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RÉSUMÉ SUBSTANTIEL 

 

C. elegans, avec son corps transparent, son cycle de vie court et son hermaphrodisme, est 

un puissant organisme modèle permettant d’étudier le comportement de ponte des œufs. Avec la 

mise en œuvre efficace de CRISPR/Cas9 en laboratoires, les mesures de taille de portée sont 

essentielles pour caractériser le nombre croissant de nouveaux mutants de C. elegans. La méthode 

actuelle pour effectuer de telles mesures implique de compter manuellement le nombre d'œufs et 

de vers sur chaque plaque d'échantillon plusieurs fois au cours d'une semaine, ce qui introduit non 

seulement des erreurs humaines lors de milliers d'événements de comptage, mais peut également 

perturber l'animal en l'exposant à la lumière, aux variations de température et aux vibrations. Les 

trois objectifs de cette maîtrise sont : 1) la conception et la construction d’un robot capable de 

surveiller un nombre important d’animaux en une expérience ; 2) la conception et l’écriture de 

l’architecture informatique et du code permettant le fonctionnement du robot ; 3) la validation du 

robot. Nous présentons ici un nouveau robot automatisé, le Robot Automatisé de Surveillance de 

C. elegans (CeSAR), qui effectue ces mesures à l'aide d'un réseau neuronal entraîné à reconnaître 

les vers et les œufs, tout en analysant le phénotype des parents. Le robot a été testé par rapport à 

des expérimentateurs humains pour mesurer la taille de la portée : ces expérimentateurs avaient 

différents niveaux d'expertise tandis que le réseau neuronal était formé sur plus de 5 000 images. 

Ce robot contrôlable à distance peut s'intégrer dans un incubateur et effectuer des analyses en 

parallèle de 48 expériences distinctes, tout en contrôlant l'exposition à la lumière, la température 

et en surveillant les conditions environnementales. La seule action requise de la part de 

l'expérimentateur est de transférer les vers parentaux dans leur puits respectif avant de placer les 

plaques dans la machine, ce qui peut économiser jusqu'à une semaine de travail intensif. Cette 
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méthodologie nouvelle et plus avancée sera non seulement plus efficace et précise que celle 

relevant des humains, mais pourra également fournir des informations clés sur plusieurs mutations 

affectant la prolifération des cellules souches germinales, la maturation des ovocytes et établir 

d'éventuelles corrélations entre les traits phénotypiques et les anomalies du comportement de ponte 

des œufs.  

 

Mots-clés : C. elegans, taille de la couvée, automatisation, intelligence artificielle, apprentissage 

automatique, robot, détection, vers, ponte, traitement d’images, mécatronique. 
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CHAPTER I: LITERATURE REVIEW 

 

1.1 Introduction 

 

Laboratories around the world, whether studying fruit flies, mice, or nematodes, have 

greatly benefited from recent advances in technology, from whole genome sequencing analyses to 

better performing microscopes and computers. In particular, a massive expansion can be witnessed 

in the automation of time-consuming and difficult biological manipulations or analyses, which is 

allowing to greatly increase the speed at which research can be conducted, all while getting reliable 

data with independent and large assessments. Time-consuming experiments that could not even 

have been envisaged a few years ago now become readily feasible with a little help from 

informatics and robotics. For instance, how would one monitor and analyze the social behavior of 

courtship and aggression of a pair of Drosophila melanogaster in 8 different arenas, all 

simultaneously? Dankert et al. in 20091 realized this feat in no time using their clever home-made 

device and were able to build complete ethograms for both aggression and courtship in this model. 

Similarly, how would one non-invasively and continuously monitor a mouse’s weight, sleep 

patterns, and feeding behavior? Ahloy-Dallaire et al. achieved this in 20182 using another purpose-

build robot, thereby revealing “pronounced circadian rhythms in both feed intake and body 

weight.” By allowing us to gather data a human being couldn’t possibly or reliably on their own, 

automated systems clearly have the potential to uncover exciting discoveries. 

 

Research using the nematode C. elegans is no exception: though the first publication on this 

organism appeared in 1899 by Maupas3, the first surveillance system only appeared 86 years later4, 
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in 1985. In this landmark paper, Dusenbery was able to track 25 animals simultaneously but 

warned that “the subjects must show up as high contrast images” to be accurately detected. Another 

14 years later, in 1999, Dhawan et al. refined this system to track more animals5. From then on, 

more surveillance systems were designed and improved, all with their respective specificity, 

applicability, and availability. For instance, how serotonin coordinates egg-laying and movement 

was studied by Hardaker et al. in 20016. However, their system came along with costs upwards of 

$10,000 USD and could monitor worms only for a few hours. Similarly, locomotion and 

morphology were studied and theorized by Cronin et al. in 20057, but their low-resolution system 

(320px × 240px images) did not allow to score egg-laying. Some, like Li et al. in 2015, have used 

microfluidics coupled with automated systems to sort animals8. Others, like Buckingham and 

Sattelle in 2008, have preferred to surveil C. elegans in liquid environments, namely to study 

lateral swimming (i.e. thrashing) behavior9. Of the worm trackers listed by Husson et al., between 

2005-2018, the only 3 published systems with costs below $3,500 USD did not have X-Y stage 

control10. Yet, the true power of computer science and robotics is to analyze spatially separated 

animals in parallel, requiring multiple arenas and a robust X-Y stage control. We had yet to see a 

fully automated system capable of performing brood size measurements for a high sample size 

using artificial intelligence.  

 

With the recent keen interest in aging, stem cell research, and intergenerational behavioral 

inheritance through epigenetics, it is evermore clear that past and current automated systems need 

to be unified into one single multi-purpose device to link these different fields. Yet, there seems 

to be no clear attempts at doing so, which is why reviewing literature on the subject is critical to 

better understand the challenges and shared processes amongst these systems. 
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1.2 Objective 

 

In this literature review, we aim to present and synthesize the current state of automated 

surveillance systems in mainstream model organisms. The mechanical, computer science, artificial 

intelligence, and biological axes will therefore be discussed to better understand the possibilities, 

challenges, and potential outcomes of such devices. Although the focus will be on automated 

systems designed for C. elegans research, a broader view is made to include significant advances 

developed for other model organisms. 

 

1.3 Methods 

 

With a rapidly evolving technology, the following inclusion criteria were applied in the 

selection of the reviewed papers:  

- at most 10% published between 2005 – 2010, 

- at least 66.7% published in 2015 or later, 

- showing significant advances in mechanical engineering, artificial intelligence, or 

image processing for data analysis, and 

- indexed on PubMed. 

 

We further chose to focus on, but not restrict ourselves to, the C. elegans model and the 

surveillance of the animal’s progeny. 
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This review covers 43 publications that meet the inclusion criteria. In the following subsections, 

reports that used a particular model organism (e.g. Arabidopsis thaliana, Mus musculus) will be 

presented together. 

 

1.4 Review 

 

All automated surveillance systems rely on mechanical engineering to function properly; 

they all gather some form of data from the biological sample itself or from the arena the sample is 

placed in. This will generally take the form of a light source and a camera, a scale, or sensors to 

measure environmental conditions (e.g. temperature, humidity, pressure). Data is recorded on 

hardware and sometimes automatically processed. Whether the latter is done through clever 

algorithmic design or artificial intelligence, the resulting data can then be used to find trends from 

which educated hypotheses can be formulated. 

 

In the following subsections, we will see how, around the world and across models, laboratories 

have designed and built these systems. We will start by looking at research papers that monitor 

parts or remains of living models, then move on to whole organisms with regards to scale and 

medium: first unicellular models, unspecific systems, then swimming, flying, vegetative, walking, 

and finally crawling models. We finally synthesize the key strategies that made these automated 

systems successful. 
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1.4.1 Skin lesions and medical conditions 

 

Before diving into living organism monitoring systems, we will survey different 

surveillance systems made for human skin, as those illustrate how inanimate objects can be 

monitored. Esteva, Kuprel et al. (2017)11 have used deep neural networks to classify skin cancer 

with a dermatologist-level of accuracy. They trained a deep convolutional neural network (CNN) 

with a dataset of 129,450 clinical images, spanning 757 disease classes, for an average of 1,710 

training images per disease. Their goal was image classification and not object detection. This 

assumes that each image is of one skin lesion only and that the entire image could be labeled 

correspondingly. The exact location of the lesion on the image was of no real importance assuming 

it was roughly in the center. The CNN, once trained, must then correctly identify new images of 

skin lesions. This illustrates how systems must display both specificity and sensitivity. If very 

specific but not sensitive, almost no images will be recognized as the correct class (i.e. most 

corresponding images will be false negatives, and the rest will be true negatives). Conversely, if 

very sensitive but not specific, almost all images will be recognized as the evaluated disease (i.e. 

a plethora of false positives and most of the corresponding true images as true positives). This dual 

requirement is well-known in the field of biomedical diagnostic tests and in this work, they show 

how their system improves both specificity and sensitivity by increasing the number of clinical 

images as input training data (Figure 1). 
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Figure 1: increase of both specificity and sensitivity of the CNN to recognize melanomas using 
almost ten times more input images as training data (Esteva, Kuprel et al., 201711). 
 

It is also important to note that a lesion is considered immobile on a patient. This explains why the 

researchers can create a handheld device that can simply be put over the same lesion the next time 

they evaluate the patient.  

Also considering skin conditions, Bolton et al. (2018)12 designed a low-cost multispectral imaging 

system that could detect an “increase in blood content of the superficial plexus layer,” also known 

clinically as hyperemia. To capture the images at varying illumination wavelengths, they used a 

light emitting diode (LED) panel where they placed specific-colored LEDs covering UV (λ = 

395nm) up to infrared (IR, λ = 940nm). Although somewhat bulky, their system allows multiple 

images to be taken of the same sample under 13 different wavelengths in 30s, which provides the 

researchers with data they couldn’t have otherwise gathered. We will now move on to reviewing 

systems that were developed to monitor eukaryotic and prokaryotic cells and see what changes in 

design are required to adapt to both the scale and the dynamism of the studied subject. 
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1.4.2 Eukaryotic and prokaryotic cells 

 

Although significantly larger than prokaryotic cells, eukaryotic cells’ 10µm to 100µm 

remain on the microscopic scale. Tristan-Landin et al.’s (2019) system is a multicolor fluorescence 

microscope made using 3D-printed parts that can detect single THP-1 monocytes13. They use a 

3D-printed frame in conjunction with Raspberry Pi 3, with a Raspberry Pi camera module V2 (8 

Mpx), and Python 2.7 with OpenCV (image processing library) for their graphical user interface 

(GUI) (Figure 2). 

 

Figure 2: Multicolor fluorescence microscope from Tristan-Landin et al. (2019)13. (a) Bolt and 
nut mechanism on which the design is based. (b) Front view of the microscope. (c) Frontal cut of 
the microscope. 

 
In the μm scale, it is vital to have proper focus design to obtain clear microscopic images (Figure 

3).  
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Figure 3: Fluorescence and bright-field (BF) images of THP-1 monocytes taken by the 3D-
printed microscope from Tristan-Landin et al. (2019)13. 

 

To address this, they chose to rotate the head stage containing the LEDs to change the distance 

between the lens and the complementary metal oxide semi-conductor (CMOS) sensor. However, 

since both the threading on the nut and bolt were made of polylactic acid (PLA), it could potentially 

wear out after many utilizations, but is inexpensively replaceable (i.e. $~1 USD). Such design 

choice however forced them to rotate the sample once the focusing was done. Stewart and Giannini 

(2016)14, on the other hand, have decided to 3D-print a frame based on the existing design of 

research-grade microscopes to observe Tetrahymena thermophila cells (Figure 4). 
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Figure 4: 3D-printed fluorescence microscope from Stewart and Giannini (2016)14 and resulting 
images of T. thermophila cells. (A) Olympus CH-2 microscope with an adapted 3D-printed version 
mounted onto it. (B) Complete polyvinyl chloride (PVC) version of the microscope. (C-F) T. 
thermophila cells from the pICY_AA strain obtained with (A) 3D-printed mount on the left and 
with (B) PVC version on the right. Their cortex is tagged with a yellow fluorescent protein. 

 

Still at a microscopic scale, for prokaryotic cells, namely M. tuberculosis, Miller et al. (2010)15 

used a similar machine as Stewart and Giannini’s with the exception of the lighting for which they 

used a bright white flashlight with an emission filter mounted onto it. They were able to detect 

fluorescence from M. tuberculosis after dying the slides with auramine orange. However, these 

systems so far lack mechanical automation, which hinders the creativity and extent of the 

experimental design. 
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More recently, Needs et al. (2019)16 used a compromise where magnification was greatly 

diminished to observe at a macroscopic scale, in order to build a cellular observation system with 

a robust automated X-Y positioning system (Figure 5). 

 

 

Figure 5: time-lapse imaging for analytical microbiology setup by Needs et al. (2019)16. 

 
They used 3D printer architecture to build their robot, most notably the OctoPi running an 

OctoPrint server. The latter is often used in 3D printers to monitor the printing process. They used 

a Raspberry Pi to send G-code to an Arduino mega board to control the X, Y, and Z stepper motors. 

Their X-Y stage design is based on CoreXY which is a Cartesian arrangement. It offers great 

pullback decrease because of continuous tension applied to both sides of the center object and is 

especially easy to move in straight lines along 90° angles. They used Python scripts to automate 

the camera settings as well as the path for image acquisitions. This allows them to conduct, in a 

time-lapse fashion, multiple experiments in parallel, thereby significantly increasing their sample 

size. 
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1.4.3 Broad scope systems  

 

Some systems focus on multiple model organisms at once. Although they lose some 

specificity in design, they can be extremely useful in broad applications. This is the case of Chagas 

et al. (2017) who built a microscope powered by a Raspberry Pi computer to perform fluorescence 

microscopy, optogenetics and behavioral assays in zebrafish, C. elegans, and Drosophila 

melanogaster17. The general design of the microscope is shown in Figure 6.  

 

 

Figure 6: Microscope design from Chagas et al. (2017)17. (A) Assembled microscope with a single 
LED, diffusor, and Petri dish mount. The Raspberry Pi is placed directly behind the microscope. 
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(B) Inverted microscope configuration. (C) Electrical wiring between the Raspberry pi, the 
Arduino, the electrical components, and the screen. 

Simply regarding the design, it is noteworthy that the Raspberry Pi 3 computer serves as the master 

whereas the Arduino serves as a slave to control all electrical components such as the lights and 

the servo motor to control the focus. This segregation of tasks allows for clean debugging, were a 

failure or error to arise. The fact that the entire design is 3D-printed and open-source makes it very 

accessible and inexpensive. The red-green-blue (RGB) LEDs can be used programmatically from 

the Raspberry Pi, which offers a lot of flexibility regarding sample illumination. On a more 

technical basis, the algorithmic surveillance is equally simple yet effective: automatic behavioral 

tracking, as shown in Figure 7.  

 

 

Figure 7: Behavioral tracking from Chagas et al. (2017)17. (A) Chamber made up of two 
miscroscope slides held by a 3D-printed frame. (B) Adult Drosophila tracked using Ctrax18. 

 
The system is also able to perform calcium imaging in larval Drosophila muscles. This, along with 

other microscopic images taken in this project confirm the potential of such system. One might 

argue, however, that this is limited: the amount of data that can be gathered is arguably diverse 

due to the many observable model organisms, but it is not substantial. Parallelism of experiments 
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is impossible and there is no X-Y control. Another attempt at a versatile and customizable 

microscopic imaging system is by Diederich et al. (2020)19. Although they share a similar 

objective, this system is modular, as it is made up of building blocks, and thus allows for more 

flexibility around experimental design (Figure 8). 

 

 

Figure 8: Microscope design and fluorescence result from Diederich et al. (2020)19. (a) The 
biological question that requires imaging to be answered. (b) The sketch of all components needed 
to be built. (c) Print and assembly. (d) Placement of the system in its working environment. (e) 
Start of the experiment. (f,g,h) Images of the same sample mCLING-ATTO 647N labeled fixed 
E.coli) using respectively a Raspberry Pi RGB camera, cellphone monochrome camera (P20 Pro, 
Huawei), and a research-grade microscope. 
 

As the underlying principle of fluorescence microscopy is to establish the greatest signal-to-noise 

ratio (SNR), one can note the exceptional performance of the cellphone monochrome camera. 

Monochrome cameras lack a color filter array (CFA) which separates photons before they hit the 

sensor (Figure 9). For the same number of sensor pixels, a monochrome camera will not have color 
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but will more sensitive to light. This is especially useful when color is not of particular interest, 

but contrast is. 

 

 

Figure 9: Representation of a camera sensor with a Bayer CFA on top of a pixel array from 
Lukas et al. (2006)21. 

 

These models still lack X-Y control, but they show how effective and flexible small monitoring 

systems can be designed. The monochromatic camera’s sharpness relative to light intensity is 

striking. Similarly, the implementation of tracking seems quite accurate even though the setup is 

suboptimal. 
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1.4.4 Aqueous medium (Xenopus tropicalis and zebrafish) 

 

Let us now present systems that monitor organisms grown in liquid medium. Xenopus 

tropicalis, also called the western clawed frog, is found in African countries and measures 4 to 

6cm in body length. Its embryos and eggs constitute an especially good model because it has a 

relatively short generation time (< 5 months) and it is evolutionarily closer to humans. As a tadpole, 

X. tropicalis measures around 12mm in length and allows great visibility to its organs, on which 

Eckelt et al. (2014)22 centered their research to build an automated machine that measures not only 

the animal’s body movement, but also its cardiac activity. They built the monitoring machine using 

a camera mounted on a tripod looking directly down at a 24-wells plate, with each well containing 

a tadpole in 1.2mL of water (Figure 10). 

 

 

Figure 10: Overview of the video recording and subsequent analysis of X. tropicalis tadpoles 
designed by Eckelt et al. (2014)22. (A) The recording system using a camera mounted on a tripod 
pointing directly down on 24-wells plate back-illuminated by a monitor. (B) The animal tracking 
based on extracting and recording defining features of the tadpole. (C) The establishment of 
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motion based on the difference between two successive images. (D) The establishment of cardiac 
activity based on the difference between two successive images, where the subject is immobile. 
 

The use of relative differences in their image processing allowed, all other things being equal, to 

detect buccal pumping. This achievement is therefore certainly replicable with model organisms 

of comparable size and transparency. For image analysis, they used macros in ImageJ on images 

taken by a Sony Handycam high dynamic range (HDR)-CX210 of only 2 Mpx at 30 frames per 

second (FPS). This allowed automatic and accurate assessment of the effect of propranolol and 

atropine on the animal’s cardiac activity. We witness here high-quality results from a simple and 

inexpensive design choice. 

 

Liquid media can also prove challenging with other species like Danio rerio (zebrafish). This 

organism has regenerative abilities and is frequently used for drug development. Indeed, Ishaq et 

al. (2014)23 focused their efforts on the fact that zebrafish embryos, when exposed to certain 

chemicals that inhibit deoxyribonucleic acid (DNA) repair, will develop spinal deformation. At 

this macroscopic scale they designed a system to automatically determine, after drug 

administration, which animals within a given population had developed a spinal deformation 

(Figure 11).  
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Figure 11: Steps sequence to extract zebrafish curvature by Ishaq et al. (2014)23. (a) Input image. 
(b) Illumination correction. (c) Binary thresholding. (d) Skeletonization using medial axis. (e) 
Refined medial axes. (f) Fusion of the medial axes to get the complete tail in the case of animals 
crossing over one another. 

 

This is the first example we see of the skeletonization of an organism used to differentiate animals 

based on a specific feature. Regarding the liquid medium we have presented, surveillance systems 

with the studied zebrafish having an arguably moderate degree of freedom. Let us now look at an 

automated surveillance system that allows for a far greater degree of freedom. Barreiros et al. 

(2021)24 built a large tank in which multiple animals could freely swim simultaneously (Figure 

12). 

 



 36 

 

Figure 12: Surveillance system design from Oliveira Barreiros et al. (2021)24 to monitor a group 
of zebrafish swimming in a large glass tank. 

 

The resulting paths and heatmaps of the animals tracked were obtained using YOLOv2 

convolutional network trained on 365 images of zebrafish in which the head was marked manually 

(Figure 13).  

 

 

Figure 13: Tracked paths and position heatmap of zebrafish in two distinct experiments from 
Oliveira Barreiros et al. (2021)24. 

 

Occlusions by other fish was remedied by using a Kalman filter which estimates states of a 

dynamic system based on noisy or incomplete measurements. One can notice also how a heatmap 
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quickly gives a clear indication of where the animals were most concentrated. Over a period, such 

measurements could easily establish potentially interesting trends or correlations. Now that we 

have seen automated monitoring of animals in liquid medium where fish have room to swim, we 

will now review Early et al.’s25 high-resolution of myelinating oligodendrocytes in vivo in 

immobilized zebrafish. To automate such imaging, the animal is placed in a 600µm glass capillary 

that can move linearly as well as around that same axis (Figure 14). 

 

 

 

Figure 14: Microscope objective focusing on an adult zebrafish inside a capillary (A) with the 
resulting fluorescence of 6 stacked images with a scale bar of 200µm (B) from Early et al. 
(2018)25.  
 

Instinctively, and in practice, the compromise of clarity for freedom of movement is now evident. 

It would obviously be very challenging to observe and follow a freely moving zebrafish in water 

at a microscopic scale. We will now compare how tridimensionality affects surveillance system 

when the medium is air rather than water. 
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1.4.5 Air medium − flying sample (Drosophila melanogaster)  

 

Drosophila melanogaster, also known as the fruit fly, is a great genetic model and is about 

2.5mm in length. While Nouhaud et al. (2018)26 focused on developing an ImageJ Java plug-in to 

count their eggs and effectively estimate female fecundity, Schumann and Triphan (2020)27 

focused on the 10 days post-embryonic development of the animal (Figure 15). They did so by 

developing their monitoring “PEDtracker,” which took images of a 24-well plate that later were 

processed and analyzed using ImageJ and R (a programming language for statistical analysis and 

graphics). 

 

 

Figure 15: Automated system design by Schumann and Triphan (2020)27 to monitor D. 
melanogaster larvae. 
 

Their image processing for tracking uses blur, project median, background subtraction and a final 

binary threshold. With enough accuracy, they can detect molts and essentially, based on animal’s 

lengths, aggregate them into the three distinct larval stages before they reach pupation.  
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The next three papers on D. melanogaster all deal with adults. Dankert et al. (2009)1 designed an 

automated monitoring system that measures aggression and courtship (Figure 16).  

 

 

Figure 16: Imaging setup to measure courtship and aggression in D. melanogaster by Dankert 
et al. (2009)1. (a) Frontal cut of the double arena. (b) Example screening assay where four double 
arenas are being monitored. (c) Double arena with the walls removed. (d) View from the camera 
of the double chamber. 

 
The lighting itself is noteworthy because the arena floor being white, reflects the light coming 

from above and creates a high contrast. This contrast, as for all imaging, makes post-processing 

that much easier. With their setup they can phenotypically define lunging, tussling, wing threat, 

copulation, chasing, and wing extension and circling. By analyzing their footage, they were able 

to make complete ethograms of courtship and aggression for this organism. With a comparable 

lighting setup, Scaplen et al. (2019)28 automated the real-time quantification of locomotor activity 

in D. melanogaster (Figure 17). 
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Figure 17: Design of D. melanogaster locomotion monitoring from Scaplen et al. (2019)28. (a) 
Fully assembled machine consisting of the behavioral chamber, an underlighting LED array, two 
LEDs (λ = 680nm) used for optogenetics and an Arduino Uno. (b) Computer assisted design 
(CAD) of the behavioral chamber. (c) The assembled and populated behavioral chamber with 
tubes ensuring proper airflow. (d) Video frames where blue marked animals have been detected 
as active. 

 
This research group chose to make their Python based system called “flyGrAM” freely available 

on github, following a true open-source philosophy. To evaluate their model, they successfully 

characterize locomotion induced by a dose-dependent induction of ethanol. This shows how clear 

results can be obtained regardless of the simplicity of design of the monitoring device. Finally, 

Itskov et al. (2014)29 studied the feeding behaviour in Drosophila, showing rhythmic extension of 
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the animal’s proboscis, and ultimately raised similarities in food intake regulation between insects, 

rodents and humans. They achieved this using the principle of capacitance in a custom arena 

(Figure 18). As an animal interacts with food with its proboscis, the capacitance between the two 

electrodes changes and food intake is inferred. 

 

 

Figure 18: The “flyPAD” design by Itskov et al. (2014)29. (a-b) Diagrams showing the flyPAD 
mechanism and components. (c) Diagram of the connection from the flyPADs to the computer. (d) 
Digital output converted from the flyPAD’s capacitance values. 

 
 

1.4.6 Air medium – stationary (Arabidopsis thaliana) 

 

We will now present research on automated surveillance of another 3D model that is immobile in 

the X-Y plane and grows upward. With its rapid life cycle and self-pollination, Arabidosis thaliana 
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is a popular genetic model in plant research. The plant itself can usually grow up to 20 to 25 cm 

tall while its leaves can grow from 1.5 to 5mm long and 2 to 10mm broad. These dimensions, as 

we will soon see, constitute, as per other models, size specific requirements for the automatic 

surveillance of the plant. Indeed, due to the relatively contained variability of the growth of its 

leaves and as well as the orthogonality of its growth, this model seems to have an established and 

predictable pattern for the way it grows and is monitored. Both Arend et al. (2016)30 and Tovar 

and Hoyer et al. (2017)31 both share similar angles and image processing: a top and side views 

followed by some level of feature extraction. On the one hand, Tovar and Hoyer et al. (2017)31 

were able to construct a low-cost machine powered by a Raspberry Pi to extract important 

phenotypical traits from A. thaliana such as shape, area, height and color (Figure 19). 

 

 

Figure 19: Plant monitoring system and resulting image from Tovar and Hoyer et al. (2017)31. 
(a) Stand with Raspberry Pi and its camera. (b) Segmented image of A. thaliana using Plant-CV 
(a toolbox derived from the OpenCV Python library specialized in the analysis of plant images). 

 
Likewise, Arend et al. (2016)30 devised a robot capable of extracting the features of the the plants. 

The phenotypical traits they gathered were strikingly resemble those of Hoyer et al. (2017)31. We 

can assume that the similarity between the imaging systems from both research papers is because 

there is only little variability in the growth of the plant. 



 43 

 

1.4.7 Solid surface medium – walking (Mus musculus) 

 

We will next review the way mobile model organisms are monitored on solid surfaces, 

starting with large-scale walking models. Mus musculus, also known as the house mouse, is 

undeniably one of the most studied model organisms worldwide. With a body length of 7.5 to 10 

cm and a tail length of 5 to 10 cm, they are the longest model organism we have covered so far. 

This significant size allows for quite specific automated monitoring to take place, as we will 

discover with the next three research papers. 

 

A non-invasive and automated monitoring of feeding and body weight was developed by Ahloy-

Dallaire et al. (2018)2 who designed a system that recorded body weight every time the mouse 

went to eat (Figure 20). 

 

 

Figure 20: Health monitoring apparatus from Ahloy-Dallaire et al. (2018)2. On the occasion 
that the animal entered the transparent funnel, a food pellet would be delivered through the funnel 
and a picture would be taken. 
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Such level of precise health monitoring proved better at detecting sick mice after injection of a 

drug as compared to human-based detection. This is therefore a non-invasive and reliable way to 

monitor the health of mice and allow for a faster reaction to early signs of illness from animals.  

Another group of researchers, namely Nanjappa et al. (2015)32 managed to create a system that is 

able to estimate the 3D posture of a mouse seen simultaneously from above and below (Figure 21). 

 

 

Figure 21:  Experimental setup from Nanjappa et al. (2015)32 with an open-field cage with two 
cameras: one above and one below. (A) Entire process from acquisition to final prediction. (B) 
Mouse postures and rendered depth images. 
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Their system allows for a very detailed 3D posture estimation of the animal. Finally, we will go 

into more detail with the research from Andresen et al. (2020)33, where they assessed the well-

being of the mouse by analyzing its facial expressions automatically via their custom deep learning 

network architecture (Figure 22).  

 

 

Figure 22: Imaging of the decision process from Andresen et al. (2020)33. The red color density 
is proportional to the area’s contribution to the classification. Left mice underwent castration, 
while the other two underwent different types of anesthesia (ketamine/xylazine and isoflurane from 
left to right). Mice in the top row were correctly classified as post-anesthetic effect and mice in the 
bottom row were correctly classified as no post-anesthetic effect. 

 
One can appreciate the level of complexity used to make this classification. It appears the nose, 

ears, and eyes are major components of M. musculus facial expression. They were also able to 

show that the same trained model was performant only on the treatment it was trained with. This 

further exemplifies the power of trained neural networks in subtle inferences for image processing. 
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1.4.8 Solid surface medium – crawling (Heterodera glycines, Caenorhabditis elegans)  

  

We will now conclude our literature review by decreasing the scale of the studied organism 

to a mm while staying on a solid surface medium. Heterodera glycines is also known as the 

soybean nematode and is a devastating pest in soybean farms. This is why Akintayo et al. (2018)34 

have come up with a deep learning framework to count their eggs in order to improve pest 

assessment and subsequent management. They use MATLAB and CNNs to differentiate between 

the eggs and other contaminants that came with the sample from a crop. This allowed them to gain 

considerable time while maintaining an accuracy comparable to that of trained humans.  

  

Caenorhabditis elegans is also a nematode but, contrary to Heterodera glycines, is amongst the 

most popular model organisms studied today. Its cuticle is transparent, measures 1 mm in length 

as an adult hermaphrodite, has a short replication cycle, and crawls when on a solid surface, or 

thrashes in an aqueous medium. These facts are critical in this review because they establish C. 

elegans as an excellent model for automated surveillance. Indeed, by crawling in two dimensions 

from larva to adult, they can be observed using an X-Y motorized stage coupled with a high or 

low magnification lens. This organism offers a lot of flexibility in the way it can be observed. Let 

us first review automation of lifespan assays, starting with Pitt et al. (2019)35 who devised a robot 

sequentially recording n = 144 worms (Figure 23).  
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Figure 23: WormBot as designed by Pitt et al. (2019)35. The system is viewed from above. The 
plates are held by dowel pins and are on top of a clear acrylic table. 

 
They created a semi-automated software to measure C. elegans lifespan: the experimenter is 

required to mark the center of mass of each animal in the well for the algorithm to go 

chronologically backwards through the frames until the worm trespasses its final bounding box. 

One must, however, point out the fact that the arm they designed is heavy and requires a balancer 

load on top of the camera head. It is the high sample size and thus, statistical power that makes 

this system powerful at its core. However, where they used regular post-processing to identify the 

animals’ position, García Garví et al. (2021)36 used CNN (Figure 24). 
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Figure 24: Overview of the method proposed by García Garví et al. (2021)36. (a) Image 
acquisition step. (b) Classification step using CNN. (c) Data curve and post-processing. 

 
This, compared to Pitt et al.’s (2019)35 implementation, is completely autonomous, so no human 

initial marking is required. They power their setup using a Raspberry Pi 3 computer along with a 

v1.3 camera (OmniVision OV5647). This choice of design gave them a lot of flexibility: they 

could easily change parts of their design, like the camera, without having to redesign the whole 

device. Overall, it achieved an error rate per plate of 3.54% ± 1.30%. Another paper to have 

achieved successful automation of C. elegans lifespan is from Puchalt et al. (2021)37 and is based 

on active vision and image processing (Figure 25). 

 

 

 

 

 



 49 

 

Figure 25: Arenas and camera setup for lifespan assays from Puchalt et al. (2021)37 where their 
display is continuously adjusted to offer the best contrast between the animals and the background, 
based one of their previous work on backlighting control by Puchalt et al. (2019)38.  
 
 
Using this setup in conjunction with their previous work, they were able to perform accurate 

lifespan assays with this model organism. The last paper on lifespan comes from Jung et al. 

(2014)39, who developed QuantWorm, which is a software package especially designed for C. 

elegans and helps perform phenotypic assays (Figure 26).  

 

 

Figure 26: QuantWorm method by Jung et al. (2014)39 which uses a microscope, a digital 
camera, and a motorized stage to assess such things as the number of eggs in the image, the length, 
lifespan but also the locomotion of the animal. 
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Although this design implements a motorized stage, its sample size is still limited, and it has no 

control over the temperature. This is important because some strains require observation at 15°C. 

For their lifespan assay, they take images at the same place on the sample two minutes apart and 

then perform image subtraction. If there is a significant difference between the two, the worm will 

be considered moving and thus alive, otherwise it will be considered “most likely dead.” Their egg 

counting algorithm uses no artificial intelligence but rather, a form of clustering to identify the 

objects with the highest chance of being eggs and remove duplicates (Figure 27). 

 

 

Figure 27: WormEgg algorithmic design from Jung et al. (2014)39 to count eggs through 
clustering and duplicate removal. 

 

Thanks to the past few examples, it is now clear that lighting plays a major role in the successful 

identification and proper analysis of C. elegans. Let us dive deeper into what Puchalt et al. (2019)38 

have done to improve backlighting. Using a Raspberry Pi 3, an official Pi display, and a Pi camera 
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for feedback and observation, they were able to change the display’s pixels intensity to account 

for such things as the condensation on the lid or changes in ambient light. In their research, they 

provide extremely valuable information as they try to find the best SNR, by changing the color of 

the display. They found that using orange (R = 255, G = 190, B = 0) gave an intensity of 48 to the 

background while giving an intensity value close to 0 for the animals. It is possible that with a 

monochrome camera, this contrast could have been further enhanced. In addition to changing the 

color for better contrast, they also compensated the light so that the illumination would be more 

uniform (Figure 28). 

 

 

Figure 28: Lighting variability under orange light with and without compensation from Puchalt 
et al. (2019)38. (A and B) Images taken with compensated illumination, respectively in color and 
after thresholding. (D and E) mages taken without compensated illumination, respectively in color 
and after thresholding. (C and F) Grey levels of background and the worms. 
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It is quite clear, again, how much of an impact the lighting can have of the studied sample. This is 

even more true with behavioral analyses of C. elegans, where its crawling movement along the 

agar needs to be parametrized. A. Swierczek et al. (2011)40 developed their own robot  for high-

throughput behavioral analyses. In 2011, this was one of the first more advanced robots in that 

field with a display used as back-illumination as previously discussed. Only two years later, the 

work of Yemini et al. (2013)41 helped build a somewhat rudimentary yet efficient monitoring setup 

(Figure 29). In their motorized design, they chose the camera and light source to be moved rather 

than the sample. This design choice was probably due to ease of implementation: using the 

microscopy stand, it is much easier to have the motorized stage on the bottom flat surface rather 

than have it in the middle of the system. It limits, however, the ability to automatically focus the 

camera and may introduce artefacts from misalignments between the light source and the camera.  

 

 

Figure 29: Schematic of the monitoring system (Worm Tracker 2.0) (a) and the resulting 
processed image to show the contour, head and ventral side of the animal (b) from Yemini et al. 
(2013)41. 

 
The same principle has been improved upon by Cermak et al. (2020)42 who took microscopic 

images of the free-living nematode with such precision, that their behavioral assays contained data 
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on the pumping rate, egg-laying events, defecation events, body posture as well as linear and 

angular velocities (Figure 30).  

 

 

 

Figure 30: Measurements of several motor programs of C. elegans from Cermak et al. (2020)42. 
(A) Tracking microscope system. (B) Example tracking image of the animal during a behavioral 
assay. (C) Example data obtained by the robot on the behavior of the animal. 
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This research shows that detailed behavior can be monitored in this model to such a degree that 

behavioral assays could potentially help better understand the full effects of certain mutations. 

 

To give perspective as to the range of monitoring device in terms of price and quality, we will 

briefly look at a low-cost attempt at a microscope for a smartphone-based mass surveillance system 

by Bornhorst et al. (2019)43 (Figure 31). 

 

 

Figure 31: Microscope housing prototype from Bornhorst et al. (2019)43 on the left with the 
resulting image at the highest magnification level on the right. 
 

They focused on building a smartphone application to go with this architecture, but it had some 

issues, namely non-uniform backlighting with marker writings occluding some parts of the 

medium, many false negatives and false positives in animal detection and the arena, in this case a 

30mm Petri dish, cannot be seen in its entirety. The latter point certainly lessens the statistical 

strength of any results they could obtain. They say they can increase the accuracy of their system 

by “applying manual correction” to the images. However, one could argue that doing so defeats 

the purpose of having an automated machine analyzing the animal instead of human 

experimenters. 
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Coming back to proper automation, we will now review the essential topic of skeletonization in 

C. elegans with a fundamental paper by Cronin et al. (2005)7 which arguably set the foundations 

in that field. They proposed an “automated system for measuring parameters of nematode 

sinusoidal movement” (Figure 32). 

 

 

Figure 32: Automated monitoring system proposed by Cronin et al. (2005)7. The Petri dish with 
the worm is placed onto the motorized stage. Once centered, the tracking can start. 

 

They skeletonize the threshold image of the studied animal by taking the median line of the shape. 

They then arbitrarily divide the obtained skeleton into 13 points, with one at each extremity. Once 

this is done, they can establish centroid velocity, point velocity, track amplitude and wavelength, 

bending frequency as well as time delay (Figure 33). 
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Figure 33: Automated features extraction proposed by Cronin et al. (2005)7. 

 

This was adopted by the C. elegans community and later improved by Buckingham and Sattelle 

(2008)9 who introduced tail vs. head discrimination, as well as head movement. And while some, 

like S. J. Wang and Z.W. Wang (2013)44 did not question the 13 points chosen arbitrarily to 

segment the skeletonization of the animal, others did. Fukunaga and Iwasaki (2017)45 chose 50 
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points whereas Krajacic et al. (2012)46 chose 100 points. Skeletonization might look simple, but 

several problems needed to be circumvented for it to work reliably, including self-overlapping and 

coiling. One purely mathematical solution was proposed by Roussel et al. (2014)47 who designed 

a “shape estimation that is robust to coiling and entanglement” (Figure 34). 

 

 

Figure 34: Shape estimation of C. elegans coiling using the mathematical model from Roussel 
et al. (2014)47. 

 

The authors pointed out, however, that such a model is very sensitive to input quality. In other 

words, body deformations or a lack of resolution or an incorrect magnification could have 

devastating effects on the performance of this tool. This is an issue that Hebert et al. (2021)48 hoped 

to bridge by proposing WormPose: a convolutional network used for pose estimation in C. elegans. 

In order not to have to annotate a high number of frames by hand, they thought of annotating a few 

and then algorithmically create a synthetic but realistic image of the animal coiling (Figure 35).  
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Figure 35: Synthetic image creation from a labeled one to feed to the neural network for 
training, from Hebert et al. (2021)48. 

 

They first take videos of the animal and label several frames, then train the neural network with 

the labeled frames. The network will generate synthetic labelled images to train on before being 

evaluated on the initially human-labeled images. The model is then used to estimate the pose of 

the animal and finally the estimation is processed chronologically with other frames to differentiate 

the tail from the head. These pose estimation systems, along with all monitoring devices, show 

that it is possible to extract various C. elegans features.  

 

1.5 Discussion 

 

There are many takeaways from these papers. We first saw the importance of having an 

appropriately sized apparatus relative to the studied sample. With some parts of the designs being 

more expensive, such as filters for fluorescence microscopy, it is crucial to not only design the 

system ahead of time but also perform several proofs of concept as the project progresses. That 

way, the risk of going down the wrong design path will be apparent much sooner. We can also 

gather that the flexibility of any robot generally comes at a cost. For instance, low-cost broad 

imaging systems will tend to be simple and inexpensive but completely unadaptable to a more 
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specific behavioral assay with one particular model organism. In that sense, although usability 

across different subjects is attractive, it would make more sense to fully customize the machine 

around one model only. Across all systems, the common denominators that were especially 

important to get right were the camera and the lighting. Finally, as any robot is as good as its 

weakest component, it appears key to optimize every single step through their design (Table 1). 

 

System Main objective Advantage Disadvantage Reference 
Automated 
monitoring system 

Features extraction 
(e.g. curvature, 
length, etc.) 

Motorized 
microscopy 

Only uses microscopic 
magnification which 
excludes whole arena 
assays. 

Cronin et al. 
(2005) 

Worm Tracker 2.0 Extract behavior and 
morphology features. 

Ease of use / 
installation as the 
stage does not have to 
move. 

Potential alignment and 
bulkiness from moving 
the light and camera 
rather than the samples. 

Yemini et al. 
(2013) 

Low-cost 
microscope 
housing prototype 

Mass surveillance of 
a 30mm Petri dish. 

Extremely low-cost, 
essentially requiring a 
phone. 

Does not surveil the 
entire arena and may 
need some manual 
corrections.  

Bornhorst et 
al. (2019) 

Tracking 
microscope system 

Motor programs 
measurements (e.g. 
egg-laying, 
defecation, etc.). 

Astounding 
resolution and image 
quality. 

Only uses microscopic 
magnification which 
excludes whole arena 
assays. 

Cermak et al. 
(2020) 

WormPose Pose estimation 
using trained neural 
network. 

Automaticity in 
image processing 
using trained neural 
network. 

Using videos is 
computationally costly 
and they use a 
microscopic 
magnification, which 
excludes whole arena 
assays. 

Hebert et al. 
(2021) 

Robotic system (for 
genetic crosses) 

Automated genetic 
manipulation and 
analysis of 
Caenorhabditis 
elegans. 

Multiple camera 
magnification with 
fluorescence 
capabilities. Well 
trained neural 
network. Sex, 
phenotype, and 
orientation 
differentiation. 

Expensive and bulky 
with no environmental 
control. This system, 
albeit extremely recent, 
seems very powerful. 

Li et al. (2023) 

Table 1: Summary of C. elegans surveillance systems discussed previously. 
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Thus far, it appears that all C. elegans surveillance systems have only one scale (macroscopic or 

microscopic), and as such, they do not allow for a view of the entire arena and of the animal, both 

at a relatively high resolution. Being able to have a multimodal magnification would allow to have 

high quality information on both the brood and its parent. Such information would be useful in 

determining if there are phenotypical parental traits that could be used as predicting factors for its 

brood size. In addition, some systems choose to leave Petri dishes facing up, which promotes 

condensation buildup under the lid. This yields images that are slightly blurry and cannot be used 

in our application due to the need to maximize image quality. Some avoided the problem by 

removing the lid, but this is certainly not the best solution since it makes the whole arena and 

sample vulnerable to contaminants. Also, very few automated systems were designed to fit within 

an incubator to allow for temperature control. This is essential to experimental reproducibility and 

further allows to characterize temperature sensitive mutants. Taking these disadvantages into 

account, we aim to build a system that addresses them all simultaneously.  

 

We have been able to identify components across different surveillance systems that were key to 

their success and that should be considered in this project: 

Illumination: although most authors chose to use LEDs as a main light source, using the Liquid 

Crystal Display (LCD) provides uniform background lighting. The advantage of LEDs, however, 

is the possibility of extending the illumination spectrum from the visible to the UV-IR. 

Camera: the Raspberry Pi camera was often chosen for direct plug-and-play with the Raspberry Pi 

itself. It also has a very good resolution, which could be improved by removing the CFA from the 

sensor, essentially making it monochromatic. It must also be said that better cameras are to be 
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expected on the market in the coming years, allowing for easy iterative improvements of image 

quality without compromising integration. 

Diffusion: this allowed a more uniform illumination on the sample, often in the form of milky 

plexiglass or glass diffusers. 

Computer: the Raspberry Pi seemed to be a very popular choice, likely due to its inexpensive price 

tag and flexibility in projects requiring code that dictates the experiment process. 

Python: both OpenCV and PlantCV, which are Python libraries, were popular choices for the post-

processing of images. 

CNN: when dealing with more complex tasks, CNNs often seemed to be the most elegant solution. 

Open-source: the papers that came from the most reputable journals tended to make all of their 

source code and designs freely available. This is particularly true in C. elegans-based research. 

Interdisciplinarity: on average, there were 5.65 authors per publication, which spanned different 

departments at different universities. This diversity and interdisciplinarity probably constitutes a 

driving force towards finding creative solutions to new problems and obstacles as the project 

progresses. 

Focus: the ability to focus is essential to get good quality images. The bolt and nut design seems 

interesting but begs the question of durability with a metal material instead of PVC. Indeed, 

screwing the lens in and out of its socket over time to precisely change the focal point may result 

in eventual damage to the socket itself. 

X-Y motorization architecture: CoreXY seems to be popular in the custom designs that 

implemented a large X-Y motorization surface. It always keeps tension and is very precise. 

CNN training data set: this dataset must easily surpass the 1,000 scale of images per class for 

satisfying results. 
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R: to create heatmaps or simply to automatically generate graphs of the experiment’s results, this 

programming language has a lot of potential. 

Post-processing: from the Kalman filter to fill missing data to background subtraction for 

determining the pumping rate, the algorithms can really improve the quality of the results. 

 

1.6 Methodological considerations 

 

 One could argue that we might have missed excellent research or technical expertise, 

whether it be electrical, mechanical, or algorithmic in nature, that could have been done informally 

and never got published. However, without a peer-review process, it simply didn’t meet our 

inclusion criteria and therefore would have not been discussed in this review. Also, we found it 

challenging to find the best way to review automatic surveillance systems across different model 

organisms. This is because there is such diversity across them that a narrative direction that ties 

them logically together seems very elusive. This is why we chose to create a narrative based on 

the model organisms studied, their traditional medium as well as their scale. 

 

Similarly, we found it difficult to estimate the amount of useful information to include related to 

each reviewed paper. In some cases, mentioning a particular algorithmic process seemed too 

important not to mention, whereas in other cases, it seemed like a secondary or tertiary focus at 

best. Finally, we were somewhat disappointed not to have been able to find more recent and sound 

brood size automated measuring systems. 
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CHAPTER II: RESEARCH OBJECTIVES 

Although manual brood size evaluations are somewhat imprecise, they have been used 

for the past decades because no other alternative has been proposed. This research is articulated 

around the following 3 objectives: 

2.1 Objective 1: Robot and hardware conceptualization 

We first wanted to conceptualize a computer-piloted robot able to monitor an n = 48 

sample in an autonomous fashion for more than a week with a high enough resolution to allow 

it to detect eggs. This will have to be done in real-time while recording environmental 

parameters such as temperature, humidity, and vibrations. After creating a working prototype, 

we will upgrade it and make it fit into a small undercounter laboratory incubator. 

2.2 Objective 2: Software architecture 

We also wanted to conceptualize a software architecture that could not only pilot the 

robot but also manage and analyze data using artificial intelligence. This objective covers 

programming language choices but also all the communication logics between the different 

hardware components (e.g. the Raspberry Pi and the motors). 

2.3 Objective 3: Model validation 

We will ultimately validate our model and brood size data acquisition using the 

reference wild type C. elegans strain (N2). We aim to have unequaled precision in our 

measurements and experimental temperatures (i.e. controlled by an incubator during the 
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entirety of the experiment). We also hope to find phenotypical traits in the animal parent (P0) 

that have a predictive force on the brood size measurements. 
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CHAPTER III: EXPERIMENTAL APPROACH  

 

This project, if successful, should represent a significant time gain for the experimenter: 

instead of spending a whole week counting worms daily, the experimenter would only have 

to setup the experiment and then let the robot do the rest. Namely, the experimenter is only 

required to transfer the animals into their respective 24-wells plate’s well and then wait for 

the robot to acquire images for the following week. Such a robot would tick several 

improvement boxes: time-efficiency, high reproducibility and statistical power over 

traditional brood size analyses, while it would also allow experimenters to detect potential 

predictive phenotypical traits for brood size measurements. 

Our experimental approach is one of pure research and development (R&D): finding ways to 

solve the unique challenges from our experimental requirements. Given the multidisciplinary 

nature of this project, there will evidently be many topics which will require researching and 

understanding. This is essentially expected to be an iterative process where one researched 

solution that is adapted to the current project’s challenge is tried. If it fails, another one is 

researched and tried. If it succeeds, then it is used as a building block for other components to 

be implemented. Although such a trial-and-error process is to be expected, clear overall 

specifications need to be clarified. This robot must fit into an interior space of 64.8 × 61.0 × 47.1 

cm (Width × Depth × Height), while being remotely controlled. It must include stage motorization 

for n = 96 well plates and with a X-Y moving tolerance of no more than 100 µm. 
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Finally, we want this system to be accessible by anyone, which is why we are making it open-

source and trying to keep its cost as low as possible. The code will be available on the 

laboratory’s GitHub page, and the system will have a corresponding bill of materials that is as 

transparent as possible. Given this accessibility, we hope that other research teams will be able 

to use it and modify it for their own purposes and respective sample analyses. 
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3.1 Scientific and biological contexts 

 

The fitness of an organism is defined as its ability to propagate its genome to the largest 

number of surviving offspring. For oviparous animals that do not care after their progeny, such as 

fish, amphibians and insects amongst others, it translates into the ability to rapidly lay a large 

number of high-quality eggs49. The regulation of egg laying is therefore key in defining those 

species’ fitness. 

Yet, studying the regulation of egg laying efficiency for a species is nearly impossible in the wild 

due to constantly changing environmental conditions, making it impossible to control for the 

uniqueness of each individual’s life experience. As such, laboratory models are ideal to study the 

identification and characterization of mutants affecting egg-laying behavior and efficiency. In 

Drosophila melanogaster for instance, when under constant light, egg-laying is rhythmic and 

follows circadian rhythms50 which is a mechanism regulated by transcription-translation feedback 

loops (TTLs)51. In the case of Drosophila, the corresponding regulating genes are clock (Clk), 

period (per), timeless (tim) and cycle (cyc)52. Yet in dioecious species, male finding and mating 

efficiency is an additional confounding factor for brood size evaluations. This is because the 

potential incapacity to find a male and inefficient mating can abrogate reproduction or reduce 

brood size, respectively. 

The nematode C. elegans is an androdioecious species consisting of hermaphrodites and rare 

males. This makes it a model particularly suited for the specific study of egg-laying efficiency. Its 

reproductive cycle is also short as it lays about 300 eggs within 3 days53. This is particularly useful 

when doing genetic screening where one needs a large population from one isolated mutant animal. 
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Figure 36: Life cycle of C. elegans at 22°C54. The times indicated in blue represent how long the 
larva spends at one particular stage. 

 

However, even in such a clonal population, and within a highly controlled environment, 

stochasticity results in significant variations in fitness between individuals. Yet, before an 

individual is well advanced into its reproductive period, it remains difficult to predict which 

individual within a group of clonal siblings has the highest reproduction potential. Furthermore, 

the current manual methods to evaluate brood size efficiency are time-consuming, error-prone, and 

subject to observer biases and visual acuity. As such, to address the question of egg laying 

efficiency, automation appears essential. 

Several systems have been developed to automate surveillance such as the ones discussed in the 

literature review of this document. However, and even in simple models such as C. elegans, their 



 69 

applicability is often restricted, while their design is often non-modular53. For instance, the Multi-

Worm Tracker (MWT) allowed for the simultaneous analysis of several worms placed in a culture 

dish40. The WorMotel improved on the sampling size of the MWT and specialized in ageing 

assays55. More recently, Pitt et al. introduced the WormBot which aimed to improve the 

shortcomings of the WorMotel and perform high throughput survival assays; it had larger wells 

with a moving light and camera system35. Cermak et al. (2020) then created an imaging platform 

to study a nematode’s major group functions (e.g. defecation rate, pumping rate, egg-laying rate, 

curvature) continuously for 6 hours42. All these surveillance systems are impressive in their 

ingenuity as well as their capacity to address their own research questions. Our goal is to inspire 

ourselves from their successes to design a machine powerful enough to perform brood size 

experiments and modular enough so that other research teams could modify it to their specific 

needs. 

 

Here, to predict the reproductive success of an individual C. elegans based on its traits, we build a 

robust system that can not only track and perform measurements on the brood of a high number of 

C. elegans, track the parent’s phenotypical traits, but also limit the stresses induced by the 

environment by reducing mechanical stress, light exposure, and temperature changes. 

 

As such, we present the C. elegans Surveillance Automated Robot (CeSAR), an integrated system 

that automatically and simultaneously measures the reproductive success (e.g. brood size, hatching 

rate, larval growth and survival) of 48 C. elegans individuals, using 24-well plates. Our system 

records simultaneously major motor groups and brood size measurements of the parent, which 

allows the experimenter to draw correlations between reproductive success with parental 
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phenotypical features. The CeSAR follows an open-source design, with publicly available code, 

while it can be easily built for less than $1,500 USD using commercially available and custom 3D-

printed parts. Although initially designed for the specific study of nematodes, this system could 

serve as a basis for generating monitoring devices adapted to a range of other species. 

 

3.2 Materials and methods 

 

3.2.1 C. elegans strains and media preparation 

 

Animals were obtained from the Caenorhabditis Genetics Center (CGC). The wild-type 

N2 Bristol strain was used as control throughout our experiments. They were maintained using 

standard method56 on Nematode Growth Medium (NGM) Petri plates seeded with  E. coli of the 

strain OP50. For our assays, we filled 24-well plates treated for meniscus reduction (Eppendorf 

#0030 722.019 – this product is now discontinued but untreated plates can also be used) with 

0.5mL of NGM. After 24h, we added 20µL of E. coli (OP50) at the center of each well using a 

custom 3D-printed template to ensure bacterial lawn uniformity. Each animal was individually 

picked in its attributed well at the L4 stage. 

 

 

3.2.2 Robot construction 

 

Space and materials: the robot is an entirely original design that we custom built so that it would 

function inside a closed undercounter incubator (VRI6P-2(89510-744), VWR, Canada) (Figure 
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S1) with an interior space of 64.8 × 61.0 × 47.1 cm (Width × Depth × Height). For the lower and 

upper stages, we used the AL-6061 T6 strong 3/16” aluminum alloy, securely fitted on 2020 T-

slotted aluminum extrusion bars. To ensure axes orthogonality and uniform planar focus in our 

images, angle brackets and M5 bolts were used to connect every extrusion bar with adjacent ones. 

Linear movement was achieved by using two pairs of carbon steel rods of 1/2” and 3/8” diameter 

respectively, with corresponding self-lubricating bronze sleeves around each rod. The sleeves were 

glued using epoxy onto the stage to which they were meant to give motion. To decrease vibrations, 

rubber dampeners were added on the bottom of each of the four feet of the robot as well as each 

of the four feet of the incubator. A complete list of all parts used in this construction can be found 

in the bill of materials (BoM) as supplemental data.  

 

Motors and motion system: we used four national electrical manufacturers association (NEMA) 

17 stepper motors in our system. Two were used to precisely operate our examination stage in the 

X and Y axes while the remaining two were used to operate the focusing systems of the 

macroscopic and microscopic camera lenses, respectively. The motion system was based off the 

CoreXY kinematics (https://corexy.com/), which uses two taut Gates Tooth® (GT) 2-6mm timing 

belts, each controlled by a separate motor. 

 

Light: Two identical LEDs were used in our imaging system: one for each lens. They produced a 

warm white (~3000K) at 500 lumens with a 40° beam angle and were encased in their respective 

2.36” PVC tube with mounted 90° mirrors. The light was collimated using a plastic Fresnel lens 

placed at a focal length of 215.6mm from the LED and was then immediately diffused by a glass 
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diffuser with a grain of 1500. The lights were controlled manually with dimmers and 

programmatically using a SainSmart 2-channel relay module. 

 

Sensors: sensors were placed inside the incubator to monitor multiple environmental parameters 

simultaneously such as humidity, temperature, light intensity, and accelerations. They were 

connected on a breadboard that received power by and communicated with our main computer. 

They were also tested against a control to ensure their data output viability (e.g. for temperature, 

our sensor was evaluated against the incubator’s own sensor as well as a laboratory thermometer 

placed at the level of the samples). 

 

3D-printed supports: for pieces that were necessary to the construction of the robot but hard to 

craft by hand, we used a 3D-printer with a 1.75mm PLA filament. A nozzle and bed temperature 

of 215°C and 65°C, respectively were used for all prints. We custom designed and printed the 

lights holders, the plates support platform, the case of the relay switches, the fan protective cover, 

a tip holder to perfectly seed round bacterial mats, as well as stabilizer mounts for the lenses. All 

3D objects used for this system can be downloaded as standard triangle language (.STL) or .F3D 

formatted files from our supplemental data. All models were designed by us unless otherwise 

specified. 

 

3.2.3 Software architectural design 

 

The software we developed is entirely open-source and available on our Github page (i.e. 

https://github.com/NarbonneLabCS/CeSAR). The architecture we chose for our system is a dual 
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one: we used one Raspberry Pi 4 (RPI) computer to manage the sensors data, X-Y and macro 

motors and we used a second RPI to manage the micro focus. In this design, our main RPI is the 

overseer of the experiment’s due process and signals to other major components what and when 

they should act. 

 

3.2.4 Brood size measurements 

 

Image acquisition and processing: we used two RPI High Quality (i.e. 12.3 MPx) camera sensors 

to acquire our images and films, respectively. Using the Python language, we first moved the stage 

to position the 16.2mm well in-line with the macroscopic camera. Then, we performed autofocus 

by turning the lens in place with its own motor and timing belt. After processing the image through 

our trained neural network, we used the position of the parent P0 animal to move the stage to the 

coordinates of the microscopic lens with the additional Δ(X, Y) from P0. We finally autofocused 

that lens and started our tracking and parental behavioral traits acquisition by filming the animal. 

This process was repeated in a zigzag pattern across the wells to minimize the time wasted while 

moving. Our system took a 120s film of the parent animal before starting hourly surveillance for 

~10 days. 

 

Graphics automation and data analysis: to ensure our data acquisition can be easily and quickly 

interpreted from thousands of data points, we automated the graphics generation process. The raw 

data is organized in maintained folders for each experiment and each sample. The graphical 

representations are automatically generated from that raw data using the R statistical language (r-
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project.org). To analyze differences between our data points from 2 strains over n=96 samples, we 

used 2-way analysis of variance (ANOVA). 
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CHAPTER IV: RESULTS 

 
4.1 Hardware  

 
4.1.1 Overview 

 

The CeSAR is a surveillance robot designed to automate brood size measurements in C. 

elegans from within an incubator. It moves a 3D-printed stage and can accommodate up to 4 

standard 24-well plates in a cartesian plane of 236mm (X, 188mm maximum travel distance) by 

267mm (Y, 220mm maximum travel distance) (Figure 37A). It controls 2 NEMA 17 stepper 

motors (i.e. the left α and right β motors) to span the n = 96 wells using a coreXY design 

(https://corexy.com/) (Figure 37B), operating one timing belt per motor. It uses 2 additional 

NEMA 17 stepper motors to motorize the focus of the macroscopic and microscopic lenses 

respectively. These lenses are mounted on IMX477 sensors capable of 4056px × 3040px resolution 

(12.33 Mpx). The X-Y calibration was done by sending GBRL commands to move the stage in 

both directions by 100 mm. The sensitivities of both motors were adjusted until a value of δ in 

GBRL commands to either motor was translated to a traveled distance of δ mm in the respective 

axis. For the motorization of the camera, the same process was done, except that it was done for 

degrees (°) instead of mm. 

 

CeSAR comprises an electric box that is located outside of the incubator. This component includes 

two RPI 4 computers, a power supply unit (PSU), an Arduino Uno prototyping platform with 

stepper drivers to control the motors, light switches, and a cooling fan. The electric box also 

contains effectors and sensors: in addition to sensing the interior environment of the incubator, it 

executes the commands coming from the electric box, namely autofocusing, and repositioning 
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(Figure 37C). Each camera is coupled with its own light source: a 3000K dimmable LED, with a 

40° beam angle. To ensure properly collimated light, there is a Fresnel lens placed at its focal 

length away from each LED. It is followed by a high-grain glass diffuser for homogeneous lighting 

of the entire well. The lighting itself can be controlled both programmatically using code and a 

relay switch, and manually with dimmer switches. 

 

Structurally, CeSAR’s frame is made of 20mm × 20mm aluminum extrusion bars which are 

secured with one another by right-angle aluminum connectors. They hold three functional stages 

that were laser-cut into xx-thick or xx-gauge aluminum sheets: on the lowest one is mounted the 

lenses stage with their respective motor. The highest one holds the light apparatus. The one in the 

middle houses the middle and central sampling stages which respectively move in the Y and X 

directions. They are secured onto carbon steel rods using 5020 psi epoxy glue on bronze self-

lubricating sleeves. The achievable precision in the X-Y plane is 500µm off from an addressed 

target. 
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Figure 37: CeSAR construction and design architecture. (A) 3D-model of the robot in orthogonal 
perspective. The upper middle level is the stage involving movement. (B) 2D schematic of the 
middle stage. In light blue, green, and yellow are the outer, middle, and inner stages respectively. 
(C) Architecture of the different robot’s components and the corresponding flow of information. 
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4.2 R&D process 
 
This design came to be from an iterative process where the initial setup served solely as a proof-

of-concept prototype. It only consisted of a light, two converging lenses, a glass diffuser, a 24-

wells plate, and a camera (Figure 38). 

 

     

Figure 38: Initial CeSAR prototype without motorization. First iteration on the left and second 
iteration on the right (with improved parallelity and controlling 4 independent motors). 

 

This trial-and-error initial phase showed how crucial it was for the different stages of the system 

to be parallel to one another. It also helped us determine the amount of NGM necessary for the 

plates. Having too much NGM hindered the light, which resulted in a darker, less usable image 

(Figure 39).  
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Figure 39: Visible effect of NGM volume on perceived color and light intensity. From left to 
right the volumes are 0.5mL, 1.0mL, 1.5mL, and 2.0mL (with condensation forming on the inside 
of the cover). 

 

Having 0.5ml of NGM had great optical clarity but was much more prone to desiccation. This 

process led to the NGM cracking, especially in the corner wells of the 24-well plates. I determined 

this to be caused by passive air flow accelerating the normal dehydration of the NGM (Figure 40). 

This issue was important to fix because it meant that one could unknowingly start an experiment, 

only to find out that the data is unusable because of medium desiccation. I therefore applied 

paraffin strips to each corner, thereby reducing air flow through the closed 24-wells plate.  
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Figure 40: Process of NGM desiccation in 24-wells plate (above) and observed desiccation 
pattern across the plate (below) Red wells indicate those that dessicate fastest, while wells 
marked yellow also dessicate, but less rapidly. 

 

This prototyping stage also allowed us to realize that, due to the formation of a meniscus on the 

edge of the well, a general concave curvature could be observed. This caused a lack of focus and 

blurry optics near the edge of the wells, which rendered eggs and worms more difficult to detect 

(Figure 41). 
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Figure 41: Meniscus formation in untreated well, causing out-of-focus edge ard optical blur. 
The worms and eggs near the center of the well (i.e. on the bacterial lawn) are much more in 
focus than those closer to the edge, circled in red.  

 

In addition, it became clear that it was necessary to know the dimensions of the smallest object 

that our system should detect. After analyzing several images, I realized that our detection 

threshold was to be 10px × 5px (Figure 42). The first larval stage (i.e. L1) Although those 

dimensions are approximate, they represent a clear requirement for the training model: it being 

that it must recognize objects around that size reliably. 
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Figure 42: Scale of the smallest object (i.e. an egg) relative to the entire image. 

 

Evidently, the motorization was missing, and only n = 1 sample could be studied. Nonetheless, 

this was a steppingstone towards adding layers of complexity to the system. Once the software 

limiting dimensions were known, I evaluated the hardware limiting ones: the spatial limitations 

imposed by the laboratory’s incubator (Width × Depth × Height; 648 × 610 × 471mm; Figure 43). 

Knowing these was necessary to prototype the final robot and anticipate potential issues caused by 

the limited space. 
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Figure 43: Inside of the small undercounter laboratory incubator to be used (above) and its 
dimensions (below). Note that the incubator was stripped off from its shelfing system to 
maximize space. 

 

Given these dimensions and the need to have an open optical path in the middle of the gantry 

system, I chose the coreXY model (Figure 44) coupled with a 3D-printed design support for four 

24-wells plates (Figure 45). 
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Figure 44: coreXY theoretical model. The red and blue timing belts are controlled by the α and β 
motors respectively.  

 
 
If both motors turn in opposite direction and do so at the same speed, then the carriage will only 

move up or down the Y-axis. If only one of the motors turns, then the carriage will move diagonally 

toward or away from it. The kinetics are not intuitive, but the model offers two main advantages: 
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the system does not take much space in the Z-axis, which is especially limited in this case, and the 

tension on the center stage is constant. This means that, when changing directions, the center plate 

will always move when either motor turns (i.e. reliable transmission of mechanical motion), 

without any freeplay. This is not the case with all systems, however, as for screws, going in the 

opposite direction pushes the carriage only after the space between it and the screw pitch has been 

moved. This results in delays and lack of precision in the kinetics of such systems. 

 

 

 
 
Figure 45: Model of the XY representation of the 4 24-wells plate in the center stage (above) 
and 3D printing of one half of that model (below). 
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The following was truly a trial-and-error given my inexperience with 2D computer-aided design 

(CAD) software: the moving stage. Following the coreXY design, it required a base stage that 

contained a stage moving in the Y-axis, which itself embedded an X-carriage (Figure 46). The 

latter holds the 24-wells plates. This trial-and-error process yielded two original designs. 

 

  
 

  
 
Figure 46: CAD and working prototype for the initial and welded CeSAR stage (above) and 
final and epoxied (below) CeSAR stage dimensions and motorization. 
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The first design was flawed as it didn’t allow the edge wells to be properly evaluated by the camera. 

In addition to improving this critical flaw, the second design was much lighter, as it used less 

aluminum and smaller diameter carbon steel rods, which are extremely heavy (i.e. 7.85g/cm³).  

 

Carbon	steel	density:	7.85g/cm³	
L	=	60,96cm	(24")	−	precut	

	
base3/8"	=	πr²	=	π	×	(0.9525)²	=	2.85cm²	

V3/8"	=	173cm³	➢	1.358kg	
	

base1/2"	=	π	×	(1.27)²	=	5.07cm²	
V1/2"	=	308.9cm³	➢	2.417kg	

	
base5/8"	=	π	×	(1.5875)²	=	7.92cm²	

V5/8"	=	482.6cm³	➢	3.784kg	
 

Change:	3.784	×	4	=	15.136kg	 	to		 2.417	×	2	+	1.358	×	2	=	7.55kg		

	

Theoretical (precut) mass optimization: 50.1% 

 

I also improved on the coreXY design (Figure 44) by unifying the idler pullies on the corners of 

the outer stage and the sides of the middle and center stages. The latter changed the applied forces 

from 4 points (i.e. two on the middle and center stages respectively) to 2. To reduce torquing of 

the center stage, which at this point is being pulled open to the side and upwards, a piece of metal 

was used to keep the two anchor pins solidly attached to one another. The following challenge was 

to motorize this design. To accomplish this, we opted to use NEMA 17 motors with 200 steps per 

full rotation (i.e. 1.8° per step precision), with an Arduino board and a computerized numerical 

control (CNC) shield, controlled by a RPI 4 model B (Figure 47). Before choosing the final 
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TMC2208 stepper motor drivers, which are powerful and silent, we tried the traditionally used 

A4988 and DRV8825 drivers (Figure 47). 

 

 

  
 
Figure 47: Computing hardware necessary for controlling CeSAR (i.e. motorization and logic 
of image acquisition). From top left to bottom right are the Arduino Uno, its CNC shield, the RPI 
4 Model B computer, and the TMC2208 stepper motor driver. 

 
Through the iterative process of choosing the correct stepper motor driver, the VREF needed to be 

adjusted accordingly. The VREF is the reference voltage at which maximum current will flow 

through the motors. It is calculated differently for each driver. 

 
A4988: 

𝑉!"# = 𝐼$%& 	× 	8	 ×	𝑅' = 1.2	 × 	8	 × 	0.1 = 0.96𝑉 
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DRV8825: 

𝑉!"# =
𝐼$%&
2 =

1.2
2 = 0.6𝑉 

 
 
TMC2208: 

𝑉!"# =
𝐼$%&
1.41 =

1.2
1.41 = 0.85𝑉 

 
 
where Imax is the maximum current flowing through the motors and  

           Rs is the current sense resistor of the driver.  

 

Allowing for higher voltage results in increase of motor temperature and higher torque. The inverse 

is true as, if you set the voltage too low, the motors will have limited torque which will lead to 

skipping steps. This will, in turn, cause imprecision when moving the center stage. This project 

evolved into using two RPI and two cameras: one for macro scale images (i.e. the entire well) and 

the other for micro scale images (i.e. the length of the animal, of maximum ~1.1mm). Even though 

the prototyping was promising for the micro camera, this addition was ultimately removed from 

the project as the lens objective amplified room vibrations over its length when placed upright. 

This was not the case of the macro lens due to its lightweight and compact design. One can also 

notice that the main RPI is responsible for sensor data and does not control the motors directly. 

Indeed, the latter are sent specific instruction by stepper motor drivers, which are connected to the 

CNC shield on top of the Arduino Uno (Figure 48). 
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Figure 48: System hardware architecture. This diagram shows an additional RPI and camera 
(left) which were not included in our final product. 

 
I used a LEDMO DC power supply of 240W (i.e. 24V, 10A) to power the motors, as an external 

electrical source through the CNC shield, and a fan that cools the system. Since the latter only 

takes 12V, I used a 24V to 12V step down converter. The temperature of the RPI was monitored 

was ~46°C after 4h of computational work, controlling all 4 motors. The black and red wires 

connect the microswitches to the CNC shield (i.e. signal the system’s spatial limits; discussed 

below) and the blue-green-red-black wires connect the motors to the stepper motor drivers.  The 

wires that capacitate the power supply (Figure 49, 3 leftmost connector wires on the power supply) 

were taken from a 18AWG power cord. 
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Figure 49: Setup inside the electrical box, where every component is screwed on the base. From 
left to right is the power supply, Arduino UNO with its CNC shield and 4 stepper motor drivers, 
the main RPI and accessory one.  

 
To connect to the PSU, the wires of the 18 AWG power cord were stripped and transformed into 

end wires ring terminal connectors (Figure 50). 

 

 
 

Figure 50: End wires ring terminal connectors used to power the motors and fan’s power supply. 

 
 



 92 

The bipolar motor wires were too short, so they were extended such that they would be able to 

come out the back of the incubator to the CNC shield, on top (Figure 51).  

 
 

       
 

Figure 51: Process of extending the bipolar motor wires by cutting, stripping, and isolating them 
using thermosensitive electrical tape. 

 
The motorization also comprises the cameras themselves since they were, at the time, the only 

ones available at 12Mpx, but unfortunately, they lacked autofocus capability, a feature that became 

available only just recently. I designed a way to control how screwed-in the camera is at any given 

time to precisely adjust the focal distance. A GT2 6mm timing belt is reversed and securely 

attached to the lens. A normal timing belt is used to either screw in or out the lens its socket (Figure 

52). This essentially increased or decreased the distance between the camera sensor and lens, which 

moved the focal point accordingly.  
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Figure 52: Lens motorization for focal distance adjustment from design (above) to 
implementation (middle and below).  

 
When the motor turns, it forces the taut timing belt to move in the corresponding direction. The 

idle pulleys allow for proper contact between both timing belts. In addition to the cameras, 

motorizing the entire system was a key step in establishing this project as a validated proof-of-

concept. However, as with a vast majority of gantry systems, it required a way to initialize itself, 

or always be able to find a “home” coordinate value. This value is understood to be the (X=0, Y=0) 
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point of the coordinate plane. To achieve this, I carefully placed microswitches on the underside 

of the outer and middle stages, to respectively detect the Y and X axes travel limits (Figure 53). 

 
 

 

  
 
Figure 53: Microswitches placement (above with arrows) and activation (below, activated on 
the right). 

 
This step is crucial to be able to get to an absolute (X=0, Y=0) or “home” coordinate from any 

position (Figure 54). This process becomes equivalent to moving towards X=0 until triggering the 

X-axis microswitch and the doing the same in the Y-axis. These microswitches can be wired to be 

either normally open (NO) or normally closed (NC). In our case, I designed the wiring to be NC, 
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which means that, when a microswitch is triggered, the circuit becomes open. I used 22 AWG 

extension wires to connect the microswitches to the CNC shield. 

 
 

 
Figure 54: Different initial positions of the center stage before “homing” the system. In each of 
the four cases, the center stage touches the X=0 microswitch and then the Y=0 microswitch. Once 
that’s done it appears as the top left image. 

 

Having full control of both the positioning of the plates as well as the cameras, I then worked on 

lighting. The lighting system was designed to minimize light leakage onto wells that aren’t 

currently being examined. To do this, I designed a light tube out of an acrylonitrile-butadiene-

styrene (ABS) tube used for plumbing (Figure 55). 
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Figure 55: Lighting apparatus made from an ABS 1.5 inch plumbing tube (top). Illumination 
comparison between a ZEISS Stemi 305 compact stereo microscope backlight (left) and custom 
made CeSAR’s ABS tube (right). 

 
 

Two key components were then added to this apparatus: a mirror to redirect the light and an 

extension. The mirror was made using a diamond tip glass cutter and a bench grinder (Figure 56). 

A custom 3D-printed tube extension was also fitted on the end to bring the diffused light as close 

to the well as possible (Figure 56). 
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Figure 56: Tools used to shape the mirror (above) and 3D model of the light tube (below). The 
tip glass cutter helped getting the rough mirror shape and the grinder was used to refine it. 

 
One problem I encountered, however, was the uneven lighting of the plates. To resolve that issue, 

I used a glass diffuser and collimated light (i.e. having all light rays traveling parallel to each 

other). Although getting a glass diffuser was fairly straightforward, collimating the LED required 

some calculations. Using the Thin Lens formula, I derived the following: 

 
1
𝑝 +

1
𝑞 =

1
𝑓 
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1
𝑓 =

𝑞
𝑝𝑞 +

𝑝
𝑝𝑞 

 
1
𝑓 =

𝑞 + 𝑝
𝑝𝑞  

 
𝑓 =

𝑝𝑞
𝑝 + 𝑞 

 
where f is the focal length of our Fresnel lens, 

          p is the object distance, and 

          q is the image distance. 

 

In this case, this yields the following result: 

 

𝑓 =
153.5 × 	25.5
153.5 + 25.5 = 21.87	𝑐𝑚 = 218.7	𝑚𝑚 

 
By placing the lens at a focal distance from the LED, the light becomes collimated. This results in 

a more uniform lighting. One additional hardware implementation of this robot is its ability to 

monitor environmental variables, such as temperature and humidity. To achieve this, I soldered 

and then connected sensors to the RPI using breadboard (Figure 57). 
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Figure 57: Design of the RPI connected to the sensors through a breadboard made using the 
electronic design automation software Fritzing (above) and graph of the monitoring of humidity 
and temperature inside the incubator over the course of 40h (below). 
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The point of monitoring environmental variables is to make sure that they stay constant throughout 

the experiments. Finally, the making the medium on which the animals are transferred is at the 

core of this project. The original protocol for NGM needed to be updated because the new volume 

was 10 times smaller and became more viscous after autoclaving. I used Eppendorf 24-wells plates 

(i.e. catalog ID# 0030722019) because they were treated with a proprietary surfactant that reduces 

meniscus formation (Figure 58). The latter represented a significant issue at the start of the project 

because it created an uneven focal plane. This in turn yielded animals in focus in the center and 

others out of focus towards the edge.  

 
 

 

 
 

Figure 58: Images taken of two different wells that were untreated for meniscus reduction (left) 
and treated (right). 

 



 101 

My setup to plate the wells uses a 2L beaker serving as a bain-marie at ~70°C for a 250mL 

Erlenmeyer containing the NGM. To be as sterile as possible, two Bunsen burners are placed on 

either side of the system and the unopened wells-plate is elevated using a plastic rack. Before using 

any tools, 70% isopropyl is used to wipe the working area and tools clean and as sterile as possible. 

  

 

 
 
Figure 59: NGM pouring station (above) and properly filled 24-wells plate, treated for meniscus 
reduction (below). 
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Since the peristaltic pump I used had a volume error margin of ±250µL for a target of ~550µL, I 

opted to use a micropipette. This, however, created the issue of cooling down the medium much 

faster, thereby creating bubbles. To reduce the volumetric flow rate at the end of the tip, I decided 

the easiest and fastest way was to increase its cross-sectional area by cutting it ~1cm from the tip 

with flame-sterilized cable cutters. This allowed for a slower pour of medium that was devoid of 

bubbles. To then seed the medium, I 3D-designed an object (i.e. referred below as the Steady 

Seeder) that enables the user to seed bacterial lawns consistently over the center of every of the 24 

wells (Figure 60). 

 

 
 

Figure 60: Steady Seeder designed to center the tip of any P200 micropipette over any well from 
a 24-wells plate treated for meniscus reduction. 

 

The full protocol for preparing the NGM is as follows: 

1. Maintain your strains at 15°C on OP50. 

2. Prepare 200mL NGM: 
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a. In a 250mL Erlenmeyer, add the following: 

i. A magnet 

ii. 0.6g NaCl 

iii. 3.4g agar 

iv. 0.5g peptone 

v. 195mL of sterile water 

b. Autoclave 

c. While the solution gets autoclaved, place 350mL water in a 2L beaker and heat 

it over a heated magnet mixer. 

d. Once the solution is autoclaved, submerge the Erlenmeyer in the beaker. 

e. Stir it with the magnet and wait until it is cool enough to touch. 

f. STERILE Add the following to the solution: 

i. 0.2mL 1M CaCl2 

ii. 0.2mL 5mg/mL cholesterol in ethanol 

iii. 0.2mL 1M MgSO4 

iv. 5mL 1M KPO4 

g. Keep warm and agitate constantly with magnet. 

3. NGM plating − in a sterile environment (exacto-knife, P1000, tips P1000, 2 bunsen 

burners, 2L beaker, wire cutter): 

a.  Push the air out of a P1000 micropipette set to 600µL. 

b. Append a tip to it. 

c. Use sterile tweezers to cut the end of the tip so that the remaining diameter is 

~3mm. 
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d. Pipette just enough NGM to fill the bottom of each well by capillarity. 

4. Let rest for at least 36h for the wells to dehydrate and to notice any contamination. 

5. Bacteria seeding – in a sterile environment: 

a. Resuspend bacteria by agitation. 

b. Push the air out of a P200 micropipette set to 25µL. 

c. Append a tip to it. 

d. Use sterile tweezers to cut the end of the tip at the most distal ring, ~11mm away 

from the distal extremity. 

e. Using the Steady Seeder, gently pipette the 25µL of bacteria onto the center of 

each well. 

f. Wait 5mins without removing the Steady Seeder to let every bacterial mat start 

to dehydrate uniformly. 

g. Carefully remove the Steady Seeder and cover the plate, making sure not to 

shake the bacterial mats. 

6. Let rest for at least 36h for the bacteria to grow sufficiently and the mat to dehydrate. 

7. Transfer one animal per well. 

8. Start the CESAR_master.py script from the main RPI.  

 

The pouring and seeding both require 36hrs drying times. During the first hour of each drying 

process, I noticed that there was significant evaporation. Closing the lid at that time hindered the 

evaporation and lengthened the waiting time. I, therefore, designed and 3D-printed a plate holder 

which can be placed between two Bunsen burners to make that initial drying period more efficient 

(Figure 61). 
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Figure 61: Drying station for both the NGM and the OP50 bacterial lawns. 

 
Even though this hardware is sound and workable, it would be essentially useless without proper 

control via software, which we will now cover in more depth. 

 
 
 
 
 
 
 



 106 

 
4.2 Software 

 
4.2.1 Overview 

 
 

The CeSAR operates its data analyses sequentially. It momentarily surveils every well, in 

order, every hour for ~10 days. It first takes a picture of the entire well before analyzing it using a 

trained neural network. The network was trained on 15,000 training images using the YOLOv5 

architecture by Ultralytics (i.e. https://github.com/ultralytics/yolov5). When called, it can infer the 

position of the animals and eggs in the image (Figure 62A). Then, it uses the parent’s position to 

move the stage by a specific Δ(X, Y) to align the microscopic lens with the worm. It then films it 

for ~20s and characterizes it phenotypically (Figure 62B). The phenotypical traits yielded by this 

method are the worm’s length, change in width along its body, curvature, pumping rate, movement 

speed, defecation rate, and general path on the medium7. This entire workflow is directed by a 

Python script which controls movement, image processing via the OpenCV library, and calling of 

the neural network to analyze the images taken. Communication with the motors is done using 

GRBL software, which allows to transform real coordinates into G-code for both the α and β 

motors in coreXY configuration. 
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Figure 62 Images analyses. (A) Neural network inferences of the positions of worms and eggs in 
a well. (B) Outline and midline determination through image processing of the adult parent P0. 

 

While the process is ongoing, the robot keeps careful watch on the environment itself by 

measuring, every 5s, the temperature, humidity, atmospheric pressure, light intensity, noise level, 

and magnetic field (Table 2).  
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Sensor Monitored variable 
SPH0645LM4H Microphone (audio sensor)  
FXOS8700 + FXAS21002 Acceleration and magnetic sensor 
TSL2561 Light intensity sensor 
BME280 Temperature, humidity, atmospheric pressure, and air quality sensor  
Table 2: Each sensor and its targeted measurement 

 

To ensure constant acquisition parameters, CeSAR starts by autofocusing its macroscopic lens, by 

computing a Laplacian filter on the image of the current well (Figure 63A). Then, it repositions 

the well to be perfectly aligned with the lens (Figure 63B). 



 109 

 

Figure 63: Automatic recalibration of focus and centering of images. (A) Graph of the Laplacian 
sharpness value relative to the degree of rotation of the lens. The degree recorded is the one for 
which sharpness is at its peak. (B) Image processing showing the Δ(X, Y) offset of the well from 
the center of the image. 
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4.2.2 R&D process 
 

Before doing any training on the images to determine the location of eggs and worms, I 

had to make sure that they were processed correctly to have the best quality possible. I first noticed 

that the walls of the wells served as a reflective surface, which meant that the animal as well as its 

reflection would be captured in the photograph and analyzed. Since this would have duplicated 

some objects, I solved this issue by approximating the edges of the well using image processing 

(Figure 64).  

 

 

Figure 64: Approximation of a well’s edges and center using the Python OpenCV library. 
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This allowed us to go from a 3040px × 4056px image to a ~2700px × 2700px one (Figure 65), 

which decreased the size of the image files, thereby making the image processing faster. This 

removed the reflective edge of the well, which was a source of counting error. 

 

 

▼ 

 

Figure 65: Image processing resulting in only the medium, without the reflective edges. 

     

Having properly processed images, I was able to work on training a model to recognize eggs and 

worms in the acquired images. To have artificial intelligence requires some sort of encoding of 
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knowledge, whether that be through code that explicitly tells the computer what to do, or by 

training that computer on a specific problem set. The latter is exactly what I did by identifying up 

to 300 objects on more than 100 images.  I used the free version of RectLabel 

(https://rectlabel.com/) to do so, drawing ~5000 bounding boxes manually for the training dataset 

(i.e. ~3000 boxes for worms and ~2000 for eggs). This was done by drawing, for each object, a 

box closely bounded around it. For instance, drawing a bounding-box around an Egg or a Worm 

means selecting 4 coordinates which, if moved closer to each other, would exclude pixels of the 

object from the resulting rectangle. 

 

 

Figure 66: Graphical user interface (GUI) of the RectLabel desktop application. In the middle 
is the image the user is working on. On the right are all the objects the user has already identified. 
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This training results in an extensible markup language (.xml) file that holds the information of 

every bounding box (i.e. class, minimum x and y values, and maximum x and y values). 

 

 

Figure 67: .xml file produced after using the RectLabel application on an image. Highlighted in 
yellow, from top to bottom, are the width and height of the image, the class of an object, and the 
minimum and maximum x and y values (i.e. corners) of the bounding box. 

 

This format, however, is unintelligible by the You Only Look Once (YOLO)v5 training model that 

we used, as it requires a text (.txt) file where each line is an identified object holding the class, x, 
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y, width, and height values of the bounding box in that order (Figure 68). The coordinates and size 

of the bounding box in this .txt format are relative to the size of the image (e.g. 2700 × 2700 in the 

example above). 

 

 

Figure 68: .txt formatted file example with one detected object. This is the format compatible 
with YOLOv5 (i.e. used as input training data as well as output). 

 

In Figure 68, the class of the object is either 0 for Egg or 1 for Worm, 

x is the x-coordinate of the center point of the bounding box, 

y is the y-coordinate of the center point of the bounding box, 

w is the width of the bounding box relative to the width of the image, and 

h is the height of the bounding box relative to the height of the image. 

 

The model was then fed smaller sized chunks of the original image with its corresponding 

bounding boxes .txt files. Those smaller images were 640px × 640px as recommended by the 

training model. I wrote a script, siwo.py, that divided the original image into smaller images using 

a step interval with overlap (Figure 69). The entire collection of those resulting images represents 

the dataset on which the model was trained. I used a remote server to perform the training using 

the paid service of a Google notebook. This gave me access to a more powerful computer than my 

own, with a better CPU and GPU. 
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Figure 69: Subdivision of an original image into 640px × 640px images to train the neural 
network. 

 

To increase the robustness of the neural network after training, I used data augmentation on the 

training dataset. This artificially increases the size of the training dataset by applying a vertical 

mirroring transformation to it (Figure 70). This was done using the PlantCV Python library. 

 

 

Figure 70: Vertical flip transformation used as data augmentation to increase training data size. 
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When training a neural network, a key question is whether the object proposition is correct or not 

(i.e. a true or false positive respectively). To answer this question, a mathematical approximation 

is used: the intersection over union (IoU, Figure 71). It represents the area of overlap between the 

ground truth (i.e. what we know to be positive in our training data) and the prediction, divided by 

their union. For instance, if the IoU is above 0.5, the inference is considered a hit. Otherwise, it is 

considered a miss. This makes intuitive sense as the bigger the overlap relative to the union, the 

more area is shared between the prediction and ground truth. It therefore follows that the IoU is 

proportional to the quality of the inferences: the better the inference, the higher the IoU. 

 

 

Figure 71: Graphical representation of the intersection over union (IoU) in the context of object 
detection training (source: https://towardsdatascience.com/map-mean-average-precision-might-
confuse-you-5956f1bfa9e2). 

 

Having false positive (FP) or true positive (TP) for each class then allows for the calculation of 

average precision for that class. It is calculated as follows: 

𝐴𝑃()%'' =
#𝑇𝑃()%''

#𝑇𝑃()%'' + #𝐹𝑃()%''
 



 117 

Where APclass is the average precision for class, 

 #TPclass is the number of true positives for class, and 

 #FPclass is the number of false positives for class. 

 

The common metric for estimating the strength of a neural network can then be calculated as the 

mean average precision (mAP). It essentially is the average of the APclass for every class the neural 

network has been trained on. Using this training, I designed the process through which the AI 

would be used to identify the animals. I started by programming the most efficient route (Figure 

72) that satisfied two rules: be closest to the camera at home position and have the smallest distance 

between the current well and the next one.  

 

 

Figure 72: Designed path for the robot to take to be as efficient as possible. Although user-
programmable, by default, it starts at the A12 well. 
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The coordinate values from origin were estimated using the plates’ specification sheet. In practice, 

these values had to be adjusted by trial and error to account for a small system skewness. Every 

well position was then hard-coded in a dictionary variable to be used with the well name (e.g. 

“E7”) as reference (Figure 73). 

 

 

Figure 73: Dictionary variable named wells_dict used to associate each well with its X and Y 
coordinates as well as a graphical American Standard Code for Information Interchange 
(ASCII) marker showing its current status. In this case, every well is initialized to be unevaluated. 

 
I then created a graphical representation of the progress of wells surveillance, which shows 

surveilled, being surveilled, and to be surveilled wells. This representation is an updated string 

variable made of ASCII characters that appears in the console as the main script runs (Figure 74). 

 

 
 

Figure 74: Graphical representation of the current progress on wells surveillance. A circle 
signifies that the well is unevaluated. An hourglass represents which well is currently being 
evaluated, as is A12 in this case. A colored disk signifies that the well has been evaluated (none it 
this case). 
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I first tried to have one parent, P0, per well. However, that caused a high population density (Figure 

75) that was difficult to reliably count by the AI and could potentially be high enough to produce 

significant daumone concentrations. This dauer-inducing pheromone lengthens the egg-laying 

process and induces dauer formation57.  

 

 
 

Figure 75: 7 day timelapse of C. elegans from one P0 egg to its full first filial (F1) and start of 
second filial (F2). At hour 50, roughly 2 days after the egg-laying stage, the well gets crowded and 
food is decreasing rapidly. 

 
Since having a high population density could represent a future lack of food, this response enables 

the species to delay development until more favorable environmental conditions. Having only one 

well per P0 also caused a premature lack of food once the progeny, F1, were mostly developed to 

the fourth and last larval stage, L4. This is why I decided to divide the sampling power of the robot 

by two: to increase data quality. This, however, is a drawback as it means that the experimenter 

has to transfer the parent animal from one well to another. This implies two human manipulations: 

the initial and mid-way transfers of P0. 
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Figure 76: Diagram of the data acquisition per well regarding the first part of the experiment 
(above) and the second (below). 

 
 
This requires transferring the adult P0 from the X(n) to the X(n+1) well, which should be done 

gently and as efficiently as possible, so as not to hurt the animals or waste time.  

 

Each of the initial 40h and 40h to end surveillances is launched by a separated Python script. The 

first script, in addition to taking hourly photographs of each well, also records a 1FPS film of each 

worm at the very beginning for two minutes. This yields 120 images that are analyzed to determine 

the mobility and path the animal took during this time. This script along with the second one is 



 121 

saved on the Raspberry pi computer. The images they produce, however, are stored on a separate 

1 terabyte hard-disk drive (HDD). The images, totaling ~50GB per experiment, must then be 

treated in a similar fashion as the training data before being inferred upon. From original image 

file to fully processed, they go through 3 distinct Python scripts.  

 

The first one processes all images: 

 
 

         
 
 

         
 

Figure 77: First processing of the result images (i.e. preparing for inference). Every image is 
treated to be in grayscale, approximated to a disk and contrast enhanced (above). The files are 
named such that they contain all relevant information for the next processing (below): the well 
name, the date of acquisition, and the size of the image. 

 

▼
 

▼
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The resulting ~16,000 images (i.e. ~6,000 for the 48 initial movies of the individual parents and ~10,000 

for their brood size analysis) of one experiment are then ready to be inferred on.  

 
 

 

         
 
 

           
 

Figure 78: Second processing of the result images (i.e. inference on the processed images). 
Every processed image is inferred on (above) and a corresponding .txt file containing the inference 
results is generated (below). In the right image, the inferences are represented as red bounding-
boxes with a red label. These boxes are easier to see in the next Figure. 

 
From this step on, the images that are used for the analysis of the P0 path and the ones used to 

determine the brood size are processed differently. The former’s P0 is skeletonized to parametrize 

it (i.e. length, curvature) before analyzing its complete path. This involves a series of 

transformation from the OpenCV Python library where the animal is first blurred to remove small, 

insignificant details and make its body uniformly darker. A threshold is then used so that only the 

darkest pixels (i.e. the body of the worm) remain as white pixels. The form is then eroded and 

▼
 

▼
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dilated to remove potential details and only keep the meaningful curvature of the animal. The 

contour of the shape is then calculated to ultimately derive its median line, which completes the 

skeletonization process (Figure 79).  

 

 

 
 
Figure 79: Skeletonization of the P0 (above) during the first 120s of surveillance (below). 

 
The resulting path is used to determine the speed of the animal, as well as its average position from 

all data points compared to the median point of the shortest start-to-end path (Figure 80). 
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Figure 80: Path analysis of the P0 during the first 120s of surveillance. Every 10th position is 
notated on the path, along with the average position and the median point of the shortest start-
to-end path (i.e. black line from position 1 to 120). 

 
The images used to determine the brood size (Figure 81) have many more detected objects than 

the ones used for estimating the path traveled by the parent. The data derived from these images 

do not span 2mins but rather ~10 days. 
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Figure 81: .txt file generated by the trained neural network with one detected object per line. 
Each line represents a bounding box with, from left to right, a class, an (X, Y) center, a width, and 
a height. 

One of the ways to visualize this new data is by looking at the distribution of eggs and worms at 

any given hour (Figure 82). 

 

 
 

Figure 82: Visualization of the analysis of a well, with the distribution of its Egg and Worm 
populations (right), where each dot has transparency and will appear darker when on top of 
another dot. The image on the left is the original image and the one in the middle is the one after 
inference by the trained model. 

 
The above data already represents a lot of data, and yet, it only represents a fraction (i.e. one given 

well at a given hour) of the overall data which we are most interested in: the evaluation of the 

brood size. Perhaps this demographic density of Egg vs. Worm could be studied over time to 

evaluate how it changes but, at this stage, we focused on the evaluation of all the images with 
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respect to the brood size. It must also be said that the precise treatment of ~10,000 of images, 

compounded in data variables to produce meaningful data for researchers was definitely one of the 

more challenging data object and data abstraction aspects of this project. However, the result is a 

very rewarding one as it is the principal marker to validate whether my robot is viable. 

 
 
 
 
 
 

4.3 Project Validation 
 
 

To validate our model, software, and hardware, I set up an experiment of brood size 

counting opposing CeSAR to laboratory members of different expertise levels. My robot, students 

at the B.Sc., M.Sc., and Ph.D. level, and our professor (i.e. postdoctorate level) had to perform 

brood size measurements on n = 10 wildtype animals. Interestingly, questioning each experimenter 

revealed that each had their own slightly different method for evaluating the brood size, with the 

postdoc including dead eggs and arrested larvae in his dataset. 
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Figure 83: Validation experiment of manual brood size counting of n = 10 N2 C. elegans by 
four experimenters of different expertise level, and automatic counting by CeSAR. 

 
 
There were no significant difference between CeSAR’s results and the postdoctorate results, 

demonstrating its accuracy. There however were some significant differences between some of the 

experimenters, with the undergraduate intern being slightly off from everyone else. This suggests 

that some level of training is essential in correctly asserting the C. elegans brood size. Second, we 

noticed that the worm-to-worm brood size variability was lowest in CeSAR’s dataset. This may 

result from the reduced handling of the parents (i.e. manual brood size evaluation require re-

picking of the parent to a new plate every day), and highly-controlled and stable environment. 

From these promising results, it would be interesting to go further and conduct two additional 

experiments. The first would be used to further validate CeSAR by comparing daf-2(e1370) 
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temperature-sensitive mutants, which have decreased Insulin/IGF-1 (Insulin-like Growth Factor) 

receptor signaling to the wild-type at 20°C, a temperature that mildly inactivates daf-258. At this 

temperature, daf-2 animals and move slower than wildtype59 and also show slower oogenesis (Ref: 

Lopez III and Arur, Dev Cell paper). CeSAR should be able to detect the reduced brood size of 

daf-2 mutants. The second, and perhaps most exciting, experiment is to gather data for n > 100 

wildtype animals and look for phenotypical traits from our parametrization that would be 

predictive of an animal’s brood size.
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CHAPTER V: DISCUSSION 

 

We wanted to evaluate the possibility of developing a better brood size characterization 

method than the manual one used ubiquitously in C. elegans laboratories. Our work has 

successfully improved the methodology for characterizing C. elegans, not only allowing to 

normalize and perform complex brood size measurements using a custom-made robot (CeSAR), 

but also managed to characterize major motor programs in the parent. Indeed, we designed and 

constructed an entirely novel surveillance robot that can fit in an incubator and support four 24-

wells plates (n=96 wells). We used readily available materials and 3D-printed pieces that were 

hard to build manually to keep the entire cost to build under $1,500 USD. We developed open 

source softwares to pilot the robot remotely, perform the image analyses, and use a region-based 

convolutional neural network (R-CNN) to infer egg and worm positions. By using both a 

macroscopic and a microscopic lens, we were able to simultaneously study a parent worm while 

studying its brood characteristics (e.g. size, egg and larval lethality). Our results suggest that our 

method for studying C. elegans is more reliable than the current manual method used and taught 

in laboratories and is certainly much less time-consuming. Indeed, CeSAR required the preparation 

of the wells and the two transfers of the parent animal, while the experimenters had to count 

multiple at least n = 10, and at most n = 30 (i.e. the current batch, in addition to the ones from 24h 

and 72h) every day. This translates to a couple of hours vs. easily more than 10 hours. It is good 

to keep in mind that all of the time used by the experimenters to each measure the brood size of n 

= 10 animals could have been done at the same time by CeSAR, which was only using 10 of its 48 

available wells. 
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Our surveillance system is built around the two lenses such that each have their own light source. 

Made from PVC, the cylinders containing the light sources serve as inexpensive implementations 

and allow the price of the robot to be highly affordable (Figure 37A). However, those tubes are 

rather bulky and inflexible. This is why it would be interesting to develop two light chambers that 

allowed better control over their positioning to illuminate the worms. Our system uses two stepping 

motors in a coreXY configuration to move the center stage. This allows for the maintenance of 

constant tension from both sides, on the X-axis, of the center stage. It also reduces lateral and 

vertical space that would be used with the other existing systems: the motors are below the stage 

instead of outside and both timing belts can be vertically very close together, as long as they do 

not touch (Figure 37B). The linear motion in both the X and Y directions is permitted by linear 

rails along which bronze sleeves slide. Those sleeves are glued using epoxy glue to the 

corresponding stage. Although this yields excellent precision (i.e. < 100µm of absolute precision 

when moving the stage), it creates potential weak points that are constantly subject to forces. It 

would, therefore, be interesting to test a different railing system to achieve smoother linear motion 

with perfect orthogonality. Also, since epoxy glue cannot be easily removed, it makes the entire 

process very unforgiving: once the glue has set, there is no possibility of readjustments. An 

example of a design with extremely smooth linear motion and control would be from Cermak et 

al.42, although it only focuses on one worm in one well for 6h and does not have high amplitude 

of motorization in both axes. 

 

The inner stage in our design is used to house the two lenses and two corresponding motors to 

make them autofocus and is built out of four horizontal levels. This allows the experimenter to 

move each one of them to the desired height to get better images. However, this a very specialized 



 131 

implementation that does not leave much room for other hardware choices such as different sensors 

or different lenses. Although minor, this could be improved by having lenses with built-in 

autofocus such that only two stages would need to be moved instead of four. This reveals a 

potential weakness in our robot, which lies in the way the lenses turn in their sockets to autofocus. 

This could create enough friction in the long run to perhaps damage the threading over time and 

make the lens fit more loosely. Regarding the lenses, since they are upside down, an important 

consideration is the dampening of vibrations that might get to it. Indeed, without dampening 

devices, the microscopic imaging could get blurry from time to time in our setting due to 

fluctuating building vibrations, making it difficult to see key anatomical features such as the 

grinder, which, located at the base of C. elegans’ pharynx, and which moves every time it sucks 

in bacteria. 

 

Likewise, we chose the official and readily available 12.3Mpx IMX477 sensor as cameras. Since 

starting this R&D project, the available hardware has evolved significantly to the point where new 

sensors are currently available with 64Mpx and autofocus. Such a sensor would be an obvious 

upgrade for the next-generation CeSAR.  

 

The software architecture and flow of information allows for both a hierarchical and clear 

communication between its components (Figure 37C). That way, for instance, both RPI’s can 

communicate as client-server: the server remains always open while the client can send requests 

to it at any time point. To simplify this design, it would be beneficial to connect each lens to the 

same RPI as it would remove the need for a second RPI with which to establish and maintain 

proper communication. Currently, the modules available to connect multiple camera sensors to the 
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RPI use too many GPIO (General Purpose Input/Output) pins, which are necessary to monitor 

environmental conditions, which is why we did not consider this option. Should a more versatile 

RPI come out on the market however, it would provide another obvious upgrade to CeSAR. 

 

With this bare structure, we developed the software to infer the position of every egg and worm in 

the image as well as characterize the parental phenotypical traits. The object detection, although 

accurate, does not discriminate against different larval stages, which is why the analysis of the 

larval stage must be done after the original inference has taken place. Indeed, during initial testing, 

the neural network was taught, with my own experimenter biases, to discriminate between Egg, 

L1, L2, L3, L4 and Adult objects. However, by doing this, I unknowingly created juxtaposition of 

these classes and taught the resulting inaccuracies to the network. This produced inference 

bounding boxes of adjacent larval stages, most notably L1 and L2, on the same object. In other 

words, whether the postdoc experimenter or myself, we were unable to label every object in an 

image with the same labels twice in a row. This meant that our method of labeling was unreliable 

and de facto, unproperly teachable to a neural network. Therefore, the algorithmic design of having 

only the easily differentiable Egg and Worm objects is easily teachable both to a new experimenter 

and the network. The biases are now reduced to ones of false negatives and positives, where the 

experimenter might falsely not identify the object when it actually is either an Egg or a Worm, or 

falsely identify an Egg or Worm when it isn’t one, respectively. With clean arenas, however, this 

is unlikely, and the most potential false negative remains L1 animals that are the most difficult to 

identify. Therefore, although we do not expect large inter-experimenters differences, one must 

admit that having multiple experimenters could be useful in properly exhaustively determining 

biases in the training process. Analyzing the parent microscopically in addition to measuring its 
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brood size has the potential to perform highly accurate lifespan and healthspan assays. This is key 

because in past platforms, such as for the WormBot35, worms were studied macroscopically 

specifically, which means a lot of important healthspan traits were lost such as the defecation rate 

and pumping rate. Indeed, in that work, as well as in the WorMotel’s55, the worms are studied at 

such a distance that they were acquired at a relatively low resolution, which rendered those kinds 

of healthspan assays rather difficult, if not impossible. 

 

In terms of CeSAR’s repeatability and result accuracy, the fact that both the focus and XY 

recalibration of the system are controlled by the experimenter makes it a particularly strong feature 

of the system. Indeed, it allows for flexibility in the initial precision of either positioning or focus 

before getting a more accurate level using software. This means that even if the system had an 

original XY precision of 100µm, it could artificially be increased by using software. It would, 

however, be interesting to build an inexpensive system that attains a high level of accuracy from 

its construction alone, rather than relying on software recalibration. A step towards achieving this 

would be to rethink the construction design and not rely on a uniquely manual assembly of the 

different stages using epoxy glue. This step is key and would be the first one to tackle to ensure 

system orthogonality and could greatly benefit from having a precise grid for assembly as well as 

mechanical means to ensure that all parts are held perfectly before gluing them to one another. 

Another step would be to have more precise motors and a structure that allows for more taut belts. 

However, this would require some creativity not to add too much cost to the design. 

 

We showed that, regardless of the expertise level, CeSAR has a higher frequency of analysis, 

seems to have a smaller interquartile range (Figure 83) and can produce highly detailed reports on 
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every studied well. Although we must recognize a potential bias coming from myself toward 

favouring the success of CeSAR over our own labour, the data clearly showed no significant 

difference in the counting of the brood size between our system and our reference postdoc 

experimenter. A potential flaw to this experiment’s design, however, is that it involves only one 

experimenter for each category of expertise level. This could bias the results (i.e. to be either a 

smaller or bigger brood size), depending solely on that experimenter’s skill at measuring a brood 

size. On the other hand, increasing the sample size would have likely yielded averages that would 

tend to equalize as the sample sizes increased, defeating the purpose of this analysis, which was to 

make sure CeSAR was working properly, and to find out whether there were brood size variability 

that dependent on the experimenter. 

 

A clear overall strength of this surveillance system is its modularity. Indeed, even though it was 

built originally to accurately measure brood sizes, it can be used for a variety of other purposes. It 

can be used for survival60, chemotaxis, pathogen aversion61, lifespan, healthspan, or behavioral40,41 

assays for instance, without having to change the robot fundamentally. Only some programming 

would be required. Similarly, in its inexpensive structural design, a team could easily make 

necessary modifications to CeSAR to explore other specific research question, such as one that 

would require the implementation of fluorescence microscopy to monitor neuronal activity or 

using optogenetics. For example, it would seem especially interesting to study C. elegans’ 

lethargic sleep-like state62 by observing the parent worm from egg to dying adult and derive 

patterns for different mutant strains. The greater sample size and multiple parameters that CeSAR 

can measure open the field for revealing potential correlations between brood characteristics and 

parental phenotypical traits. For instance, it would allow to verify if some of these traits could be 
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used to predict brood size. Through these kinds of correlations, we could better understand the 

influence of certain genes that may affect not only the brood size but simultaneously influence 

other parameters. 

 

An example of this modularity advantage is that it can benefit from technological advancement. 

For instance, in the past few months, several new iterations of hardware and software components 

used in this project have come out, publicly available for sale. These improvements include a new 

64Mpx camera from Arducam with autofocus capability and a new version of RPI, which is 

expected to be released in 2024. The former will allow, albeit being more computationally costly, 

for much more detailed images and will not require any external mechanical forces to adjust the 

focus. These features should further enable the use of the additional microscopic camera that was 

initially envisioned for this project, as it could then be more solidly anchored to CeSAR’s frame 

to prevent it from vibrating. There is also the Google Coral USB Edge Tensor Processing Unit 

(TPU) Machine Learning (ML) Accelerator coprocessor which would make it possible to perform 

the inferences directly from the RPI. Since the start of this project, newer versions of the Ultralytics 

YOLO model have been made available, namely YOLOv8. Training with it and having different 

lighting and centering conditions should help increase the mAP of the neural network and reduce 

some of its potential biases, respectively. 

 

By studying some egg-laying combined with behavioral study on C. elegans mutants, we could, 

for instance, better understand its nervous system development63. We also believe our robot 

constitutes a step towards automation of critical tasks, namely evaluation of the brood size to 

characterize new alleles more accurately. Our surveillance system also couples the phenotypical 
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analysis of the parent responsible for the brood with the brood itself as it may give precious 

information potentially related to the studied mutation. We believe that a strong surveillance 

system has the potential of being used by several other research teams that use C. elegans as a 

model system. This was the case for Jushaj et al. (2020)64, who used the WorMotel to propose 

better criteria for healthspan assays based on locomotion. We estimate that our robot will allow a 

great number of research projects, related to chemotaxis, brood size or healthspan to take place 

thanks to its great flexibility in closely monitoring the entire well for a specific time frame at a 

high image resolution. 
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