conv. 64 ELU 3 × 3 Conv. 32 ELU 

with stride 𝑟 = 2 
FC1 256 ELU 1× 1 Conv. 64 ELU 3 × 3 Conv. 64 ELU 
FC2 G-way FC FC1 256 ELU 3 × 3 Conv. 64 ELU 
     and/or FC2 G-way FC 3 × 3 Conv. 64 ELU 

with stride 𝑟 = 2 
FC3 G-way SoftMax       and/or   FC1 256 ELU 
- FC3 G-way SoftMax  FC2 G-way FC 
- -       and/or 
- -               FC3 G-way SoftMax 

 

It can be observed that the Model B from Table 3.1 is a variant of the Network in Network 

architecture [47], where only 1×1 convolution is performed after each normal 3×3 

convolutions layers. The 1×1 convolution acts as a linear transformation of the input 
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channels followed by a non-linearity [103]. We also highlight that the model C is a variant 

of the simple ConvNet models introduced by J. T. Springenberg et. al., [46] for object 

recognition in which the spatial pooling is performed by using a stridden CNN. The 

operation of a convolution map and a subsequent spatial pooling are illustrated in Fig. 3.3. 

The output of a convolution map 𝑓 produced by a convolution layer 𝑐 is computed as 

follows: 

 𝑐𝑖,𝑗,𝑜(𝑓) = ∅ (∑ ∑ ∑ 𝜃ℎ,𝑤,𝑢,𝑜 ⋅𝑛
𝑢=1

𝑘
𝑤=1

𝑘
ℎ=1 𝑓𝑔(ℎ,𝑤,𝑖,𝑗,𝑢)) (3.1) 

where 𝜃 are the convolutional weights or filters; 𝑔(ℎ, 𝑤, 𝑖, 𝑗, 𝑢) = (𝑟. 𝑖 + ℎ, 𝑟. 𝑗 + 𝑤, 𝑢) is 

the function mapping from position in 𝑐 to position in 𝑓 respecting the stride 𝑟;  𝑤 and ℎ 

are respectively the width and height of the filters; 𝑛 is the number of channels (in case 𝑓 is 

the output of a convolutional layer, 𝑛 is the number of filters); 𝑜 ∈ [1, 𝑀] is the number of 

output feature or channels of the convolutional layer and ∅(⋅) is the activation function, an 

exponential linear unit ELU defined as: 

 ∅(𝑥) = {
𝛼(exp(𝑥) − 1), 𝑖𝑓𝑥 < 0

𝑥,        𝑖𝑓𝑥 ≥ 0
 (3.2) 

Then, the spatial pooling operations are performed to the convolution map 𝑓 as follows: 

 𝑠𝑖,𝑗,𝑢(𝑓) = (∑ ∑ |𝑓𝑔(ℎ,𝑤,𝑖,𝑗,𝑢)|
𝑝𝑘

𝑤=1
𝑘
ℎ=1 )

1

𝑝 (3.3) 

The equation (3.3) can be interpreted as a form of max pooling when 𝑝 → ∞ [46]. In 

addition, by making a slight adjustment to equation (3.3) and setting 𝑝 = 1, the following 

equation can be translated into an average-pooling: 

 𝑠𝑖,𝑗,𝑢(𝑓) = (
1

𝑘
∑ ∑ |𝑓𝑔(ℎ,𝑤,𝑖,𝑗,𝑢)|

𝑝𝑘
𝑤=1

𝑘
ℎ=1 )

1

𝑝 (3.4) 
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The spatial pooling operation on a convolutional map makes the networks more robust to 

local translations and may help cope with the electrode shifting problem encountered in 

different HD-sEMG recording trials and sessions. However, the spatial pooling operations 

may cause the network to lose distinctive information about the detailed texture and micro-

textures of an instantaneous sEMG image. Therefore, the pooling operations are only 

introduced to our models after the first convolutional layers in order to investigate the effect 

of these pooling operations on our network models.  

 
(a) 

 
(b) 

Fig. 3.3 A schematic illustration of convolutions and pooling operation a) 
Convolution maps and b) Convolutions maps after spatial pooling. 

Afterwards, the convolution maps produced by the final convolutional layer of each of the 

model networks, illustrated in Table 3.1, are flattened out and concatenated to form a multi-

dimensional feature vector. Then, the flattened feature vector is inputted to a fully 

connected layer where each of the feature elements are connected to all its input neurons. 

This fully connected layer can capture correlations between features extracted in the distant 

part of the instantaneous sEMG images. The output of the fully connected layer in the 

network is used as discriminative feature representation for instantaneous sEMG images. In 
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terms of representation, this is in contrast to the HOG-based sEMG image representation 

[22], described detailed in Chapter 5, that generally extract very local descriptors by 

computing the histograms of oriented gradients and use as input to a classifier. 

Finally, the output of the fully connected layer is fed to a G-way SoftMax layer (where G is 

the number of hand gesture or neuromuscular activity classes) which produces a 

distribution over the class labels. If we denote �̂�(𝑗) as the 𝑗th element of the 𝐺 dimensional 

output vector of the layer preceding the SoftMax layer, the class probabilities are estimated 

using the SoftMax function 𝜎(. ) defined as below: 

 𝜎(�̂�(𝑗)) =
exp ( �̂�(𝑗))

∑ exp ( �̂�(𝐺))𝐺
 (3.5) 

 The goal of this training is to maximize the probability of the correct gesture or 

neuromuscular activity class. We achieve this by minimizing the cross-entropy loss [49] for 

each training sample. If 𝑦 is the true label for a given input, the loss is  

 𝐿 =  − ∑ 𝑦(𝑗)ln (σ(𝑗 �̂�(𝑗)) (3.6) 

The loss is minimized over the parameters by computing the gradient of 𝐿 with respect to 

the parameters and by updating the parameters using the state-of-the-art Adam (adaptive 

moment estimation) gradient descent-based optimization algorithm [50].  

Having trained the network, an instantaneous HD-sEMG image is recognized as in the 

gesture or neuromuscular activity class 𝐶 by simply propagating the input image forward 

and computing: 

 𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗(�̂�(𝑗)) (3.7) 
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3.3.2 Normalization 

As discussed above, the acquired HD-sEMG signals at each sampling instant were arranged 

in a 2-D grid according to their electrode positioning and converted into an instantaneous 

sEMG image by linearly transforming the values of sEMG signals from mV to color 

intensity as [-2.5mV, 2.5mV] to [0 255]. Therefore, the intensity distribution of the 

transformed sEMG images is normalized to be between zero and one i.e. [0 1] in order to 

reduce the sensitivity to contrast and illumination changes. Given an input sEMG image I, 

this is accomplished by applying max-min normalization as follows: 

 𝐼𝑁 = 𝐼 − 𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥− 𝐼𝑚𝑖𝑛

 (3.8) 

where 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 are, respectively, the maximum and minimum pixel intensity of the 

input instantaneous HD-sEMG image 𝐼, and 𝐼𝑁 is the normalized instantaneous HD-sEMG 

image within the range [0, 1]. It is worth mentioning that our training data were not pre-

normalized when the batch normalization (BN) is applied. 

The performance of the proposed S-ConvNet models were evaluated online by learning the 

instantaneous sEMG image representation on CapgMyo1 database [26] as described in 

detail in Chapter 2, Section 2.5, for sEMG-based gesture recognition. Next section 

discusses experimental results and analysis to evaluate the performance of the proposed S-

ConvNet in intra-session scenarios as well as some insight and findings about learning and 

recognizing instantaneous sEMG images. 

 
1The dataset is made publicly accessible from the following website: http://zju-

capg.org/research_en_electro_capgmyo.html). 
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3.4 The Performance Evaluation of The Proposed S-ConvNet Network Models 

From the viewpoint of MCI application scenarios, sEMG-based gesture recognition can be 

categorized into three types [26], [63], [57], [67]:  

Type I – intra-session: in which a classifier is trained on time part of the data recorded 

from the subjects during one session and evaluated on another time part of the data 

recorded from the same session, 

Type II – inter-session: in which a classifier is trained on the data recorded from the 

subjects in one session and tested on the data recorded in another new session, and 

Type III – inter-subject: when a classifier is trained using data from a group of subjects, 

and its performance is evaluated using data from an unseen (new) subject who was not 

included in the training data. 

However, the sEMG-based gesture recognition in the literature has usually been 

investigated in intra-session scenarios (e.g.,[18], [21], [23], [24]) because this is currently 

regarded as the gold standard in sEMG-based gesture recognition [17]. In this section, we 

evaluate the performance of the proposed S ConvNet models in intra-session scenarios and 

compare them with the current state-of-the-art. However, the implications of our proposed 

methods in inter-session and inter-subject scenarios are reported in Sections 3.5 and 3.6 of 

this chapter, respectively. 

The CapgMyo database [26] comprises three sub-databases (referred to as DB-a, DB-b, and 

DB-c) with a total of 23 able-bodied subjects aged between 23 and 26 years. Notably, DB-b 

was recorded in two different sessions, named DB-b (Session 1) and DB-b (Session 2), 
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respectively. Therefore, all four sub-datasets are considered for intra-session performance 

evaluations. 

In DB-a, we obtained 8 isotonic and isometric hand gestures from 18 out of the 23 subjects, 

with each gesture recorded 10 times. In DB-b, the same gesture sets as in DB-a were 

recorded from ten (10) different subjects. Additionally, in DB-c, twelve (12) gestures with 

each gesture repeated 10 times were recorded from each of the ten (10) different subjects 

who participated in this sub-database. In all these mentioned CapgMyo datasets, the 

gestures set were recorded with a 1000 Hz sampling rate. For each subject, the recorded 

HD-sEMG data is filtered, sampled and instantaneous sEMG image is generated using the 

method described in Section 3.2. More explicitly, each target subject in DB-a performed 8 

different hand gestures and each gesture were recorded 10 times with a 1000 Hz sampling 

rate, therefore, each target subject participated in DB-a in total generates (8×10×1 000) = 

80 000 or 80k instantaneous sEMG images individually. 

3.4.1 Data Selection for Training, Validation and Testing 

Existing approaches (e.g., [21], [26], [23], [61]) for instantaneous HD-sEMG image 

recognition use a pre-trained model for sEMG-based gesture recognition in intra-session 

scenarios. In their approaches, the pre-trained dataset consists of combined instantaneous 

sEMG images obtained from odd-numbered trials performed by each target subject. For 

illustration, in DB-a, 18 target subjects participated, performing 8 different hand gestures, 

with each gesture being trialed 10 times. From these 10 trials, only the instantaneous 

images obtained from the odd-numbered trials from each target subject (i.e., 8 × 5 × 1000) 

= 40,000 or 40k were combined, resulting in a total of (18 × 40,000) = 720,000 or 720k 
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instantaneous images. These combined training instantaneous sEMG images from all the 

target subjects were used for pre-training. 

The pre-trained model was then used to develop a subject-specific classifier by fine-tuning 

it with training data obtained exclusively from a specific target subject. Specifically, the 

pre-trained model underwent fine-tuning using 40,000 (or 40k) training samples consisting 

of instantaneous sEMG images from the odd-numbered trials. The resulting fine-tuned 

model was then tested using the remaining 40,000 (or 40k) instantaneous sEMG images 

from the even-numbered trials of the same target subject (e.g., in DB-a). Thus, the existing 

approaches [21], [26], [23], [61] involve a total of (720,000 + 40,000) = 760,000 or 760k 

images in the training process for developing a target subject-specific classifier (as 

illustrated in Fig. 3.2). 

In contrast, the proposed S-ConvNet model is trained from scratch through random 

initialization without any pre-training for intra-session gesture recognition. The training, 

validation, and testing process of the proposed model utilizes only the makeshift dataset 

available for a target subject, i.e., (1 × 8 × 10 × 1000) = 80,000 or 80K images produced by 

a target subject individually for DB-a and DB-b, respectively. In DB-c, each of the target 

subjects produces (1 × 12 × 10 × 1000) = 120,000 or 120K instantaneous sEMG images 

individually because each subject in DB-c performed 12 hand gestures and each gesture 

repeated 10 times with a 1000 Hz sampling rate. 

In order to maximize the use of instantaneous sEMG images during training, we introduce 

the Leave-One-Trial-Out Cross-Validation (LOTOV) approach. In LOTOV, we 

systematically leave out one (1) trial in turn from the pool of 10 different trials representing 

8 distinct hand gestures, resulting in 8,000 or 8k instantaneous sEMG images for testing. 
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The remaining 9 trials, comprising a total of 72k images for 8 different hand gestures, are 

used for training and validation. From these 72k training images, we randomly select 9k 

images for validation to assess whether our devised model is prone to overfitting during the 

training process. Therefore, our training process involves only 63k images, which contrasts 

with existing approaches that employ 760k images in the training process (as shown in 

Fig 3.2). 

Finally, the leave one trial out cross-validation accuracy for 10 different test trials is 

averaged and used as a performance indicator for an intra-subject and intra-session test. The 

cross-validation accuracy A is computed for each class  i, as the number of totals correctly 

recognized hand gestures, 𝐶 , divided by the total number of tests sEMG images as follows: 

 Accuracy,  A =  
C

N
=  

∑ Ci

N
 (3.9) 

where i = {1,  2,  … ,   G} and G is the number of gesture classes. 

 

3.4.2 Experimental Results on Intra-Session Scenarios 

In this experiment, we compared all the proposed S-ConvNet models described in 

Section 3.3 on the CapgMyo and its four (4) sub-datasets without any pre-training or data 

augmentations. For effective and faster training of a CNN network model with high-

dimensional parameter spaces requires a good initialization strategy for the connection 

weights, a good activation function, using BN and a good regularization technique. The 

weight initialization scheme, an activation function and the effectiveness of BN and 

Dropout regularizers were determined in a preliminary experiment using S-ConvNet model 
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A (see in Table 3.1) and involving subjects 2 from CapgMyo DB-a. Then, these choices 

were subsequently maintained throughout all subsequent experiments. 

We investigate and experiments with two different initialization schemes for the connection 

weights in Xavier and He initialization [52], [53]. However, we found that the models with 

He initialization scheme perform on average 1.5% worse than the Xavier initialization 

counterparts. We hence do not report the results in this chapter with the He initialization to 

avoid cluttering the experiments. In order to investigate a most suitable activation function 

for the proposed S-ConvNet models, we also performed experiments with the different 

activation functions [48], [104]. The results are reported in Table 3.2. In addition, as the BN 

and Dropout often lead to worse performance when they are combined as discussed in 

Section 3.3. In order to investigate this claim, we performed experiments with both of these 

methods combined and separately. The results are detailed in Table 3.2. 

Table 3.2 Gesture recognition accuracy (%) using instantaneous HD-sEMG Images 
for different activation functions and spatial pooling. 

Network Relu Leaky-
Relu Elu Sigmoid Max-

pool 
Avg-
pool 

Avg-run 
time(min.) 

Model A 95.18 95.56 93.98 95.76 94.55 94.31 2.55 

Model A with 
BN 96.16 97.34 97.50 98.00 96.66 97.13 7.74 

Model A with 
Dropout 

regularization 
96.99 96.68 96.58 96.30 95.19 95.61 11.27 

Model A with 
BN and Dropout 97.18 97.54 98.29 97.80 96.98 97.54 14 

 

Also, training a CNN network with a high-dimensional parameter spaces requires an 

efficient optimization algorithm. Objective functions are often stochastic because of 

internal data sub-sampling, dropout regularization and other sources of noise. Hence, we 
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propose to use a computationally efficient stochastic optimization algorithm, Adam [50], 

which requires only first-order gradients with little memory requirement, is invariant to 

diagonal rescaling of the gradients and is suitable for high-dimensional problems. It also 

provides fast and reliable learning convergence that can be considerably faster than the 

stochastic gradient descent (SGD) optimization algorithm used in the existing approaches 

for instantaneous HD-sEMG image recognition. Our proposed S-ConvNet models were 

trained using Adam optimization algorithm with momentum decay and scaling decay are 

initialized to 0.9 and 0.999 respectively. In contrast to SGD, Adam is an adaptive learning 

rate algorithm therefore, it requires less tuning of the learning rate hyperparameter. The 

learning rate 0.001 is initialized to all our experiments. The smaller batches of 256 

randomly chosen samples from the training dataset are fed to the network during 

consecutive learning iterations for all our experiments. We set a maximum of 100 epochs 

for training S-ConvNet network models. However, to avoid overfitting we have also 

applied early stopping in which the training process is interrupted if no improvements in 

validation loss are noticed for 5 consecutive epochs. The BN is applied after the input and 

before each non-linearity. Dropout was used to regularize all networks. The Dropout was 

applied on all layers with probabilities 35% for all S-ConvNet models, respectively. The 

results for S-ConvNet Model A that we conducted for subject 2 in CapgMyo DB-a database 

are presented in Table 3.2.  

Several trends can be observed from these results, the major observations are the following: 

1. confirming previous results from the literature, the simplest model A 

(S-ConvNet A) perform remarkably well, achieving a correct gesture recognition 
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rate of 98.29% for an intra-subject test based on instantaneous (or per-frame) sEMG 

images.  

2. simply applying max-min normalization to the training dataset and fed to the 

S-ConvNet Model A, the average correct recognition rate of 94.89% has been 

achieved for 6 different experiments with only 2.55 min overall runtime for training, 

validation and testing on a Nvidia Tesla K-20C GPU.  

3. simply replacing the max-min normalization by introducing BN to the network the 

average correct recognition rate improved to 97.13% by sparing overall 7.74 min 

runtime for training, validation and testing.  

4. the correct recognition rate slightly decreases to 96.23% when the BN is replaced by 

the Dropout regularizer and max-min normalization, while also increasing the 

overall runtime to 11.27 min for entire training, validation and testing process.  

5. when BN and Dropout with a tiny probability are respectively applied to all layers 

of the network, the average recognition rate increases up to 97.56%. However, due 

to introducing BN and Dropout to the networks, the overall runtime also increases 

to about 14 min for entire training, validation and testing process.  

In all cases, the performance of the model slightly decreases with spatial max-pooling and 

average-pooling. However, spatial pooling can help to regularize CNNs and might be more 

effective especially when conducting experiments in inter-session scenarios. It is worth 

noting that the average pooling performs quite well when the BN or in conjunction of BN 

and Dropout are introduced to the network model (e.g., Table 3.2). All these preliminary 

experimental results for an intra-subject and intra-session test confirm that our proposed S-
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ConvNet models can learn all the necessary invariances that requires to build a distinctive 

representation for instantaneous HD-sEMG image recognition.  

From Table 3.2, it can be observed that the maximum correct recognition rate of 98.29% is 

achieved when applying the exponential linear unit (ELU) activation function, BN, and a 

small dropout probability to every layer of the network. Therefore, this configuration is also 

applied to other S-ConvNet B and S-ConvNet C network models respectively and 

performed experiments on all the subjects who participated in CapgMyo DB-a, DB-b 

(Session 1), DB-b (Session 2) and DB-c respectively. The results for the proposed 

S-ConvNet A, S-ConvNet B and S-ConvNet C models are respectively presented in Table 

3.3 and compared against the current state-of-the-art methods. In Table 3.3, GengNet [21] 

is considered as the baseline model because of its adoption to other recent studies [26], 

[23], [24], [61] and its state-of-the-art performance on various sEMG datasets for intra-

session sEMG-based gesture recognition. 

As can be seen in the Table 3.3, the simple S-ConvNet models (on the order of ≈2M 

learning parameters) trained from random-initialization with 3×3 convolutions and a dense 

layer with only a smaller number of neuron achieve state-of-the-art results for CapgMyo 

DB-a, DB-b (Session 1) and DB-b (Session 2) respectively and performs comparable to the 

state-of-the-art for CapgMyo DB-c dataset even though the state-of-the-art model use more 

complicated network architectures and training schemes which requires to learn over ≈

 5.63 𝑀  learning parameters during fine-tuning only and also pre-trained with over 720k 

instantaneous HD-sEMG images.  
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Table 3.3 The average recognition accuracies (%) of 8 hand gestures for CapgMyo 
DB-a and DB-b for 18 and 10 different subjects respectively and 12 gestures for 10 
different subjects in DB-c. The numbers are the majority voted results using 160 ms 
window (i.e., 160 frames). per-frame accuracies are shown in parenthesis. 

Model S-ConvNet A  S-ConvNet B  S-ConvNet C  Geng et. al., 
[21], [26] 

CapgMyo DB-a 98.36 (87.95) 97.97 (87.02) 97.84 (86.99) 98.48 (86.92) 

CapgMyo 
DB-b Session 1 97.87 (83.57) 97.43 (82.29) 97.42 (82.67) 97.04 (81.26) 

CapgMyo 
DB-b Session 2 97.05 (84.73) 96.40 (83.64) 96.62 (83.90) 96.26 (83.21) 

CapgMyo DB-c 95.80 (81.63) 94.47 (79.81) 94.23 (80.04) 96.36 (82.23) 

#Learning parameters ≈ 2.09M ≈ 2.14M ≈ 2.22M ≈ 5.63M 

 

Among the proposed S-ConvNet models, S-ConvNet A demonstrates the highest gesture 

recognition accuracy across all four (4) CapgMyo datasets. Furthermore, both S-ConvNet B 

and S-ConvNet C outperform the state-of-the-art GengNet [21], [26] model on the 

CapgMyo DB-b (Session 1) and DB-b (Session 2) datasets, respectively. Fig. 3.4 illustrates 

the per-frame gesture recognition accuracy, based on instantaneous sEMG images, along 

with its statistical significance obtained by the proposed S-ConvNet models, compared with 

the current state-of-the-art GengNet model [21], [26], for 18 different subjects in CapgMyo 

DB-a. The proposed S-ConvNet models show lower standard deviation over the current 

state-of-the-art GengNet [21], [26] model. Notably, the S-ConvNet A exhibits superior 

performance and lower standard deviation among the compared models. A similar 

performance graph was achieved for CapgMyo DB-b (Session 1 and Session 2) and 

CapgMyo DB-c, respectively. However, they are not presented here in order to avoid 
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cluttering the experimental results. Overall, these experimental results validate the stability 

and potentiality of the proposed S-ConvNet models over the current state-of-the-art. 

Moreover, these experimental results also indicate that the state-of-the-art GengNet model 

[21], [26] requires pre-training with a large-scale HD-sEMG dataset as well as fine-tuning 

on the target dataset for enhancing intra-session gesture recognition accuracy due to its 

deep and complex large network architecture. 

 
Fig. 3.4 The average per-frame gesture recognition accuracy of 8 hand gestures for 
18 different subjects in CapgMyo DB-a with the proposed S-ConvNet models and 
the current state-of-the-art GengNet [21], [26] model. 

Fig. 3.5 (a)-(d) presents the sEMG-based instantaneous (or per-frame) gesture recognition 

accuracies and their statistical significance obtained by S-ConvNet A through leave-one-

trial-out cross-validation for ten different test trials for each of the participating subjects in 

CapgMyo DB-a, DB-b (Session 1 and Session 2), and DB-c, respectively. The highest 

instantaneous (or per-frame) gesture recognition accuracies of 87.95% for DB-a, 83.57% 

and 84.73% for DB-b (Session 1 and Session 2, respectively), and 81.63% for DB-c, which 

were obtained by the proposed best performant model S-ConvNet A. These high per-frame  
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(a) CapgMyo DB-a. 

 
(b) CapgMyo DB-b (Session 1). 
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(c) CapgMyo DB-b (Session 2). 

 
(d) CapgMyo DB-c. 

Fig. 3.5 The per-frame gesture recognition accuracy with the proposed S-ConvNet A 
(a) the recognition accuracy of 8 hand gestures for 18 different subjects on CapgMyo 
DB-a, (b)-(c) The gesture recognition accuracy of 8 hand gestures for 10 different 
subjects on CapgMyo DB-b (Session 1) and DB-b (Session 2) respectively (d) the 
gesture recognition accuracy of 12 hand gestures for 10 different subjects on 
CapgMyo DB-c. 
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gesture recognition accuracies and low standard deviation over multiple test trials and 

subjects in each of the above-mentioned four HD-sEMG datasets reflect the high stability 

of the proposed S-ConvNet network models. 

Furthermore, we achieved very good gesture recognition accuracies using a simple majority 

voting algorithm. Fig. 3.6 (a)-(d) illustrates gesture recognition accuracy with different 

voting windows using S-ConvNet models and compared against the current state-of-the-art. 

The average gesture recognition accuracy of 95.02%, 96.31% and 97.01% were achieved 

by S-ConvNet A with applying a simple majority voting of 32, 64 and 128 instantaneous 

images (or frames) for the abovementioned four (4) HD-sEMG datasets.  

The higher gesture recognition accuracies of 98.36%, 97.87%, 97.50%, and 95.80% (as 

shown in Table 3.3 and Fig. 3.6) can be obtained by the proposed S-ConvNet A and a 

simple majority voting over the recognition result of 160 frames for DB-a, DB-b (Session 1 

and Session 2) and DB-c, respectively. These results highlights that the proposed S-

ConvNet models outperform the current state-of-the-art GengNet [21], [26] at least in three 

(3) out of four (4) HD-sEMG datasets.  

These outstanding results indicate that the proposed S-ConvNet models are highly effective 

for discriminative feature learning and representation in gesture recognition using 

instantaneous HD-sEMG images and further proved that the requirement of large-scale 

HD-sEMG datasets for pre-training and fine tuning by the current state-of-the-art for 

achieving high intra-session gesture recognition accuracy due to its deep and complex large 

network architecture. 
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(a) CapgMyo DB-a 

 
(b) CapgMyo DB-b (Session 1) 
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(c) CapgMyo DB-b (Session 2) 

 
(d) CapgMyo DB-c 

Fig. 3.6 Surface EMG gesture recognition accuracy with different voting windows 
using the proposed S-ConvNet models and compared with the state-of-the-art 
methods: (a) the recognition accuracy of 8 hand gestures for 18 different subjects on 
CapgMyo DB-a, (b)-(c) the gesture recognition accuracy of 8 hand gestures for 10 
different subjects on CapgMyo DB-b (Session 1) and DB-b (Session 2) respectively, 
and (d) the recognition accuracy of 12 hand gestures for 10 different subjects on 
DB-c. 
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3.4.3 Discussion on sEMG-based Gesture Recognition in Intra-Session Scenarios 

The experimental results based on S-ConvNet network models demonstrate the following 

points:  

1. the proposed S-ConvNet models trained from random-initialization can learn all the 

necessary invariances that requires to build a discriminant representation using only 

the available dataset for the target subject for gesture recognition based on 

instantaneous HD-sEMG images. Therefore, our discoveries will encourage 

community to devise shallow ConvNet architectures and train the model from the 

scratch (instead of pre-training) for improving the gesture recognition performance 

especially in the data and resource-constrained scenarios. 

2. we definitely agree that, given limitless training data and unlimited computational 

power, deep neural networks should perform extremely well. However, our 

proposed approach and experimental results imply an alternative view to handle this 

problem: a better S-ConvNet model structure might enable similar or even better 

performance compared with the more complex existing models trained from large 

datasets by conducting an exhaustive hyperparameter search. Particularly, our S-

ConvNet models are only trained with 63k instantaneous HD-sEMG images for 

each target subject and sets a new state-of-the-art performance for at least three (3) 

out of the four (4) publicly available HD-sEMG datasets, outperforming the more 

complex existing models trained with 720k+40K instantaneous HD-sEMG images 

for each of the target subject. Moreover, as the datasets grow larger, training 

complex deep neural networks becomes more expensive. Hence, a simple yet 
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efficient approach becomes increasingly significant. Despite its conceptual 

simplicity, our proposed methods show great potential under these settings.     

3. we argue that, as aforementioned briefly, training from scratch is of critical 

importance at least for the following reasons. First, Domain mismatch– the 

distributions of the sEMG signals vary considerably even between recording 

sessions of the same subject within the same experimental set up. This problem 

becomes more challenging, where the learned model is used to recognize muscular 

activities in a new recording session. Though the fine-tuning of the pre-trained 

model can reduce the gap due to the deformations in a new recording session. But, 

what an amazing thing if we have a technique that can efficiently learn HD-sEMG 

images from scratch for recognizing neuromuscular activities. The proposed S-

ConvNet models can be trained from scratch directly on the target subject or tasks 

with limited datasets and resources. Second, the fine-tuned pre-trained model 

restricts the structure design space for sEMG-based gesture recognition. This is very 

critical for the deployment of deep neural networks models to the resource limited 

scenarios.  

4. The current state-of-the-art CNN-based gesture or neuromuscular activity 

recognition models require a huge memory space to store the massive parameters. 

Therefore, these models are usually unsuitable for low-end hand-held mobile, 

wearable devices and embedded electronics. Thanks to the proposed parameter-

efficient S-ConvNet, our model is much smaller than the most competitive methods 

for instantaneous HD-sEMG image recognition. For instance, our S-ConvNet-A 

achieves 98.36%, 97.87%, 97.50%, and 95.80% average gesture recognition 

accuracy for CapgMyo DB-a, DB-b (Session 1 & 2) and DB-c datasets with a 
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majority voting over the recognition results of 160 frames/instantaneous sEMG 

images (which is equivalent to 160ms of sEMG data) with only ≈ 2M parameters, 

which shows a greater potential for applications on low-end devices. 

Drawing inspiration from the state-of-the-art intra-session sEMG-based gesture recognition 

accuracy achieved by the proposed S-ConvNet, the next section introduces a domain 

adaptation method with shallow convolutional neural network for sEMG-based gesture 

recognition in more challenging inter-session and inter-subject scenarios. 

3.5 Domain Adaptation with Low-Latency Shallow Convolutional Neural Network 
[100] 

Experiments carried out in previous section demonstrate that, the proposed S-ConvNet 

models set a new state-of-the-art performance for gesture recognition in intra-session 

scenarios using instantaneous HD-sEMG signals. However, real-time HCIs based on 

sEMG-based gesture recognition in inter-session and inter-subject scenarios present a great 

challenge for various intrinsic and extrinsic factors, as discussed in Chapter 2, Section 2.4. 

In inter-session scenarios, the models are usually built by training with the data collected 

from the previous sessions (source domain or task) and deployed to new sessions (target 

domain or task) for MCI using sEMG-based gesture recognition. However, gesture 

recognition in inter-session scenarios based on sEMG signals is seriously hindered by the 

distribution shift or feature space difference between the source domain and target domain 

due to changes in arm posture, electrode shifts, channel variations, muscle fatigue, 

electrode-skin contact impedance and variations in muscle contraction force or load level 

[1], [11], [17], [26], [57], [63], [67], [94]. 
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Moreover, in inter-subject scenarios, the models are usually built by training with the data 

collected from a group of subjects (source domain or task) and the trained model is 

deployed to recognize gestures from an unseen or a new subject (target domain or task). 

The data distribution shift caused by the above-mentioned factors in inter-session scenarios 

persists in inter-subject scenarios, further compounded by the added data variability arising 

from differences in muscle physiology between different subjects [26], [57], [63], [67], 

[94]. For example, when the training and test data are acquired only at different muscular 

contraction force or load levels, the error rate ranges from 32% to 44%. However, when the 

training and test data are acquired at the same muscular contraction force or load level, the 

error rate is reduced to a range of 8% to 19%. These findings indicate that variations in only 

muscular contraction force or load level can significantly impact the accuracy of an sEMG-

based MCI system, with potential reductions of up to 60% [60], [105]. Therefore, the 

developed methods must address the distribution shift caused by these inter-session and 

inter-subject data variabilities for maintaining the stability of MCIs based on sEMG signals. 

To address this distribution shift problem, researchers have proposed hand-crafted feature 

extraction and transformation-based methods with classical machine learning [15], [16], 

[17], [95] as discussed in Chapter 2. However, their performances are not feasible for real-

time MCIs based on sEMG signals. In recent years, this distribution shift problem in 

sEMG-based gesture recognition in inter-session and inter-subject scenarios is addressed by 

deep domain adaptation (DA) methods which combines deep learning and DA [26], [57]. 

Domain adaptation (DA) is a form of transductive transfer learning (TL) [51] that leverages 

deep networks to learn transferable representations from a source domain to a target 

domain by embedding DA in the pipeline of deep learning. 
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3.5.1 Preliminaries 

Problem Formulation: Given a source domain dataset as 𝐷𝑠 =

{(𝑥𝑠1, 𝑦𝑠1), … , (𝑥𝑠𝑛𝑆
, 𝑦𝑠𝑛𝑆

)}, where 𝑥𝑠𝑖 ∈ Χ𝑆 is the data instance and 𝑦𝑠𝑖 ∈ 𝑌𝑆 is the 

corresponding class label. An objective function 𝑓𝜃𝑠
(. ) can be learned using 𝐷𝑠 for the 

source task such that, 𝒯𝑠 = {𝑌𝑠, 𝑓𝑠(∑ 𝑤𝑆𝑖
𝑋𝑆 + 𝑏𝑖 )}. Similarly, we denote a target domain 

dataset as 𝐷𝑇 = {(𝑥𝑇1, 𝑦𝑇1), … , (𝑥𝑇𝑛𝑇
, 𝑦𝑇𝑛𝑇

)} and the task 𝒯𝑇 = {𝑌𝑇 , 𝑓𝑇(∑ 𝑤𝑇𝑖
𝑋𝑇 +𝑖

𝑏)},where, 𝑥𝑇𝑖 ∈ Χ𝑇 and 𝑦𝑇𝑖 ∈ 𝑌𝑇 are data instances and their labels respectively. In most 

cases, the target domain data is of much lower quantity compared to that of the source 

domain data, i.e., 0 ≤ 𝑛𝑇 ≪ 𝑛𝑠. DA is a transductive TL task (𝐷𝑠, 𝒯𝑠, 𝐷𝑇 , 𝒯𝑇), where the 

knowledge of 𝐷𝑠 and  𝒯𝑠 is used to improve the learning of the target predictive function 

𝑓𝜃𝑇
(. ) when 𝐷𝑠 ≠ 𝐷𝑇 and 𝒯𝑠 =  𝒯𝑇. 

In the context of sEMG-based gesture recognition problem, 𝒯𝑠 and 𝒯𝑇 refer to the same 

task, which involves recognizing the same set of hand gestures. However, the data 

distribution between 𝐷𝑠 and 𝐷𝑇 may deviate due to different intrinsic physiological and 

extrinsic environmental factors experienced in inter-session and inter-subject scenarios, as 

described in the previous section and Chapter 2, Section 2.4, respectively.  

3.5.2 Baseline DA Framework and Its Limitations 

Currently, Du et al. [26] and Ketyko et al. from Nokia Bell Labs [57] present a state-of-the-

art DA solution for sEMG-based gesture recognition in inter-session and inter-subject 

scenarios using the CapgMyo dataset. Du et al. [26] propose a multi-source extension to the 

classical adaptive batch normalization (AdaBN) technique [37], combined with their most 

complex deep and large CNN architecture [21]. They employ AdaBN with the hypothesis 
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that the layer weights contain discriminative knowledge related to different hand gestures, 

while the statistics of the BatchNorm layer [57] represent discriminative knowledge from 

different recording sessions in inter-session or inter-subject scenarios [37]. The parameters 

of the pre-trained model's AdaBN [21] are updated using an unsupervised approach for 

adaptation in the target domain. However, a drawback of this solution arises when dealing 

with multiple sources (i.e., multiple subjects), as specific constraints and considerations 

must be imposed for each source during the pre-training phase of the model [57]. 

Furthermore, DA based on AdaBN achieved an inter-session gesture recognition accuracy 

of 63.3% for CapgMyo DB-b, and inter-subject gesture recognition accuracies of 55.3% 

and 35.1% for CapgMyo DB-b (session 2) and CapgMyo DB-c, respectively, by employing 

majority voting over the recognition results of 150 instantaneous images or frames. 

However, these recognition accuracies are not practical for real-time MCI applications [60]. 

Ketyko et al. [57] proposed a 2-Stage recurrent neural networks (2SRNN), where a deep 

stacked RNN sequence classifier was used for pre-training on the source dataset. Then, the 

weights of the pre-trained deep-stacked RNN classifier were frozen. At the same time, a 

fully connected layer without a non-linear activation function was trained in a supervised 

manner on the target dataset for domain adaptation. More explicitly, the deep-stacked RNN 

classifier was used as a feature extractor by freezing its weight in the domain adaptation 

stage. However, ConvNet is computationally more efficient and powerful in extracting 

discriminative features than RNN, even for classification tasks involving long sequences 

[58], [59]. 
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3.5.3 Proposed Domain Adaptation (DA) Framework 

The proposed domain adaptation (DA) framework for sEMG-based gesture recognition 

using instantaneous HD-sEMG images comprised of three key computational components: 

(i) S-ConvNet model development (ii) pre-training, and (iii) Domain Adaptation. A 

schematic diagram of the proposed DA framework for sEMG-based gesture recognition is 

shown in Fig. 3.7. First, we design and develop an efficient shallow convolutional neural 

network (S-ConvNet). The model description and its design principles are presented in 

Section 3.3 of this chapter.  

Then, the S-ConvNet model is pre-trained from scratch on the source domain dataset. This 

pre-trained model encompasses a set of shared parameters denoted as 𝜃𝑠, representing the 

learned weights of the convolutional and fully connected layers within the S-ConvNet 

architecture. Additionally, it incorporates task-specific parameters, designated as 𝜃0 which 

are acquired through learning from the previously accomplished sEMG-based gesture 

recognition task on the source domain dataset (as illustrated in Fig. 3.7 (a)). Considering 𝜃0 

as classifiers that operate on features parameterized by 𝜃𝑠. 

The proposed domain adaptation (DA) framework comprises a feature extraction layer and 

a DA layer, as illustrated in Figure 3.7 (b).  Regarding feature transfer to the target network 

for DA, this thesis introduces a feature (or weight) transfusion experiment (detailed in 

Chapter 4, Section 4.6.4) to explore the transferability of features within a deep 

convolutional neural network for sEMG-based gesture recognition. The findings suggest 

that feature transferability is primarily concentrated in the lower layers of the network. 

Drawing inspiration from these findings, the shared parameter 𝜃𝑠 i.e., only the learned 

weights of the convolution layers acquired through pre-training the S-ConvNet model on  
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(a) Pre-trained model 

 
 

 
(b) Proposed DA Framework 

Fig. 3.7 A schematic Illustration of the proposed DA using shallow convolutional 
neural network (S-ConvNet). (a) Pre-trained model (b) Proposed DA Framework. 
sEMG images and labels used for DA are shown. 
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the source domain dataset, is employed as a feature extractor.  This set of parameters is then 

transferred to a target network, enabling the target network to directly leverage the 

knowledge learned from the source domain. Freezing the weights of the transferred feature 

extractor ensures the retention of source knowledge in DA step. 

Afterward, the shared parameter 𝜃𝑠 of the fully connected (FC) layer, as well as the task 

specific parameters 𝜃0 of the pre-trained S-ConvNet undergo fine-tuning on the target 

domain dataset for DA.  Finally, this adapted target network model is deployed for gesture 

recognition in a new session or a new subject. Essentially, it is worth mentioning that we 

keep the structure of the target network for DA in consistent with the proposed source S-

ConvNet network model.  

In the next section, we present the experimental results and training strategy for sEMG-

based gesture recognition in inter-session and inter-subject scenarios and compared against 

the state-of-the-art. 

3.6 Experiments in Inter-Session and Inter-Subject Scenarios 

3.6.1 Experimental set up 

The proposed DA approach has been evaluated on CapgMyo dataset [26] for studying and 

quantifying the effects of DA on the proposed S-ConvNet network model for sEMG-based 

gesture recognition in inter-session and inter-subject scenarios. The CapgMyo dataset 

consists of three sub-datasets: CapgMyo DB-a, DB-b and DB-c. The HD-sEMG signals of 

a wide range of finger movements/gestures that encompass daily life activities were 

recorded with a sampling rate of 1000 Hz from 23 able-bodied participants whose ages 

ranged from 23 to 26 years. More details about the CapgMyo dataset are described in 
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Chapter 2, Section 2.5. CapgMyo DB-b was recorded in two distinct recording sessions 

with an interval of more than seven (7) days. The placement of the electrodes and/or 

rotations was varied for each recording session. Therefore, CapgMyo DB-b is used for the 

performance evaluation of the proposed DA approach with S-ConvNet. Whereas CapgMyo 

DB-b and DB-c were used for the performance evaluation in inter-subject scenarios. 

The acquired HD-sEMG signals have been preprocessed. Consequently, the instantaneous 

HD-sEMG images have been generated based on the methods discussed in Section 3.2. The 

S-ConvNet model was pre-trained on the source dataset based on the same training strategy 

illustrated throughout Section 3.3 and 3.4 of this Chapter. We have also implemented the 

state-of-the-art network architecture [21], [26] and apply the DA to ensure a fair 

comparison with our proposed DA with S-ConvNet Model. However, we have adopted the 

same network initialization method, optimization algorithm, and training paradigm as 

illustrated in [21], [26]. For performance evaluation, the ConvNet model proposed in [21], 

[26], is considered as baseline model because this model was also employed in [23], [24], 

[61], and achieved the current state-of-the-art results on various sEMG-based gesture 

recognition datasets and tasks. 

In the next subsections, the performance of the proposed DA approach is evaluated for 

sEMG-based gesture recognition in inter-session and inter-subject scenarios and compared 

against the baseline methods.  

3.6.2 sEMG-Based Gesture Recognition in Inter-Session Scenarios 

This section presents the performance of the proposed DA with S-ConvNet and compared 

against the state-of-the-art for sEMG-based gesture recognition in inter-session scenarios. 

In this experiments, CapgMyo DB-b is used. More explicitly, the S-ConvNet and the 
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compared models were pre-trained using the data recorded from the first session of 

CapgMyo DB-b, and the performance of the DA approach was evaluated using the second 

recording session of CapgMyo DB-b. DA was applied in an unsupervised manner by 

updating only the statistical parameters of AdaBN [37] in the target domain [26]. However, 

the reported very low gesture recognition accuracy as mentioned in section 3.5.2 for both 

inter-session and inter-subject scenarios are not enough for a usable MCI system (defined 

as <10% error [60]). On the other hand, DA with 2SRNN was applied in a supervised 

manner and reported state-of-the-art results in CapgMyo dataset [57]. Therefore, complying 

with the current state-of-the-art [57], the DA with S-ConvNet as well as the compared 

methods is applied in a supervised setting. However, DA in the context of sEMG-based 

gesture recognition, the main issue is how does the developed model perform when only a 

small amount of data is available in the target domain for DA? This issue must be 

addressed because DA often needs to be carried out under conditions of limited data 

availability for MCI applications based on sEMG signals, as they are often intended for 

amputees, elderly peoples and patients. To address this issue, we limit the available training 

data into five subsets: T1, T2, T3, T4 and T5, representing 20%, 40%, 60%, 80% and 100% 

of the total five (5) trials used for DA. The odd-numbered trials performed by the target 

subject in the target domain in CapgMyo dataset were used for DA, while the remaining 5 

even-numbered of trials performed by the same target subject were reserved for validation. 

To ensure a fair comparison and align with the state-of-the-art, DA is conducted for a 

duration of 100 epochs. Table 3.4 presents the inter-session average gesture recognition 

accuracies (%) of 8 hand gestures for 10 different subjects respectively for CapgMyo DB-b 

and compared with the state-of-the-art methods. 
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Table 3.4 Inter-session gesture recognition accuracies on CapgMyo DB-b.The 
average recognition accuracies (%) of 8 hand gestures for 10 different subjects 
respectively. The numbers are the majority voted results using 150 ms window (i.e., 
150 frames). 

Methods 
Number of available trials for DA 

T1 T2 T3 T4 T5 

Du et. al. [21][26] 68.06 81.55 86.28 88.55 88.51 

2SRNN [57] _ _ _ _ 83.80 

DA with S-ConvNet 
(Proposed) 76.58 90.71 93.51 94.87 95.76 

 

Our proposed DA methods with S-ConvNet enhance inter-session gesture recognition 

accuracy, achieving an 11.96% improvement compared to 2SRNN [57] and a 7.25% 

improvement compared to GengNet [21][26] when all available 5 trials are used for DA (as 

shown in Table 3.4, column-T5). We also compared our proposed DA methods with S-

ConvNet against the state-of-the-art GengNet [21][26], when the limited data were 

available for DA. The proposed DA with S-ConvNet shows even more significant 

improvement over the state-of-the-art when fewer trials are made available for DA, as seen 

in Table 3.4, Column- T1, T2, T3, and T4, respectively. For example, the proposed DA 

with S-ConvNet achieved an 8.52% improvement over GengNet [21][26] when only 20% 

of the data (i.e., 1 trial) is available for adaptation (Table 3.4, Column- T1). 

3.6.3 sEMG-Based Gesture Recognition in Inter-Subject Scenarios 

This section presents the performance of the proposed DA with S-ConvNet and compared 

against the state-of-the-art DA methods for sEMG-based gesture recognition in inter-

subject scenarios. In this experiment, the second recording sessions of CapgMyo DB-b and 
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CapgMyo DB-c is used. A leave-one-subject-out cross-validation (LOSOV) is carried out, 

where each subject was used in succession as the target test subject, while the S-ConvNet is 

pre-trained using the data from the remaining subjects. Then, this pre-trained S-ConvNet 

model is deployed, and apply DA on the data from the odd numbers of trials of the target 

test subject. Finally, the adapted model was evaluated and tested using the data from the 

even number of trials of the target test subject. We limited the available training data to 

20%, 40%, 60%, 80%, and 100% of the total 5 trials used for DA and these trials were 

categorized as T1, T2, T3, T4, and T5, respectively. The remaining 5 trials were kept for 

validation. Table 3.5 presents the average recognition accuracies (%) of 8 and 12 hand 

gestures for CapgMyo DB-b and DB-c for 10 different subjects, respectively. 

As can be seen from Table 3.5, the proposed DA methods with S-ConvNet 

outperformed the state-of-the-art methods in the inter-subject scenario on both the 

CapgMyo DB-b and CapgMyo DB-c datasets, respectively. The proposed DA methods 

with S-ConvNet demonstrates an improvement of 5.33% and 7.23% compared to 2SRNN 

[57], and 3.78% and 4.54% compared to GengNet [21][26] on CapgMyo DB-b and 

CapgMyo DB-c datasets, respectively when all available 5 trials are used for DA (as shown 

in Table 3.5, column-T5 for both CapgMyo DB-b and CapgMyo DB-c). 

Similar to the inter-session scenario, we also compared the proposed DA methods with 

S-ConvNet in a data starved conditions and compared the performance against the state-of- 

the-art GengNet [21], [26] in inter-subject scenarios. The proposed DA methods with S-

ConvNet exhibits improvement over the state-of-the-art on CapgMyo DB-b and CapgMyo 

DB-c datasets when a limited number of trials are available for adaptation, as observed in 

Table 3.5, specifically in Columns T1, T2, T3, and T4, respectively. For example, when 
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only 20% of the data (i.e., 1 trial) was available for adaptation, the proposed DA methods 

with S-ConvNet achieved a 4.71% improvement over GengNet [21], [26] on CapgMyo 

DB-b (Table 3.5, Column- T1).  

Table 3.5 Inter-subject gesture recognition accuracies. The average recognition 
accuracies (%) of 8 hand gestures for CapgMyo DB-b and 12 hand gestures for 
CapgMyo DB-c for 10 different subjects respectively. The numbers are the majority 
voted results using 150 ms window (i.e., 150 frames). 

Methods 

CapgMyo DB-b 

Number of trials available for DA 

T1 T2 T3 T4 T5 

Du et. al. [21][26] 71.30 86.38 88.58 90.44 91.45 

2SRNN [57] - - - - 89.90 

DA with S-ConvNet 
(Proposed) 76.01 89.58 92.80 93.98 95.23 

 CapgMyo DB-c 

Du et. al. [21][26] 57.40 76.30 82.45 86.15 88.09 

2SRNN [57] - - - - 85.40 

DA with S-ConvNet 
(Proposed) 57.05 79.15 86.89 90.67 92.63 

 

We summarise the inter-session and inter-subject improvement results by the proposed DA 

method with S-ConvNet in Table 3.6 over the state-of-the-art DA methods. As indicated 

there, the performance of the proposed DA method with S-ConvNet is superior in all cases. 

The improvement achieved by the proposed DA method with S-ConvNet in inter-session 

and inter-subject scenarios, exceeds those obtained through alternative state-of-the-art 

domain adaptation approaches. 
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Table 3.6 Inter-session and Inter-subject improvement (%) results obtained by the 
proposed DA with S-ConvNet. 

Methods 
Inter-session improvement Inter-subject improvement 

DB-b DB-b DB-c 

Du et. al. [21][26] 7.25 5.33 7.23 

2SRNN [57] 11.96 3.78 4.54 

 

3.6.4 Discussion on sEMG-Based Gesture Recognition in Inter-Session/Inter-
Subject Scenarios 

 

The need for an adequate amount of labeled data in both the source domain (training) and 

the target domain (test) datasets, as well as the presence of distribution shifts between these 

datasets, are the two main factors that hinder the successful application of deep learning to 

sEMG-based gesture recognition tasks. Domain adaptation (DA) with shallow 

convolutional neural network (S-ConvNet) effectively addresses these challenges, 

involving strategic knowledge transfer, optimal model adaptation, and improved 

generalization. The proposed DA methods leverage S-ConvNet to learn transferable 

representations on the source domain and adapt them to the target domain, even with very 

limited data available, thus demonstrating enhanced generalization capabilities. 

Experiments were conducted on publicly available benchmark CapgMyo datasets both in 

inter-session and inter-subject scenarios and compared against the state-of-the-art methods. 

The proposed DA methods with S-ConvNet set a new state-of-the-art performance on 

CapgMyo DB-b for inter-session and CapgMyo DB-b (session 2) and DB-c for inter-

subject gesture recognition based on sEMG signals.  
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The inter-session gesture recognition accuracy achieved a notable 95.76% on CapgMyo 

DB-b, demonstrating a significant improvement of approximately 11.96% and 7.25% than 

the current state-of-the-art [57] and [21][26], respectively. In addition, the inter-subject 

gesture recognition accuracy reached 95.23% and 92.63% on CapgMyo DB-b and DB-c, 

respectively, which is 3.78% and 4.54% higher than [57] and 5.33% and 7.23% higher than 

the [21],[26] respectively.  

These outstanding state-of-the-art inter-session and inter-subject gesture recognition 

accuracy validates that the proposed DA methods with S-ConvNet is highly effective in 

learning discriminative and domain-invariant representations to address the distribution 

shift caused by inter-session and inter-subject data variability. 

3.7 Conclusion 

The requirement of sufficient amount of labeled data, high-end computational resources 

and distribution shift in inter-session and inter-subject scenarios are the major factors that 

impede deploying deep learning for real-time sEMG-based gesture recognition tasks. We 

aimed to address these issues in this Chapter. We present S-ConvNet models, a simple yet 

efficient framework for learning instantaneous HD-sEMG images from scratch for sEMG-

based gesture recognition. Without using any pre-trained models, our proposed S-ConvNet 

demonstrate state-of-the-art performance on three (3) out of four (4) publicly available 

benchmark HD-sEMG datasets, while using ≈ 12×smaller dataset and reducing learning 

parameters to only ≈2M for sEMG-based gesture recognition in intra-session scenarios. In 

addition, to address the challenging distribution shift problem, a domain adaptation method 

with shallow convolutional neural network is proposed. DA with shallow convolutional 

neural network outperformed the most complex current state-of-the-art by a large margin 
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both when the data from the single or multiple trials are available for adaptation for inter-

session and inter-subject gesture recognition. The state-of-the-art performance on various 

HD-sEMG datasets and tasks proved that the proposed methods are highly effective for 

learning discriminative and domain-invariant representations for instantaneous HD-sEMG 

image recognition, especially in the data and high-end resource constrained scenarios. The 

proposed methods have a great potential for deploying optimal control of MCIs based on 

sEMG signals. 

To enable on-device inference on mobile, wearable, and edge devices for sEMG-based 

MCIs, the model often requires periodic updates and adaptations over-the-air from the 

cloud CPU/GPU servers. Communication, memory and computational overhead between 

these mobile wearables and edge devices is directly proportional to the number of 

parameters in the model. With this in mind, and aiming to propose more efficient and 

lightweight models with fewer parameters while addressing the challenging distribution 

shift problem (e.g., due to electrode shift and rotations, non-uniform muscle force or 

contraction etc.), but outperforming the most complex current state-of-the-art deep learning 

model or equivalent accuracy, the next chapter presents a lightweight All-ConvNet and 

transfer learning framework for discriminative and domain-invariant feature representation 

for improved sEMG-based gesture recognition in intra-session, inter-session and inter-

subject scenarios.  

 



Chapitre 4 - Surface EMG-Based Inter-Session/Inter-
Subject Gesture Recognition by 
Leveraging Lightweight All-ConvNet 
and Transfer Learning  

Gesture recognition using low-resolution instantaneous high-density surface 

electromyography (HD-sEMG) images opens up new avenues for the development of more 

fluid and natural muscle-computer interfaces. However, the data variability between inter-

session and inter-subject scenarios presents a great challenge. The existing approaches 

employed very large and complex deep ConvNet or 2SRNN-based domain adaptation 

methods to approximate the distribution shift caused by these inter-session and inter-subject 

data variability. Hence, these methods also require learning over millions of training 

parameters and a large pre-trained and target domain dataset in both the pre-training and 

adaptation stages. As a result, it makes high-end resource-bounded and computationally 

very expensive for deployment in real-time applications. To overcome this problem, we 

propose a lightweight All-ConvNet+TL model that leverages lightweight All-ConvNet and 

transfer learning (TL) for the enhancement of inter-session and inter-subject gesture 

recognition performance. The All-ConvNet+TL model consists solely of convolutional 

layers, a simple yet efficient framework for learning invariant and discriminative 

representations to address the distribution shifts caused by inter-session and inter-subject 

data variability. Experiments on four datasets demonstrate that our proposed methods 
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outperform the most complex existing approaches by a large margin and achieve state-of-

the-art results on inter-session and inter-subject scenarios and perform on par or 

competitively on intra-session gesture recognition. These performance gaps increase even 

more when a tiny amount (e.g., a single trial) of data is available on the target domain for 

adaptation. These outstanding experimental results provide evidence that the current state-

of-the-art models may be overparameterized for sEMG-based inter-session and inter-

subject gesture recognition tasks. 

4.1 Introduction 

The current state-of-the-art methods [21], [23], [24], [36], [61] for sEMG-based gesture 

recognition either employed very complex deep and wide CNN or an ensemble of these 

complex networks for improved sEMG-based gesture recognition performance. For 

example, Geng et al. [21] exploited a DeepFace [35] like very large and deep CNN (dubbed 

as GengNet), which requires learning >5.63M (million) training parameters only during 

fine-tuning and pre-trained on a very large-scale labeled sEMG training datasets. The 

complexity of this model grows linearly as the input size is increased due to the use of an 

unshared weight strategy [27]. Wei et al. [23] used an ensemble of eight (8) single-stream 

GengNet at the decomposition stage only. Hu et al. [24], used a two-stage ensemble 

network in which an ensemble of multiple single-stream GengNet was used for spatial 

feature learning, resulting in multiple sequences of 1-D feature representation. Then, these 

1-D feature sequences were passed to an ensemble of LSTM networks before a SoftMax 

layer recognized the targeted gesture. Chen et. al. [36] employed 3D CNN for learning 

spatial and temporal representation of sEMG images. However, the employed 3D CNN 

requires learning over at least > 30 𝑀 parameters, which is impractical for real-time MCI 
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applications based on sEMG signals. Despite the significant performance boost achieved by 

these state-of-the-art models [21], [23], [24], the heavy computational and intensive 

memory cost hinders deploying them on resource-constrained embedded and mobile 

devices for real-time applications. Therefore, the demand for designing low-cost, 

lightweight networks is highly increasing for low-end resource-limited embedded, mobile 

and wearable devices. 

To overcome these problems, low-latency and parameter-efficient S-ConvNet is introduced 

in the last Chapter. More details of the proposed low-latency and parameter-efficient S-

ConvNet, along with its performance comparison to the current state-of-the-art models for 

sEMG-based gesture recognition in intra-session, inter-session and inter-subject scenarios 

are described in Chapter 3. Striving to find a simpler and more efficient lightweight 

network, in this chapter, a new architecture called All-ConvNet is introduced that consists 

solely of convolutional layers and is designed to be more efficient and less computationally 

intensive than the existing state-of-the-art models for sEMG-based gesture recognition. 

Comparing the performance of All-ConvNet to other state-of-the-art models shows that it 

achieves competitive or state-of-the-art performance on current benchmark HD-sEMG 

datasets [26], while being significantly lighter, more efficient, and faster to train and 

evaluate. All-ConvNet was designed based on the finding of fact that if the sEMG image 

area covered by units in the topmost convolutional layer covers a portion of the image 

large enough to recognize its content (i.e., gesture class we want to recognize). This leads 

to predictions of sEMG image classes at different positions which can then simply be 

averaged over the whole image. Hence, the All-ConvNet becomes robust to translations and 
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geometric distortions, which can be very effective in addressing the electrode shift and 

positioning problem in sEMG-based gesture recognition. 

In addition, the sEMG-based gesture recognition problem becomes more challenging in the 

operational conditions or an inter-session scenario, where the trained model is used to 

recognize muscular activities in a new recording session because sEMG signals are highly 

subject-specific. Inter-session is also referred to as inter-subject when the training and test 

data are acquired from different subjects. The distributions of the sEMG signals vary 

considerably in both inter-session and inter-subject scenarios due to different physiological 

and environmental intrinsic and extrinsic factors, as illustrated in Chapter 2, Section 2.4.  

To attenuate these distribution shifts between different sEMG recording sessions, the pre-

trained models have been pre-dominantly adopted by the existing approaches [26], [31], 

[32], and [57] to reduce the distribution shift by fine-tuning the sEMG data recorded in the 

different session (target domain or task). Fine-tuning updates the parameters of the pre-

trained models to train to newly recorded sEMG data. Generally, the output layer of the 

pre-trained models is extended with randomly initialized weights. A small learning rate is 

used to fine-tune all the parameters from their original values to minimize the loss on the 

newly recorded sEMG data. Using appropriate hyper-parameters for training, the resulting 

fine-tuned model often outperforms learning from a randomly initialized network [40].  

Generally, this pre-training and fine-tuning process can be considered a special case of 

domain adaptation when the source task and the target task are the same or transfer learning 

when the tasks are different. However, in this Chapter, we reframed this problem as transfer 

learning when the sEMG data for training and inference are recorded at a different session. 
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Fig. 4.1 illustrates the conceptual diagram of our proposed transfer-learning methods for 

sEMG-based gesture recognition.  

Transfer learning is typically performed by taking a standard architecture along with its 

pre-trained weights and then fine-tuning the target task. However, the state-of-the-art 

methods [21], [23], [26], and [61] for sEMG-based gesture recognition employed very large 

and deep pre-trained models, therefore, containing millions of parameters which are 

designed to be trained with large-scale labeled sEMG datasets. The requirement of high-

end computing resources and large-scale pre-trained datasets are also bounded by large and 

deep network structures [25]. As far as we are aware, there has been no research for sEMG-

based gesture recognition studying the effects of transfer learning on the smaller, simpler, 

and lightweight CNN. This line of investigation is especially crucial in the sEMG-based 

gesture recognition because the pre-trained model is often deployed in real-time MCI 

applications such as assistive technology and physical rehabilitation where fine-tuning in 

the target domain must be conducted in the data-starved condition because of the difficulty 

of acquiring data from the amputees, elderly peoples, and patients, etc. Also, the large 

computationally expensive models might significantly impede mobile and on-device 

applications, where power consumption, data memory, and computational speed are 

constraints. To investigate the effects of transfer learning for sEMG-based gesture 

recognition, our research is motivated by the following research questions- does feature 

reuse takes place during fine-tuning or transfer learning? And if yes, where exactly is it in 

the network? 

Investigating feature reuse, we find out that some of the differences from transfer learning 

are due to the over-parametrization of the state-of-the-art, more complex pre-trained models 
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rather than sophisticated feature reuse. Additionally, we discovered that a simple, 

lightweight model can outperform the more complex and computationally demanding state-

of-the-art network architectures. We isolate where useful feature reuse occurs and outline 

the implications for more efficient lightweight model exploration. 

In this chapter, we perform a fine-grained study on fine-tuning and transfer learning for 

sEMG-based gesture recognition. Our main contributions are: 

(1) We introduce All-ConvNet+TL model, which leverages the lightweight All-

ConvNet and transfer learning to address the distribution shift in inter-session and 

inter-subject sEMG-based gesture recognition and evaluate it against the more 

complex state-of-the-art network architectures. Our proposed method leveraging 

lightweight All-ConvNet and transfer learning outperforms the state-of-the-art 

methods by a large margin, both when the data from a single trial or multiple trials 

are available for fine-tuning/adaptation. The outstanding inter-session and inter-

subject gesture recognition performance achieved by the proposed lightweight 

models raises the question of whether the current state-of-the-art models are 

overparameterized for the sEMG-based gesture recognition problem.    

(2)  Using further analysis and weight transfusion experiments, where we partially 

reuse pre-trained weights, we identify locations where meaningful feature reuse 

occurs and explore hybrid approaches to transfer learning. These approaches 

involve using a subset of pre-trained weights and redesigning other parts of the 

network to make them more lightweight. 

(3)  We conducted more extensive experiments. A performance evaluation on four (4) 

publicly available HD-sEMG datasets was performed on three different sEMG-
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based gesture recognition tasks: intra-session, inter-session, and inter-subject 

scenarios. The results showed that our lightweight models outperformed the more 

complex state-of-the-art models on various tasks and datasets. 

The rest of the chapter is structured as follows: Section 4.2 presents the proposed transfer 

learning framework, while Section 4.3 presents the lightweight All-ConvNet model 

architecture and its design principles. Section 4.4 introduces the proposed transfer learning 

design methodology by leveraging lightweight All-ConvNet (All-ConvNet+TL). Section 

4.5 describes the experimental framework, and Section 4.6 demonstrates the state-of-the-art 

results for inter-session and inter-subject gesture recognition and very competitive results 

for intra-session gesture recognition, obtained from experiments conducted on CapgMyo 

and its four (4) sub-datasets. Section 4.7 highlights the state-of-the-art performance 

achieved by the proposed All-ConvNet+TL and discusses some important findings. Finally, 

Section 4.8 provides some conclusive remarks. 

4.2 The Proposed Transfer Learning Framework 

The proposed transfer learning framework for sEMG-based gesture recognition using 

instantaneous HD-sEMG images includes the following three major computational 

components: (i) a lightweight model development (ii) pre-training, and (iii) fine-tuning. A 

schematic diagram of the proposed transfer learning framework for sEMG-based gesture 

recognition is shown in Fig. 4.1. Firstly, we devised a lightweight All-ConvNet model. 

Secondly, the proposed lightweight All-ConvNet was pre-trained (e.g., Fig. 4.1a) using a 

large amount of gesture data acquired by HD-sEMG in a single session or over multiple 

sessions, which may also involve multiple gestures, trials, and subjects, respectively. Then, 

the pre-trained model was saved and deployed for subject-specific/personalized classifier 
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development, as sEMG-based wearable devices are usually worn by a single user while 

executing a target task. Typically, input-side layers that play the role of feature extraction 

are copied from a pre-trained network and kept frozen or fine-tuned (e.g., Fig. 4.1b and 

4.1c), in contrast, a top classifier for the target task is randomly initialized and then trained 

at a slow learning rate. Fine-tuning often outperforms training from scratch because the pre-

trained model already has a great deal of muscular activity information. Potentially, the pre-

trained network could be duplicated and fine-tuned for each new target task [40]. 

4.3 Model Description – The All-Convolutional Neural Network (All-ConvNet) 

The current state-of-the-art methods [21], [23], [26], and [61] for sEMG-based gesture 

recognition use a large, deep ConvNet architecture similar to the one used in DeepFace 

[35]. This architecture is designed to be pre-trained on a large-scale labeled HD-sEMG 

training dataset and requires learning >5.63 million (M) parameters only during fine-tuning. 

As a result, this large-scale pre-trained model becomes a high-end resource-bounded and 

computationally very expensive to be practical for real-world MCI applications. Moreover, 

in their pre-trained ConvNet includes two locally connected (LCN) and three fully 

connected layers among the other convolutions and a G-way fully connected layer. 

However, the LCN layers used an unshared weight scheme [45] that makes their pre-trained 

ConvNet even computationally more demanding and very difficult to scale on the target 

domain task. The LCN layers assign an independent filter weight, 𝜃𝑝 to each of the local 

receptive field of a feature map i.e., 𝑓𝑝 = 𝐼𝑝
𝑇𝜃𝑝,

22 while convolution (or CNN) layers adopt a  

 
2Given an input sEMG image I, LCN requires each filter is conducted on a patch vector Ip, where p 

stands for position of the patch in the input image. 
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(a) 

 
(b) 

 
(c) 

Fig. 4.1 A general conceptual diagram of the transfer learning method (a) Pre-trained 
model (b) Fine-tuned model and (c) Feature extraction process. sEMG images and 
labels used for adaptation are shown. 
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filter weight sharing strategy i.e., 𝑓𝑝 = 𝐼𝑝
𝑇𝜃 [45]. Due to this unshared weight strategies of 

LCN, the number of learning parameters increases considerably from 𝑚 to 𝑚 × 𝑘, where 

𝑚 ≫ 𝑘, where 𝑚 is the number of patches and k is the number of kernels. For example, the 

learning parameters of [21], [26] increase from ≈ 5.63M to ≈ 11M with a small 

enhancement of input HD-sEMG image size from 16×8 to 16×16 due to the use of this 

unshared weight scheme [27]. Hence, a very large-scale labeled training dataset is required 

for learning these growing numbers of training parameters [35]. However, the LCN can be 

beneficial in the application domains where the feature’s precise location is dependent on 

the class labels. Considering the above-mentioned fact, we investigate the following 

research questions– (i) Do we expect the devised networks model to produce a 

location/translation invariant feature representation? or (ii) Do we need a location- 

dependent feature representation?  

Following our findings and building on other recent works that aim to find a simple 

network architecture, we proposed a lightweight All-ConvNet. This new architecture 

consists solely of convolutional layers. This simple yet effective framework could learn 

neuromuscular activity from scratch and yield competitive or even state-of-the-art 

performance using a ≈ 12×smaller dataset while reducing the learning parameters from 

≈ 5.63M to only ≈ 460k than the more complex state-of-the-art for sEMG-based gesture 

recognition. 

We propose a lightweight All-ConvNet, to the best of our knowledge, this is the first 

All-ConvNet framework to date for instantaneous HD-sEMG recognition. The 

All-ConvNet architectural design is adopted based on the following principles and 

observations:  
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(i) We hypothesized that different hand gestures produce distinct spatial intensity 

distributions that remain consistent across multiple trials of the same gesture and 

distinguishable among different gestures. However, we observed that the spatial 

intensity distributions for the same gesture are not locally invariant, and the precise 

feature’s location are independent of the class labels. Fig. 4.2 demonstrates a 

sequence of HD-sEMG images derived from the same class, which demonstrates 

that the distributions are independent of the class labels. CNN alone has a 

remarkable capability to exploit locally translational invariance features by utilizing 

local connectivity and weight-sharing strategies [45]. On the other hand, the LCN 

layer fails to model the relations of parameters in different locations. Hence, the 

LCN layers are ablated in designing our All-ConvNet models as the location of the 

features is not dependent on the class labels.  

 

Fig. 4.2 HD-sEMGs derived from the same muscular activity class which 
demonstrates that the distributions are independent to the class labels. 

 

(ii) Inspired by previous work [46], we leverage the fact that if the part of the 

instantaneous HD-sEMG image is covered by the units in the topmost convolution 

layers could be large enough to recognize its content (i.e., the gesture class, we want 

to recognize). Consequently, the fully connected layers can also be replaced by 
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simple 1-by-1 convolutions. This allows us to predict HD-sEMG image classes at 

different positions, and we can then average these predictions across the entire 

image. Hence, the proposed All-ConvNet can be very effective in addressing the 

electrode shift and positioning problem for sEMG-based gesture recognition, where 

the entire sEMG data stream for a particular gesture may not necessarily be required 

for recognition. Lin et al. [47], initially introduced this approach, which acts as an 

additional regularization technique due to the significantly fewer parameters of a 1-

by-1 convolution in comparison to a fully connected and LCN layers. Overall, our 

architecture is thus reduced to consist only of convolutional layers with ELU non-

linearities [48], [63] and a global average pooling (GAP) + SoftMax layer to 

produce predictions over the entire instantaneous HD-sEMG image. A conceptual 

diagram of our proposed pre-trained All-ConvNet is shown in Fig. 4.1(a). Table 4.1 

describes our proposed All-ConvNet architecture. The feature maps learned by the 

proposed All-ConvNet are presented in Fig. 4.3. 

Table 4.1 The All-Convnet Network Model for Neuromuscular Activity 
Recognition. 

All-ConvNet 
Input 16×16 Gray-level Image 

3 × 3 Conv.64 ELU 
3 × 3 Conv.64 ELU 

3 × 3 Conv. 64 ELU with stride r =2 
3× 3 Conv. 128 ELU 
3× 3 Conv. 128 ELU 

3× 3 Conv. 128 ELU with stride r =2 
1×1 Conv. 128 ELU 

1×1 Conv. 8 ELU 
global averaging over 4×4 spatial dimensions 

G-way SoftMax 
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(a) 

 
(b) 

Fig. 4.3 A schematic illustration of feature maps obtained by All-ConvNet before 
and after dimensionality reduction. (a) Feature maps and b) Feature maps after 
dimensionality reduction. 

We train our proposed All-ConvNet for a multi-class sEMG-based gesture recognition task, 

which involves recognizing a specific muscular activity class using an instantaneous HD-

sEMG image. As described in Table 4.1, in the proposed All-ConvNet network, we 

consider using 1-by-1 convolution at the top to produce 8 or 12 outputs (depending on the 

number of distinct movements performed). These outputs were then averaged across all 

positions and fed into a G-way SoftMax layer (where G is the number of distinct hand 

gesture classes) which produces a distribution over the class labels. In order to estimate the 

class probabilities, we use the SoftMax function 𝜎(∙) with  �̂�(𝑗) representing the 𝑗th element 

of the 𝐺 dimensional output vector of the layer preceding the SoftMax layer, defined as 

below: 
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 𝜎(�̂�(𝑗)) =
exp ( �̂�(𝑗))

∑ exp ( �̂�(𝐺))𝐺
 (4.1) 

The objective of this training is to maximize the probability of the correct gesture class. 

This is accomplished by minimizing the cross-entropy loss [49] for each training sample. 

When 𝑦 represents the true label for a given input, the loss is computed as: 

 𝐿 =  − ∑ 𝑦(𝑗)ln (σ(𝑗 �̂�(𝑗)) (4.2) 

The loss is minimized over the parameters by computing the gradient of 𝐿 with respect to 

the parameters. These parameters are then updated using the state-of-the-art Adam 

(adaptive moment estimation) gradient descent-based optimization algorithm [50]. This 

algorithm provides fast and reliable learning convergence, unlike the stochastic gradient 

descent (SGD) optimization algorithm used in state-of-the-art pre-trained networks for 

gesture recognition using instantaneous HD-sEMG image recognition. 

Once the network has been trained, an instantaneous HD-sEMG image is recognized as in 

the gesture class 𝐶 by simply propagating the input image forward and computing: 

 𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗(�̂�(𝑗)) (4.3) 

4.4 Transfer Learning by Leveraging Lightweight All-ConvNet (All-ConvNet+TL) 

In this section, we introduce some notations and definitions used in our transfer learning 

framework as in [51]. We denote the source domain data as 𝐷𝑠 =

{(𝑥𝑠1, 𝑦𝑠1), … , (𝑥𝑠𝑛𝑆
, 𝑦𝑠𝑛𝑆

)}, where 𝑥𝑠𝑖 ∈ Χ𝑆 is the data instance and 𝑦𝑠𝑖 ∈ 𝑌𝑆 is the 

corresponding class label. In our sEMG-based gesture recognition example, 𝐷𝑠 can be a set 

of sEMG data of different gestures and their corresponding gesture class labels acquired by 

a single or multiple participants in a designated session. An objective function 𝑓𝑠(. ) can be 
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learned using 𝐷𝑠 for the source task such that, 𝒯𝑠 = {𝑌𝑠, 𝑓𝑠(∑ 𝑤𝑆𝑖
𝑋𝑆 + 𝑏𝑖 )}. Similarly, we 

denote the target domain data as 𝐷𝑇 = {(𝑥𝑇1, 𝑦𝑇1), … , (𝑥𝑇𝑛𝑇
, 𝑦𝑇𝑛𝑇

)} and 𝒯𝑇 =

{𝑌𝑇 , 𝑓𝑇(∑ 𝑤𝑇𝑖
𝑋𝑇 + 𝑏𝑖 )}, where, 𝑥𝑇𝑖 ∈ Χ𝑇 and 𝑦𝑇𝑖 ∈ 𝑌𝑇 are the sEMG data of different 

gestures and their corresponding class labels respectively acquired by a distinct 

subject/participant at a different session than 𝐷𝑠. In most cases, the target domain data for a 

distinct participant acquired at another session is much lower quantities than that of a 

source domain data, i.e., 0 ≤ 𝑛𝑇 ≪ 𝑛𝑠. 

Now we define our proposed transfer learning problem as follows– Given a source domain 

𝐷𝑠 and a learning task 𝒯𝑠 as well as a target domain 𝐷𝑇 and learning task 𝒯𝑇, the transfer 

learning aims to help improve the learning of the target predictive function 𝑓𝑇(. ) in 𝐷𝑇 

using the knowledge in 𝐷𝑠 and 𝒯𝑠 , where, 𝐷𝑠 ≠  𝐷𝑇 , and 𝒯𝑠 = 𝒯𝑇. In our sEMG-based 

gesture recognition problem, the source and target task are the same. However, the data 

distribution between the source and the target domain might be different i.e., 𝐷𝑠 ≠  𝐷𝑇 due 

to intrinsic and extrinsic factors described in Chapter 2, Section 2.4. 

To mitigate these distribution shifts on the sEMG-based gesture recognition problem, we 

apply the transfer learning to our proposed lightweight All-ConvNet and termed it as All-

ConvNet+TL. In our setting, All-ConvNet+TL has a set of shared parameters 𝜃𝑠 (e.g., all 

the convolutional layers in All-ConvNet) and task-specific parameters for previously 

learned gesture recognition tasks 𝜃0 (e.g., the output layer of All-ConvNet for gesture 

recognition and its corresponding weights), and the task-specific parameters are randomly 

initialized for new target tasks 𝜃𝑛 (e.g., gesture recognition in a new session). Considering 

𝜃0 and 𝜃𝑛 as classifiers that operate on features parameterized by 𝜃𝑠. Drawing motivation 
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from [40], [65-66], in this work, we adopt the following approaches to learning 𝜃𝑛 while 

taking advantage of previously learned 𝜃𝑠, which is illustrated in Fig. 4.1: 

(i) Fine-tuning – involves optimizing 𝜃𝑠 and 𝜃𝑛 for the new target task, while 

keeping 𝜃0 fixed (as shown in Fig.4.1b). To prevent large drift in 𝜃𝑠, a low 

learning rate is usually used. It is possible to duplicate the original network and 

fine-tune it for each new target task to create a set of specialized networks. 

(ii) Feature Extraction – 𝜃𝑠 and 𝜃0 remain fixed and unchanged, while the outputs of 

one or more layers are used as features for the new target task in training 𝜃𝑛 (as 

shown in Fig. 4.1c). 

The most popular methodology for transfer learning is to duplicate the pre-trained network 

(i.e., initialize from pre-trained weights) and fine-tune (train) the entire network for each 

new target task [62]. However, fine-tuning degrades performance on previously learned 

tasks from the source dataset because the shared parameters change without receiving new 

guidance for the source-task-specific prediction parameters. In addition, duplicating and 

fine-tuning all the parameters of a pre-trained model may also require a substantial amount 

of target task dataset. On the other hand, feature extraction usually underperforms on the 

target dataset because the shared parameters often fail to effectively capture some 

discriminative information that is crucial for the target task. To address this problem and 

find out a good trade-off between fine-tuning and feature extraction, we focus on answering 

the following research questions – Does feature reuse take place during fine-tuning or 

transfer learning? And if yes, where exactly is it in the network? We first conducted a 

preliminary weight (or feature) transfusion experiment, where we partially reused pre-

trained weights to determine and isolate the locations where meaningful feature reuse 
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occurs. We perform this via a weight transfusion experiment by transferring a contiguous 

set of some of the pre-trained weights, randomly initializing the rest of the network, and 

training on the target task. We have found out that meaningful feature reuse is restricted to 

the lowest few layers of the network and is supported by gesture recognition accuracy and 

convergence speed (see in Section 4.6.4 for details). Following the results of these weight 

(or feature) transfusion experiments, the part of the 𝜃𝑠 (i.e., the first three convolutional 

layers of All-ConvNet) were frozen and used as a feature extractor and only 𝜃𝑠 in the top 

convolutional layers were fine-tuned. Hence, the proposed network model allows the target 

task to leverage complex features learned from the source dataset and make these features 

more discriminative for the target task by fine-tuning the top convolutional layers. These 

transfusion results suggest we propose hybrid and more flexible approaches to transfer 

learning (see Section 4.6.5). 

4.5 Experimental Setup 

We evaluated our proposed approach on CapgMyo dataset [26] for studying and 

quantifying the effects of transfer learning on the smaller, simpler, and lightweight CNN. 

More details of the CapgMyo dataset are described in Chapter 2, Section 2.5. All three sub-

databases of CapgMyo DB-a, DB-b, and DB-c were used for intra-session performance 

evaluation. Inter-session recognition of hand gestures based on sEMG typically suffers 

from electrode shift and positioning. Therefore, DB-b was used for inter-session 

performance evaluation. Finally, both DB-b Session 2 and DB-c were used for inter-subject 

performance evaluation.  

For CapgMyo database, first, the power-line interferences were removed from the acquired 

HD-sEMG signals using a 2nd order Butterworth filter with a band-stop range between 45 
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and 55 Hz. Then, the HD-sEMG signals were arranged in a 2-D grid according to their 

electrode positioning at each sampling instant. Afterward, this grid was transformed into an 

instantaneous sEMG image by linearly converting the values of sEMG signals from 𝑚𝑉 to 

color intensity as [−2.5𝑚𝑉, 2.5𝑚𝑉] to [0 255]. As a result, instantaneous grayscale sEMG 

images with a size of 16 × 8 matrices were obtained. To facilitate GAP, we enhance the 

input HD-sEMG image size from 16×8 to 16×16 using horizontal mirroring. Unlike [21], 

[26] this enhancement does not increase the learning parameters in the proposed All-

ConvNet.   

For pre-training our proposed original model All-ConvNet, the following configurations is 

adopted, the connection weights for All-ConvNet network architecture were randomly 

initialized using Xavier initialization scheme [52], [53] and the network was trained using 

Adam optimization algorithm [50]. The momentum decay and scaling decay were 

initialized to 0.9 and 0.999, respectively. In contrast to SGD employed in [21], [23], and 

[26], Adam is an adaptive learning rate algorithm, therefore it requires less tuning of the 

learning rate hyperparameter. For all our experiments, the learning rate of 0.001 was 

initialized, and smaller batches of 256 randomly chosen samples from the training dataset 

were fed to the network during consecutive learning iterations. We set a maximum of 100 

epochs for training our All-ConvNet model. However, to prevent overfitting, we applied 

early stopping [54], which interrupts the training process if no improvements in validation 

loss are observed for 5 consecutive epochs. BN [55] was applied after the input and before 

each non-linearity. To further regularize the network, Dropout [56] was applied to all layers 

with a probability of 25%. The All-ConvNet model was trained on a workstation with an 

Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz processor, 32 GB RAM, and an NVIDIA 
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RTX 2080 Ti GPU. Each epoch was completed in approximately 6s for a test on intra-

session gesture recognition. We have also implemented the state-of-the-art network 

architecture [21] for a fair comparison with our proposed lightweight sEMG-based gesture 

recognition algorithm. However, we have adopted the same network initialization method, 

optimization algorithm, and training paradigm as illustrated in [21]. 

4.6 Experimental Results 

From the viewpoint of MCI application scenarios, the sEMG-based gesture recognition can 

be categorized into three (3) scenarios such as intra-session, inter-session and inter-subject 

scenarios as described in Chapter 2, Section 2.4 and in Chapter 3, Section 3.4 respectively. 

However, the sEMG-based gesture recognition methods in the literature have usually been 

investigated in intra-session scenarios [21], [23], [24], [36] and [61]. Similar to Chapter 3, 

we evaluated the performance of our proposed sEMG-based gesture recognition algorithm 

by leveraging lightweight All-ConvNet and transfer learning in inter-session and inter-

subject scenarios in addition to intra-session gesture recognition. In the following 

subsections, we evaluated the performance of our proposed lightweight gesture recognition 

algorithms. We compared them with the state-of-the-art, more complex methods in the 

above-mentioned three different scenarios. 

4.6.1 Intra-Session Performance Evaluation 

In this section, we evaluated the performance of sEMG-based gesture recognition in the 

intra-session scenario. In this scenario, usually, the data variation comes from the 

difference between the trials and repetitions of the hand/finger gestures performed by an 

individual. To mitigate this data variations or distribution time shift caused by the 

repetitions of the gestures in multiple trials in the same session, the state-of-the-art methods 
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performed pre-training their proposed CNN using half of the training data from all the 

participated subjects (e.g., 18 in DB-a) in the data collection process. Then, the pre-trained 

model was fine-tuned using the training data from the target subject for the subject-specific 

classifier development. The major drawback of this approach [21] is that the same training 

data used for fine-tuning was also seen during pre-training. However, we argued that the 

proposed lightweight All-ConvNet trained from scratch using random initialization has the 

great ability to model these distribution shifts caused by the repetitions of hand gestures 

across multiple trials within the same session. In this setting, we proposed designing and 

developing a subject-specific individualized classifier using only the sEMG data available 

for an individual or target subject while executing a target task without pre-training. For 

example, in CapgMyo DB-a and DB-b, eight (8) isotonic and isometric hand gestures were 

performed by an individual subject. Each gesture was also trialed and recorded 10 times 

with a 1000 Hz sampling rate. Thus, an individual subject generates (8×10×1000 = 80,000) 

instantaneous sEMG images. In CapgMyo DB-c, an individual performed twelve (12) basic 

movements of the fingers, and hence it generates (12×10×1000 = 120,000) instantaneous 

sEMG images. For performance evaluation of the proposed subject-specific lightweight 

All-ConvNet, a leave-one-trial-out cross-validation (LOTOV) was performed, in which 

each of the 10 trials was used in turn as the test set, and the proposed lightweight 

All-ConvNet was trained and validated using the remaining 9 trials. This entire paradigm of 

training and testing process is illustrated in Fig. 4.1a, which shows that only the trained 

model (without any feature reuse from the pre-trained model) is used for gesture 

recognition. In this chapter, we performed an extensive experiment on the CapgMyo DB-a, 

DB-b (session 1), DB-b (session 2) and DB-c, respectively. Table 4.2 presents the gesture 
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recognition results for the proposed lightweight All-ConvNet and compares them with the 

state-of-the-art methods. 

As can be seen in Table 4.2, the proposed lightweight All-ConvNet (with around only 0.46 

million learning parameters) consists of a stack of 3×3 convolutional layers with occasional 

subsampling by a stride of 2. It is trained from random initialization and outperformed the 

state-of-the-art, more complex GengNet [21], [23], [24], [26] and [61] on the CapgMyo 

DB-b Session 1 and Session 2 datasets, respectively, and performs comparably to the S-

ConvNet presented in Chapter 3. Additionally, the lightweight All-ConvNet performs very 

competitively or on par with the GengNet [21] and S-ConvNet on the CapgMyo DB-a and 

CapgMyo DB-c datasets, respectively. 

Table 4.2 The average recognition accuracies (%) of 8 hand gestures for CapgMyo 
DB-a and DB-b for 18 and 10 different subjects respectively and 12 gestures for 10 
different subjects in DB-c. The numbers are the majority voted results using 160 ms 
window (i.e., 160 frames). Per-frame accuracies are shown in parenthesis. 

Model S-ConvNet  
 

W.Geng et. al 
[21] 

All-ConvNet 
(proposed) 

CapgMyo DB-a 98.36 (87.95) 98.48 (86.92) 98.02 (86.73) 

CapgMyo DB-b Session 1 97.87 (83.57) 97.04 (81.26) 97.52 (81.95) 

CapgMyo DB-b Session 2 97.05 (84.73) 96.26 (83.21) 96.80 (83.36) 

CapgMyo DB-c 95.80 (81.63) 96.36 (82.23) 95.76 (80.91) 

#Learning Parameters ≈ 2.09 𝑀 ≈ 5.63 𝑀 ≈ 𝟎. 𝟒𝟔 𝑴 

 

Fig. 4.4 (a)-(d) presents the sEMG-based instantaneous (or per-frame) gesture recognition 

accuracies and their statistical significance obtained through leave-one-trial-out cross-

validation for ten different test trials for each of the participating subjects in CapgMyo 
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DB-a, DB-b, and DB-c, respectively. The highest instantaneous (or per-frame) gesture 

recognition accuracies were 86.73% for DB-a, 81.95% and 83.36% for DB-b (Session 1 

and Session 2, respectively), and 80.91% for DB-c. Which were obtained with the proposed 

lightweight All-ConvNet. The high per-frame gesture recognition accuracies and low 

standard deviation over multiple test trials and subjects in each of the four HD-sEMG 

datasets mentioned above reflect the high stability of the proposed lightweight All-

ConvNet.  

In addition, based on a simple majority voting algorithm, we have obtained very good 

gesture recognition accuracies. Fig. 4.5 (a)-(d) presents gesture recognition accuracy with 

different voting windows using lightweight All-ConvNet. The average gesture recognition 

accuracy of 94.56% and 95.99% were achieved by a simple majority voting with 32 and 64 

instantaneous images (or frames) for the above-mentioned four (4) HD-sEMG datasets. 

The higher gesture recognition accuracies of 98.02%, 97.52%, 96.80%, and 95.76% (as 

shown in Table 4.2 and Fig. 4. 5) can be obtained by the proposed lightweight All-ConvNet 

and a simple majority voting over the recognition result of 160 frames for DB-a, DB-b 

(Session 1 and Session 2) and DB-c, respectively.  These outstanding results confirm that 

the proposed lightweight All-ConvNet is highly effective for learning all the invariances for 

low-resolution instantaneous HD-sEMG image recognition and hence seem to be enough to 

address the problem of employing high-end resource-bounded fine-tuned pre-trained 

networks for low-resolution instantaneous HD-sEMG image recognition. 
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a)  

b)  

c)  

d)  

Fig. 4.4 The per-frame gesture recognition accuracy with our proposed lightweight All-
ConvNet (a) the recognition accuracy of 8 hand gestures for 18 different subjects on 
CapgMyo DB-a, (b)-(c) The gesture recognition accuracy of 8 hand gestures for 10 different 
subjects on CapgMyo DB-b (Session 1) and DB-b (Session 2) respectively (d) the gesture 
recognition accuracy of 12 hand gestures for 10 different subjects on CapgMyo DB-c. 
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a)                                                                                                                                           

b)  
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c)                                                                                                                                           

d)  

Fig. 4.5 Surface EMG gesture recognition accuracy with different voting windows 
using the proposed lightweight All-ConvNet and compared with the state-of-the-art 
methods: a) the recognition accuracy of 8 hand gestures for 18 different subjects on 
CapgMyo DB-a, and the gesture recognition accuracy of 8 hand gestures for 10 
different subjects on CapgMyo for b) DB-b Session 1 and c) DB-b Session 2, and d) 
the recognition accuracy of 12 hand gestures for 10 different subjects on DB-c. 
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4.6.2 Inter-Session Performance Evaluation 

In this section, we evaluated the performance of sEMG-based gesture recognition in the 

inter-session scenario. In this scenario, there is still the intra-session variability discussed in 

the previous section, in addition to the extent of data variability, which comes from the 

differences between the recording sessions. The sensor placement may have some spatial 

shifts and/or rotations at each recording session. These differences in sensor placement 

and/or rotations may cause spatial shifts in the distributions of the sEMG sensor data. To 

address this spatial shift problem, currently [26] and [57] provide a state-of-the-art solution 

in the CapgMyo dataset. Du et al. [26] proposed a multi-source extension to the classical 

adaptive batch normalization (AdaBN) technique [37] for domain adaptation, which works 

with CNN architecture. The drawback of this solution is that when dealing with multiple 

sources (i.e., multiple subjects), it is necessary to impose specific constraints and 

considerations for each source during the pre-training phase of that model [57]. Ketyko et 

al. [57] proposed a 2-Stage recurrent neural networks (2SRNN), where a deep stacked 

RNN sequence classifier was used for pre-training on the source dataset. Then, the weights 

of the pre-trained deep-stacked RNN classifier were frozen. At the same time, a fully 

connected layer without a non-linear activation function was trained in a supervised manner 

on the target dataset for domain adaptation. More explicitly, the deep-stacked RNN 

classifier was used as a feature extractor by freezing its weight in the domain adaptation 

stage. However, ConvNet is more powerful at extracting discriminative features than RNN, 

even for classification tasks of long sequences [58], [59].  

In addition, it is noteworthy that the domain adaptation was conducted in unsupervised and 

semi-supervised settings [26]. However, very low gesture recognition accuracies were 



109 

reported in [26] in both inter-session and inter-subject scenarios. On the other hand, [57] 

performed domain adaptation in supervised settings and demonstrated state-of-the-art 

results on the CapgMyo dataset. Therefore, for a fair comparison with the state-of-the-art, 

we performed domain adaptation in a supervised manner in all the compared methods. 

Moreover, it might be an interesting question why we chose to compare the performance of 

our proposed lightweight All-ConvNet+TL with the CNN models, proposed in [21] and 

[26]. To the best of our knowledge, the base CNN models proposed in [21] and [26] were 

also adapted in [23], [24], and [61], respectively, and reported state-of-the-art results on 

various sEMG-based gesture recognition tasks and datasets. 

Experiments conducted on inter-session and inter-subject settings; we have shown that our 

proposed lightweight All-ConvNet+TL leveraging transfer learning (illustrated in Section 

4.4) outperformed these above-mentioned state-of-the-art solutions. We evaluated inter-

session gesture recognition for CapgMyo DBb, in which the model was trained using data 

recorded from the first session and evaluated using data recorded from the second session. 

It is worth mentioning that without transfer learning or domain adaptation, the state-of-the-

art models, as well as our proposed models achieved less than or approximately 50% 

average gesture recognition accuracy on CapgMyo datasets in both inter-session and inter-

subject scenarios. This level of recognition accuracy is not enough for a usable system 

(defined as <10% error [60]). Therefore, domain adaptation or transfer learning must be 

introduced to these (inter-session and inter-subject) settings for acceptable performance. 

However, the most significant question is how much training data is required for adaptation 

on the target domain to obtain a stable gesture recognition accuracy. To address this 

question, we limited the available training data to 20% (T1), 40% (T2), 60% (T3), 80% 
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(T4), and 100% (T5) of the total 5 trials used for domain adaptation (the remaining 5 trials 

are kept for validation). For fair comparison and complying with the state-of-the-art, we ran 

our domain adaptation for 100 epochs. Table 4.3 presents the inter-session average gesture 

recognition accuracies (%) of 8 hand gestures for 10 different subjects respectively for 

CapgMyo DB-b and compared with the state-of-the-art methods.  

Table 4.3 Inter-session gesture recognition accuracies on CapgMyo DB-b.   The 
average recognition accuracies (%) of 8 hand gestures for 10 different subjects 
respectively. The numbers are the majority voted results using 150 ms window (i.e., 
150 frames). 

Methods 

Number of available trials for adaptation 

T1 T2 T3 T4 T5 

Du et. al. [21][26] 67.97 81.77 86.02 88.10 88.48 

2SRNN [57] - - - - 83.80 

All-ConvNet+TL 

(Proposed) 
75.91 89.61 92.74 93.46 94.91 

 

Our proposed lightweight All-ConvNet+TL leverages transfer learning to enhance inter-

session gesture recognition, achieving an 11.11% improvement compared to 2SRNN [57] 

and a 6.43% improvement compared to GengNet [21], [26] when all available 5 trials are 

used for adaptation (as shown in Table 4.3, column-T5). We also compared our proposed 

lightweight All-ConvNet+TL with the state-of-the-art GengNet [21], [26] in a data-starved 

condition. The proposed lightweight All-ConvNet+TL shows even more significant 

improvement over the state-of-the-art when a limited number of trials are available for 

adaptation, as seen in Table 4.3, Columns- T1, T2, T3, and T4, respectively. For example, 

the proposed lightweight All-ConvNet+TL achieved a 7.94% improvement over GengNet 
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[21][26] when only 20% of the data (i.e., 1 trial) was available for adaptation (Table 4.3, 

Column- T1). 

4.6.3 Inter-Subject Performance Evaluation 

In this section, we evaluated the performance of sEMG-based gesture recognition in the 

inter-subject scenario. In this scenario, the data variability comes from the variation in 

muscle physiology between different subjects. In this experiment, we evaluated the inter-

subject recognition of 8 gestures using the second recording session of CapgMyo DB-b and 

the recognition of 12 gestures using CapgMyo DB-c. We performed a leave-one-subject-

out cross-validation, in which each of the subjects was used in turn as the test subject, and a 

lightweight All-ConvNet was pre-trained using the data of the remaining subjects. Then, 

this pre-trained All-ConvNet model was deployed, and adaptation was made on the data 

from the odd numbers of trials of the test subjects by leveraging transfer learning or domain 

adaptation. Finally, the adapted model was evaluated and tested using the data from the 

even number of trials of the test subject. We limited the available training data to 20%, 

40%, 60%, 80%, and 100% of the total 5 trials used for domain adaptation (the remaining 5 

trials are kept for validation). Table 4.4 presents the average recognition accuracies (%) of 

8 and 12 hand gestures for CapgMyo DB-b and DB-c for 10 subjects, respectively. 

As can be seen from Table 4.4, our proposed lightweight All-ConvNet+TL, by leveraging 

transfer learning, outperformed the state-of-the-art methods in the inter-subject scenario on 

both CapgMyo DB-b and CapgMyo DB-c datasets, respectively. Our proposed lightweight 

All-ConvNet+TL demonstrates an improvement of 5.04% and 6.17% compared to 2SRNN 

[57], and 3.58% and 1.85% compared to GengNet [21], [26] on CapgMyo DB-b and 
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CapgMyo DB-c datasets, respectively when all available 5 trials are used for adaptation (as 

shown in Table 4.4, column-T5 for both CapgMyo DB-b and CapgMyo DB-c). 

Table 4.4 Inter-subject gesture recognition accuracies. The average recognition 
accuracies (%) of 8 hand gestures for CapgMyo DB-b and 12 hand gestures for 
CapgMyo DB-c for 10 different subjects respectively. The numbers are the majority 
voted results using 150 ms window (i.e., 150 frames). 

Methods 

CapgMyo DB-b 

Number of available trials for adaptation 

T1 T2 T3 T4 T5 

Du et. al. [21],[26] 71.81 86.52 88.66 90.32 91.36 

2SRNN [57] - - - - 89.90 

All-ConvNet+TL 

(Proposed) 
75.34 89.42 92.09 93.83 94.94 

 CapgMyo DB-c 

Du et. al. [21],[26] 57.40 75.98 82.51 85.98 88.02 

2SRNN [57] - - - - 85.40 

All-ConvNet+TL 

(Proposed) 
58.47 78.89 86.02 89.99 91.57 

 

Similar to the inter-session scenario, we also compared our proposed lightweight All-

ConvNet+TL in the inter-subject scenario with the state-of-the-art GengNet [21], [26] in a 

data-starved condition. The proposed lightweight All-ConvNet+TL exhibits improvement 

over the state-of-the-art on CapgMyo DB-b and CapgMyo DB-c datasets when a limited 

number of trials are available for adaptation, as observed in Table 4.4, specifically in 

Columns T1, T2, T3, and T4, respectively. For example, when only 20% of the data (i.e., 1 

trial) was available for adaptation, the proposed lightweight All-ConvNet+TL achieved a 
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3.53% and 1.07% improvement over GengNet [21], [26] on CapgMyo DB-b and CapgMyo 

DB-c, respectively (Table 4.4, Column- T1). 

We summarise the inter-session and inter-subject improvement results in Table 4.5 over the 

state-of-the-art methods. As indicated there, the performance of the proposed lightweight 

All-ConvNet+TL is superior in all cases. The improvement achieved by the lightweight 

All-ConvNet+TL leveraging transfer learning in inter-session and inter-subject scenarios, 

exceeds those obtained through alternative state-of-the-art domain adaptation approaches. 

Table 4.5. Inter-session and Inter-subject improvement (%) results obtained by the 
proposed lightweight All-ConvNet+TL leveraging transfer learning. 

Methods 

Inter-session  
improvement 

Inter-subject  
Improvement 

DB-b DB-b DB-c 

Du et. al. [21][26] 6.43 3.58 3.55 

2SRNN [57] 11.11 5.04 6.17 

 

Finally, we evaluate the performance of our proposed lightweight All-ConvNet+TL while 

freezing its maximum number of layers and use them as a feature extractor, and only the 

top convolutions layers are fine-tuned in the adaptation stage for inter-session and inter-

subject gesture recognition. More explicitly, the first six (6) convolutional layers of the 

lightweight All-ConvNet+TL were frozen and used as a feature extractor. Only the top two 

convolutional layers with a few parameters were fine-tuned in the adaptation stage. 

Therefore, these experiments can be considered as a full feature extraction setting. The 

performance of these full feature extraction settings was compared with the more complex 

computationally expensive 2SRNN [57] method. A deep-stacked RNN classifier was also 

used as a feature extractor by freezing its weight in the domain adaptation stage. Table 4.6 
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presents the inter-session and inter-subject average gesture recognition accuracies (%) of 8 

and 12 hand gestures for CapgMyo DB-b and DB-c for 10 subjects, respectively. As can be 

seen from Table 4.6, our proposed lightweight All-ConvNet+TL clearly outperforms the 

2SRNN [57] in both inter-session and inter-subject gesture recognition accuracy. These 

experimental results indicate that the proposed lightweight All-ConvNet+TL is very 

effective for discriminative feature extraction for improved gesture recognition in both 

inter-session and inter-subject scenarios. 

Table 4.6 Inter-session and Inter-subject gesture recognition accuracies (%) under 
full feature extraction setting. 

Methods 

Inter-session Inter-subject  

DB-b DB-b DB-c 

2SRNN [57] 83.80 89.90 85.40 

All-ConvNet+TL 

(Proposed) 
91.93 91.56 85.56 

 

4.6.4 Weight (or Feature) Transfusion Experiments 

In this section, we investigate to identify locations where exactly in the network meaningful 

feature reuse takes place during transfer learning by conducting a weight (or feature) 

transfusion experiment. We initialize our proposed lightweight All-ConvNet+TL with a 

contiguous subset of the layers using pre-trained weights (weight transfusion), and the rest 

of the network randomly, and train on the target inter-session gesture recognition task. 

More explicitly, we initialize only up to layer L with pretrained lightweight All-

ConvNet+TL weights, and layer L + 1 onwards randomly; then train only layers L + 1 

onwards. Since, the weight transfusion process uses pre-trained weights, it can accelerate 



115 

the training during fine-tuning of a network on the target task. Therefore, the learning speed 

was measured in terms of gesture recognition performance on various training epochs. 

Table 4.7 presents the inter-session gesture recognition accuracy of a subject against 

various training epochs for different number of transfused weights. We show the learning 

speed and gesture recognition accuracy when transfusing from Conv1 (L-7, one layer) up to 

Conv8 (i.e., layer L-7 to layers L-full transfer). From the weight transfusion results, our 

proposed lightweight All-ConvNet+TL model perform quite stably over the different 

number of transfused weights. However, we observed that reusing the lowest layers 

(transfusing weights) leads to the greatest gain in learning speed and gesture recognition 

accuracy. For example, transfusing weights from layer L-7 (Conv1) up to layer L-5 

(Conv3), we achieve ≈ 98% recognition accuracy after just 8 (eight) training epochs. 

4.6.5 Lightweight All-ConvNet Network Trimming 

These weight transfusion results in section 4.6.5 motivate us to explore hybrid approaches 

to transfer learning, thereby, we introduce network trimming which further optimizes the 

proposed lightweight All-ConvNet+TL by pruning the weights of the network. We consider 

reusing pre-trained weights up to Conv3 (i.e., weights of layers L-7 to layers L-5 showed in 

Table 4.7) and the weights of the top of the lightweight All-ConvNet (i.e., from layers 

Conv4 (L-4) to Conv7 (L-1)) was pruned by halves to be even more lightweight and 

initializing these layers randomly. Finally, this new Lightweight All-ConvNet-Slim model 

was trained or fine-tuned on the target inter-session gesture recognition task. Table 4.8 

presents the inter-session gesture recognition accuracy of a subject against various training 

epochs, which compares the performance of Lightweight All-ConvNet+TL vs Lightweight 

All-ConvNet-Slim model.  



116 

Table 4.7. Learning (or convergence) speed using various training epochs. Table 
shows inter-session gesture recognition accuracies (%) on test set. The numbers are 
the majority voted results using 150 ms window (i.e., 150 frames). Per-frame 
accuracies are shown in parenthesis. 

Weight 

transfusion  

(up to layers) 

Training epochs 

8 16 32 46 64 100 

Full Transfer (L) 
70.90 

(64.56) 

81.74 

(67.84) 

83.20 

(68.35) 

83.08 

(68.33) 

83.21 

(68.47) 

83.60 

(68.52) 

L-1 
87.42 

(72.28) 

88.21 

(73.53) 

90.14 

(74.43) 

90.01 

(74.55) 

89.85 

(74.94) 

90.39 

(75.13) 

L-2 
90.24 

(76.35) 

93.60 

(78.17) 

93.94 

(79.62) 

94.22 

(80.08) 

94.50 

(80.47) 

94.18 

(81.36) 

L-3 
95.01 

(79.48) 

95.96 

(81.53) 

96.42 

(83.23) 

96.71 

(83.22) 

96.99 

(83.97) 

98.28 

(84.67) 

L-4 
96.10 

(81.87) 

97.71 

(82.59) 

98.21 

(85.10) 

97.92 

(86.17) 

97.96 

(86.37) 

98.59 

(87.06) 

L-5 
97.96 

(83.14) 

98.40 

(84.888) 

99.12 

(87.00) 

99.12 

(86.99) 

99.28 

(87.86) 

99.35 

(88.30) 

L-6 
98.34 

(82.93) 

97.76 

(85.48) 

99.26 

(87.24) 

98.85 

(87.56) 

99.27 

(87.79) 

99.25 

(88.68) 

L-7 
98.10 

(83.33) 

98.74 

(84.34) 

98.93 

(86.08) 

99.41 

(87.22) 

99.32 

(88.04) 

99.32 

(88.21) 

 
Table 4.8. Learning (or convergence) speed using various training epochs. Table 
shows inter-session gesture recognition accuracies (%) on test set. The numbers are 
the majority voted results using 150 ms window (i.e., 150 frames). Per-frame 
accuracies are shown in parenthesis. 

Model 
# learning 

parameters 

Training epochs 

8 16 24 32 

Lightweight  

All-ConvNet+TL (Proposed) 
≈ 0.46 𝑀 96.00 

(71.56) 

96.60 

(74.79) 

97.60 

(76.92) 

97.69 

(77.68) 

Lightweight  

All-ConvNet-Slim (Proposed)   
≈ 𝟎. 𝟏𝟗 𝑴 91.92 

(68.98) 

96.90 

(73.70) 

98.28 

(75.98) 

98.50 

(77.47) 
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The experimental results demonstrates that the lightweight All-ConvNet-Slim model can 

maintain the same or achieve higher performance with much smaller number of parameters. 

These results with variants of Lightweight All-ConvNet+TL model also highlight many 

new, rich and flexible ways to use transfer learning. 

4.7 Discussion 

We address the problem of distribution shifts by adapting a lightweight model to new target 

domain tasks using a limited amount of data for sEMG-based inter-session and inter-

subject gesture recognition. We propose All-ConvNet+TL leveraging lightweight All-

ConvNet and transfer learning, which can be seen as a hybrid of feature extraction and fine-

tuning, learning parameters that are discriminative for the new target task. We show the 

effectiveness of our method by conducting extensive experiments on four (4) publicly 

available HD-sEMG datasets for three (3) different sEMG-based gesture recognition tasks, 

including intra-session, inter-session, and inter-subject scenarios. The results indicate that 

our proposed lightweight All-ConvNet and All-ConvNet+TL models outperform the more 

complex state-of-the-art models on various tasks and datasets. In intra-session scenarios, 

the proposed lightweight All-ConvNet (size of only 0.46 M learning parameters), which 

consists of a network using nothing, but convolutions and subsampling outperformed the 

most complex state-of-the-art GengNet [21], [26] (size of 5.6M parameters) on CapgMyo 

DB-b (Session 1 and Session 2) dataset, respectively and performed on par with or very 

competitively on CapgMyo DB-a and CapgMyo DB-c, respectively. The high intra-session 

gesture recognition accuracies of 98.02%, 97.52%, 96.80%, and 95.76% were obtained by 

the proposed lightweight All-ConvNet using a simple majority voting over the recognition 
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result of 160 instantaneous images (or frames) for DB-a, DB-b (Session 1 and Session 2) 

and DB-c, respectively. 

For gesture recognition in inter-session and inter-subject scenarios, we apply transfer 

learning to our proposed lightweight All-ConvNet. Our proposed method All-ConvNet+TL 

leveraging the lightweight All-ConvNet, and transfer learning outperforms the current 

state-of-the-art methods by a large margin, both when the data from single trials or multiple 

trials are available for fine-tuning and adaptation.  

We achieved state-of-the-art performance for inter-session and inter-subject scenarios. The 

inter-session gesture recognition accuracy reached 94.1% on CapgMyo DB-b, which is 

approximately 11.11% and 6.43% higher than the current state-of-the-art [57] and [21], 

[26], respectively.  

In addition, the inter-subject gesture recognition accuracy reached 94.94% and 91.57% on 

CapgMyo DB-b and DB-c, respectively, which is 5.04% and 6.17% higher than [57] and 

3.58% and 3.55% higher than the [21], [26] respectively. Moreover, the proposed 

lightweight models achieved state-of-art performance under full feature extraction settings 

in both inter-session and inter-subject scenarios.  

These outstanding state-of-the-art inter-session and inter-subject gesture recognition 

performance achieved by the proposed lightweight All-ConvNet+TL models by leveraging 

transfer learning validates that the proposed method is highly effective in learning invariant 

and discriminative representations to overcome the distribution shift caused by inter-session 

and inter-subject data variability. This potentially indicates that the current state-of-the-art 

models are overparameterized for the sEMG-based gesture recognition problem. 
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Furthermore, the current most complex state-of-the-art models [21], [26], [57] are 

computationally expensive and require a huge memory space to store a massive number of 

parameters. Therefore, these models are usually unsuitable for deploying low-end, 

resource-constrained embedded, mobile and wearable devices for real-time MCI 

applications. Thanks to the proposed parameter-efficient All-ConvNet and All-

ConvNet+TL, our model is much smaller and lightweight than these current state-of-the-art 

methods for sEMG-based gesture recognition.   

Finally, the new experimental evidence of our proposed method about various sEMG-based 

gesture recognition tasks and its role will shed light on potential future directions for the 

community to move forward for more efficient lightweight model exploration. 

4.8 Conclusion 

For real-time Muscle-Computer Interfaces, the sEMG-based gesture recognition must 

address the inter-session and inter-subject distribution shifts. To address and overcome 

these distribution shifts, we investigate the effects of transfer learning and feature reuse on 

our proposed lightweight All-ConvNet. We discovered that the proposed lightweight All-

ConvNet+TL, which leverages transfer learning in the inter-session and inter-subject 

scenarios outperforms the most complex state-of-the-art domain adaptation methods by a 

large margin, both when the data from single trials or multiple trials are available for 

adaptation. The state-of-the-art performance proved that the proposed lightweight All-

ConvNet+TL model is highly effective in learning invariant and discriminative 

representations for addressing distribution shifts in sEMG-based inter-session and inter-

subject gesture recognition. This raises the question and provides evidence of 

overparameterization of the most complex current state-of-the-art models for sEMG-based 
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gesture recognition tasks. We also find that significant feature reuse concentrated in lower 

layers and explored more flexible and hybrid transfer approaches, which retain transfer 

benefits and create new possibilities. In future work, we plan to deploy our proposed 

lightweight All-ConvNet and All-ConvNet+TL model for sEMG-based real-time adaptive 

and intuitive control of an active prosthesis. 

Furthermore, the existing methods (e.g., [21], [26]) achieve only high gesture recognition 

accuracy based on instantaneous HD-sEMG signals using CNN/DNN methods while 

reported very low gesture recognition accuracy (e.g., as low as 20%) using classical 

machine learning methods such as SVM. However, in another study, we argued that SVM 

can also perform competitively to the more complex state-of-the-art CNN/DNN methods 

for instantaneous HD-sEMG-based gesture recognition tasks if well-behaved and 

discriminative features are provided to it. Hence, the next chapter presents a discriminative 

feature extraction method based on Histogram of Oriented Gradients (HoG) for 

instantaneous HD-sEMG image recognition, adopting pairwise SVM as the classification 

scheme, thereby providing a more efficient and an alternative solution to the more complex 

CNN/DNN methods. 

 



Chapitre 5 - HOG and Pairwise SVMs for 
Neuromuscular Activity Recognition 
Using Instantaneous HD-sEMG Images 

The concept of neuromuscular activity recognition using instantaneous high-density surface 

electromyography (HD-sEMG) image opens up new avenues for the development of more 

fluid and natural muscle-computer interfaces. The state-of-the-art methods for 

instantaneous HD-sEMG image recognition achieve prominent performance using a 

computationally intensive deep convolutional networks (ConvNet) classifier, while very 

low performance is reported using the conventional classifiers. However, the conventional 

classifiers such as Support Vector Machines (SVM) can surpass ConvNet at producing 

optimal classification if well-behaved feature vectors are provided. This chapter studies the 

question of extracting distinctive feature sets, thus propose to use Histograms of Oriented 

Gradient (HOG) as unique features for robust neuromuscular activity recognition, adopting 

pairwise SVMs as the classification scheme. The experimental results proved that the HOG 

represents unique features inside the instantaneous HD-sEMG image and fine-tuning the 

hyper-parameter of the pairwise SVMs, the recognition accuracy comparable to the more 

complex state-of-the-art methods can be achieved. 
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5.1 Introduction 

The precise characterization and recognition of neuromuscular activities present a great 

challenge [1]. The current state-of-the art methods [21], [26] employed a computational 

model based on deep convolutional neural networks (ConvNet) [35] for sEMG image 

classification. However, the potential drawback is the classification method based on 

ConvNet, is computationally very expensive to be practical for real-world applications for 

gesture or neuromuscular activity recognition. Moreover, the studies conducted in [21], 

[26] reported of attaining recognition rate as low as 20% using the conventional classifiers 

such as support vector machines (SVM). However, the conventional classifiers such as 

SVM can surpass ConvNet at producing optimal classification if well-behaved feature 

vectors are provided [106]. However, this aspect is totally overlooked in [21], [26]. 

Therefore, developing computationally efficient distinctive feature extraction and 

classification algorithms for instantaneous sEMG image based neuromuscular activity 

recognition is highly demanded. 

For instantaneous sEMG image based neuromuscular activity recognition, the challenge 

remains open because very limited research has been done on it. This chapter studies the 

histogram of oriented gradients (HOG) for the improved characterization of the 

instantaneous sEMG image. HOG is one of the state-of-the-art methods for object 

recognition [107]-[110]. However, this important characterization method is ignored for 

sEMG signal classification. In this thesis, we propose to use a HOG based feature 

extraction method for instantaneous sEMG image classification. According to our best 

knowledge, no one performed similar studies before for sEMG signal classification.  
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The rest of the chapter is organized as follows. Section 5.2 provides the computational 

details of the proposed feature extraction method. Section 5.3 describes the testing database 

and the experimental validation. Section 5.4 offers some conclusive remarks. 

5.2  The Proposed Neuromuscular Feature Extraction and Classification Algorithm 

The proposed neuromuscular feature extraction and classification algorithm has three 

computational components: (i) preprocessing and sEMG image generation, (ii) feature 

extraction, and (iii) classification. A schematic diagram of the proposed muscular activity 

recognition method by instantaneous sEMG images is shown in Fig. 5.1. First, the acquired 

HD-sEMG signals at each sampling instant were arranged in a 2-D grid according to their 

electrode positioning. This grid was further transformed into an instantaneous sEMG image 

by linearly transforming the values of sEMG signals from 𝑚𝑉 to color intensity as 

[−2.5𝑚𝑉, 2.5𝑚𝑉] to [0 255]. Thus, an instantaneous grayscale sEMG image was formed 

with the size of 16 × 8. The gradient image ∇𝑓(𝑥, 𝑦) is obtained by convolving an 

estimation filter over 𝑥 and 𝑦 axis of the instantaneous sEMG image 𝑓(𝑥, 𝑦). The 

magnitude |∇𝑓(𝑥, 𝑦)| and orientation 𝜃(𝑥, 𝑦) for each pixel of the sEMG image is 

computed from the gradient image ∇𝑓(𝑥, 𝑦). The sEMG image is divided into a dense grid 

with a spatial 𝜂 × 𝜂 pixels cells. For each cell, a local 1-D histogram of gradient over all 

pixels in the cell is computed as features. This aggregated cell-level 1-D histogram builds 

the HOG feature vector for the unique representation of the instantaneous sEMG image. 

Finally, these HOG feature vectors are fed to a computationally effective learned pairwise 

SVM classifier for instantaneous gesture recognition. 

Section 5.2.1 presents the HOG feature extraction technique for sEMG image 

representation and Section 5.2.2 presents the classification schemes respectively. 
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Fig. 5.1 Schematic illustration of the proposed muscular activity recognition by 
instantaneous sEMG images. 

5.2.1 Histogram of Oriented Gradients (HOG) Feature Extraction  

After generating the instantaneous sEMG image by linearly transforming the values of 

sEMG signals to color intensity as mentioned above, the crucial task is to extract distinctive 

features to represent the instantaneous sEMG image for robust classification of the 

performed hand gesture. However, the main research question is what makes the different 

gestures distinctive performed by the same or different subjects? For example, the hand 

gestures explained in Chapter 2 in Table 2.1 and Table 2.2 respectively can be 

differentiated by their shape and orientation features. The color might not be a reliable 

feature because the portrayed hand gestures have the same color. Therefore, any method 
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that can precisely describe the shape and orientation information will solve the problem. 

Nevertheless, the problem in our hand is even more challenging because the instantaneous 

sEMG image is formed by linearly transforming the values of sEMG signals from mV to 

color intensity which reflects the intensity distributions of the performed hand gestures. The 

different hand gestures produce different spatial intensity distributions, thus also make the 

structure of the instantaneous sEMG image different. These discriminative attributes have 

been capitalized and used as features in this work. 

Both intuitive observation and preliminary experimental results indicate that the gradient of 

the intensity distributions or edge directions provides the discriminative features for 

instantaneous sEMG image classification. HOG precisely captures this notion. Therefore, 

we propose to use HOG as features for instantaneous sEMG image classification. HOG 

features are calculated by taking orientation histograms of intensity distributions from all 

locations of a dense grid on a sEMG image region and combined features are used for 

classification. HOG features are assumed to be designed for imitating the visual 

information processing of the brain and have robustness against local changes of position. 

This important property of HOG can be exploited to cope with the electrode shifting 

problem encountered between two different HD-sEMG recording sessions. HOG is like 

scale-invariant feature transform [110] in the sense that a local region is described by 

deriving gradient orientations from the orientation histogram. 

Consider the gradient estimation filters ℎ𝑥 = [−1, 0, 1], and ℎ𝑦 =  [−1, 0, 1]𝑇. The gradient 

information of an instantaneous sEMG image can be obtained by 

 𝛻𝑓(𝑥, 𝑦) = [
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
]

𝑇

= [
𝑓(𝑥, 𝑦) ∗  ℎ𝑥

𝑓(𝑥, 𝑦) ∗  ℎ𝑦
] (5.1) 
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where, ∗ denotes an operation of a 1-dimensional (1-D) convolution. The 𝑥 and 𝑦 stand for 

height and width of the instantaneous sEMG image. The magnitude of a pixel is calculated 

by 

 |𝛻𝑓(𝑥, 𝑦)| =  √(
𝜕𝑓

𝜕𝑥
)

2

+ (
𝜕𝑓

𝜕𝑦
)

2

 (5.2) 

and the orientation of a pixel is calculated by 

 𝜃(𝑥, 𝑦) =  tan−1 (
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
⁄ ) (5.3) 

These magnitude |𝛻𝑓(𝑥, 𝑦)| and orientation 𝜃(𝑥, 𝑦) at each pixel are then used for 

calculating HOG.  

The main intuition behind HOG feature extraction is that, while individual |𝛻𝑓(𝑥, 𝑦)| and 

𝜃(𝑥, 𝑦) are highly variable and subject to significant variations across nearby (𝑥, 𝑦) 

locations, even for the sEMG images generated by the same hand gesture, the cumulative 

statistics of the spatial distribution of the gradient orientation and magnitudes over small 

region of the sEMG images derived from the same gesture provide quite robust descriptors 

of the instantaneous sEMG image. 

To compute orientation histograms, the obtained instantaneous sEMG image gradient is 

divided into  8 × 4 = 32 non-overlapping rectangular cells, and each cell is of size 𝜂 × 𝜂 

pixels (𝜂 = 2). Four 𝜂 × 𝜂 neighboring cells form a block of size 𝜍 ×  𝜍 (𝜍 = 2). A 

schematic diagram of HOG extraction process is illustrated in Fig. 5.2. There are total 

𝑣𝜍 ×  ℎ𝜍 = 21, overlapping blocks are formed over an instantaneous sEMG image (where 

𝑣𝜍 = 7 and ℎ𝜍 = 3, denotes the number of vertical and horizontal block respectively). In 

each 𝜂 × 𝜂 cell, the orientation histogram has 𝛽 bins (𝛽 = 7), which correspond to 
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orientations 𝑖 × 𝜋 𝛽⁄ , where 𝑖 = 0,1, … , 𝛽. Thus, each of the block contains 𝜍 ×  𝜍 ×  𝛽 =

28 dimensional HOG feature vectors and each instantaneous sEMG image contains 

𝑣𝜍 × ℎ𝜍 × (𝜍 ×  𝜍 ×  𝛽) = 588 dimensional HOG feature vectors. 

 

 
Fig. 5.2 HOG extraction process (a) An instantaneous sEMG image is partitioned by 
non-overlapping cells and overlapping blocks (each block has (2×2) four cells). (b) 
Gradients information are overlaid over an instantaneous sEMG image (c) HOG in 
each block. The horizontal axis represents angle information and the vertical axis 
bears weighted histogram. 

This 588-dimensional HOG feature vector is used to represent the instantaneous sEMG 

image. It is noteworthy that  𝜂, 𝜍 and 𝛽 are parameters and selecting values of these 

parameter tradeoff with the overall instantaneous sEMG image classification performance. 

Therefore, it is significant to select the optimum values of these parameters for extracting 

the most discriminant HOG features. 

Now, we calculate the 28-D HOG feature vector from a block of  𝜍 ×  𝜍 cells. Consider 

|𝛻𝑓(𝑥, 𝑦)| and 𝜃(𝑥, 𝑦) in one block as shown in Fig. 5.2(a) and 5.2(b). In Fig. 5.2(b), the 

orientation of the arrow represents 𝜃(𝑥, 𝑦) and the length of the arrow stands for 
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|𝛻𝑓(𝑥, 𝑦)|. In the experiments, the gradient orientation is transformed from −𝜋 ≤ 𝜃 ≤ 𝜋 to 

0 ≤ 𝜃 ≤ 𝜋 and then evenly quantized into 𝛽 bins.  

The HOG feature vector ℎ1 ∈  ℝ𝛽 of the first cell (top left in Fig. 5.2(a)) can be calculated 

by voting 

 ℎ1(𝑖) ← ℎ1(𝑖) +  |∇𝑓𝜃𝑖 (𝑥, 𝑦)|,   𝑖 = 1, … , 𝛽 (5.4) 

where |∇𝑓𝜃𝑖  (𝑥, 𝑦)| indicates the magnitude from the gradient and 𝜃𝑖 is the quantized 

orientation. In the same way as ℎ1, the three-feature vectors (ℎ2, ℎ3 and ℎ4) can be 

generated from three other cells of a same block. By combining these feature vectors, the 

HOG feature vectors of a block turn into ℎ =  [ℎ1
𝑇 , ℎ2

𝑇 , ℎ3
𝑇 , ℎ4

𝑇]𝑇  ∈  ℝ𝛽×4.   

It is to be noted that the equation (5.4) is a simplified form. However, in our 

implementation, trilinear interpolation is used to calculate the HOG features [111]. The 

trilinear interpolation smoothly distributes the gradient to 𝜍 ×  𝜍 cells of a block to reduce 

the aliasing effect caused by the pixels near to the cell boundaries. This technique can also 

be robust against small distortions between sEMG images derived from the same gesture.  

Moreover, the gradient strengths vary over an instantaneous sEMG image owing to local 

variations. Therefore, the overlapped blocks on sEMG image are normalized individually 

so that each scaler cell-response contributes several components to final HOG feature 

vector. The normalization is performed by  

 ℎ =  ℎ √‖ℎ‖2
2 + 𝜖2⁄  (5.5) 

where, 𝜖 is a small normalization constant used to avoid divided by zero [111]. This 

normalized HOG representation is used for instantaneous sEMG image classification.  
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5.2.2 Pairwise SVM Classifier  

After the HOG feature extraction for representing an instantaneous sEMG image, the most 

important task is to employ a computationally effective classifier which has the high 

generalization ability for solving a multi-class classification problem. SVM [112], [113] is 

essentially a binary classifier, however, multi-class classification problem is solved by 

training several binary SVM classifiers and an optimal global decision function is obtained 

by fusing the outputs of each of these binary classifiers. In addition, the decision function 

of SVM's is fully determined by the number of support vectors (SVs) which is substantially 

lower than the actual number of samples used in training, makes SVM computationally 

very efficient. Moreover, SVM trained on HOG features has become a popular method for 

across many visual perception tasks due to the performance and robust theory [114]. Why 

do SVM's trained on HOG features perform so well is still an open research issue in the 

literature. However, it is pointed out in [114] that preserving second-order statistics and 

locality of interactions are fundamental to achieve good performance. All these motivated 

us to use and train pairwise SVM's classifiers on HOG features extracted from the 

instantaneous sEMG image. 

5.3 Experiments 

We tested our feature characterization method on CapgMyo data sets [26] as discussed in 

Chapter 2, Section 2.5. The CapgMyo database comprises 3 sub-databases (referred to as 

DB-a, DB-b and DB-c). However, as followed by the [21], DB-a has been used in our 

preliminary experiments to evaluate the performance of our proposed methods. In DB-a, 8 

isotonic and isometric hand gestures were obtained from 18 of the 23 subjects and each 

gesture was also recorded for 10 times. For each subject, the recorded HD-sEMG data is 
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filtered, sampled and the instantaneous sEMG image is generated using the method 

mentioned in section 5.2. More explicitly, 8 different hand gestures are performed by every 

subject and each hand gestures are recorded for 10 times with a 1000 Hz sampling rate, 

which in total generates  (8 × 10 × 1000 = 80000) instantaneous sEMG images. Then, 

our HOG-based proposed feature extraction technique elaborated in Section 5.2.1 is applied 

to each of the instantaneous sEMG images. Thus, an 80000 × 𝑀 dimension HOG feature 

vectors are obtained. The each of the HOG feature vectors dimension 𝑀 depend on the 

different HOG parameters such as 𝜂, 𝜍 and 𝛽. However, considering the low resolution 

instantaneous sEMG image and based on our preliminary experiments, we select 𝜂 = 2, 

𝜍 = 2 and 𝛽 = 7 respectively. Hence, we obtained 𝑣𝜍 × ℎ𝜍 × (𝜍 ×  𝜍 ×  𝛽) = 588 

dimension HOG feature vectors of an instantaneous sEMG image.   

Now, for every subject in DB-a, a pairwise SVMs classifier is trained to predict the desired 

hand gestures for each incoming sEMG images. The pairwise SVMs framework is based on 

LIBSVM, a library for support vector machines [115].  To conduct the above-mentioned 

gesture classification task, the obtained 80000 × 𝑀 dimension HOG feature vectors are 

divided into three subsets such as training, validation and testing set. In this initial 

investigation, 50% of the Histogram of Oriented Gradients (HOG) feature vectors from the 

complete feature set, which corresponds to half of the trials (i.e., 5 trials for each specific 

movement), are chosen and employed as the training set. Similarly, the remaining 50% of 

the HOG feature vectors, which correspond to the other half (5 trials), are further split into 

a validation set and a testing set. The validation set is used for model/kernel and parameter 

selection for pairwise SVMs. Due to computationally effective and reducing searching 

space for parameter selection, the RBF kernel 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

, 𝛾 > 0  is used to 



131 

train the obtained HOG feature set. There are two parameters for an RBF kernel which is a 

cost parameter (𝐶) and kernel parameter 𝛾. It is not known in advance which 𝐶 and 𝛾 are 

the best for a given problem. Therefore, the parameter selection is performed. We used a 

grid search along with this 𝜐-fold (𝜐 = 3) cross-validation scheme to find the optimum 

(𝐶, 𝛾) on the validation set. It is recommended in [116] to use the exponentially growing 

sequences of 𝐶 and 𝛾 to identify the good parameters. Hence, we use 𝐶 =

 [25, 24, 23, … , 2−1] and 𝛾 = [2−6, 2−5, 2−4, … , 22]. Therefore, we examined with 7 × 9 =

63 combinations of (𝐶, 𝛾) pairs. Then, the whole training feature set is trained using the 

pair of (𝐶, 𝛾) that achieves the best cross-validation accuracy. Finally, this trained classifier 

is used to predict the test feature set. 

Confusion matrix generated from the predicted classification results were used as a 

performance indicator. The correctly classified (%) gesture classes are listed along the 

diagonal line of the Confusion matrix as presented in Fig. 5.3. The average classification 

accuracy of the proposed methods is 86.63% which is comparable to the state-of-the-art 

methods. Using instantaneous values of HD-sEMG and SVM classifier, the average 

classification accuracy as low as 20% was reported in [21]. However, the average 

classification accuracy increased to 86.63% using proposed HOG and optimized parameter 

of pairwise SVMs. In addition, the recall or true positive rate (TPR) and the precision or the 

positive predictive value (PPV) [117] of each gesture classes are also computed and 

mentioned in Table 5.1. The 86.62% average precision and recall of each class also indicate 

the potentiality of the HOG and pairwise SVMs for neuromuscular activity recognition. 

Finally, the experimental results demonstrate that: (i) HOG are effective features for unique 

representations of instantaneous HD-sEMG images (ii) Provided discriminant features and 
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fine-tuning the hyper-parameter of the conventional classifiers such as pairwise SVMs, the 

state-of-the-art recognition rate can be achieved for muscular activity recognition based on 

instantaneous HD-sEMG images. 

 

Fig. 5.3 Confusion Matrix of the Proposed Neuromuscular Activity Recognition 
Method. 

Table 5. 1 Precision and Recall of every gesture classes. 

 

5.4 Conclusions 

In this Chapter, we propose to use Histogram of Oriented Gradients (HOGs) as distinctive 

features and pairwise SVMs for robust neuromuscular activity recognition using 

instantaneous HD-sEMG images. 80000 instantaneous HD-sEMG image frames for 8 

different gestures of each subject from CapgMyo database were examined. The 

experimental results demonstrate that HOG are effective features for unique representations 

Class CL01  CL02 CL03 CL04 CL05 CL06 CL07 CL08 

Precision 87.52 87.44 88.38 82.32 88.57 85.07 88.66 85.03 

Recall 87.35 86.03 89.24 82.84 89.99 83.76 89.02 84.79 
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of instantaneous HD-sEMG images. Also, provided discriminant features and fine-tuning 

the hyper-parameter of the conventional classifiers such as pairwise SVMs, the state-of-the-

art recognition rate can be achieved for neuromuscular activity recognition based on 

instantaneous HD-sEMG images. 



Chapitre 6 - Conclusion 

6.1 Summary 

The need for sufficient amount of labeled data, high-end computational resources and the 

presence of distribution shift in inter-session and inter-subject scenarios are the major 

factors that impede deploying deep learning for real-time sEMG-based gesture recognition 

tasks. There is a significant demand for cost-effective, compact and lightweight models that 

not only effectively address these issues but also achieve competitive performance in high-

end resource constrained scenarios when compared to the more complex current state-of-

the-art models. The current state-of-the-art models have upwards of > 6𝑀 parameters to 

learn.  

In this thesis, we first present low-latency S-ConvNet, a simple yet efficient framework for 

learning instantaneous HD-sEMG images from scratch through random initialization for 

gesture or neuromuscular activity recognition. The experimental results proved that the 

proposed S-ConvNet is very effective for learning discriminative muscle activation features 

for instantaneous HD-sEMG image recognition especially in the data and high-end resource 

constrained scenarios. Without using any pre-trained models, our proposed S-ConvNet 

demonstrate state-of-the-art performance on three (3) out of four (4) publicly available 

benchmark HD-sEMG datasets, while using ≈ 12×smaller training dataset and reducing 
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learning parameters to only ≈2M for sEMG-based gesture recognition in intra-session 

scenarios outperforming the more complex state-of-the-art. 

In addition, electrode shifts, rotations and malfunctions are the serious challenges in sEMG-

based gesture recognition. To address these issues and devise more efficient and 

lightweight network models, the All-ConvNet is introduced. Comprising solely of 

convolutional layers, this architecture offers a simple yet effective framework for learning 

instantaneous HD-sEMG images from scratch via random initialization. The inherent 

design of All-ConvNet's convolutional layers ensures scale and shift invariance, ensuring 

the model's robustness to variations in signal distributions or amplitude and temporal 

alignment. This is crucial for accurate recognition across diverse movement scenarios. 

Similar to the proposed S-ConvNet, without using any pre-trained models, the lightweight 

All-ConvNet achieve state-of-the-art performance on three (3) publicly available 

benchmarks HD-sEMG datasets and perform very competitively to the most complex state-

of-the-art methods on another compared benchmark HD-sEMG dataset for intra-session 

gesture recognition based on instantaneous values of HD-sEMG signals. Notably, the 

proposed All-ConvNet accomplished this remarkable state-of-the-art intra-session gesture 

recognition performance while operating with an approximately ≈12×smaller dataset and 

reducing the number of training parameters to only ≈460k.   

These exceptional state-of-the-art experimental results for sEMG-based gesture recognition 

in intra-session scenarios potentially indicate that the proposed low-latency S-ConvNet and 

the lightweight All-ConvNet are highly effective in learning discriminative feature 

representations from instantaneous sEMG images. Hence, the proposed S-ConvNet and 

All-ConvNet models hold significant potential for deploying real-time MCI applications 
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based on sEMG signals, especially under limited data and high-end resource constrained 

scenarios. 

Moreover, for real-time Muscle-Computer Interfaces, the sEMG-based gesture recognition 

must address the inter-session and inter-subject distribution shifts. To further address this 

distribution shift problem, a domain adaptation method with shallow convolutional neural 

network (S-ConvNet) is proposed. The proposed domain adaptation (DA) methods with S-

ConvNet effectively transfer learned representations from the source domain sEMG dataset 

or task to target domain's sEMG-based inter-session and/or inter-subject gesture 

recognition tasks, thereby providing a solution for achieving strategic knowledge transfer 

and optimal model adaptation. Experiments conducted for gesture recognition in inter-

session and inter-subject scenarios on four (4) publicly available benchmark HD-sEMG 

datasets, the proposed DA methods with S-ConvNet outperformed the current most 

complex state-of-the-art DA methods. 

We further address the problem of distribution shifts by adapting the proposed lightweight 

All-ConvNet model to new target domain tasks using a limited amount of data for sEMG-

based inter-session and inter-subject gesture recognition. We propose All-ConvNet+TL 

leveraging lightweight All-ConvNet and transfer learning, which can be seen as a hybrid of 

feature extraction and fine-tuning, learning parameters that are discriminative for the new 

target task. However, feature extraction and fine-tuning both have their own limitations. To 

address these limitations, we introduce and conducted a weight (or feature) transfusion 

experiment in order to find out where does exactly the feature reuse takes place in the 

network of the proposed TL framework. We find out that meaningful feature reuse is 

restricted to the lowest few layers of the network. Building upon the findings of these 
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weight (or feature) transfusion experiments, we introduce a network trimming method to 

further optimize the proposed lightweight All-ConvNet+TL model. This involves 

selectively pruning the network's weights, resulting in the development of a more efficient 

Lightweight All-ConvNet-Slim model. The proposed lightweight All-ConvNet-Slim model 

can maintain the same level of gesture recognition performance or potentially achieve an 

even higher level, all while requiring the learning of a mere ≈190k parameters. Experiments 

on four datasets demonstrate that the proposed All-ConvNet+TL methods outperform the 

most complex existing approaches and achieve state-of-the-art results for sEMG-based 

gesture recognition in inter-session and inter-subject scenarios.  

The proposed DA method with S-ConvNet and the lightweight All-ConvNet+TL both sets 

a new state-of-the-art performance on all four (4) benchmark HD-sEMG dataset 

outperforming the current state-of-the-art DA methods. The performance gap with the best 

existing DA methods even increases more when the tiny amount of data (e.g., single trials) 

were available for adaptation. This state-of-the-art performance proved that the proposed 

DA with S-ConvNet and the lightweight All-ConvNet+TL model is highly effective in 

learning domain-invariant and discriminative representations for addressing distribution 

shifts in sEMG-based gesture recognition in inter-session and inter-subject scenarios. These 

outstanding experimental results provide evidence that the current state-of-the-art models 

may be overparameterized for sEMG-based inter-session and inter-subject gesture 

recognition tasks.  

Moreover, deep learning methods require a substantial amount of labeled sEMG data and 

high computational resources for achieving acceptable gesture recognition accuracy for 

MCI based on sEMG signals. In addition to these issues, the existing approaches for 
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sEMG-based gesture recognition using instantaneous sEMG images reported very low 

recognition accuracy with the classical machine learning methods such as SVM. To address 

these issues and propose an alternative competitive solution, in another study, we argued 

that the SVM can perform competitively to the more complex state-of-the-art deep learning 

methods if well-behaved distinctive features are provided to it. Therefore, we propose to 

use Histogram of Oriented Gradients (HOGs) as distinctive features for robust gestures or 

neuromuscular activity recognition using pairwise SVMs as the classification scheme. The 

experimental results demonstrate that HOG are effective features for unique representations 

of instantaneous HD-sEMG images and fine-tuning the hyper-parameter of the classical 

machine learning methods such as SVM, the very competitive gesture recognition 

performance can be achieved to the more complex state-of-the-art deep learning methods. 

The proposed method based on HOG and pairwise SVMs also can be effectively deployed 

to the data constrained and resource bounded scenarios. 

6.2 Future work and directions 

This thesis has covered various issues in sEMG-based intra-session, inter-session, and 

inter-subject gesture recognition under limited data availability and resource-constrained 

scenarios. The need for computationally and memory-efficient methods in sEMG-based 

MCIs arises from the practical requirements of real-time processing, accommodating 

limited hardware resources, optimizing energy consumption, providing a seamless user 

experience, and facilitating deployment in various settings. The proposed methods 

effectively address these issues while preserving state-of-the-art performance. On the basis 

of this thesis there are several potential research directions: 
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• sEMG-based MCIs are often used in portable, mobile, or wearable devices, which 

may possess limited computational power and memory. Furthermore, these mobile 

and wearable devices used in MCIs are typically powered by batteries or other 

energy sources. Therefore, in order to reduce latency, storage requirements, and 

energy consumption and to run inference more efficiently on these mobile wearable 

devices, the proposed S-ConvNet and All-ConvNet models, presented in chapters 3 

and 4 respectively, can be further optimized by compressing the network using 

model compression methods such as network pruning and quantization [118]. 

• In chapter 4 of this thesis, the All-ConvNet-Slim model, with a size of only 190 𝑘 

learning parameters, is introduced. An experiment conducted in an inter-session 

scenario has demonstrated its potential for sEMG-based gesture recognition. Further 

experimental validation of the All-ConvNet-Slim model using diverse sparse-

channel and high-density sEMG (HD-sEMG) datasets, across various tasks 

including intra-session and inter-subject analyses, could represent a promising 

avenue for future research. In addition, exploring multi-stream and multi-view 

representation learning with the proposed All-ConvNet-Slim model presents itself 

as a viable research direction. 

• The proposed knowledge-sharing-based domain adaptation (DA) methods 

employing S-ConvNet and All-ConvNet+TL have effectively demonstrated their 

capabilities in providing discriminative and domain-invariant feature 

representations, resulting in state-of-the-art performance across four publicly 

available HD-sEMG datasets. This achievement raises an intriguing question: Can 

state-of-the-art performance in sEMG-based inter-session/inter-subject gesture 
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recognition be achieved by employing the proposed S-ConvNet and All-ConvNet 

models to align the statistical distribution shift between the source domain and the 

target domain sEMG dataset or tasks, using statistical mechanisms such as 

correlation alignment (CORAL) [120]? This could represent a promising research 

direction for exploration. 

• Another promising avenue for research could involve the development of an 

adversarial discriminative domain adaptation technique [121], [122] based on the 

proposed S-ConvNet and All-ConvNet for domain invariant feature representation 

for enhanced inter-session and inter-subject gesture recognition. 

• Current approaches in computer vision applications, especially in image 

classification and object detection task reported significant gain in performance 

when the ConvNet is augmented by a self-attention mechanism without any 

parameter overhead [119]. This is achieved by concatenating the convolutional 

feature maps with a set of feature maps produced via self-attention. Hence, 

investigating the feasibility of augmenting the proposed S-ConvNet and All-

ConvNet models with a self-attention mechanism holds the potential for valuable 

exploration for sEMG-based gesture recognition. 

• The scalability of the proposed HoG and pairwise SVM classifier to sEMG-based 

gesture recognition in inter-session and inter-subject scenarios could represent an 

alternative and viable solution to current state-of-the-art deep learning approaches. 

• To integrate our developed state-of-the-art models for sEMG-based gesture 

recognition to the real-time MCI applications such as controlling a GEN3 robotic 

arm from Kinova [125]. 
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ABSTRACT– The recent progress in recognizing low-resolution 
instantaneous high-density surface electromyography (HD-
sEMG) images opens up new avenues for the development of 
more fluid and natural muscle-computer interfaces. However, 
the existing approaches employed a very large deep 
convolutional neural network (ConvNet) architecture and 
complex training schemes for HD-sEMG image recognition, 
which requires learning of ˃5.63 million(M) training parameters 
only during fine-tuning and pre-trained on a very large-scale 
labeled HD-sEMG training dataset, as a result, it makes high-
end resource-bounded and computationally expensive. To 
overcome this problem, we propose S-ConvNet models, a simple 
yet efficient framework for learning instantaneous HD-sEMG 
images from scratch using random-initialization. Without using 
any pre-trained models, our proposed S-ConvNet demonstrate 
very competitive recognition accuracy to the more complex state 
of the art, while reducing learning parameters to only ≈ 2M and 
using ≈ 𝟏𝟐 × 𝐬𝐦𝐚𝐥𝐥𝐞𝐫 𝐝𝐚𝐭𝐚𝐬𝐞𝐭. The experimental results 
proved that the proposed S-ConvNet is highly effective for 
learning discriminative features for instantaneous HD-sEMG 
image recognition, especially in the data and high-end resource-
constrained scenarios. 
 

Keywords: Neuromuscular activity recognition, Shallow 
convolutional neural networks, Feature learning, HD-sEMG, 
Gesture recognition, Muscle-computer interface, Deep neural 
networks.  
 

I. INTRODUCTION 
Neuromuscular activity recognition has a growing motivation 

for research because of its respective novel applications in real life. 
The major application domains are non-invasive control of active 
prosthesis [1], wheelchairs [2], exoskeletons [3] or providing 
interaction methods for video games [4] and neuromuscular 
diagnosis [5]. The conventional approaches for neuromuscular 
activity recognition immensely rely on sparse multi-channel surface 
electromyography (sEMG) sensors and windowed descriptive and 
discriminatory sEMG features [6-10]. However, the sparse multi-
channel sEMG based methods are not suitable for real-world 
applications due to their lack of robustness to electrode shift and 
positioning and therefore malfunctioning in any one of the channels 
requires retraining the entire system [11], [12]. In recent years, the 
high-density sEMG (HD-sEMG) based methods have been proposed 
to address this problem [11-13], [29]. The HD-sEMG consists of 
two-dimensional (2D) arrays of closely spaced electrodes that used 
to record the myoelectric activity over the skin surface [13], [14]. 

The recorded HD-sEMG data are spatially correlated enabled both 
spatial and temporal changes and robust to electrode shift and 
positioning [12]. The windowed sEMG and descriptive and 
discriminative features are used by the existing HD-sEMG based 
methods for neuromuscular activity recognition. However, finding 
an optimal window size would still require that reflects the 
compromise between classification accuracy and controller delay 
(both increase with the window increase) especially in the 
application of assistive technology, physical rehabilitation, and 
human-computer interfaces [13].  

To address this problem, the distinctive patterns inside the 
instantaneous sEMG images has been explored for developing more 
fluid and natural muscle-computer interfaces (MCI’s) in recent years 
by Geng et al., [13] and M. R. Islam et al., [15], [33]. This scheme 
enables neuromuscular activity recognition solely with the sEMG 
images spatially composed from HD-sEMG signals recorded at a 
specific instant. The instantaneous values of HD-sEMG signals at 
each sampling instant were arranged in a 2D grid following the 
electrode positioning. Afterwards, this 2D grid was converted to a 
grayscale sEMG image. Using Histogram of Oriented Gradients 
(HOG) as discriminative features and pairwise SVM’s classification 
method in [15], a competitive neuromuscular activity recognition 
accuracy of an 8-hand gesture has been achieved as par with the 
state-of-the-art method for an intra-subject test. 

However, a DeepFace [17] like very large deep convolutional 
neural network (CNN or ConvNet) architecture is employed by the 
state-of-the-art methods [13], [16] for sEMG image classification, 
which requires to be pre-trained on a very large-scale training dataset 
(≈ 0.76 million), as a result, it makes computationally expensive to 
be practical for real-world MCIs applications. Following are the 
other critical limitations of using pre-trained networks for 
instantaneous HD-sEMG image recognition:  

(i) Constrained structure design space – pre-trained networks 
are very deep and large and trained on a large-scale HD-sEMG 
dataset, therefore, containing a massive number of parameters. 
Hence, there is a little flexibility to control/adjust the network 
structures (even for small changes) by directly adopting the pre-
trained network to the target task. The requirement of computing 
resources and large-scale pre-trained datasets are also bounded by 
large network structures.  

(ii) Domain mismatch – the existing sEMG based neuromuscular 
activity recognition methods are usually trained and evaluated on the 
data acquired from the able-bodied subjects. However, in real time 



sEMG-based MCIs applications (e.g., assistive technology, physical 
rehabilitation, etc.) are most of the time designed for elderly people, 
amputees and patients. These differences impose a serious problem 
due to the varied sEMG distributions in the source and target task. 
Though the fine-tuning of the pre-trained model can reduce the gap, 
however, it is still a serious problem, when there is a huge mismatch 
between the source and the target task [18]. Also, this conventional 
wisdom of pre-training is recently challenged by He et al. [31], 
where pre-training does not necessarily improve the target task 
accuracy is proved to be claimed.   

(iii) Learning bias – the distributions and the loss functions 
between the source task and the target task may vary significantly, 
which may lead to different searching/optimization spaces. 
Therefore, the learning may be biased towards a local minimum 
which is not optimal for the target task [19]. 

To overcome these above-mentioned problems, our work is 
motivated by the following research question- is it possible to learn  
neuromuscular activities from scratch utilizing HD-sEMG datasets 
available only for the target task without any pre-training? To 
achieve this goal, we propose shallow and lightweight convolutional 
neural network (S-ConvNet) architectures, a simple yet effective 
framework, which could learn neuromuscular activity from scratch 
using ≈ 12 × 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 than its pre-trained counterparts for 
HD-sEMG image recognition.  

For instantaneous sEMG image-based neuromuscular activity 
recognition, the challenge remains open because very limited 
research has been done on it.  

The rest of the paper is organized as follows. Sections II and III 
present the proposed framework and S-ConvNet models 
respectively. Section IV describes the testing database and 
experimental validation. Section V offers some conclusive remarks. 

II. THE FRAMEWORK 

The proposed S-ConvNet framework  for neuromuscular activity 
recognition using instantaneous HD-sEMG images has three phases: 
(i) pre-processing and HD-sEMG image generation (ii) architectural 
design of the S-ConvNet model and (iii) classification. Fig.1 
describes the proposed S-ConvNet framework of muscular activity 
recognition by instantaneous sEMG images. The All-ConvNet [33] 
is a fully convolutional neural network, where the depth of the All-
ConvNet network is much higher than the propoed S-ConvNet. First, 
the power-line interferences were removed from the acquired HD-
sEMG signals with a band-stop filtered between 45 and 55 Hz using 
a 2nd order Butterworth filter. Then, the HD-sEMG signals at each 
sampling instant were arranged in a 2-D grid according to their 

electrode positioning. This grid was further transformed into an 
instantaneous sEMG image by linearly transforming the values of 
sEMG signals from 𝑚𝑉 to color intensity as [−2.5𝑚𝑉, 2.5𝑚𝑉] to 
[0 255]. Thus, an instantaneous grayscale sEMG image was formed 
with a size of 16 × 8. Secondly, we devised different S-ConvNet 
models which describe in Section III. Finally, providing 
instantaneous HD-sEMG images and their corresponding labels, our 
devised S-ConvNet model is trained offline to predict to which 
muscular activity an instantaneous HD-sEMG image belongs. Then, 
this trained S-ConvNet model is used to recognize different 
neuromuscular activities at test time from the unseen instantaneous 
HD-sEMG images. 

III. MODEL DESCRIPTION- THE SHALLOW CONVOLUTIONAL NEURAL 
NETWORK (S-CONVNET) 

We train our S-ConvNet on a multi-class neuromuscular activity 
recognition task, namely, to recognize an activity class through an 
instantaneous HD-sEMG image. The overall architecture of S-
ConvNet models are described in Table I. Starting from the simplest 
Model A, the depth and number of parameters in the network 
gradually increase to Model C. The instantaneous HD-sEMG image 
is passed through a convolutional (conv.) layers, where a small 
receptive field with a 3×3 filters are used. The smallest receptive 
field with 3×3 filters is the minimum filter size to allow overlapping 
convolutions and spatial pooling with a stride of 2, which also 
captures the notion of left, right and center amicably. It can be 
observed that the Model B from the Table I is a variant of the 
Network in Network architecture [24], where only 1×1 convolution 
is performed after each normal 3×3 convolutions layers. The 1×1 
convolution act as a linear transformation of the input channels 
followed by a non-linearity [25]. We also highlight that the model C 
is a variant of the simple ConvNet models introduced by J. T. 
Springenberg et. al., [20] for object recognition in which the spatial 
pooling is performed by using a stridden CNN. The output of a 
convolution map 𝑓 produced by a convolution layer 𝑐 is computed 
as follows: 

𝑐𝑖,𝑗,𝑜(𝑓) = ∅ (∑ ∑ ∑ 𝜃ℎ,𝑤,𝑢,𝑜 ⋅𝑛
𝑢=1

𝑘
𝑤=1

𝑘
ℎ=1  𝑓𝑔(ℎ,𝑤,𝑖,𝑗,𝑢)) (1) 

where 𝜃 are the convolutional weights or filters; 𝑔(ℎ, 𝑤, 𝑖, 𝑗, 𝑢) =
(𝑟. 𝑖 + ℎ, 𝑟. 𝑗 + 𝑤, 𝑢) is the function mapping from a position in 
𝑐 to a position in 𝑓 respecting the stride 𝑟;  𝑤 and ℎ are respectively 
the width and height of the filters; 𝑛 is the number of channels (in 
case 𝑓 is the output of a convolutional layer, 𝑛 is the number of 
filters); 𝑜 ∈ [1, 𝑀] is the number of output feature or channels of the 
convolutional layer and ∅(⋅) is the activation function, an 
exponential linear unit ELU defined as: 

 ∅(𝑥) = {
𝛼(exp(𝑥) − 1),   𝑖𝑓 𝑥 < 0

𝑥,          𝑖𝑓 𝑥 ≥ 0
 (2) 

Afterwards, the convolution maps produced by the final 
convolutional layer of each of the model networks, illustrated in 
Table I, are flattened out to form a multi-dimensional feature vector. 
Then, the flattened feature vector is inputted to a fully connected 
layer where each of the feature elements is connected to all its input 
neurons. This fully connected layer can capture correlations between 
features extracted in the distant part of the instantaneous sEMG 
images.  

 
Fig. 1.  Schematic diagram of the proposed framework of muscular 
activity recognition by instantaneous sEMG images. 

 



Finally, the output of the fully connected layer is fed to a G-way 
softmax layer (where G is the number of neuromuscular activity 
classes) which produces a distribution over the class labels. If we de- 

 
note �̂�(𝑗) as the 𝑗th element of the 𝐺 dimensional output vector of the 
layer preceding the softmax layer, the class probabilities are 
estimated using the softmax function 𝜎(. ) defined as below: 

 𝜎(�̂�(𝑗)) =
exp ( �̂�(𝑗))

∑ exp ( �̂�(𝐺))𝐺
 (3) 

 The goal of this training is to maximize the probability of the 
correct neuromuscular activity class. We achieve this by minimizing 
the cross-entropy loss [26] for each training sample. If 𝑦 is the true 
label for a given input, the loss is  

 𝐿 =  − ∑ 𝑦(𝑗)ln (σ(𝑗 �̂�(𝑗)) (4) 

The loss is minimized over the parameters by computing the 
gradient of 𝐿 with respect to the parameters and by updating the 
parameters using the state-of-the-art Adam (adaptive moment 
estimation) gradient descent-based optimization algorithm [27].  

Having trained the network, an instantaneous HD-sEMG image 
is recognized as in the neuromuscular activity class 𝐶 by simply 
propagating the input image forward and computing: 𝐶 =

𝑎𝑟𝑔𝑚𝑎𝑥𝑗(�̂�(𝑗)). 

The major advantage of the proposed S-ConvNet models are  
easily scalable and does not increase the learning parameters with 
the enhancement of input HD-sEMG image size. Whereas, the 
ConvNet employed by the state of the art [13] is unscalable. For 
example, the learning parameters of [13] increase to ≈ 5.63M to ≈ 
11M with a little augmentation of input HD-sEMG image size from 
16×8 to 16×16 due to the use of an unshared weight strategy [32]. 

IV. THE PERFORMANCE EVALUATION OF THE PROPOSED 
S-CONVNET MODELS 

In order to quantify the effect of simplifying the proposed S-
ConvNet model architecture, we perform experiments on CapgMyo 
data sets [16] (These data sets are made publicly available from the 
following website: http://zju-capg.org/myo/data/index.html). This 
dataset was developed for providing a standard benchmark database 
(DB) to explore new possibilities for studying next-generation 
muscle-computer interfaces (MCIs). The CapgMyo database 
comprises 3 sub-databases (referred as DB-a, DB-b and DB-c). 
However, DB-a has been used in our experiments to evaluate the 

performance of our proposed methods for intra-session 
neuromuscular activity recognition because the maximum number of 
subjects (18) have participated in DB-a. In DB-a, 8 isotonic and 
isometric hand gestures were obtained from 18 of the 23 subjects and  
 
each gesture was also recorded 10 times. For each subject, the 
recorded HD-sEMG data is filtered, sampled and instantaneous 
sEMG image is generated using the method described in Section II. 
More explicitly, 8 different hand gestures are performed by every 
subject and each hand gestures are recorded 10 times with a 1000 Hz 
sampling rate, which in total generates (8×10×1 000) = 80 000 or 
80k instantaneous sEMG images individually. Then, our S-ConvNet 
models are learned from scratch through random initialization. We 
performed training, validation and testing using only 80 000 images 
produced by 18 subjects individually through a leave one trial out  
cross-validation. We kept one trial out from each of the 8 different 
hand gestures i.e 8 000 images for validation and testing. The 
remaining 9 trials for 8 different hand gestures i.e 72k images have 
been used for training. The cross-validation accuracy A is computed 
for each class  i, as the number of totals correctly recognized hand 
gestures, divided by the total number of tests sEMG images 
                      Accuracy,  A =  

C

N
=  

∑ Ci

N
                                         (5)       

where i = {1,  2,  … ,   G} and G is the number of gesture classes. 

In contrast, existing approaches (e.g., [13] and [16]) for 
instantaneous HD-sEMG image recognition used a total of 
(18×40 000) = 720 000 or 720k training images for pre-training, 
while 40 000 images from each of the subject are used separately for 
fine-tuning. Therefore, the existing approaches involve a total of 
(720 000+40 000) = 760 000 or 760k images only in the training 
process. 

In our experiments, we compared all the proposed S-ConvNet 
models described in Section III on the CapgMyo DB-a datasets 
without any pre-training or data augmentations. The connection 
weights for all S-ConvNet networks were randomly initialized using 
Xavier and He initialization schemes [21], [28]. However, we found 
that the models with He initialization scheme perform on average 
1-1.5% worse than the Xavier initialization. We also propose to use 
a computationally efficient stochastic optimization algorithm, Adam 
[27], which provides fast and reliable learning convergence than the 
stochastic gradient descent (SGD) optimization algorithm used in the 
literature for instantaneous HD-sEMG image recognition. Our 
proposed all S-ConvNet models were trained using Adam 
optimization algorithms with a momentum decay and scaling decay 
are initialized to 0.9 and 0.999 respectively. In contrast to SGD, 
Adam is an adaptive learning rate algorithm, therefore, it requires 
less tuning of the learning rate hyperparameter. The learning rate of 
0.001 is initialized to all our experiments. The smaller batches of 256 

TABLE I THE THREE S-CONVNET NETWORKS MODELS FOR 
NEUROMUSCULAR ACTIVITY RECOGNITION 

A B C 
Input 16×8 Gray-level Image 

3 × 3 Conv. 32 ELU 3 × 3 Conv. 32 ELU 3 × 3 Conv. 32 ELU 
3 × 3 Conv. 64 ELU 1 × 1 Conv. 32 ELU 3 × 3 Conv. 32 ELU 
3 × 3 Conv. 64 ELU 3 × 3 Conv. 64 ELU 3 × 3 Conv. 32 ELU, 

with stride 𝑟 = 2  
FC1 256 ELU 1× 1 Conv. 64 ELU 3 × 3 Conv. 64 ELU 

FC2 G-way softmax FC1 256 ELU 3 × 3 Conv. 64 ELU 
- FC2 G-way softmax 3 × 3 Conv. 64 ELU, 

with stride 𝑟 = 2 
- - FC1 256 ELU 
- - FC2 G-way softmax 

 

TABLE II THE AVERAGE RECOGNITION ACCURACY (%) OF 8 HAND 
GESTURES WITH INSTANTANEOUS HD-SEMG IMAGES FOR 18 
DIFFERENT SUBJECTS AND RECOGNITION APPROACHES. MAJORITY 
VOTING (ON 40 SEMG IMAGE) RESULTS ARE SHOWN IN PARENTHESES  

Model 
Average 

Recognition 
Accuracy (%) 

# Learning Parameters 

S-ConvNet-A 87.95 (98.87) ≈ 2.09M 
S-ConvNet-B 86.94 ≈ 2.12M 
S-ConvNet-C  87.02 ≈ 2.10M 

W.Geng et.al., [13]      89.3 (99.00) ≈ 5.63M + Pre-training 

 



randomly chosen samples from the training dataset are fed to the 
network during consecutive learning iterations for all our 
experiments. We set a maximum of 100 epochs for training our 
S-ConvNet models. However, to avoid overfitting we have also 
applied early stopping in which the training process is interrupted if 
no improvements in validation loss are noticed for 5 consecutive 
epochs. The Batch normalization [22] is applied after the input and 
before each non-linearity. The Dropout [23] was applied on all layers 
with probabilities 35% for all S-ConvNet models. The S-ConvNet 
models were trained on a workstation with an Intel Core, 3.60 (i7-
4790) processor, 16GB RAM and an NVIDIA RTX Ti GPU. Each 
epoch was completed in approximately 4s while training with S-
ConvNet-A. The test results for all the S-ConvNet models are 
presented in Table II and compared with state-of-the-art methods.  

 As can be seen in the Table II, the simple S-ConvNet models 
(on the order of ≈ 2M learning parameters) trained from random-
initialization with 3×3 convolutions and a dense layer with only a 
smaller number of neuron performs comparably to the state of the art 
for CapgMyo DB-a dataset even though the state of the art methods 
use more complicated network architectures and training schemes 
which requires to learn over ≈ 5.63M parameters during fine-tuning 
only and also pre-trained with over 720k instantaneous HD-sEMG 
images.   

Fig. 2 presents the recognition accuracy obtained by our 
proposed different S-ConvNet models for 18 different subjects and 
their statistical significance. We achieve 87.95%, 86.94%, and 
87.02% average recognition accuracy for the proposed 
S-ConvNet-A, B, and C models respectively, which is very 
competitive to the more complex, highly resource-based and fine-
tuned pre-trained models proposed by the existing approaches while 
also reducing the learning parameters to a large extent. These high 
recognition accuracies for neuromuscular activity recognition based 
on instantaneous HD-sEMG images indicate the stability and 
potentiality of the proposed S-ConvNet models.  

The recognition accuracy of 8 hand gestures of all 18 subjects in 
CapgMyo DB-a which obtained through leave one trial out cross- 
validation for 10 different trials using S-ConvNet-A and their 
statistical significance are presented in Fig. 3. It is observed that the 
average recognition accuracy >93% and >88%. have been achieved 
at least for 6 and 5 different subjects respectively. Moreover, the high 
average recognition accuracies 94.29%, 96.55% and 98.87% are 
achieved by a simple majority voting with 3, 20 and 40 instantaneous 
images respectively (Table II, S-ConvNet-A). All these highly 
promising and competitive results proved that the proposed S-

ConvNet models trained from random-initialization can learn all the 
necessary invariances that require to build a discriminant 
representation using only the available target dataset for 
neuromuscular activity recognition based on instantaneous 
HD-sEMG images. Therefore, the performance of the proposed S-
ConvNet models is no worse than its more complex, highly resource-
based, pre-trained and fine-tuned state of the art models. It is also 
worth mentioning that why we did compare our results only with 
[13] and not with the [16] and [30]. Because the same pre-trained 
and fine-tuned model employed in [13] was used in these successive 
studies, however, to address the same problem with a different view. 
Now, for the fair comparison with the state of the art, the following 
points are required to be highlighted.  

We introduce a leave one trial out cross-validation in which our 
proposed S-ConvNet models are tested with 80k different samples 
for every subject. Existing instantaneous HD-sEMG image 
recognition approaches are tested with 40k samples for each of the 
subjects. Whereas we have used 80k samples (twice the number of 
testing samples) for recognition and achieved comparable 
performance on par with the state of the art. It is also noteworthy that 
the recognition results of all S-ConvNet models are obtained without 
any hyper-parameter tuning. Therefore, we also want to stress out 
that the results of all models evaluated in this paper could potentially 
be improved or even surpass the state of the art by a thorough 
hyperparameter tuning. 

Finally, we argue that as aforementioned briefly, training from 
scratch is of critical importance at least for the following reasons. 
First, Domain mismatch– the distributions of the sEMG signals vary 
considerably even between recording sessions of the same subject. 
This problem becomes even more challenging, where the learned 
model is used to recognize muscular activities in a different 
recording session. Though the fine-tuning of the pre-trained model 
can reduce the gap due to the deformations in a new recording 
session. But what if we have a technique that can learn HD-sEMG 
images from scratch for recognizing neuromuscular activities. 
Second, the fine-tuned pre-trained model restricts the structure 
design space for neuromuscular activity recognition. This is very 
critical for the deployment of deep neural network models to the 
resource limited scenarios. 

V.  CONCLUSION 

We present S-ConvNet models, a simple yet efficient 
framework for learning instantaneous HD-sEMG images from 

 

Fig. 2.  The recognition accuracy of 8 hand gestures for 18 different 
subjects with our proposed S-ConvNet recognition approaches. 

 

 
Fig. 3.  The recognition accuracy of 8 hand gestures for 18 different 
subjects with our proposed S-ConvNet-A. 

 



scratch for neuromuscular activity recognition. Without using any 
pre-trained models, our proposed S-ConvNet demonstrates very 
competitive accuracy to the more complex state of the art for 
neuromuscular activity recognition based on instantaneous 
HD-sEMG images, while using ≈ 12×smaller dataset and reducing 
learning parameters to ≈ 2M. The proposed S-ConvNet has great 
potential for learning and recognizing neuromuscular activities on 
resource-bounded devices. Our future work will consider improving 
inter-session neuromuscular activity recognition performances, as 
well as learning S-ConvNet models to support resource-bounded 
devices. 
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ABSTRACT – Neuromuscular activity recognition using low-
resolution instantaneous high-density surface electromyography 
(HD-sEMG) images present a great challenge. The recent result 
shows the high potentiality and hence opens up new avenues for 
the development of more fluid and natural muscle-computer 
interfaces. However, the existing approaches employed a very 
large deep ConvNet, which requires learning >5.63 million 
training parameters only during fine-tuning and pre-trained on a 
very large-scale labeled HD-sEMG training datasets, as a result, 
it makes high-end resource bounded and computationally 
expensive. To overcome this problem, we propose a lightweight 
All-ConvNet model that consists solely of convolutional layers, a 
simple yet efficient framework for learning instantaneous 
HD-sEMG images from scratch through random initialization. 
Without using any pre-trained models, our proposed lightweight 
All-ConvNet demonstrate very competitive or even state of the 
art performance on a current benchmarks HD-sEMG dataset, 
while requires learning only ≈460k training parameters and 
using ≈12×smaller dataset. The experimental results proved that 
the proposed lightweight All-ConvNet is highly effective for 
learning discriminative features for low-resolution instantaneous 
HD-sEMG image recognition and low-latency processing 
especially in the data and high-end resource constrained 
scenarios.  

Keywords: Neuromuscular activity recognition, All 
convolutional neural networks, Feature learning, HD-sEMG, 
Gesture recognition, Muscle-computer interface, Deep neural 
networks. 

I. INTRODUCTION 

Neuromuscular activity recognition has been a driving 
motivation for some emerging biomedical applications such 
as non-invasive and intuitive control of active prosthesis, 
wheelchairs, exoskeletons or providing interaction methods 
for video games and neuromuscular diagnosis [1-4]. The 
sparse-channel surface electromyography (sEMG) and 
windowed descriptive and discriminative sEMG features are 
used by the conventional approaches [5-9], [28]. However, 
these methods are not practical for high sensitivity to electrode 
shift and positioning [10-11]. To overcome this problem, the 
high- density sEMG (HD-sEMG) based methods have been 
proposed in recent years [10-14], [26-27]. The HD-sEMG 
records myoelectric signals using two-dimensional (2D) 
electrode arrays that characterize the spatial distribution of 
myoelectric activity over the muscles that reside within the 
electrode pick-up area [12]. The collected HD-sEMG data are 
spatially correlated which enabled both temporal and spatial 

changes and robust against malfunction of the channels with 
respect to the previous counterparts [11]. However, the 
existing HD-sEMG based neuromuscular activity recognition 
methods [26-27], [28] are still depending on the windowed 
sEMG (e.g., 260 ms) which demands to find an optimal 
window length otherwise influence in the classification 
accuracy and controller delay especially in the application of 
assistive technology, physical rehabilitation and human 
computer interfaces [12].  

To overcome this problem and develop a more fluid and 
natural muscle-computer interfaces (MCI’s), more recently, 
W. Geng et al., [12] and M. R. Islam et al., [13] explored the 
patterns inside the instantaneous sEMG images spatially 
composed from HD-sEMG enables neuromuscular based 
gesture recognition solely with the sEMG signals recorded at 
a specific instant. Hence, the observational latency was 
reduced to 1 ms which would reduce controller delay 
significantly to the above-mentioned applications.  

However, the current state-of-the-art methods [12], [14] 
employed a DeepFace [15] like very large deep convolutional 
neural network (CNN or ConvNet) architecture for sEMG 
image classification, which requires learning >5.63 million 
(M) training parameters only during fine-tuning and pre-
trained on a very large-scale labeled HD-sEMG training 
datasets, as a result it makes high-end resource bounded and 
computationally expensive to be practical for real-world MCIs 
applications. The major limitations of using pre-trained 
networks are usually very deep, contains a massive number of 
parameters and trained on a large-scale training dataset. 
Therefore, it is totally not possible to any degree of mutation 
of the pre-trained networks during fine-tuning. If any mutation 
or employing a new architecture is necessary then the whole 
pre-training should be re-conducted on the large-scale training 
dataset, requiring a high computational cost. Fortunately 
training from scratch can cope with these problems [29]. 

Moreover, in their pre-trained ConvNet includes two locally 
connected (LCN) and three fully connected layers among the 
other convolutions and a G-way fully connected layer. The 
LCN layers assign an independent filter weight, 	to each of 
the local receptive field of a feature map i.e. = 	,1 while 
convolution (or CNN) layers adopt a filter weight sharing 

1 Given an input sEMG image , LCN requires each filter is conducted on a
patch vector , where p stands for position of the patch in the input image.



strategy i.e. =  [16]. Due to this unshared weight 
strategies of LCN, the number of learning parameters 
increases considerably from  to × , where ≫ , 
where  is the number of patches and k is the number of 
kernels. As a result, a very large-scale labeled training dataset 
is required to train the LCN [15]. However, the LCN may be 
useful in an application where the precise location of the 
feature is dependent of the class labels. 

Considering the above-mentioned fact, we must investigate 
- (i) Do we expect the devised networks model to produce a 
location/translation invariant feature representation? or, (ii) 
do we need a location dependent feature representation? 
Following this finding and building on other recent works for 
finding a simple network architecture, we propose a 
lightweight All-ConvNet, a new architecture that consists 
solely of convolutional layers, a simple yet effective 
framework, which could learn neuromuscular activity from 
scratch and yields competitive or even state of the art 
performance using ≈12×smaller dataset while reducing 
learning parameters from ≈5.63M to only ≈460k than its pre-
trained counterparts for instantaneous HD-sEMG image 
recognition. 

For instantaneous sEMG image based neuromuscular 
activity recognition, the challenge remains open because very 
limited research has been done on it. We propose a lightweight 
All-ConvNet, to the best of our knowledge, this is the first All-
ConvNet framework to date for instantaneous HD-sEMG 
recognition. 

II. THE PROPOSED FRAMEWORK 

The proposed framework for neuromuscular activity 
recognition using instantaneous HD-sEMG images includes 
the following three major computational components: (i) pre-
processing and sEMG image generation (ii) architectural 
design of the All-ConvNet model and (iii) classification. A 
schematic diagram of the proposed framework of muscular 
activity recognition by instantaneous sEMG images is shown 
in Fig. 1. First, the power-line interferences were removed 
from the acquired HD-sEMG signals with a band-stop filtered 
between 45 and 55 Hz using a 2nd order Butterworth filter. 
Then, the HD-sEMG signals at each sampling instant were 
arranged in a 2-D grid according to their electrode positioning. 
This grid was further transformed into an instantaneous sEMG 
image by linearly transforming the values of sEMG signals 
from  to color intensity as [-2.5mV, 2.5mV] to 0	255 . 
Thus, an instantaneous grayscale sEMG image was formed 
with a size of 16 × 8. Secondly, we devised a lightweight All-
ConvNet model which describes in Section III. Finally, 
providing instantaneous HD-sEMG images and their 
corresponding labels, our devised All-ConvNet model is 
trained offline to predict to which muscular activity an 
instantaneous HD-sEMG image belongs. Then, this trained 
All-ConvNet model is used to recognize different 
neuromuscular activities at test time from the unseen 
instantaneous HD-sEMG images. 

III. MODEL DESCRIPTION- THE ALL CONVOLUTIONAL 

NEURAL NETWORK (ALL-CONVNET) 

The All-ConvNet architectural design is adopted based on 
the following principle and observation: 

(i) It was hypothesized that the different muscular activities 
produce different spatial intensity distributions, which is 
reproducible across the trials of the same muscular activities 
and discriminative among different activities. However, we 
observed that the spatial intensity distributions within the 
same muscular activities are not locally invariant and the 
precise location of the features is also independent to the class 
labels. Fig. 2 demonstrate a sequence of HD-sEMG images 
derived from the same class. CNN alone has the great ability 
to exploit locally translational invariance features by adopting 
local connectivity and weight sharing strategies [16]. Hence, 
the LCN’s are ablated in designing our All-ConvNet models 
as the location of the features is not dependent to the class 
labels. Why the ablation of LCN’s are so significant? Because 
it is not only increased the number of training parameters but 
also make the network totally unscalable. For example, only 
the two LCN in [12] requires learning of >2.13M parameters 
and the total learning parameters of [12] increased from 
≈5.63M to ≈ 11M with just a little enhancement of input HD-
sEMG image size from 16×8 to 16×16. 

(ii) Inspired by [17], we make use of the fact that if the part of 
the instantaneous HD-sEMG image is covered by the units in 
the topmost convolution layers could be large enough to 
recognize its content (i.e., muscular activity class we want to 
recognize). Then, the fully connected layers can also be 
replaced by simple 1-by-1 convolutions. This leads to 
predictions of HD-sEMG image classes at different positions 
which can then simply be averaged over the whole image. This 
scheme was first described by Lin et. al., [21], which further 
regularizes the network as the 1-by-1 convolution has much 
less parameters than a fully connected and LCN layer. Overall 

 
Fig. 1. Schematic diagram of the proposed framework of muscular 
activity recognition by instantaneous sEMG images. 

       
Fig. 2. HD-sEMGs derived from the same muscular activity class which 
demonstrates that the distributions are independent to the class labels. 



our architecture is thus reduced to consist only of 
convolutional layers with ELU non-linearities [25] and a 
global average pooling (GAP) + SoftMax layer to produce 
predictions over the whole instantaneous HD-sEMG image. 
Table I describes our proposed All-ConvNet architecture. We 
did experiments with the variant of All-ConvNet as in [17], 
however, the All-ConvNet presented in Table I performs 
favorably.  

    We train our All-ConvNet on a multi-class neuromuscular 
activity recognition task, namely, to recognize an activity 
class through an instantaneous HD-sEMG image. As 
described in the Table I, in the proposed All-ConvNet network 
we consider use 1-by-1 convolution at the top to produce 8 
outputs of which we then compute an average over all 
positions and fed to a G-way SoftMax layer (where G is the 
number of neuromuscular activity classes) which produces a 
distribution over the class labels. If we denote ( ) as the th 

element of the  dimensional output vector of the layer 
preceding the SoftMax layer, the class probabilities are 
estimated using the SoftMax function (. ) defined as below: 

 ( ) = 	( ( ))∑ 	( ( )) (1) 

The goal of this training is to maximize the probability of 
the correct neuromuscular activity class. We achieve this by 
minimizing the cross-entropy loss [22] for each training 
sample. If  is the true label for a given input, the loss is  

 = 	−∑ ( )ln	(σ( ( )) (2) 

The loss is minimized over the parameters by computing the 
gradient of  with respect to the parameters and by updating 
the parameters using the state-of-the-art Adam (adaptive 
moment estimation) gradient descent-based optimization 
algorithm [23], which provides fast and reliable learning 
convergence than the stochastic gradient descent (SGD) 
optimization algorithm used in the fine-tuned pre-trained 
networks for instantaneous HD-sEMG image recognition.  

Having trained the network, an instantaneous HD-sEMG 
image is recognized as in the neuromuscular activity class  
by simply propagating the input image forward and 
computing: 

                    = ( ( ))                                  (3) 

IV. THE PERFORMANCE EVALUATION OF THE PROPOSED 

ALL-CONVNET MODEL 

In order to quantify the effect of simplifying the proposed 
All-ConvNet network we perform experiments on CapgMyo 

data sets [14] (These data sets are made publicly available 
from the following website: http://zju-
capg.org/myo/data/index.html). This dataset was developed 
for providing a standard benchmark database (DB) to explore 
new possibilities for studying next-generation muscle-
computer interfaces (MCIs). The CapgMyo database 
comprises 3 sub-databases (referred to DB-a, DB-b and DB-
c). However, DB-a has been used in our experiments to 
evaluate the performance of the proposed lightweight All-
ConvNet for intra-session neuromuscular activity recognition 
because the maximum number of subjects (18) have 
participated in DB-a. In DB-a, 8 different isotonic and 
isometric hand gestures are performed by every subject and 
each hand gestures are recorded 10 times with a 1000 Hz 
sampling rate, which in total generates 
(8×10×1 000) = 80 000 or 80k instantaneous sEMG images 
individually. Then, our All-ConvNet network is trained from 
scratch through random initialization. We performed training, 
validation and testing using only 80 000 images produced by 
18 subjects individually through a leave one trial out cross-
validation. We kept one trial out from each of the 8 different 
hand gestures i.e. 8 000 images for validation and testing. The 
remaining 9 trials for 8 different hand gestures i.e. 72k images 
are used for training. The cross-validation accuracy A is 
computed for each class  i, as the number of totals correctly 
recognized hand gestures, divided by the total number of tests 
sEMG images 

                Accuracy, 	A = 	 = 	 ∑                       (4) 

where i = 1, 	2, 	 … , 		G  and G is the number of gesture 
classes. 

In contrast, existing approaches (e.g. [12] and [14]) for 
instantaneous HD-sEMG image recognition used a total of 
(18×40 000) = 720 000 or 720k training images for pre-
training, while 40 000 images from each of the subject are 
used separately for fine-tuning. Therefore, the existing 
approaches involve a total of (720 000+40 000) = 760 000 or 
760k images only in the training process. Fig. 3 shows the total 
number of images are used during training for pre-training + 
fine-tuning vs random initialization. 

In our experiments, the proposed All-ConvNet described in 
Section III were trained on the CapgMyo DB-a datasets 
without any pre-training or data augmentations. In order to 
facilitate in GAP, we only enhance the input HD-sEMG image 

TABLE I THE ALL-CONVNET NETWORK MODEL FOR 

NEUROMUSCULAR ACTIVITY RECOGNITION. 
All-ConvNet 

Input 16×16 Gray-level Image 
3 × 3 Conv.64 ELU 
3 × 3 Conv.64 ELU 
3 × 3 Conv. 64 ELU with stride r =2 
3× 3 Conv. 128 ELU 
3× 3 Conv. 128 ELU 
3× 3 Conv. 128 ELU with stride r =2 
1×1 Conv. 128 ELU 
1×1 Conv. 8 ELU 
global averaging over 4×4 spatial dimensions 

G-way SoftMax 

 
Fig. 3. Total number HD-sEMG images seen during training, for pre-training 
+ fine-tuning vs. random-initialization. 



size from 16×8 to 16×16 by horizontal mirroring. Unlike [12], 
this enhancement does not increase the learning parameters in 
the proposed All-ConvNet.  The connection weights for All-
ConvNet networks were randomly initialized using Xavier 
initialization scheme [18], [24] and were trained using Adam 
optimization algorithms [23] with a momentum decay and 
scaling decay are initialized to 0.9 and 0.999 respectively. In 
contrast to SGD, Adam is an adaptive learning rate algorithm; 
therefore, it requires less tuning of the learning rate 
hyperparameter. The learning rate of 0.001 is initialized to all 
our experiments. The smaller batches of 256 randomly chosen 
samples from the training dataset are fed to the network during 
consecutive learning iterations for all our experiments. We set 
a maximum of 100 epochs for training our All-ConvNet 
model. However, to avoid overfitting we have also applied 
early stopping in which the training process is interrupted if 
no improvements in validation loss are noticed for 5 
consecutive epochs. The Batch normalization [19] is applied 
after the input and before each non-linearity. Dropout [20] was 
applied on all layers with probabilities 25%. The All-ConvNet 
model was trained on a workstation with an Intel Core, 3.60 
(i7-4790) processor, 16GB RAM and an NVIDIA RTX 2080 
Ti GPU. Each epoch was completed in approximately 5s. The 
test results for the All-ConvNet model are presented in 
Table II and compared with state-of-the-art methods. It is 
noteworthy that, the results in Table II are only compared with 
[12] because the same complex fine-tuned and pre-trained 
networks were subsequently employed in [14] and [30], 
though in [30] sparse channel sEMG were used.  

As can be seen in Table II, the proposed All-ConvNet 
networks (on the order of only 460k learning parameters) 
consists of a stack of 3×3 convolutional layers with occasional 
subsampling by stride of 2 and trained from random 
initialization performs comparably on CapgMyo DB-a dataset 
to the S-ConvNet [29] and fine-tuned pre-trained networks 
[12] even though the [12] use more complicated network 
architectures and training schemes which requires to learn 
over 5.63 millions parameters during fine-tuning only and also 
pre-trained with over 720k instantaneous HD-sEMG images. 
The average recognition accuracy of 8 hand gestures for 18 
different subjects 85.81% obtained with the proposed All-
ConvNet. The high average recognition accuracies 93.10%, 
95.57% and 97.64% are achieved by a simple majority voting 

with 3, 20 and 40 instantaneous images respectively. The 
average run time of training, validation and predictions for an 
intra-subject test is also included in Table II. The proposed 
All-ConvNet outperformed the existing methods.  

The recognition accuracy of 8 hand gestures of all 18 
subjects in CapgMyo DB-a which obtained through leave one 
trial out cross validation for 10 different trials using 
All-ConvNet and their statistical significance are presented in 
Fig. 4. It is observed that the average recognition accuracy 
>92.21% and >87.36% have been achieved at least for 6 and 
5 different subjects respectively.  

Perhaps even more interesting, the proposed All-ConvNet 
achieved the state of the art recognition accuracy when the 
instantaneous HD-sEMG images are recognized by Top-2 or 
Top-3 performance metrics i.e. when the target gestures 
(neuromuscular activities) are matched to any of the 2 or 3 
highest probabilities provided by the SoftMax layer of the All-
ConvNet. Fig. 5 presents the Top-1, Top-2 and Top-3 
accuracies respectively. The obtained average Top-2 and 
Top-3 recognition accuracies are 95.60% and 98.07% 
respectively. These outstanding results confirm that the 
proposed lightweight All-ConvNet trained from random 
initialization is highly effective for learning all the invariances 
for low-resolution instantaneous HD-sEMG image 
recognition and hence seem to be enough to address the 
aforementioned problem of employing high-end resource 
bounded fine-tuned pre-trained networks for low-resolution 
instantaneous HD-sEMG image recognition. 

The existing neuromuscular activity recognition methods 
[12], [14] require a huge memory space to store the massive 
parameters. Therefore, the models are usually unsuitable for 
low-end hand-held devices and embedded electronics. Thanks 
to the proposed parameter-efficient All-ConvNet, our model 
is much smaller than the most competitive methods for 
instantaneous HD-sEMG image recognition. 

Fig. 4. The recognition accuracy of 8 hand gestures for 18 different subjects 
with our proposed All-ConvNet. 
 

 
Fig.5 The proposed All-ConvNet - Top-K recognition accuracy (K = 1, 2, 3)

TABLE II THE AVERAGE RECOGNITION ACCURACY (%) OF 8 HAND GESTURES 

WITH INSTANTANEOUS HD-SEMG IMAGES FOR 18 DIFFERENT SUBJECTS AND 

RECOGNITION APPROACHES. MAJORITY VOTING (ON 40 SEMG IMAGE) 

RESULTS ARE SHOWN IN PARENTHESES  

Model 
Average 

Recognition 
Accuracy (%) 

# Learning 
Parameters 

Avg-run time 
(Sec.) 

S-ConvNet [29] 87.95 (98.87) ≈ 2 090k 372.14 

All-ConvNet 
(proposed) 

85.81 (97.64) ≈ 460k 
348.54 

W.Geng et.al., [12] 89.3 (99.00) 
≈ 5 632k + Pre-

training 

2091.39 
(with no pre-

training)  



V.   CONCLUSION 

We present a lightweight All-ConvNet network, a simple yet 
efficient framework for learning instantaneous HD-sEMG 
images from scratch for neuromuscular activity recognition. 
Without using any pre-trained models, our proposed All-
ConvNet demonstrates very competitive or state of the art 
performance, while using ≈ 12 × smaller	dataset and 
reducing learning parameters from ≈ 5.63	 	to only ≈ 460	  
than its fine-tuned pre-trained counterparts for neuromuscular 
activity recognition based on instantaneous HD-sEMG 
images. The proposed All-ConvNet has great potential for 
learning and recognizing neuromuscular activities on 
resource-bounded devices. Our future work will consider 
improving inter-session neuromuscular activity recognition 
performances, as well as learning All-ConvNet models to 
support resource-bounded devices. 
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Abstract— Gesture recognition using low-resolution 

instantaneous high-density surface electromyography (HD-

sEMG) images opens up new avenues for the development of more 

fluid and natural muscle-computer interfaces. However, the data 

variability between inter-session and inter-subject scenarios 

presents a great challenge. The existing approaches employed very 

large and complex deep ConvNet or 2SRNN-based domain 

adaptation methods to approximate the distribution shift caused 

by these inter-session and inter-subject data variability. Hence, 

these methods also require learning over millions of training 

parameters and a large pre-trained and target domain dataset in 

both the pre-training and adaptation stages. As a result, it makes 

high-end resource-bounded and computationally very expensive 

for deployment in real-time applications. To overcome this 

problem, we propose a lightweight All-ConvNet+TL model that 

leverages lightweight All-ConvNet and transfer learning (TL) for 

the enhancement of inter-session and inter-subject gesture 

recognition performance. The All-ConvNet+TL model consists 

solely of convolutional layers, a simple yet efficient framework for 

learning invariant and discriminative representations to address 

the distribution shifts caused by inter-session and inter-subject 

data variability. Experiments on four datasets demonstrate that 

our proposed methods outperform the most complex existing 

approaches by a large margin and achieve state-of-the-art results 

on inter-session and inter-subject scenarios and perform on par or 

competitively on intra-session gesture recognition. These 

performance gaps increase even more when a tiny amount (e.g., a 

single trial) of data is available on the target domain for 

adaptation. These outstanding experimental results provide 

evidence that the current state-of-the-art models may be 

overparameterized for sEMG-based inter-session and inter-

subject gesture recognition tasks.  

Index Terms— Transfer learning, domain adaptation, 

convolutional neural network, recurrent neural network, feature 

extraction, muscle-computer interface, surface electromyography, 

EMG, gesture recognition 

I. INTRODUCTION 

ESTURE recognition based on surface electromyography 

(sEMG) signals has been a core technology for developing 

next-generation muscle-computer interfaces (MCIs). The major 

application domains of sEMG-based MCIs are non-intrusive 

control of active prosthesis [1], wheelchairs [2], exoskeletons 
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[3] or neurorehabilitation [4], neuromuscular diagnosis [5] and 

providing interaction methods for video games [6], [7]. The 

existing approaches for gesture recognition using sparse multi-

channel sEMG sensors and classical machine learning methods 

– such as linear discriminant analysis (LDA) [8], support vector 

machines (SVM) [9], hidden Markov model (HMM) [10] – on 

windowed descriptive and discriminative time-domain, 

frequency-domain and/or time-frequency-domain sEMG 

feature space [11], [12-16]. However, these sparse multi-

channel sEMG-based methods are not suitable for real-world 

applications due to their lack of robustness to electrode shift and 

positioning [17], [18]. In addition, malfunction to any of these 

sparse-channel electrodes leads to retraining the entire MCI 

system. Deep learning-based methods have recently been 

exploited for gesture recognition using sparse multi-channel 

sEMG [19-20], [31-32], [61], [68] but their performance is still 

far from optimum [64].  

To address this problem, designing and developing more 

flexible, convenient, and comfortable high-density sEMG 

(HD-sEMG) based myoelectric sensors and efficient pattern 

recognition algorithms have been major research directions in 

recent years [17-18], [21-30], [36]. However, the existing HD-

sEMG-based gesture recognition methods [17-18], [28], [30] 

still rely on the windowed sEMG (e.g., range between 100 ms 

and 300 ms [33], [34]), which demands finding an optimal 

window length. The determination of an optimal window length 

represents a strong trade-off between classification accuracy 

and controller delay, both of which increase with an increase in 

window size.    

To further address this problem, distinctive patterns within 

instantaneous sEMG images were first discovered by Geng et 

al. [21] and M.R. Islam et al. [22] to develop more fluid and 

natural muscle-computer interfaces (MCIs). The instantaneous 

values of HD-sEMG signals at each sampling instant were 

arranged in a 2D grid in accordance with the electrode 

positioning. Subsequently, this 2D grid was transformed into a 

grayscale sEMG image. Therefore, an instantaneous sEMG 

image represents a relative global measure of the physiological 
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processes underlying neuromuscular activities at a given time. 

Consequently, gesture recognition is performed solely with the 

sEMG images spatially composed from HD-sEMG signals 

recorded at a specific instant.  

Motivated by these prior works, further studies have been 

conducted on this promising new research direction over the 

years [23-27], [29], [36]. However, the state-of-the-art methods 

[21], [23], [24] for sEMG-based gesture recognition either 

employed very complex deep and wide CNN or an ensemble of 

these complex networks for improved gesture recognition 

performance. Despite the significant performance boost 

achieved by these state-of-the-art models [21], [23], [24], the 

heavy computational and intensive memory cost hinders 

deploying them on resource-constrained embedded and mobile 

devices for real-time applications.  

In addition, the sEMG-based gesture recognition problem 

becomes more challenging in the operational conditions or an 

inter-session scenario, where the trained model is used to 

recognize muscular activities in a new recording session 

because sEMG signals are highly subject-specific. The 

distributions of the sEMG signals vary considerably even 

between recording sessions of the same subject within the same 

experimental setup. The acquired sEMG signals in a new 

recording session (target domain or task) differ from those 

obtained during the training session (source domain or task) 

because of electrode shifts, changes in arm posture, and slow 

time-dependent changes such as fatigue and electrode-skin 

contact impedance [1][26]. Inter-session is often referred to as 

inter-subject when the training and test data are acquired from 

different subjects. Moreover, it is always challenging to force 

the users to maintain a certain level of muscular contraction 

force in real-time applications. Therefore, the developed 

methods must also cope with the distribution shift occurred by 

this voluntary muscular contraction force level.  

To attenuate these distribution shifts between different sEMG 

recording sessions, the pre-trained models have been pre-

dominantly adopted by the existing approaches [26], [31], [32], 

and [57] to reduce the distribution shift by fine-tuning the 

sEMG data recorded in the different session (target domain or 

task). Fine-tuning updates the parameters of the pre-trained 

models to train to newly recorded sEMG data. Generally, the 

output layer of the pre-trained models is extended with 

randomly initialized weights. A small learning rate is used to 

fine-tune all the parameters from their original values to 

minimize the loss on the newly recorded sEMG data. Using 

appropriate hyper-parameters for training, the resulting fine-

tuned model often outperforms learning from a randomly 

initialized network [40].  

Generally, this pre-training and fine-tuning process can be 

considered a special case of domain adaptation when the source 

task and the target task are the same or transfer learning when 

the tasks are different. However, for sEMG-based gesture 

recognition scenarios, we reframed this problem as transfer 

learning when the sEMG data for training and inference are 

recorded at a different session. Fig. 1 illustrates the conceptual 

diagram of our proposed transfer-learning methods for 

sEMG-based gesture recognition.  

Transfer learning is typically performed by taking a standard 

architecture along with its pre-trained weights and then fine-

tuning the target task. However, the state-of-the-art methods 

[21], [23], [26], and [61] for sEMG-based gesture recognition 

employed very large and deep pre-trained models, therefore, 

containing millions of parameters which are designed to be 

trained with large-scale labeled sEMG datasets. The 

requirement of high-end computing resources and large-scale 

pre-trained datasets are also bounded by large and deep 

network structures [25]. As far as we are aware, there has been 

no research for sEMG-based gesture recognition studying the 

effects of transfer learning on the smaller, simpler, and 

lightweight CNN. This line of investigation is especially crucial 

in the sEMG-based gesture recognition because the pre-trained 

model is often deployed in real-time MCI applications such as 

assistive technology and physical rehabilitation where fine-

tuning in the target domain must be conducted in the data-

a) 

b) 

 
c) 

Fig. 1. A general conceptual diagram of the transfer learning method 

(a) Pre-trained model (b) Fine-tuned model and (c) Feature extraction 

process. sEMG images and labels used for adaptation are shown. 
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starved condition because of the difficulty of acquiring data 

from the amputees, elderly peoples, and patients, etc. Also, the 

large computationally expensive models might significantly 

impede mobile and on-device applications, where power 

consumption, data memory, and computational speed are 

constraints. To investigate the effects of transfer learning for 

sEMG-based gesture recognition, our research is motivated by 

the following research questions- does feature reuse takes place 

during fine-tuning or transfer learning? And if yes, where 

exactly is it in the network? 

Investigating feature reuse, we find out that some of the 

differences from transfer learning are due to the over-

parametrization of the state-of-the-art, more complex pre-

trained models rather than sophisticated feature reuse. 

Additionally, we discovered that a simple, lightweight model 

can outperform the more complex and computationally 

demanding state-of-the-art network architectures. We isolate 

where useful feature reuse occurs and outline the implications 

for more efficient lightweight model exploration. 

In this paper, we perform a fine-grained study on fine-tuning 

and transfer learning for sEMG-based gesture recognition. Our 

main contributions are: 

(1) We introduce All-ConvNet+TL model, which leverages the 

lightweight All-ConvNet and transfer learning to address 

the distribution shift in inter-session and inter-subject 

sEMG-based gesture recognition and evaluate it against the 

more complex state-of-the-art network architectures. Our 

proposed method leveraging lightweight All-ConvNet and 

transfer learning outperforms the state-of-the-art methods 

by a large margin, both when the data from a single trial or 

multiple trials are available for fine-tuning/adaptation. The 

outstanding inter-session and inter-subject gesture 

recognition performance achieved by the proposed 

lightweight models raises the question of whether the 

current state-of-the-art models are overparameterized for 

the sEMG-based gesture recognition problem.     

(2) Using further analysis and weight transfusion experiments, 

where we partially reuse pre-trained weights, we identify 

locations where meaningful feature reuse occurs and 

explore hybrid approaches to transfer learning. These 

approaches involve using a subset of pre-trained weights 

and redesigning other parts of the network to make them 

more lightweight.  

(3) We conducted more extensive experiments. A performance 

evaluation on CapgMyo and its four (4) publicly available 

HD-sEMG sub-datasets was performed on three different 

sEMG-based gesture recognition tasks: intra-session, inter-

session, and inter-subject scenarios. The results showed that 

our lightweight models outperformed the more complex 

state-of-the-art models on various tasks and datasets.   

The rest of the paper is structured as follows: Section II reviews 

current state-of-the-art methods for sEMG-based gesture 

recognition, Section III presents the proposed transfer learning 

framework, while Section IV presents the lightweight All-

ConvNet model architecture and its design principles. 

Section V introduces the proposed transfer learning design 

methodology by leveraging lightweight All-ConvNet (All-

ConvNet+TL). Section VI describes the experimental 

framework, and Section VII demonstrates the state-of-the-art 

results for inter-session and inter-subject gesture recognition 

and very competitive results for intra-session gesture 

recognition, obtained from experiments conducted on 

CapgMyo and its four (4) sub-datasets. Section VIII highlights 

the state-of-the-art performance achieved by the proposed All-

ConvNet+TL and discusses some important findings. Finally, 

Section IX provides some conclusive remarks. 

II. RELATED WORK 

In this section, we present an overview of current state-of-the 

art methods for sEMG-based gesture recognition. Many efforts 

have been devoted to proposing novel deep learning methods to 

enhance the accuracy of sEMG-based gesture recognition. 

Geng et al. [21] employed a deep convolutional neural network 

(CNN or ConvNet) to recognize hand gestures from the sEMG 

images and showed high recognition accuracy on publicly 

available benchmark HD-sEMG datasets [15], [17], [26]. M. R.  

Islam et al. [22] proposed to use Histogram of Oriented 

Gradients (HoG) as discriminative features and an SVM-based 

feature classification algorithm for high-density EMG images, 

achieving accurate classification of 8 gestures [11]. Motivated 

by [21] and [22], further studies have been conducted in recent 

years [23-27], [29], [36]. Wei et al. [23] proposed a two-stage 

convolutional neural network (CNN) with a multi-stream 

decomposition stage and a fusion stage to learn the correlation 

between certain muscles and specific gestures. The sEMG 

image is decomposed into different equally sized image patches 

based on the layout of the electrode arrays on muscles (e.g., 

each of eight 8×2 electrode arrays in the CapgMyo database 

[26] individually produces 8×2 equal-sized sEMG image 

patches). Then, each of these sEMG image patches is 

independently and in parallel passed through the convolution 

layers of a single-stream CNN [21], thereby forming a multi-

stream CNN. The learned features from all the single-stream 

CNNs that form a multi-stream CNN are aggregated and fed to 

a fusion network for gesture recognition. The reported results 

showed that multi-stream CNN outperformed single-stream 

CNN by a small margin. Hu et al. [24] proposed a combined 

CNN-RNN module to capture both spatial and temporal 

information of sEMG signals for gesture recognition. The 

recorded sEMG signals were decomposed into small 

subsegments using a sliding and overlapping windowing 

strategy. Each of these sEMG subsegments was converted into 

an sEMG image and simultaneously passed through a multi-

stream CNN built upon [21] for feature extraction. Given the 

input sequence of the extracted features corresponding to each 

of the sEMG subsegments, a long short-term memory (LSTM) 

network was learned individually for gesture recognition. Then, 

the features learned by each of these LSTMs corresponding to 

each of these sEMG subsegments were concatenated before 

being fed to a fully connected and SoftMax layer for gesture 

recognition. Experimental results indicate that a combined 

CNN-RNN module outperforms the stand-alone CNN and 
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RNN frameworks, respectively. Encouraged by [38], Chen et 

al. proposed to use of 3D convolution in the convolutional 

layers of CNNs for spatial and temporal representation of 

sEMG images [36]. The 3D convolution is attained by 

convolving a 3D kernel to the cube formed by stacking multiple 

adjacent sEMG image frames. The feature maps in the 

convolution layers of a 3D CNN are connected to multiple 

adjacent sEMG image frames in the previous layer. Hence, the 

spatiotemporal information is captured. However, multiple 3D 

convolutions with distinct kernels are required to apply at the 

same location of the input to learn representative features, 

which makes 3D CNN computationally expensive. For 

example, the exploited 3D CNN in [36] requires learning over 

˃30M (million) parameters when the length of the input cube is 

set to 10 (i.e., the cube is formed by stacking 10 consecutive 

sEMG image frames).  

However, current state-of-the-art methods [21], [23], [24] 

employed complex deep and wide CNNs or network ensembles 

for enhanced gesture recognition performance. For example, 

Geng et al. [21] exploited a DeepFace [35] like very large and 

deep CNN (dubbed as GengNet), which requires learning 

>5.63M (million) training parameters only during fine-tuning 

and pre-trained on a very large-scale labeled sEMG training 

datasets. The complexity of this model grows linearly as the 

input size is increased due to the use of an unshared weight 

strategy [27]. Wei et al. [23] used an ensemble of eight (8) 

single-stream GengNet at the decomposition stage only. Hu et 

al. [24], used a two-stage ensemble network in which an 

ensemble of multiple single-stream GengNet was used for 

spatial feature learning, resulting in multiple sequences of 1-D 

feature representation. Then, these 1-D feature sequences were 

passed to an ensemble of LSTM networks before a SoftMax 

layer recognized the targeted gesture. Hence, deploying these 

state-of-the-art models [21], [23], and [24] on embedded and 

mobile devices for real-time applications becomes 

cumbersome, despite achieving significant performance gains. 

Therefore, the demand for designing low-cost, lightweight 

networks is highly increasing for low-end resource-limited 

embedded and mobile devices. 

To overcome these problems, more recently, low-latency and 

parameter-efficient S-ConvNet [25] and All-ConvNet [27] have 

been introduced, targeting sEMG-based gesture recognition on 

low-end devices. S-ConvNet [25] was designed to learn sEMG 

image representation from scratch through random 

initialization. S-ConvNet consists of a network with 

convolution layers with the shared kernel, a fully connected 

layer with a small number of neurons, and an occasional 

dimensionality reduction performed by stridden CNN, 

demonstrating very competitive gesture recognition accuracy 

while needing to be learnt ≈  1/4𝑡ℎ learning parameters using 

a ≈  12 ×  𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 compared to the more complex 

and high-end resource-bounded state-of-the-art [21]. A similar 

CNN architecture to that of S-ConvNet is used by Tam et al. 

[29] for a fully embedded adaptive real-time sEMG-based 

gesture recognition. Striving to find a simpler and more 

efficient lightweight network, in our recent work [27], a new 

architecture called All-ConvNet was introduced that consists 

solely of convolutional layers and is designed to be more 

efficient and less computationally intensive than the existing 

state-of-the-art models for sEMG-based gesture recognition. 

Comparing the performance of All-ConvNet to other state-of-

the-art models shows that it achieves competitive or state-of-

the-art performance on a current benchmark HD-sEMG dataset 

[26], while being significantly lighter, more efficient, and faster 

to train and evaluate. All-ConvNet was designed based on the 

finding of fact that if the sEMG image area covered by units in 

the topmost convolutional layer covers a portion of the image 

large enough to recognize its content (i.e., gesture class we 

want to recognize). This leads to predictions of sEMG image 

classes at different positions which can then simply be averaged 

over the whole image. Hence, the All-ConvNet becomes robust 

to translations and geometric distortions, which can be very 

effective in addressing the electrode shift and positioning 

problem in sEMG-based gesture recognition. 

Moreover, pre-trained models have been employed by [26], 

[31], [32], and [57] to mitigate distribution shifts by fine-tuning 

on the target domain or task for sEMG-based gesture 

recognition in inter-session and inter-subject scenarios. 

Currently, Du et al. [26] and Ketyko et al. [57] present state-of-

the-art solutions for sEMG-based gesture recognition in inter-

session and inter-subject scenarios. Du et al. [26] propose a 

multi-source extension to the classical adaptive batch 

normalization (AdaBN) technique [37], combined with their 

most complex deep and large CNN architecture [21]. They 

employ AdaBN with the hypothesis that the layer weights 

contain discriminative knowledge related to different hand 

gestures, while the statistics of the BatchNorm layer [55] 

represent discriminative knowledge from different recording 

sessions in inter-session or inter-subject scenarios [37]. The 

parameters of the pre-trained model's AdaBN [21] are updated 

using an unsupervised approach for adaptation in the target 

domain. However, a drawback of this solution arises when 

dealing with multiple sources (i.e., multiple subjects), as 

specific constraints and considerations must be imposed for 

each source during the pre-training phase of the model [57]. 

Ketyko et al. [57] proposed a 2-Stage recurrent neural networks 

(2SRNN), where a deep stacked RNN sequence classifier was 

used for pre-training on the source dataset. Then, the weights of 

the pre-trained deep-stacked RNN classifier were frozen. At the 

same time, a fully connected layer without a non-linear 

activation function was trained in a supervised manner on the 

target dataset for domain adaptation. More explicitly, the deep-

stacked RNN classifier was used as a feature extractor by 

freezing its weight in the domain adaptation stage. However, 

ConvNet is computationally more efficient and powerful in 

extracting discriminative features than RNN, even for 

classification tasks involving long sequences [58], [59]. Unlike 

these works, the proposed All-ConvNet+TL model capitalizes 

the inherent invariant properties of translations and geometric 

distortions in All-ConvNet and investigates the feasibility of 

applying transfer learning (TL) on the smaller, simpler, and 

lightweight All-ConvNet to address the distribution shift and 
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learn invariant, discriminative representations for efficient 

sEMG-based gesture recognition in inter-session and inter-

subject scenarios. 

III. THE PROPOSED TRANSFER LEARNING FRAMEWORK 

The proposed transfer learning framework for sEMG-based 

gesture recognition using instantaneous HD-sEMG images 

includes the following three major computational components: 

(i) a lightweight model development (ii) pre-training, and (iii) 

fine-tuning. A schematic diagram of the proposed transfer 

learning framework for sEMG-based gesture recognition is 

shown in Fig. 1. Firstly, we devised a lightweight All-ConvNet 

model. Secondly, the proposed lightweight All-ConvNet was 

pre-trained (e.g., Fig. 1a) using a large amount of gesture data 

acquired by HD-sEMG in a single session or over multiple 

sessions, which may also involve multiple gestures, trials, and 

subjects, respectively. Then, the pre-trained model was saved 

and deployed for subject-specific/personalized classifier 

development, as sEMG-based wearable devices are usually 

worn by a single user while executing a target task. Typically, 

input-side layers that play the role of feature extraction are 

copied from a pre-trained network and kept frozen or fine-tuned 

(e.g., Fig. 1b and 1c), in contrast, a top classifier for the target 

task is randomly initialized and then trained at a slow learning 

rate. Fine-tuning often outperforms training from scratch 

because the pre-trained model already has a great deal of 

muscular activity information. Potentially, the pre-trained 

network could be duplicated and fine-tuned for each new target 

task [40]. 

IV. MODEL DESCRIPTION – THE ALL-CONVOLUTIONAL 

NEURAL NETWORK (ALL-CONVNET) 

The current state-of-the-art methods [21], [23], [26], and [61] 

for sEMG-based gesture recognition use a large, deep ConvNet 

architecture similar to the one used in DeepFace [35]. This 

architecture is designed to be pre-trained on a large-scale 

labeled HD-sEMG training dataset and requires learning >5.63 

million (M) parameters only during fine-tuning. As a result, this 

large-scale pre-trained model becomes a high-end resource-

bounded and computationally very expensive to be practical for 

real-world MCI applications. Moreover, in their pre-trained 

ConvNet includes two locally connected (LCN) and three fully 

connected layers among the other convolutions and a G-way 

fully connected layer. However, the LCN layers used an 

unshared weight scheme [45] that makes their pre-trained 

ConvNet even computationally more demanding and very 

difficult to scale on the target domain task. For example, the 

learning parameters of [21] increase from ≈ 5.63M to ≈ 11M 

with a small enhancement of input HD-sEMG image size from 

16×8 to 16×16 due to the use of this unshared weight scheme 

[27]. Hence, a very large-scale labeled training dataset is 

required for learning these growing numbers of training 

parameters [35]. However, the LCN can be beneficial in the 

application domains where the feature’s precise location is 

dependent on the class labels. 

 Considering the above-mentioned fact, we investigated the 

following research questions in [27] : (i) Do we expect the 

devised networks model to produce a location/translation 

invariant feature representation? and (ii) Do we need a location-

dependent feature representation? Following our findings and 

building on other recent works that aim to find a simple network 

architecture, we proposed a lightweight All-ConvNet. This new 

architecture consists solely of convolutional layers. This simple 

yet effective framework could learn neuromuscular activity 

from scratch and yield competitive or even state-of-the-art 

performance using a ≈12×smaller dataset while reducing the 

learning parameters from ≈5.63M to only ≈460k than the more 

complex state-of-the-art for sEMG-based gesture recognition.  

The All-ConvNet architectural design was adopted based on the 

following principles and observations:  

(i) We hypothesized that different hand gestures produce 

distinct spatial intensity distributions that remain consistent 

across multiple trials of the same gesture and 

distinguishable among different gestures. However, we 

observed that the spatial intensity distributions for the same 

gesture are not locally invariant, and the precise feature’s 

location are independent of the class labels. Fig. 2 

demonstrates a sequence of HD-sEMG images derived from 

the same class, along with a correlation heatmap of HD-

sEMG distributions (images) sampled equidistantly in time 

(e.g., each 20 ms) which demonstrates that the distributions 

are independent of the class labels. CNN alone has a 

remarkable capability to exploit locally translational 

invariance features by utilizing local connectivity and 

weight-sharing strategies [45]. On the other hand, the LCN 

layer fails to model the relations of parameters in different 

locations. Hence, the LCN layers are ablated in designing 

      
a) 

 
b) 

Fig. 2 HD-sEMGs derived from the same muscular activity class 
(a) and correlation heatmap of HD-sEMG distributions (b) which 
demonstrates that the distributions are independent to the class 
labels.  
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our All-ConvNet models as the location of the features is 

not dependent on the class labels.  

(ii) Inspired by previous work [46], we leverage the fact that if 

the part of the instantaneous HD-sEMG image is covered by 

the units in the topmost convolution layers could be large 

enough to recognize its content (i.e., the gesture class, we 

want to recognize). Consequently, the fully connected 

layers can also be replaced by simple 1-by-1 convolutions. 

This allows us to predict HD-sEMG image classes at 

different positions, and we can then average these 

predictions across the entire image. Hence, the proposed 

All-ConvNet can be very effective in addressing the 

electrode shift and positioning problem for sEMG-based 

gesture recognition, where the entire sEMG data stream for 

a particular gesture may not necessarily be required for 

recognition. Lin et al. [47], initially introduced this 

approach, which acts as an additional regularization 

technique due to the significantly fewer parameters of a 1-

by-1 convolution in comparison to a fully connected and 

LCN layers. Overall, our architecture is thus reduced to 

consist only of convolutional layers with ELU non-

linearities [48], [63] and a global average pooling (GAP) + 

SoftMax layer to produce predictions over the entire 

instantaneous HD-sEMG image. A conceptual diagram of 

our proposed pre-trained All-ConvNet is shown in Fig. 1(a). 

Table I describes our proposed All-ConvNet architecture. 

The feature maps learned by the proposed All-ConvNet are 

presented in Fig. 3.  

We train our proposed All-ConvNet for a multi-class sEMG-

based gesture recognition task, which involves recognizing a 

specific muscular activity class using an instantaneous HD-

sEMG image. As described in Table I, in the proposed All-

ConvNet network, we consider using 1-by-1 convolution at the 

top to produce 8 or 12 outputs (depending on the number of 

distinct movements performed). These outputs were then 

averaged across all positions and fed into a G-way SoftMax 

layer (where G is the number of distinct hand gesture classes) 

which produces a distribution over the class labels. In order to 

estimate the class probabilities, we use the SoftMax function 

𝜎(∙) with  �̂�(𝑗) representing the 𝑗th element of the 𝐺 dimensional 

output vector of the layer preceding the SoftMax layer, defined 

as below: 

 𝜎(�̂�(𝑗)) =
exp ( �̂�(𝑗))

∑ exp ( �̂�(𝐺))𝐺
 (1) 

The objective of this training is to maximize the probability of 

the correct gesture class. This is accomplished by minimizing 

the cross-entropy loss [49] for each training sample. When 𝑦 

represents the true label for a given input, the loss is computed 

as: 

 𝐿 =  − ∑ 𝑦(𝑗)ln (σ(𝑗 �̂�(𝑗)) (2) 

The loss is minimized over the parameters by computing the 

gradient of 𝐿 with respect to the parameters. These parameters 

are then updated using the state-of-the-art Adam (adaptive 

moment estimation) gradient descent-based optimization 

algorithm [50]. This algorithm provides fast and reliable 

learning convergence, unlike the stochastic gradient descent 

(SGD) optimization algorithm used in state-of-the-art pre-

trained networks for gesture recognition using instantaneous 

HD-sEMG image recognition. 

Once the network has been trained, an instantaneous HD-sEMG 

image is recognized as in the gesture class 𝐶 by simply 

propagating the input image forward and computing: 

 𝐶 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗(�̂�(𝑗)) (3) 

V. TRANSFER LEARNING BY LEVERAGING LIGHTWEIGHT 

ALL-CONVNET (ALL-CONVNET+TL) 

In this section, we introduce some notations and definitions 

used in our transfer learning framework as in [51]. We denote 

the source domain data as 𝐷𝑠 = {(𝑥𝑠1 , 𝑦𝑠1), … , (𝑥𝑠𝑛𝑆
, 𝑦𝑠𝑛𝑆

 )}, 

where 𝑥𝑠𝑖 ∈ Χ𝑆 is the data instance and 𝑦𝑠𝑖 ∈ 𝑌𝑆 is the 

corresponding class label. In our sEMG-based gesture 

recognition example, 𝐷𝑠 can be a set of sEMG data of different 

gestures and their corresponding gesture class labels acquired 

by a single or multiple participants in a designated session. An 

objective function 𝑓𝑠(. ) can be learned using 𝐷𝑠 for the source 

task such that, 𝒯𝑠 = {𝑌𝑠, 𝑓𝑠(∑ 𝑤𝑆𝑖
𝑋𝑆 + 𝑏𝑖 )}. Similarly, we 

denote the target domain data as 𝐷𝑇 =

{(𝑥𝑇1, 𝑦𝑇1), … , (𝑥𝑇𝑛𝑇
, 𝑦𝑇𝑛𝑇

 )} and 𝒯𝑇 = {𝑌𝑇 , 𝑓𝑇(∑ 𝑤𝑇𝑖
𝑋𝑇 +𝑖

𝑏)}, where, 𝑥𝑇𝑖 ∈ Χ𝑇  and 𝑦𝑇𝑖 ∈ 𝑌𝑇 are the sEMG data of 

different gestures and their corresponding class labels 

respectively acquired by a distinct subject/participant at a  

different session than 𝐷𝑠. In most cases, the target domain data 

for a distinct participant acquired at another session is much 

lower quantities than that of a source domain data, i.e.  0 ≤
𝑛𝑇 ≪ 𝑛𝑠. 

 
(a) 

(b) 

Fig. 3. A schematic illustration of feature maps obtained by 

All-ConvNet before and after dimensionality reduction. (a) Feature 

maps and b) Feature maps after dimensionality reduction. 

TABLE I THE ALL-CONVNET NETWORK MODEL FOR 
NEUROMUSCULAR ACTIVITY RECOGNITION. 

All-ConvNet 
Input 16×16 Gray-level Image 
3 × 3 Conv.64 ELU 
3 × 3 Conv.64 ELU 
3 × 3 Conv. 64 ELU with stride r =2 
3× 3 Conv. 128 ELU 
3× 3 Conv. 128 ELU 
3× 3 Conv. 128 ELU with stride r =2 
1×1 Conv. 128 ELU 
1×1 Conv. 8 ELU 
global averaging over 4×4 spatial dimensions 

G-way SoftMax 
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Now we define our proposed transfer learning problem as 

follows– Given a source domain 𝐷𝑠 and a learning task 𝒯𝑠 as 

well as a target domain 𝐷𝑇  and learning task 𝒯𝑇, the transfer 

learning aims to help improve the learning of the target 

predictive function 𝑓𝑇(. ) in 𝐷𝑇  using the knowledge in 𝐷𝑠 and 

𝒯𝑠 , where, 𝐷𝑠 ≠  𝐷𝑇  , and 𝒯𝑠 = 𝒯𝑇. In our sEMG-based gesture 

recognition problem, the source and target task are the same. 

However, the data distribution between the source and the 

target domain might be different i.e., 𝐷𝑠 ≠  𝐷𝑇  due to factors 

described in section I. 

To mitigate these distribution shifts on the sEMG-based gesture 

recognition problem, we apply the transfer learning to our 

proposed lightweight All-ConvNet [27] and termed it as 

All-ConvNet+TL. In our setting, All-ConvNet+TL has a set of 

shared parameters 𝜃𝑠 (e.g., all the convolutional layers in 

All-ConvNet) and task-specific parameters for previously 

learned gesture recognition tasks 𝜃0 (e.g., the output layer of 

All-ConvNet for gesture recognition and its corresponding 

weights), and the task-specific parameters are randomly 

initialized for new target tasks 𝜃𝑛 (e.g., gesture recognition in a 

new session). Considering 𝜃0 and 𝜃𝑛 as classifiers that operate 

on features parameterized by 𝜃𝑠. Drawing motivation from [40], 

[65-66], in this work, we adopt the following approaches to 

learning 𝜃𝑛 while taking advantage of previously learned 𝜃𝑠, 

which is illustrated in Fig. 1: 

(i) Fine-tuning – involves optimizing 𝜃𝑠 and 𝜃𝑛 for the new 

target task, while keeping 𝜃0 fixed (as shown in Fig.1b). To 

prevent large drift in 𝜃𝑠, a low learning rate is usually used. 

It is possible to duplicate the original network and fine-tune 

it for each new target task to create a set of specialized 

networks. 

(ii) Feature Extraction – 𝜃𝑠 and 𝜃0 remain fixed and 

unchanged, while the outputs of one or more layers are used 

as features for the new target task in training 𝜃𝑛 (as shown 

in Fig. 1c). 

The most popular methodology for transfer learning is to 

duplicate the pre-trained network (i.e., initialize from pre-

trained weights) and fine-tune (train) the entire network for 

each new target task [62]. However, fine-tuning degrades 

performance on previously learned tasks from the source 

dataset because the shared parameters change without receiving 

new guidance for the source-task-specific prediction 

parameters. In addition, duplicating and fine-tuning all the 

parameters of a pre-trained model may also require a 

substantial amount of target task dataset. On the other hand, 

feature extraction usually underperforms on the target dataset 

because the shared parameters often fail to effectively capture 

some discriminative information that is crucial for the target 

task. To address this problem and find out a good trade-off 

between fine-tuning and feature extraction, we focus on 

answering the following research questions – Does feature 

reuse take place during fine-tuning or transfer learning? And if 

yes, where exactly is it in the network? We first conducted a 

preliminary weight (or feature) transfusion experiment, where 

we partially reused pre-trained weights to determine and isolate 

the locations where meaningful feature reuse occurs. We 
 
1 The dataset is made publicly accessible from the following website: http://zju-

capg.org/research_en_electro_capgmyo.html). 

perform this via a weight transfusion experiment by transferring 
a contiguous set of some of the pre-trained weights, randomly 
initializing the rest of the network, and training on the target 
task. We have found out that meaningful feature reuse is 

restricted to the lowest few layers of the network and is 

supported by gesture recognition accuracy and convergence 

speed (see Appendix A for details). Following the results of 

these weight (or feature) transfusion experiments, the part of the 

𝜃𝑠 (i.e., the first three convolutional layers of All-ConvNet) 

were frozen and used as a feature extractor and only 𝜃𝑠 in the 

top convolutional layers were fine-tuned. Hence, the proposed 

network model allows the target task to leverage complex 

features learned from the source dataset and make these features 

more discriminative for the target task by fine-tuning the top 

convolutional layers. These transfusion results suggest we 

propose hybrid and more flexible approaches to transfer 

learning (see Appendix B).  

VI. EXPERIMENTAL SETUP 

We evaluated our proposed approach on CapgMyo1 dataset [26] 

for studying and quantifying the effects of transfer learning on 

the smaller, simpler, and lightweight CNN. The CapgMyo 

dataset was developed to provide a standard benchmark 

database (DB) to explore new possibilities for studying and the 

development of cutting-edge muscle-computer interfaces 

(MCIs). The CapgMyo dataset includes HD-sEMG data for 128 

channels (electrodes) acquired from 23 able-bodied subjects 

ranging in age from 23 to 26 years, which encompasses the 

majority of the gestures (finger movements) encountered in 

activities of daily living (see in Appendix C). The sampling rate 

is 1000 Hz. It comprised 3 sub-databases as follows: 

(a) DB-a: contains 8 isometric and isotonic hand gestures 

obtained from 18 of the 23 subjects. Each gesture was 

performed and held for 3 to 10 s. 

(b) DB-b: contains the same gesture set as in DB-a but was 

obtained from 10 of the 23 subjects. Each gesture in DB-b 

was performed and held for approximately 3 seconds. In 

addition, every subject in DB-b contributed to two separate 

recording sessions (DB-b Session 1 and DB-b Session 2), 
with an inter-recording interval greater than 7 (seven) days. 

Inevitably, the electrodes of the array were attached at 

slightly different positions at subsequent recording sessions.  

(c) DB-c: contains 12 hand gestures (basic movements of the 

fingers) obtained from 10 of the 23 subjects. Each gesture 

in DB-c was performed and held for approximately 3 s as in 

DB-b.   

From the viewpoint of MCI application scenarios, the sEMG-

based gesture recognition can be categorized into three (3) 

scenarios:  

A. intra-session, in which a classifier is trained on the part of 

the data recorded from the subjects during one session and 

evaluated on another part of the data recorded from the 

same session,  

B. inter-session, in which a classifier is trained on the data 

recorded from the subjects in one session and tested on the 

data recorded in another session, and  
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C. inter-subject, when a classifier is trained on the data from 

a group of subjects and tested on the data from an unseen 

subject. 

 

All three sub-databases (DB-a, DB-b, and DB-c) were used for 

intra-session performance evaluation. Inter-session recognition 

of hand gestures based on sEMG typically suffers from 

electrode shift and positioning. Therefore, DB-b was used for 

inter-session performance evaluation. Finally, both DB-b 

Session 2 and DB-c were used for inter-subject performance 

evaluation.  

For CapgMyo database, first, the power-line interferences were 

removed from the acquired HD-sEMG signals using a 2nd order 

Butterworth filter with a band-stop range between 45 and 

55 Hz. Then, the HD-sEMG signals were arranged in a 2-D grid 

according to their electrode positioning at each sampling 

instant. Afterward, this grid was transformed into an 

instantaneous sEMG image by linearly converting the values of 

sEMG signals from 𝑚𝑉 to color intensity as [−2.5𝑚𝑉, 2.5𝑚𝑉] 
to [0 255]. As a result, instantaneous grayscale sEMG images 

with a size of 16 × 8 matrices were obtained. To facilitate GAP, 

we enhance the input HD-sEMG image size from 16×8 to 

16×16 using horizontal mirroring. Unlike [21], this 

enhancement does not increase the learning parameters in the 

proposed All-ConvNet.   

For pre-training our proposed original model All-ConvNet, the 

following configurations were adopted as in [27], the 

connection weights for All-ConvNet network architecture were 

randomly initialized using Xavier initialization scheme [52], 

[53] and the network was trained using Adam optimization 

algorithm [50]. The momentum decay and scaling decay were 

initialized to 0.9 and 0.999, respectively. In contrast to SGD 

employed in [21], [23], and [26], Adam is an adaptive learning 

rate algorithm, therefore it requires less tuning of the learning 

rate hyperparameter. For all our experiments, the learning rate 

of 0.001 was initialized, and smaller batches of 256 randomly 

chosen samples from the training dataset were fed to the 

network during consecutive learning iterations. We set a 

maximum of 100 epochs for training our All-ConvNet model. 

However, to prevent overfitting, we applied early stopping [54], 

which interrupts the training process if no improvements in 

validation loss are observed for 5 consecutive epochs. Batch 

normalization [55] was applied after the input and before each 

non-linearity. To further regularize the network, Dropout [56] 

was applied to all layers with a probability of 25%. The 

All-ConvNet model was trained on a workstation with an 

Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz processor, 

32 GB RAM, and an NVIDIA RTX 2080 Ti GPU. Each epoch 

was completed in approximately 6 s for a test on intra-session 

gesture recognition. The average inference time per HD-sEMG 

sample is ≈0.0929 ms on the above-mentioned computational 

set up. We have also implemented the state-of-the-art network 

architecture [21] for a fair comparison with our proposed 

lightweight sEMG-based gesture recognition algorithm. 

However, we have adopted the same network initialization 

method, optimization algorithm, and training paradigm as 

illustrated in [21]. 

 

VII. EXPERIMENTAL RESULTS 

The sEMG-based gesture recognition methods in the literature 

have usually been investigated in intra-session scenarios [21], 

[23], [24], [36] and [61]. However, in this work, we evaluated 

the performance of our proposed sEMG-based gesture 

recognition algorithm by leveraging lightweight All-ConvNet 

and transfer learning in inter-session and inter-subject scenarios 

in addition to intra-session gesture recognition. In the following 

subsections, we evaluated the performance of our proposed 

lightweight gesture recognition algorithms. We compared them 

with the state-of-the-art, more complex methods in the above-

mentioned three different scenarios. 

A. Intra-Session Performance Evaluation 

 In this section, we evaluated the performance of sEMG-based 

gesture recognition in the intra-session scenario. In this 

scenario, usually, the data variation comes from the difference 

between the trials and repetitions of the hand/finger gestures 

performed by an individual. To mitigate this data variations or 

distribution time shift caused by the repetitions of the gestures 

in multiple trials in the same session, the state-of-the-art 

methods performed pre-training their proposed CNN using half 

of the training data from all the participated subjects (e.g., 18 in 

DB-a) in the data collection process. Then, the pre-trained 

model was fine-tuned using the training data from the target 

subject for the subject-specific classifier development. The 

major drawback of this approach [21] is that the same training 

data used for fine-tuning was also seen during pre-training. 

However, in [27], we argued that the proposed lightweight 

All-ConvNet trained from scratch using random initialization 

has the great ability to model these distribution shifts caused by 

the repetitions of hand gestures across multiple trials within the 

same session. In that setting, we proposed designing and 

developing a subject-specific individualized classifier using 

only the sEMG data available for an individual subject while 

executing a target task without pre-training. For example, in 

CapgMyo DB-a and DB-b, eight (8) isotonic and isometric 

hand gestures were performed by an individual subject. Each 

gesture was also trialed and recorded 10 times with a 1000 Hz 

sampling rate. Thus, an individual subject generates 

(8×10×1000 = 80,000) instantaneous sEMG images. In 

CapgMyo DB-c, an individual performed twelve (12) basic 

movements of the fingers, and hence it generates 

(12×10×1000 = 120,000) instantaneous sEMG images. For 

performance evaluation of the proposed subject-specific 

lightweight All-ConvNet, a leave-one-trial-out cross-validation 

was performed, in which each of the 10 trials was used in turn 

as the test set, and the proposed lightweight All-ConvNet was 

trained and validated using the remaining 9 trials. This entire 

paradigm of training and testing process is illustrated in Fig. 1a, 

which shows that only the trained model (without any feature 

reuse from the pre-trained model) is used for gesture 

recognition. It is noteworthy that, in [27], we conducted 

experiments only on the CapgMyo DB-a and reported and 

compared the results with the state-of-the-art for sEMG-based 

gesture recognition because the maximum number of subjects 

(18) participated in DB-a. However, in this work, we extended 

our experiments on the CapgMyo DB-b and DB-c, respectively. 

Table II presents the gesture recognition results for the 
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proposed lightweight All-ConvNet and compares them with the 

state-of-the-art methods.  

As can be seen in Table II, the proposed lightweight All-

ConvNet (with around 0.46 million learning parameters) 

consists of a stack of 3×3 convolutional layers with occasional 

subsampling by a stride of 2. It is trained from random 

initialization and outperformed the state-of-the-art, more 

complex GengNet [21], [23], [24], [26] and [61] on the 

CapgMyo DB-b Session 1 and Session 2 datasets, respectively, 

and performs comparably to the S-ConvNet [25]. Additionally, 

the lightweight All-ConvNet performs very competitively or on 

par with the GengNet [21] and S-ConvNet [25] on the 

CapgMyo DB-a and CapgMyo DB-c datasets, respectively. 

Fig. 4 (a)-(d) presents the sEMG-based instantaneous (or per-

frame) gesture recognition accuracies and their statistical 

significance obtained through leave-one-trial-out cross-

validation for ten different test trials for each of the participating 

subjects in CapgMyo DB-a, DB-b, and DB-c, respectively. The 

highest instantaneous (or per-frame) gesture recognition 

accuracies were 86.73% for DB-a, 81.95% and 83.36% for 

DB-b (Session 1 and Session 2, respectively), and 80.91% for 

DB-c. Which were obtained with the proposed lightweight 

All-ConvNet. The high per-frame gesture recognition 

accuracies and low standard deviation over multiple test trials 

and subjects in each of the four HD-sEMG datasets mentioned 

above reflect the high stability of the proposed lightweight 

All-ConvNet.  

In addition, based on a simple majority voting algorithm, we 

have obtained very good gesture recognition accuracies. Fig. 5 

(a)-(d) presents gesture recognition accuracy with different 

voting windows using lightweight All-ConvNet. The average 

gesture recognition accuracy of 94.56% and 95.99% were 

achieved by a simple majority voting with 32 and 64 

instantaneous images (or frames) for the above four (4) HD-

sEMG datasets.  

The higher gesture recognition accuracies of 98.02%, 97.52%, 

96.80%, and 95.76% (as shown in Table II and Fig. 5) can be 

obtained by the proposed lightweight All-ConvNet and a simple 

majority voting over the recognition result of 160 frames for 

DB-a, DB-b (Session 1 and Session 2) and DB-c, respectively.  

These outstanding results confirm that the proposed lightweight 

All-ConvNet is highly effective for learning all the invariances 

for low-resolution instantaneous HD-sEMG image recognition 

and hence seem to be enough to address the problem of 

employing high-end resource-bounded fine-tuned pre-trained 

networks for low-resolution instantaneous HD-sEMG image 

recognition. 

Table II also includes average run-time for training, validation 

and inference for an intra-subject test. For a fair run-time 

comparison, each of the compared models was trained for 100 

epochs on the same size of the input HD-sEMG image and early 

stopping [56] was applied while training all the compared 

models. The proposed lightweight All-ConvNet exhibits 

TABLE II. THE AVERAGE RECOGNITION ACCURACIES (%) OF 8 HAND 

GESTURES FOR CAPGMYO DB-A AND DB-B FOR 18 AND 10 

DIFFERENT SUBJECTS RESPECTIVELY AND 12 GESTURES FOR 10 

DIFFERENT SUBJECTS IN DB-C. THE NUMBERS ARE MAJORITY VOTED 

RESULTS USING 160 MS WINDOW (I.E., 160 FRAMES). PER-FRAME 

ACCURACIES ARE SHOWN IN PARENTHESIS. 

Model S-ConvNet 
[25] 

W.Geng et. 
al., [21] 

All-ConvNet 
(proposed) 

CapgMyo DB-a 98.36 (87.95) 98.48 (86.92) 98.02 (86.73) 
CapgMyo DB-b Session 1 97.87 (83.57) 97.04 (81.26) 97.52 (81.95) 
CapgMyo DB-b Session 2 97.05 (84.73) 96.26 (83.21) 96.80 (83.36) 

CapgMyo DB-c 95.80 (81.63) 96.36 (82.23) 95.76 (80.91) 
#Learning Parameters ≈ 2.09 𝑀 ≈ 5.63 𝑀 ≈ 𝟎. 𝟒𝟔 𝑴 
Avg-run time (s) 191.29 804.66 224.33 
 

 
(a) CapgMyo DB-a. 

 

 
(b) CapgMyo DB-b (Session 1). 

 

 
(c) CapgMyo DB-b (Session 2). 

 

 
 (d) CapgMyo DB-c. 

Fig 4 The per-frame gesture recognition accuracy with our 

proposed lightweight All-ConvNet, a) the recognition accuracy of 

8 hand gestures for 18 different subjects on CapgMyo DB-a, b) and 

c) The gesture recognition accuracy of 8 hand gestures for 10 

different subjects on CapgMyo DB-b (Session 1) and DB-b 

(Session 2), respectively, and d) the gesture recognition accuracy 

of 12 hand gestures for 10 different subjects on CapgMyo DB-c. 
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superior run-time performance compared to the state-of-the-art 

methods. 

B. Inter-Session Performance Evaluation  

In this section, we evaluated the performance of sEMG-based 

gesture recognition in the inter-session scenario. In this 

scenario, there is still the intra-session variability discussed in 

the previous section, in addition to the extent of data variability, 

which comes from the differences between the recording 

sessions. The sensor placement may have some spatial shifts 

and/or rotations at each recording session. These differences in 

sensor placement and/or rotations may cause spatial shifts in the 

distributions of the sEMG sensor data. To address this spatial 

shift problem, currently [26] and [57] provide a state-of-the-art 

solution in the CapgMyo dataset. Du et al. [26] proposed a 

multi-source extension to classical AdaBN [37] for domain 

adaptation. However, when dealing with multiple sources (i.e., 

multiple subjects), specific constraints and considerations must 

be imposed for each source during the model's pre-training 

phase [57]. Ketyko et al. [57] introduced a 2-Stage recurrent 

neural network (2SRNN) involving pre-training a deep stacked 

RNN sequence classifier on the source dataset, freezing its 

weights, and simultaneously training a supervised fully 

connected layer without a non-linear activation function on the 

target dataset for domain adaptation. However, ConvNet is 

more powerful at extracting discriminative features than RNN, 

even for classification tasks of long sequences [58], [59]. 

In addition, it is noteworthy that the domain adaptation was 

conducted in unsupervised and semi-supervised settings [26]. 

However, very low gesture recognition accuracies were 

reported in [26] in both inter-session and inter-subject 

scenarios. On the other hand, [57] performed domain adaptation 

in supervised settings and demonstrated state-of-the-art results 

on the CapgMyo dataset. Therefore, for a fair comparison with 

the state-of-the-art, we performed domain adaptation in a 

supervised manner in all the compared methods. Moreover, it 

might be an interesting question why we chose to compare the 

performance of our proposed lightweight All-ConvNet+TL 

with the CNN models, proposed in [21] and [26]. To the best of 

our knowledge, the base CNN models proposed in [21] and [26] 

were also adapted in [23], [24], and [61], respectively, and 

reported state-of-the-art results on various sEMG-based gesture 

recognition tasks and datasets. 

Experiments conducted on inter-session and inter-subject 

settings; we have shown that our proposed lightweight 

All-ConvNet+TL leveraging transfer learning (illustrated in 

Section V) outperformed these above-mentioned state-of-the-

art solutions. We evaluated inter-session gesture recognition for 

CapgMyo DBb, in which the model was trained using data 

recorded from the first session and evaluated using data 

recorded from the second session. It is worth mentioning that 

without transfer learning or domain adaptation, the state-of-the-

art models, as well as our proposed models achieved less than 

or approximately 50% average gesture recognition accuracy on 

CapgMyo datasets in both inter-session and inter-subject 

scenarios. This level of recognition accuracy is not enough for 

a usable system (defined as <10% error [60]). Therefore, 

domain adaptation or transfer learning must be introduced to 

these (inter-session and inter-subject) settings for acceptable 

 
a) 

 
b) 

 
c) 

 
d) 

Fig 5 Surface EMG gesture recognition accuracy with different 

voting windows using the proposed lightweight All-ConvNet and 

compared with the state-of-the-art methods: a) the recognition 

accuracy of 8 hand gestures for 18 different subjects on CapgMyo 

DB-a, and the gesture recognition accuracy of 8 hand gestures for 

10 different subjects on CapgMyo for b) DB-b Session 1 and c) 

DB-b Session 2, and d) the recognition accuracy of 12 hand 

gestures for 10 different subjects on DB-c. 
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performance. However, the most significant question is how 

much training data is required for adaptation on the target 

domain to obtain a stable gesture recognition accuracy. To  

address this question, we limited the available training data to 

20% (T1), 40% (T2), 60% (T3), 80% (T4), and 100% (T5) of 

the total 5 trials used for domain adaptation (the remaining 5 

trials are kept for validation). For fair comparison and 

complying with the state-of-the-art, we ran our domain 

adaptation for 100 epochs. Table III presents the inter-session 

average gesture recognition accuracies (%) of 8 hand gestures 

for 10 different subjects respectively for CapgMyo DB-b and 

compared with the state-of-the-art methods.  

Our proposed lightweight All-ConvNet+TL leverages transfer 

learning to enhance inter-session gesture recognition, achieving 

an 11.11% improvement compared to 2SRNN [57] and a 6.43% 

improvement compared to GengNet [21][26] when all available 

5 trials are used for adaptation (as shown in Table III, column-

T5). We also compared our proposed lightweight All-

ConvNet+TL with the state-of-the-art GengNet [21][26] in a 

data-starved condition. The proposed lightweight All-

ConvNet+TL shows even more significant improvement over 

the state-of-the-art when a limited number of trials are available 

for adaptation, as seen in Table III, Columns- T1, T2, T3, and 

T4, respectively. For example, the proposed lightweight All-

ConvNet+TL achieved a 7.94% improvement over GengNet 

[21][26] when only 20% of the data (i.e., 1 trial) was available 

for adaptation (Table III, Column- T1). 

C. Inter-Subject Performance Evaluation 

In this section, we evaluated the performance of sEMG-based 

gesture recognition in the inter-subject scenario. In this 

scenario, the data variability comes from the variation in muscle 

physiology between different subjects. In this experiment, we 

evaluated the inter-subject recognition of 8 gestures using the 

second recording session of CapgMyo DB-b and the 

recognition of 12 gestures using CapgMyo DB-c. We 

performed a leave-one-subject-out cross-validation, in which 

each of the subjects was used in turn as the test subject, and a 

lightweight All-ConvNet was pre-trained using the data of the 

remaining subjects. Then, this pre-trained All-ConvNet model 

was deployed, and adaptation was made on the data from the 

odd numbers of trials of the test subjects by leveraging transfer 

learning or domain adaptation. Finally, the adapted model was 

evaluated and tested using the data from the even number of 

trials of the test subject. We limited the available training data 

to 20%, 40%, 60%, 80%, and 100% of the total 5 trials used for 

domain adaptation (the remaining 5 trials are kept for 

validation). Table IV presents the average recognition 

accuracies (%) of 8 and 12 hand gestures for CapgMyo DB-b 

and DB-c for 10 subjects, respectively. 

As can be seen from Table IV, our proposed lightweight All-

ConvNet+TL, by leveraging transfer learning, outperformed 

the state-of-the-art methods in the inter-subject scenario on both 

CapgMyo DB-b and CapgMyo DB-c datasets, respectively. Our 

proposed lightweight All-ConvNet+TL demonstrates an 

improvement of 5.04% and 6.17% compared to 2SRNN [57], 

and 3.58% and 1.85% compared to GengNet [21][26] on 

CapgMyo DB-b and CapgMyo DB-c datasets, respectively 

when all available 5 trials are used for adaptation (as shown in 

Table IV, column-T5 for both CapgMyo DB-b and CapgMyo 

DB-c). 

Similar to the inter-session scenario, we also compared our 

proposed lightweight All-ConvNet+TL in the inter-subject 

scenario with the state-of-the-art GengNet [21], [26] in a data-

starved condition. The proposed lightweight All-ConvNet+TL 

exhibits improvement over the state-of-the-art on CapgMyo 

DB-b and CapgMyo DB-c datasets when a limited number of 

trials are available for adaptation, as observed in Table IV, 

specifically in Columns T1, T2, T3, and T4, respectively. For 

example, when only 20% of the data (i.e., 1 trial) was available 

for adaptation, the proposed lightweight All-ConvNet+TL 

achieved a 3.53% and 1.07% improvement over GengNet [21], 

[26] on CapgMyo DB-b and CapgMyo DB-c, respectively 

(Table IV, Column- T1). 

We summarise the inter-session and inter-subject improvement 

results in Table V over the state-of-the-art methods. As 

indicated there, the performance of the proposed lightweight 

All-ConvNet+TL is superior in all cases. The improvement 

achieved by the lightweight All-ConvNet+TL leveraging 

transfer learning in inter-session and inter-subject scenarios, 

exceeds those obtained through alternative state-of-the-art 

domain adaptation approaches. 

Finally, we evaluate the performance of our proposed 

lightweight All-ConvNet+TL while freezing its maximum 

number of layers and use them as a feature extractor, and only 

the top convolutions layers are fine-tuned in the adaptation 

stage for inter-session and inter-subject gesture recognition. 

More explicitly, the first six (6) convolutional layers of the 

lightweight All-ConvNet+TL were frozen and used as a feature 

extractor. Only the top two convolutional layers with a few 

parameters were fine-tuned in the adaptation stage. Therefore, 

TABLE III. INTER-SESSION GESTURE RECOGNITION ACCURACIES ON 

CAPGMYO DB-B.   THE AVERAGE RECOGNITION ACCURACIES (%) OF 8 

HAND GESTURES FOR 10 DIFFERENT SUBJECTS RESPECTIVELY. THE 

NUMBERS ARE THE MAJORITY VOTED RESULTS USING 150 MS WINDOW 

(I.E., 150 FRAMES). 

Methods 
Number of available trials for adaptation 

   T1   T2    T3    T4  T5 

Du et. al. [21][26] 67.97 81.77 86.02 88.10 88.48 

2SRNN [57]  -  -  -  - 83.80 

All-ConvNet+TL 

(Proposed) 
75.91 89.61 92.74 93.46 94.91 

 
TABLE IV. INTER-SUBJECT GESTURE RECOGNITION ACCURACIES. THE 

AVERAGE RECOGNITION ACCURACIES (%) OF 8 HAND GESTURES FOR 

CAPGMYO DB-B AND 12 HAND GESTURES FOR CAPGMYO DB-C FOR 10 

DIFFERENT SUBJECTS RESPECTIVELY. THE NUMBERS ARE THE MAJORITY 

VOTED RESULTS USING 150 MS WINDOW (I.E., 150 FRAMES). 

Methods 

CapgMyo DB-b 

Number of available trials for adaptation 

T1 T2 T3 T4 T5 

Du et. al. [21],[26] 71.81 86.52 88.66 90.32 91.36 

2SRNN [57] - - - - 89.90 

All-ConvNet+TL 

(Proposed) 
75.34 89.42 92.09 93.83 94.94 

 CapgMyo DB-c 

Du et. al. [21],[26] 57.40 75.98 82.51 85.98 88.02 

2SRNN [57] - - - - 85.40 

All-ConvNet+TL 
(Proposed) 

58.47 78.89 86.02 89.99 91.57 
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these experiments can be considered as a full feature extraction 

setting. The performance of these full feature extraction settings 

was compared with the more complex computationally 

expensive 2SRNN [57] method. A deep-stacked RNN classifier 

was also used as a feature extractor by freezing its weight in the 

domain adaptation stage. Table VI presents the inter-session 

and inter-subject average gesture recognition accuracies (%) of 

8 and 12 hand gestures for CapgMyo DB-b and DB-c for 10 

subjects, respectively. As can be seen from Table VI, our 

proposed lightweight All-ConvNet+TL clearly outperforms the 

2SRNN [57] in both inter-session and inter-subject gesture 

recognition accuracy. These experimental results indicate that 

the proposed lightweight All-ConvNet+TL is very effective for 

discriminative feature extraction for improved gesture 

recognition in both inter-session and inter-subject scenarios. 

VIII. DISCUSSION 

We address the problem of distribution shifts by adapting a 

lightweight model to new target domain tasks using a limited 

amount of data for sEMG-based inter-session and inter-subject 

gesture recognition. We propose All-ConvNet+TL leveraging 

lightweight All-ConvNet and transfer learning, which can be 

seen as a hybrid of feature extraction and fine-tuning, learning 

parameters that are discriminative for the new target task. We 

show the effectiveness of our method by conducting extensive 

experiments on CapgMyo and its four (4) publicly available 

HD-sEMG sub-datasets for three (3) different sEMG-based 

gesture recognition tasks, including intra-session, inter-session, 

and inter-subject scenarios. The results indicate that our 

proposed lightweight All-ConvNet and All-ConvNet+TL 

models outperform the more complex state-of-the-art models 

on various tasks and datasets.  

In intra-session scenarios, the proposed lightweight All-

ConvNet (size of only 0.46 M learning parameters), which 

consists of a network using nothing, but convolutions and 

subsampling outperformed the most complex state-of-the-art 

GengNet [21], [26] (size of 5.6M parameters) on CapgMyo 

DB-b (Session 1 and Session 2) dataset, respectively and 

performed on par with or very competitively on CapgMyo DB-

a and CapgMyo DB-c, respectively. The high intra-session 

gesture recognition accuracies of 98.02%, 97.52%, 96.80%, and 

95.76% were obtained by the proposed lightweight 

All-ConvNet using a simple majority voting over the 

recognition result of 160 instantaneous images (or frames) for 

DB-a, DB-b (Session 1 and Session 2) and DB-c, respectively. 

For gesture recognition in inter-session and inter-subject 

scenarios, we apply transfer learning to our proposed 

lightweight All-ConvNet. Our proposed method All-

ConvNet+TL leveraging the lightweight All-ConvNet and 

transfer learning outperforms the current state-of-the-art 

methods by a large margin, both when the data from single 

trials or multiple trials are available for fine-tuning and 

adaptation.  

We achieved state-of-the-art performance for inter-session and 

inter-subject scenarios. The inter-session gesture recognition 

accuracy reached 94.1% on CapgMyo DB-b, which is 

approximately 11.11% and 6.43% higher than the current state-

of-the-art [57] and [21][26], respectively.  

In addition, the inter-subject gesture recognition accuracy 

reached 94.94% and 91.57% on CapgMyo DB-b and DB-c, 

respectively, which is 5.04% and 6.17% higher than [57] and 

3.58% and 3.55% higher than the [21], [26] respectively. 

Moreover, the proposed lightweight models achieved state-of-

art performance under full feature extraction settings in both 

inter-session and inter-subject scenarios.  

These outstanding state-of-the-art inter-session and inter-

subject gesture recognition performance achieved by the 

proposed lightweight All-ConvNet+TL models by leveraging 

transfer learning validates that the proposed method is highly 

effective in learning invariant and discriminative 

representations to overcome the distribution shift caused by 

inter-session and inter-subject data variability. This potentially 

indicates that the current state-of-the-art models are 

overparameterized for the sEMG-based gesture recognition 

problem. 

Furthermore, the current most complex state-of-the-art models 

[21], [26], [57] are computationally expensive and require a 

huge memory space to store a massive number of parameters. 

Therefore, these models are usually unsuitable for deploying 

low-end, resource-constrained embedded and mobile devices 

for real-time MCI applications. Thanks to the proposed 

parameter-efficient All-ConvNet and All-ConvNet+TL, our 

model is much smaller and lightweight than these current state-

of-the-art methods for sEMG-based gesture recognition.   

Finally, the new experimental evidence of our proposed method 

about various sEMG-based gesture recognition tasks and its 

role will shed light on potential future directions for the 

community to move forward for more efficient lightweight 

model exploration. 

IX. CONCLUSION 

For real-time Muscle-Computer Interfaces, the sEMG-based 

gesture recognition must address the inter-session and inter-

subject distribution shifts. To address and overcome these 

distribution shifts, we investigate the effects of transfer learning 

and feature reuse on our proposed lightweight All-ConvNet. 

We discovered that the proposed lightweight All-ConvNet+TL, 

which leverages transfer learning in the inter-session and inter-

subject scenarios outperforms the most complex state-of-the-art 

TABLE V. INTER-SESSION AND INTER-SUBJECT IMPROVEMENT (%) 

RESULTS OBTAINED BY THE PROPOSED LIGHTWEIGHT 

ALL-CONVNET+TL LEVERAGING TRANSFER LEARNING. 

Methods 
Inter-session improvement Inter-subject improvement 

DB-b DB-b DB-c 

Du et. al. [21][26] 6.43 3.58 3.55 

2SRNN [57] 11.11 5.04 6.17 

 
TABLE VI. INTER-SESSION AND INTER-SUBJECT GESTURE 

RECOGNITION ACCURACIES (%) UNDER FULL FEATURE EXTRACTION 

SETTING. 

Methods 
Inter-session Inter-subject  

DB-b DB-b DB-c 

2SRNN [57] 83.80 89.90 85.40 

All-ConvNet+TL 

(Proposed) 
91.93 91.56 85.56 
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domain adaptation methods by a large margin, both when the 

data from single trials or multiple trials are available for 

adaptation. The state-of-the-art performance proved that the 

proposed lightweight All-ConvNet+TL model is highly 

effective in learning invariant and discriminative 

representations for addressing distribution shifts in sEMG-

based inter-session and inter-subject gesture recognition. This 

raises the question and provides evidence of 

overparameterization of the most complex current state-of-the-

art models for sEMG-based gesture recognition tasks. We also 

find that significant feature reuse concentrated in lower layers 

and explored more flexible and hybrid transfer approaches, 

which retain transfer benefits and create new possibilities. In 

future work, we plan to deploy our proposed lightweight All-

ConvNet and All-ConvNet+TL model for sEMG-based real-

time adaptive and intuitive control of an active prosthesis. 

Appendix to “Surface EMG-Based Inter-Session/Inter-

Subject Gesture Recognition by Leveraging Lightweight 

All-ConvNet and Transfer Learning.” 

A. Weight (or Feature) Transfusion Experiments 

In this section, we investigate to identify locations where 

exactly in the network meaningful feature reuse takes place 

during transfer learning by conducting a weight (or feature) 

transfusion experiment. We initialize our proposed lightweight 

All-ConvNet+TL with a contiguous subset of the layers using 

pre-trained weights (weight transfusion), and the rest of the 

network randomly, and train on the target inter-session gesture 

recognition task. More explicitly, we initialize only up to layer 

L with pretrained lightweight All-ConvNet+TL weights, and 

layer L+1 onwards randomly; then train only layers L+1 

onwards. Since, the weight transfusion process uses pre-trained 

weights, it can accelerate the training during fine-tuning of a 

network on the target task. Therefore, the learning speed was 

measured in terms of gesture recognition performance on 

various training epochs. Table VII presents the inter-session 

gesture recognition accuracy of a subject against various 

training epochs for different number of transfused weights. We 

show the learning speed and gesture recognition accuracy when 

transfusing from Conv1 (L-7, one layer) up to Conv8 (i.e., layer 
L-7 to layers L-full transfer). From the weight transfusion 

results, our proposed lightweight All-ConvNet+TL model 

perform quite stably over the different number of transfused 

weights. However, we observed that reusing the lowest layers 

(transfusing weights) leads to the greatest gain in learning speed 

and gesture recognition accuracy. For example, transfusing 

weights from layer L-7 (Conv1) up to layer L-5 (Conv3), we 

achieve ≈ 98% recognition accuracy after just 8 (eight) 

training epochs. 

B. Lightweight All-ConvNet Network Trimming 

These weight transfusion results (Appendix A) motivate us to 

explore hybrid approaches to transfer learning, thereby, we 

introduce network trimming which further optimizes the 

proposed lightweight All-ConvNet+TL by pruning the weights 

of the network. We consider reusing pre-trained weights up to 

Conv3 (i.e., weights of layers L-7 to layers L-5 showed in 
Table VII) and the weights of the top of the lightweight 
All-ConvNet (i.e., from layers Conv4 (L-4) to Conv7 (L-1)) 
was pruned by halves to be even more lightweight and 
initializing these layers randomly. Finally, this new 

Lightweight All-ConvNet-Slim model was trained or fine-

tuned on the target inter-session gesture recognition task. 

Table VIII presents the inter-session gesture recognition 

accuracy of a subject against various training epochs, which 

compares the performance of Lightweight All-ConvNet+TL vs 

Lightweight All-ConvNet-Slim model. The experimental 

results demonstrates that the lightweight All-ConvNet-Slim 

model can maintain the same or achieve higher performance 

with much smaller number of parameters. These results with 

variants of Lightweight All-ConvNet+TL model also highlight 

many new, rich and flexible ways to use transfer learning. The 

preprint version of this paper has been made publicly available 

in [67]. 

C. Gestures and the muscles involved in CapgMyo datasets 

Tables IX and X illustrate gestures and all the muscles involved 
in CapgMyo DB-a, DB-b and DB-c respectively [26].  

TABLE VIII. LEARNING (OR CONVERGENCE) SPEED USING VARIOUS 

TRAINING EPOCHS. TABLE SHOWS INTER-SESSION GESTURE 

RECOGNITION ACCURACIES (%) ON TEST SET. THE NUMBERS ARE 

MAJORITY VOTED RESULTS USING 150 MS WINDOW (I.E., 150 

FRAMES). PER-FRAME ACCURACIES ARE SHOWN IN PARENTHESIS. 

Model 
# learning 

parameters 

Training epochs 

8 16 24 32 

Lightweight  

All-ConvNet+TL 

(Proposed) 

≈ 0.46 𝑀 96.00 

(71.56) 

96.60 

(74.79) 

97.60 

(76.92) 

97.69 

(77.68) 

Lightweight  

All-ConvNet-Slim 

(Proposed)   

≈ 𝟎. 𝟏𝟗 𝑴 91.92 

(68.98) 

96.90 

(73.70) 

98.28 

(75.98) 

98.50 

(77.47) 

  

 
 

TABLE VII. LEARNING (OR CONVERGENCE) SPEED USING VARIOUS 

TRAINING EPOCHS. TABLE SHOWS INTER-SESSION GESTURE 

RECOGNITION ACCURACIES (%) ON TEST SET. THE NUMBERS ARE 

MAJORITY VOTED RESULTS USING 150 MS WINDOW (I.E., 150 

FRAMES). PER-FRAME ACCURACIES ARE SHOWN IN PARENTHESIS. 

Weight 

transfusion 

(up to layers) 

Training epochs 

 8 16 32 46 64 100 

Full Transfer 

(L) 

70.90 

(64.56) 

81.74 

(67.84) 

83.20 

(68.35) 

83.08 

(68.33) 

83.21 

(68.47) 

83.60 

(68.52) 

L-1 
87.42 

(72.28) 

88.21 

(73.53) 

90.14 

(74.43) 

90.01 

(74.55) 

89.85 

(74.94) 

90.39 

(75.13) 

L-2 
90.24 

(76.35) 

93.60 

(78.17) 

93.94 

(79.62) 

94.22 

(80.08) 

94.50 

(80.47) 

94.18 

(81.36) 

L-3 
95.01 

(79.48) 

95.96 

(81.53) 

96.42 

(83.23) 

96.71 

(83.22) 

96.99 

(83.97) 

98.28 

(84.67) 

L-4 
96.10 

(81.87) 

97.71 

(82.59) 

98.21 

(85.10) 

97.92 

(86.17) 

97.96 

(86.37) 

98.59 

(87.06) 

L-5 
97.96 

(83.14) 

98.40 

(84.888) 

99.12 

(87.00) 

99.12 

(86.99) 

99.28 

(87.86) 

99.35 

(88.30) 

L-6 
98.34 

(82.93) 

97.76 

(85.48) 

99.26 

(87.24) 

98.85 

(87.56) 

99.27 

(87.79) 

99.25 

(88.68) 

L-7 
98.10 

(83.33) 

98.74 

(84.34) 

98.93 

(86.08) 

99.41 

(87.22) 

99.32 

(88.04) 

99.32 

(88.21) 
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AND ISOMETRIC HAND CONFIGURATIONS) 

 

1. Thumb up 
 
5. Abduction of all fingers 

 
2. Extension of index and 

middle, flexion of the 
others  

6. Fingers flexed together 
in fist 

 
3. Flexion of ring and little 

finger, extension of the 
others  

7. Pointing index 
 

4. Thumb opposing base of 
little finger 

 

8. Adduction of extended 
fingers 

 
 

TABLE X. GESTURES IN CAPGMYO DB-C (12 BASIC MOVEMENTS OF 

THE FINGERS) 

 

1. Index flexion 
 
5. Ring flexion 

 

9. Thumb 
adduction 

 

2 Index 
extension 

 

6. Ring 
extension 

 

10. Thumb 
abduction 

 

3. Middle 
flexion 

 

7. Little finger 
flexion 

 

11. Thumb 
flexion 

 

4. Middle 
extension 

 

8. Little finger 
extension 

 

12. Thumb 
extension 
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Abstract- The concept of neuromuscular activity recognition 
using instantaneous high-density surface electromyography 
(HD-sEMG) image opens up new avenues for the development 
of more fluid and natural muscle-computer interfaces. The 
state-of-the-art methods for instantaneous HD-sEMG image 
recognition achieve prominent performance using a 
computationally intensive deep convolutional networks 
(ConvNet) classifier, while very low performance is reported 
using the conventional classifiers. However, the conventional 
classifiers such as Support Vector Machines (SVM) can surpass 
ConvNet at producing optimal classification if well-behaved 
feature vectors are provided. This paper studies the question of 
extracting distinctive feature sets, thus propose to use 
Histograms of Oriented Gradient (HOG) as unique features for 
robust neuromuscular activity recognition, adopting pairwise 
SVMs as the classification scheme. The experimental results 
proved that the HOG represents unique features inside the 
instantaneous HD-sEMG image and fine-tuning the hyper-
parameter of the pairwise SVMs, the recognition accuracy 
comparable to the more complex state of the art methods can be 
achieved. 
Index Terms— Neuromuscular activity recognition, HOG, HD-
sEMG, Gesture recognition, SVM, Muscle-computer interface 

1. INTRODUCTION 

The precise characterization and recognition of 
neuromuscular activities present a great challenge [1] The 
high-density sEMG (HD-sEMG) based methods have been 
proposed in the recent years [2][3]. The HD-sEMG records 
myoelectric signals using two-dimensional (2D) electrode 
arrays that characterize the spatial distribution of myoelectric 
activity over the muscles that reside within the electrode pick-
up area [4]. The collected HD-sEMG data are spatially 
correlated which enabled both temporal and spatial changes 
and robust against malfunction of the channels with respect 
to the previous counterparts [3]. However, the existing HD-
sEMG based neuromuscular activity recognition methods are 
still depending on the windowed sEMG which demands to 
find an optimal window length otherwise influence the 
classification accuracy. To overcome this problem and 
develop a more fluid and natural muscle-computer interface, 
more recently, W. Geng et al. [4], explored the patterns inside 
the instantaneous sEMG images spatially composed from 
HD-sEMG enables neuromuscular based gesture recognition 
solely with the sEMG signals recorded at a specific instant. 
In their approach, the instantaneous values of HD-sEMG 
signals at each sampling instant were arranged in a 2D grid in 

accordance with the electrode positioning. Afterwards, this 
2D grid was converted to a grayscale sEMG image. A 
computational model based on deep convolutional neural 
networks (ConvNet) [5] has been employed for sEMG image 
classification. However, the potential drawback is the 
classification method based on ConvNet, is computationally 
very expensive to be practical for real-world applications for 
neuromuscular activity recognition. Moreover, the studies 
conducted in [4] reported of attaining recognition rate as low 
as 20% using the conventional classifiers such as support 
vector machines (SVM). However, the conventional 
classifiers such as SVM can surpass ConvNet at producing 
optimal classification if well-behaved feature vectors are 
provided [6]. However, this aspect is totally overlooked in 
[4]. Therefore, developing computationally efficient 
distinctive feature extraction and classification algorithms for 
instantaneous sEMG image based neuromuscular activity 
recognition is highly demanded.  

For instantaneous sEMG image based neuromuscular activity 
recognition, the challenge remains open because very limited 
research has been done on it. This paper studies the histogram 
of oriented gradients (HOG) for the improved 
characterization of the instantaneous sEMG image. HOG is 
one of the state-of-the-art methods for object recognition [7]-
[9]. However, this important characterization method is 
ignored for sEMG signal classification. This paper proposed 
to use a HOG based feature extraction method for 
instantaneous sEMG image classification. According to our 
best knowledge, no one performed similar studies before for 
sEMG signal classification.  

The rest of the paper is organized as follows. Section 2 
provides the computational details of the proposed feature 
extraction method. Section 3 describes the testing database 
and the experimental validation. Section 4 offers some 
conclusive remarks. 

2. THE PROPOSED NEUROMUSCULAR FEATURE 

EXTRACTION AND CLASSIFICATION ALGORITHM  

The proposed neuromuscular feature extraction and 
classification algorithm has three computational components: 
(i) preprocessing and sEMG image generation, (ii) feature 
extraction, and (iii) classification. A schematic diagram of the 
proposed muscular activity recognition method by 
instantaneous sEMG images are shown in Fig. 1. The 
sketches of hand and gestures in Fig.1 are adapted from [4]. 



First, the acquired HD-sEMG signals at each sampling instant 
were arranged in a 2-D grid according to their electrode 
positioning. This grid was further transformed into an 
instantaneous sEMG image by linearly transforming the 
values of sEMG signals from  to color intensity as −2.5 , 2.5  to 0	255 . Thus, an instantaneous 
grayscale sEMG image was formed with the size of 16 × 8. 
The gradient image ∇ ( , ) is obtained by convolving an 
estimation filters over  and  axis of the instantaneous 
sEMG image ( , ). The magnitude |∇ ( , )|	and 
orientation ( , ) for each pixel of the sEMG image are 
computed from the gradient image ∇ ( , ). The sEMG 
image is divided into a dense grid with a spatial ×  pixels 
cells. For each cell, a local 1-D histogram of gradient over all 
pixels in the cell are computed as features. This aggregated 
cell-level 1-D histogram builds the HOG feature vector for 
the unique representation of the instantaneous sEMG image. 
Finally, these HOG feature vectors are fed to a 
computationally effective learned pairwise SVM classifier 
for instantaneous gesture recognition. 

Section 2.1 presents the HOG feature extraction technique for 
sEMG image representation and Section 2.2 presents the 
classification schemes respectively. 

2.1.  Histogram of Oriented Gradients (HOG) Feature 
Extraction 

After generating the instantaneous sEMG image by linearly 
transforming the values of sEMG signals to color intensity as 
mentioned above, the crucial task is to extract distinctive 
features to represent the instantaneous sEMG image for 
robust classification of the performed hand gesture. However, 
the main research question is what makes the different 
gestures distinctive performed by the same or different 
subjects? For example, the hand gestures explained in 
Section 3 and shown in Table I can be differentiated by their 
shape and orientation features. The color might not be a 
reliable feature because the portrayed hand gestures have the 
same color. Therefore, any method that can precisely describe 
the shape and orientation information will solve the problem. 
Nevertheless, the problem in our hand is even more 
challenging because the instantaneous sEMG image is 
formed by linearly transforming the values of sEMG signals 
from  to color intensity which reflects the intensity 
distributions of the performed hand gestures. The different 
hand gestures produce different spatial intensity distributions, 
thus also make the structure of the instantaneous sEMG 
image different. These discriminative attributes have been 
capitalized and used as features in this work.  

Both intuitive observation and preliminary experimental 
results indicate that the gradient of the intensity distributions 
or edge directions provides the discriminative features for 
instantaneous sEMG image classification. HOG precisely 
captures this notion. Therefore, we propose to use HOG as 
features for instantaneous sEMG image classification. HOG 
features are calculated by taking orientation histograms of 
intensity distributions from all locations of a dense grid on a 
sEMG image region and combined features are used for 
classification. HOG features are assumed to be designed for 

imitating the visual information processing of the brain and 
have robustness against local changes of position. This 
important property of HOG can be exploited to cope with the 
electrode shifting problem encountered between two different 
HD-sEMG recording sessions. HOG is like scale-invariant 
feature transform [11] in the sense that a local region is 
described by deriving gradient orientations from the 
orientation histogram.  

Consider the gradient estimation filters ℎ = −1, 0, 1 , and ℎ = 	 −1, 0, 1 . The gradient information of an 
instantaneous sEMG image can be obtained by ( , ) = = 	 ( , ) ∗ 	ℎ 	( , ) ∗ 	ℎ 																								(1) 
where, ∗ denotes an operation of a 1-dimensional (1-D) 
convolution. The  and  stand for height and width of the 
instantaneous sEMG image. The magnitude of a pixel is 
calculated by | ( , )| = 	 + 	 																																			(2) 
and the orientation of a pixel is calculated by ( , ) = 	 tan 	 	 	 	 																																						(3) 
These magnitude | ( , )| and orientation ( , ) at each 
pixel are then used for calculating HOG.  

The main intuition behind HOG feature extraction is that, 
while individual | ( , )| and ( , ) are highly variable 
and subject to significant variations across nearby ( , ) 
locations, even for the sEMG images generated by the same 
hand gesture, the cumulative statistics of the spatial 
distribution of the gradient orientation and magnitudes over 
small region of the sEMG images derived from the same 
gesture provide quite robust descriptors of the instantaneous 
sEMG image. 

To compute orientation histograms, the obtained 
instantaneous sEMG image gradient is divided into		8 × 4 =32 non-overlapping rectangular cells, and each cell is of size ×  pixels ( = 2). Four ×  neighboring cells form a 
block of size 	 × 	  ( = 2). A schematic diagram of HOG 
extraction process is illustrated in Fig. 2. There are total 	 ×

Fig. 1. Schematic illustration of the proposed muscular activity 
recognition by instantaneous sEMG images. 



	ℎ = 21,	overlapping blocks are formed over an 
instantaneous sEMG image (where = 7 and ℎ = 3, 
denotes the number of vertical and horizontal block 
respectively). In each ×  cell, the orientation histogram 
has  bins ( = 7), which correspond to orientations 	 ×⁄ , where = 0,1, … , . Thus, each of the block 
contains	 	 × 	 	 × 	 = 28	dimensional HOG feature vectors 
and each instantaneous sEMG image contains × ℎ ×( 	 × 	 	 × 	 ) = 588 dimensional HOG feature vectors. 

This 588-dimensional HOG feature vector is used to 
represent the instantaneous sEMG image. It is noteworthy 
that  ,  and  are parameters and selecting values of these 
parameter tradeoff with the overall instantaneous sEMG 
image classification performance. Therefore, it is significant 
to select the optimum values of these parameters for 
extracting most discriminant HOG features. 

Now, we calculate the 28-D HOG feature vector from a block 
of  	 × 	  cells. Consider | ( , )| and ( , ) in one block 
as shown in Fig. 2(a) and 2(b). In Fig. 2(b), the orientation of 
the arrow represents ( , ) and the length of the arrow 
stands for | ( , )|. In the experiments, the gradient 
orientation is transformed from − ≤ ≤  to 0 ≤ ≤  
and then evenly quantized into  bins. The HOG feature 
vector ℎ ∈ 	ℝ  of the first cell (top left in Fig. 2(a)) can be 
calculated by voting ℎ ( ) ← ℎ ( ) +	 |∇ 	( , )|,			 = 1, … , 																				(4) 
where |∇ 	( , )| indicates the magnitude from the 
gradient and  is the quantized orientation. In the same way 
as ℎ , the three-feature vectors (ℎ , ℎ 	and	ℎ ) can be 
generated from three other cells of a same block. By 
combining these feature vectors, the HOG feature vectors of 
a block turn into ℎ = 	 ℎ , ℎ , ℎ , ℎ 	 	 ∈ 	ℝ × .   

It is to be noted that the equation (4) is a simplified form. 
However, in our implementation, the trilinear interpolation is 
used to calculate the HOG features [12]. The trilinear 
interpolation smoothly distributes the gradient to 	 × 	  cells 
of a block to reduce the aliasing effect caused by the pixels 
near to the cell boundaries. This technique can also be robust 
against small distortions between sEMG images derived from 
the same gesture.  

Moreover, the gradient strengths vary over an instantaneous 
sEMG image owing to local variations. Therefore, the 
overlapped blocks on sEMG image are normalized 
individually so that each scaler cell-response contributes 
several components to final HOG feature vector. The 
normalization is performed by  ℎ = 	ℎ ‖ℎ‖ + 																																																												(5) 
where,  is a small normalization constant used to avoid 
divided by zero [12]. This normalized HOG representation is 
used for instantaneous sEMG image classification.  

2.2. Pairwise SVM Classifier 
After the HOG feature extraction for representing an 
instantaneous sEMG image, the most important task is to 
employ a computationally effective classifier which has the 
high generalization ability for solving a multi-class 
classification problem. SVM [13][15] is essentially a binary 
classifier, however, multi-class classification problem is 
solved by training several binary SVM classifiers and an 
optimal global decision function is obtained by fusing the 
outputs of each of these binary classifiers. In addition, the 
decision function of SVM's is fully determined by the number 
of support vectors (SVs) which is substantially lower than the 
actual number of samples used in training, makes SVM 
computationally very efficient. Moreover, SVM trained on 
HOG features has become a popular method for across many 
visual perception tasks due to the performance and robust 
theory [14]. Why do SVM's trained on HOG features perform 
so well is still an open research issue in the literature. 
However, it is pointed out in [14] that preserving second-
order statistics and locality of interactions are fundamental to 
achieve good performance. All these motivated us to use and 
train pairwise SVM's classifiers on HOG features extracted 
from the instantaneous sEMG image.  

3. EXPERIMENTS 
We tested our feature characterization method on CapgMyo 
data sets [10] (this database is made available from following 
website http://zju-capg.org/myo/data/index.html). This 
dataset was developed for providing a standard benchmark 
database (DB) to explore new possibilities for studying next-
generation muscle-computer interfaces (MCIs). Table I 
illustrates gesture in DB-a and DB-b. The CapgMyo database 
comprises 3 sub-databases (referred as DB-a, DB-b and DB-
c). However, as followed by the [4], DB-a has been used in 
our preliminary experiments to evaluate the performance of 
our proposed methods. In DB-a, 8 isotonic and isometric hand 
gestures were obtained from 18 of the 23 subjects and each 
gesture was also recorded for 10 times. For each subject, the 
recorded HD-sEMG data is filtered, sampled and the 
instantaneous sEMG image is generated using the method 
mentioned in Section 3. More explicitly, 8 different hand 
gestures are performed by every subject and each hand 
gestures are recorded for 10 times with a 1000 Hz sampling 
rate, which in total generates  (8 × 10 × 1000 = 80000) 
instantaneous sEMG images. Then, our HOG-based proposed 
feature extraction technique elaborated in Section 2.1 is 
applied to each of the instantaneous sEMG images. Thus, an 

 
Fig. 2. HOG extraction process (a) An instantaneous sEMG 
image is partitioned by non-overlapping cells and overlapping 
blocks (each block has (2×2) four cells). (b) Gradients 
information are overlaid over an instantaneous sEMG image (c) 
HOG in each block. The horizontal axis represents angle 
information and the vertical axis bears weighted histogram.



80000 ×  dimension HOG feature vectors are obtained. 
The each of the HOG feature vectors dimension  depend on 
the different HOG parameters such as ,  and . However, 
considering the low resolution instantaneous sEMG image 
and based on our preliminary experiments, we select = 2, = 2 and = 7 respectively. Hence, we obtained × ℎ ×( 	 × 	 	 × 	 ) = 588 dimension HOG feature vectors of an 
instantaneous sEMG image.  

Now, for every subject in DB-a, a pairwise SVMs classifier 
is trained to predict the desired hand gestures for each 
incoming sEMG images. The pairwise SVMs framework is 
based on LIBSVM, a library for support vector machines 
[16].  To conduct the above-mentioned gesture classification 
task, the obtained 80000 ×  dimension HOG feature 
vectors are randomly divided into three subsets such as 
training, validation and testing set. In this preliminary 
investigation, 50% of the HOG feature vectors from the entire 
feature set are randomly selected and used as a training set. 
In the same way, the remaining 50% of the HOG feature 
vectors are divided into validation and testing set. The 
validation set is used for model/kernel and parameter 
selection for pairwise SVMs. Due to computationally 
effective and reducing searching space for parameter 

selection, the RBF kernel	 , = , 0	 is 
used to train the obtained HOG feature set. There are two 
parameters for an RBF kernel which is a cost parameter ( ) 
and kernel parameter . It is not known in advance which  
and  are the best for a given problem. Therefore, the 
parameter selection is performed. We used a grid search 
along with this -fold ( = 3) cross-validation scheme to find 
the optimum ( , ) on the validation set. It is recommended 
in [17] to use the exponentially growing sequences of  and 

 to identify the good parameters. Hence, we use =	 2 , 2 , 2 , … , 2  and = 2 , 2 , 2 , … , 2 . 
Therefore, we examined with 7 × 9 = 63 combinations of ( , ) pairs. Then, the whole training feature set is trained 
using the pair of ( , ) that achieves the best cross-validation 
accuracy. Finally, this trained classifier is used to predict the 
test feature set. 

Confusion matrix generated from the predicted classification 
results were used as a performance indicator. The correctly 
classified (%) gesture classes are listed along the diagonal 

line of the Confusion matrix as presented in Table II. The 
average classification accuracy of the proposed methods is 
86.63% which is comparable to the state of the art methods. 
Using instantaneous values of HD-sEMG and SVM 
classifier, the average classification accuracy as low as 20% 
was reported in [4]. However, the average classification 
accuracy increased to 86.63% using proposed HOG and 
optimized parameter of pairwise SVMs. In addition, the recall 
or true positive rate (TPR) and the precision or the positive 
predictive value (PPV) [18] of each gesture classes are also 
computed and mentioned in Table III. The 86.62% average 
precision and recall of each class also indicate the potentiality 
of the HOG and pairwise SVMs for neuromuscular activity 
recognition. Finally, the experimental results demonstrate 
that: (i) HOG are effective features for unique representations 
of instantaneous HD-sEMG images (ii) Provided 
discriminant features and fine-tuning the hyper-parameter of 
the conventional classifiers such as pairwise SVMs, the state 
of the art recognition rate can be achieved for muscular 
activity recognition based on instantaneous HD-sEMG 

images. 
4. CONCLUSIONS 

In this paper, we propose to use Histogram of Oriented 
Gradients (HOGs) as distinctive features and pairwise SVMs 
for robust neuromuscular activity recognition using 
instantaneous HD-sEMG images. 80000 instantaneous HD-
sEMG image frames for 8 different gesture of each subject 
from CapgMyo database were examined. The experimental 
results demonstrate that HOG are effective features for 
unique representations of instantaneous HD-sEMG images. 
Also, provided discriminant features and fine-tuning the 
hyper-parameter of the conventional classifiers such as 
pairwise SVMs, the state of the art recognition rate can be 
achieved for neuromuscular activity recognition based on 
instantaneous HD-sEMG images. 
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Table II. Confusion Matrix of the Proposed Neuromuscular 
Activity Recognition Method. 

Table III. Precision and Recall of every gesture classes. 
Class CL01  CL02 CL03 CL04 CL05 CL06 CL07 CL08 

Precision 87.52 87.44 88.38 82.32 88.57 85.07 88.66 85.03 

Recall 87.35 86.03 89.24 82.84 89.99 83.76 89.02 84.79 

Table I. Gestures in DB-a and DB-b (8 isotonic and isometric 
hand configurations) [10] 
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