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1Abstract--Fuel cell vehicles (FCVs) are considered a promising 

solution for reducing emissions caused by the transportation 
sector. An energy management strategy (EMS) is undeniably 
essential in increasing hydrogen economy, component lifetime, 
and driving range. While the existing EMSs provide a range of 
performance levels, they suffer from significant shortcomings in 
robustness, durability, and adaptability, which prohibit the FCV 
from reaching its full potential in the vehicle industry. After 
introducing the fundamental EMS problem, this review article 
provides a detailed description of the FCV powertrain system 
modeling, including typical modeling, degradation modeling, and 
thermal modeling, for designing an EMS. Subsequently, an in-
depth analysis of various EMS evolutions, including rule-based 
and optimization-based, is carried out, along with a thorough 
review of the recent advances. Unlike similar studies, this paper 
mainly highlights the significance of the latest contributions, such 
as advanced control theories, optimization algorithms, artificial 
intelligence (AI), and multi-stack fuel cell systems (MFCSs). 
Afterward, the verification methods of EMSs are classified and 
summarized. Ultimately, this work illuminates future research 
directions and prospects from multi-disciplinary standpoints for 
the first time. The overarching goal of this work is to stimulate 
more innovative thoughts and solutions for improving the 
operational performance, efficiency, and safety of FCV 
powertrains. 
Index Terms--Energy management strategy (EMS), fuel cell 

vehicle (FCV), modeling, proton exchange membrane fuel cell 
(PEMFC). 

I.  INTRODUCTION 
he transportation sector accounted for 29% of total U.S. 
greenhouse gas emissions in 2019 [1]. The supporters of 

hydrogen imagine an atmosphere free of air pollution by 
replacing gasoline with hydrogen. Fuel cells (FCs) use oxygen 
as an oxidizing agent and hydrogen as a fuel to generate 
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electricity [1]. FCs are employed in transportation, stationary, 
and portable applications. According to the nature of the 
electrolyte, FCs can be classified into five types: alkaline fuel 
cells (AFCs), phosphoric acid fuel cells (PAFCs), molten 
carbonate fuel cells (MCFCs), solid oxide fuel cells (SOFCs), 
and proton exchange membrane fuel cells (PEMFCs). AFC was 
the first type to come into practice. However, interest in AFC 
technology declined due to some economic factors, such as 
material issues and the operational shortcomings of 
electrochemical plants. PAFCs are commonly used in 
combined heat and power applications. MCFCs and SOFCs are 
high-temperature FCs used in cogeneration and combined-
cycle systems. With the advantages of high-power density, low 
noise, lightweight, fast start-up, and low corrosion, PEMFCs 
have been broadly used in fuel cell vehicles (FCVs). FCVs with 
local zero-emission and long mileage are getting more attention 
from automobile manufacturers in different countries. A well-
to-wheel (WTW) comparison demonstrates that a hydrogen 
FCV offers 5%-33% lower fossil fuel energy consumption and 
15–45% lower greenhouse gas emissions than an ICEV driven 
by gasoline [2]. FCVs have a higher WTW cost than battery 
electric vehicles (BEVs), which is the key obstacle to their 
penetration into the automobile market. If the production costs 
for hydrogen and FCVs fall, the levelized cost of driving (LCD) 
for hydrogen and FCVs could be comparable to gasoline 
($0.29/km) and BEVs ($0.30/km) by 2030 [3].  
Single-stack FCSs (SFCSs) face several challenges: efficiency, 
availability, durability, and cost. Each cell needs an appropriate 
distribution of humidity, hydrogen, water, and temperature in 
the FCS. In malfunctioning cells, uneven heating and variations 
in cell voltages can happen, so continuing operation under this 
condition may be impossible. Furthermore, the traction power 
of buses, trucks, trailers, trains, and ships can reach high levels, 
so it is necessary to shift to larger FCS, which can generate 
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more power. However, stacking more cells reduces the 
reliability of the powertrain systems. Multi-stack FCS (MFCS) 
is introduced in the literature to address these deficiencies and 
imperfections of single-stack FCS. In [4], Marx et al. provided 
a survey of MFCSs with different architectures. Thounthong et 
al. [5] reviewed different methods regarding the power-
conditioning systems for the SFCS and MFCS. Nevertheless, 
the PEMFC cannot meet all the requirements of an FCV owing 
to some operational limitations, such as slow dynamic response, 
slow-moving electrochemical reaction, and incapability of 
recovering braking energy [6-8]. Therefore, the powertrains of 
FCVs are generally composed of at least two different sources: 
an FC system (FCS) as the primary source and a battery and/or 
supercapacitor (SC) unit as the auxiliary energy source (AES). 
The AES can absorb regenerative braking energy and provide 
peak power, effectively alleviating the deficiencies of the FCS 
[9]. Since different voltage levels between power sources lead 
to low efficiency of direct connection to the electric motor, a 
DC/DC converter is used to convert the output voltage, as 
shown in Fig. 1. The advantages and disadvantages of FCV 
topologies are summarized in Table I. 
 

 
Fig. 1. The classification of FCV powertrain systems: (a) Topology T1, (b) 
Topology T2, (c) Topology T3, (d) Topology T4, and (e) Topology T5. 
 
An energy management strategy (EMS) distributes the power 

between the FCS and AES by considering different power 
sources’ characteristics. Developing an efficient EMS in FCVs 
is a critical technical problem that many academic and 
industrial scholars have intensively studied over the past few 
decades. Several review papers have discussed the results and 
progress of EMSs in FCV applications. For instance, Sulaiman 
et al. [13] provided a review discussion of the different classes 
of FCV EMSs and their optimization methods. Yue et al. [14] 

discussed the degradation modeling approaches and reviewed 
various EMSs, considering the degradation phenomenon. 
Similarly, Lü et al. [15] summarized the application of genetic 
algorithms (GAs) in designing EMSs. Tran et al. [16] recently 
presented a survey of powertrain types, component 
configurations, and EMS for electric and hybrid vehicles. 
The driving cycle has an essential impact on the fuel 

economy of a vehicle [17]. Typically, a driving cycle can be 
derived from the field by monitoring the speed of a vehicle. 
Then, cycle identification and traffic flow modeling can be 
utilized to determine the cycle [18]. Due to the increasing 
complexity and uncertainty of traffic conditions, the accuracy 
of the driving cycle recognition methods is low, and the 
obtained driving conditions are inconsistent with the actual 
situation. On the other hand, the traffic flow models can only 
reflect the route characteristics with solid regularity. The 
difference between the real and standard driving conditions 
leads to the fact that the fuel economy of EMS cannot reach the 
theoretical optimum in practical applications. The rapid 
development of intelligent transportation systems (ITS), 
vehicle-to-vehicle (V2V), vehicle-to-everything (V2X), and 
vehicle-to-infrastructure (V2I) technologies provide more real-
time and available traffic data, which offers new ideas for real-
time optimization of an EMS design. V2V, V2X, and V2I 
technologies can accurately quantify traffic flow and driving 
cycle conditions and effectively improve the overall 
performance of vehicles, including mobility, safety, and fuel 
economy. Furthermore, the actual driving process of cars will 
inevitably be affected by vehicles, pedestrians, traffic jams, 
traffic lights, and other factors [19, 20], which can be obtained 
through ITS technology. 
Several significant contributions distinguish this review 

paper from the previous ones. Firstly, the fundamental EMS 
problem is comprehensively described. Secondly, the modeling 
of power sources in the EMS of FCV is carefully presented, 
including typical modeling, degradation modeling, and thermal 
modeling. Thirdly, the most recently published papers are 
surveyed, emphasizing covering state-of-the-art approaches. 
Next, the advanced and new verification methods of EMSs are 
summarized. Finally, several potential research directions are 
suggested to overcome the existing critical challenges.  
The rest of this review article is organized in the following 

manner. The fundamental EMS problem is described in detail 
in Section II. A comprehensive introduction to power source 
mathematical representations is put forward in Section III. 
Section IV classifies different EMSs. After Section IV briefly 
explains the contents of EMS verification methodologies. 
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Table I 
The benefits and drawbacks of various FCV powertrain topologies 

Topology Advantages Disadvantages References 

T1 Simple structure Slow dynamic response; cannot recover braking energy; 
Reduce the powertrain components' lifetime 

[8] 

T2  High static and dynamic performance, eliminate 
power loss of electronic hardware 

Set the power sources to work in the same voltage range 
Reduce the powertrain components' lifetime, unable to 
control the energy buffer 

[10] 

T3  Soft switching operation minimizes the loss of 
DC/DC converter under sudden load conditions High electric power loss [11] 

T4 Widely used topology, power distribution control is 
easy to implement Low power flow control flexibility [12] 

T5  Stable DC voltage, high control flexibility in power 
flow Complex structure [11] 
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Finally, several future trends are provided in Section VI. The 
conclusions are presented in Section VII. 

II.  A DESCRIPTION OF THE FUNDAMENTAL PROBLEM OF 
ENERGY MANAGEMENT IN FUEL CELL VEHICLES 

The energy-management problem for FCVs is depicted in Fig. 
2. An EMS primarily aims to maximize the efficiency of the 
onboard energy/power sources by allocating power between 
them. Control objectives can include one or more criteria, 
including minimizing hydrogen consumption, extending the 
FCS life, extending energy storage lifetime, improving driver 
comfort, ensuring safety, and enhancing mobility. The 
decision-making problem is usually constrained by three 
physical constraints: powertrain dynamics, beginning and 
ultimate values of state variables, and control actions and state 
variable restrictions. The desired power from each 
energy/power source and the hydrogen cost can be calculated 
based on the powertrain dynamics once the inputs (for example, 
the requested power, the vehicle velocity, and the current values 
of SOC and SOH for the energy/power sources, and the steering 
angle speed) for this decision-making problem are provided in 
advance. The state variables are generally the SOC of the 
energy/power sources, the position of the gearbox, and the 
electric motor speed. The output torque of the electric motor, 
gear shifting, and clutch condition are frequently used as 
control actions. Limits for these parameters are also required to 
address this control problem. A mathematical model of the 
powertrain components is necessary as part of the solution, in 
addition to the control objective and constraints. The modeling 
of an FCS can entail calculating hydrogen consumption, 
estimating efficiency, stack temperature, generated water, and 
so forth. The energy/power source modeling considers the SOC 
variation and the link between the open-circuit voltage and 
internal resistance with the SOC. The rest of this section falls 
into three parts. Firstly, the mathematical description of the 
energy management problem is presented, which includes 
modeling the FCS, battery, and SC based on the overall 
explanation of the EMS problem. A full assessment of 
developed energy management systems and strategies is then 
reviewed. A specific section is offered to investigate the 
decision-making strategy assessment platforms. 

 
 Fig. 2. An overview of general energy management problem for FCVs. 

III.  MODELING AND MATHEMATICAL REPRESENTATION 
APPROACHES 

Modeling can effectively reflect the performance of power 
sources with different physical characteristics. This section 
reviews the suitable modeling approaches in EMS. To gain a 
deeper understanding of FC, battery, and SC modeling, it is 
highly recommended to refer to [21], [22], and [23], 
respectively. 

A.  PEMFC Modeling 
PEMFCs produce electricity and byproducts (heat and water 

vapor) from the electrochemical reaction of hydrogen and 
oxygen. A PEMFC stack comprises several single cells, 
including bipolar plates, gas diffusion layers, micro-porous 
layers, catalyst layers, and proton exchange membranes.  
 

    1)  Basic 
The characteristics of a PEMFC are usually represented by 

power, efficiency, and polarization curves, among which the 
polarization curve is the most representative, as shown in Fig. 
3. The polarization curve represents the relationship between 
current and voltage in the FC stack, where the voltage losses 
include the activation loss (driving the chemical reaction), 
ohmic loss (resistance associated with electrodes, electrolytes, 
and others), and concentration loss (reduction in the 
concentration of reactants on the electrode surface) [24]. 
Therefore, the cell voltage can be determined by subtracting the 
total voltage loss from the open-circuit voltage. The open-
circuit voltage expression proposed by Amphlett et al. [25] has 
been widely used. The ohmic voltage loss can be determined 
using Ohm's law equation. However, the activation voltage and 
concentration voltage can be expressed differently. For 
instance, Li et al. [26] ignored concentration voltage losses to 
reduce the computational burden of the model, and the Tafel 
equation was used to describe the activation loss. Djerioui et al. 
[27] considered the effect of partial oxygen pressure 𝑃!!  on 
concentration loss, and used the Tafel equation to represent the 
activation loss. Considering that using the Tafel equation to 
describe the relationship between activation loss and current 
density is not valid for small current [28], Chen et al. [29] 
employed another model for activation loss, making it 
reasonable for the entire current range. In this model, the 
concentration loss is determined by the current density. 
Furthermore, Fathy et al. [30] used a unified expression 
containing parameter factors 𝜉" 	and oxygen concentration 𝐶!# 
to represent the activation loss at the anode and cathode in an 
EMS application. An alternative model for concentration loss 
was proposed using the current density parameter. The above 
models are summarized in Table II, where R represents the gas 
constant, 𝐹  is the Faraday constant, α is the charge transfer 
coefficient, 𝑖 is the current of FCS, 𝐼$ is the exchange current 
density, 𝐼%&' is the maximum current density, S represents the 
catalyst layer cross-sectional area,	𝑁()** is the number of cells, 
and A, m, n, b, and a are empirical coefficients.  
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Fig. 3. Different voltage loss regions, along with power, 
efficiency, and polarization curves. 
 
    2)  Degradation 
Changes in output voltage, internal resistance, and output 

power are considered indicators of FCS degradation. Most of 
the researchers use FCS voltage to estimate the degradation. 
The degradation of the MEA performance comes from the 
following sources: catalyst layer degradation, PEM 
degradation, and gas diffusion layer degradation [31, 32]. A 
detailed description of MEA degradation is provided in [31-33], 
and the main degradation mechanisms concerning the loading 
of the PEMFC are shown in Fig. 4. 
Pei et al. [34] proposed a quantitative description of the 
relationship between the PEMFC’s available lifetime and the 
load variation, start/stop, idling, and high power load. In this 
model, output voltage decay is used as an indicator of 
degradation, and a ten-percent voltage decline is considered the 
end of life. In this model, 𝑡+ , 	𝑛+ , 𝑡# , and 𝑡,  are idle time, 
start/stop cycles, heavy load duration, and heavy load time, 
respectively. The corresponding degradation coefficients are 
𝑘+, 𝑘#, 𝑘,, and 𝑘-. Jiang et al. [35] applied the voltage decay 
formula of the previous model for designing an EMS. Then, Hu 
et al. [36] added natural decay 𝛽 to the voltage decay formula. 
Fletcher et al. [33] evaluated FCS degradation by establishing 
degradation functions for high and low power ranges between 
0 and 1, transient operation, and start-stop cycles. Moreover, Li 

et al. [37] constructed an online model for assessing the 
degradation of PEMFC in an EMS application. Among open-
circuit voltage 𝐸$, total resistance 𝑅, exchange current 𝑖$, and 
limiting current 𝑖. , only 𝑅  and 𝑖.  change linearly with time. 
Therefore, the degradation parameter 𝛼(𝑡)  is chosen to 
represent the degradation of 𝑅  and 𝑖. . The above-discussed 
models are summarized in Table II.  
 

 
Fig. 4. The main degradation mechanisms of MEA associated with PEMFC 
loading, adopted from [31]. 

 
    3)  Thermal 
Excessive heat generated during the electrochemical reaction 

of PEMFC is not conducive to its safe and efficient operation. 
Therefore, it is necessary to build a thermal model of PEMFC 
to manage the heat to operate safely and efficiently within the 
appropriate temperature range (340–350 K) [41]. Olivier et al. 
[38] developed a dynamic thermal model for an EMS, in which 
the heat source 𝑃/0(  is produced due to the electrochemical 
reaction. The heat dissipation happens in the FC channel 𝑃&1 
through the air velocity, the liquid-vapor phase change of the 
water generated by the electrochemical reaction 𝑃/2% , the 
natural convection 𝑃3&2, and the forced convection generated 
by the blower 𝑃(1 . Moreover, He et al. [40] developed a 
temperature dynamic system equilibrium model for a water-
cooled PEMFC, in which the total generated heat is the 
difference between the energy produced by the electrochemical 
reaction �̇�0)&  and the power induced by PEMFC �̇�)*) , the 

Table II 
The summary of PEMFC modeling 

Model Equation Ref 
Basic   [26] 

 [27] 

 [29] 

 [30] 

Degradation   [34] 

 [35] 

 [36] 

 [33] 

 [37] 

Thermal   [38] 

 [39] 

 
[40] 
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power dissipated by thermal radiation �̇�0&4 , and the power 
dissipated by the cooling system �̇�(55*. The above models are 
summarized in Table II, where 𝑚6(  and 𝐶6(are the mass and 
specific heat capacity of PEMFC, respectively. 
 

B.  Battery Modeling  
The most common rechargeable batteries are Lead-acid, 

Nickel-metal hydride (NiMH), and Lithium-ion [42]. Lead-acid 
batteries are inexpensive and reliable but have disadvantages, 
such as high maintenance and heavy metal pollution problems. 
NiMH batteries have reliable cycling but relatively low energy 
density, low cycle life, and high self-discharge rates. As a 
result, lithium-ion batteries with a better power density and 
cycle life are more suitable for FCV applications [43]. 
 

    1)  Basic 
As the most widely used battery model, the equivalent circuit 

models (ECMs) mainly use multiple circuit elements to 
simulate the charge and discharge characteristics of the battery 
[44]. For example, these models include 𝑅"32  [45], Thevenin 
[46], PNGV [47], and dual-polarization [48]. The 𝑅"32 model 
consists of an ideal voltage source and resistance, ignoring 
battery polarization effects and changes in internal resistance. 
It is often used for system-level energy management 
optimization. The Thevenin model is also called the resistance-
capacitance (RC) ECM, which adds an RC network to describe 
the polarization effect of the battery based on the 𝑅"32 model. 
The PNGV model adds a capacitor to consider the change of 
open-circuit voltage based on the Thevenin model, effectively 
solving the problem of open-circuit voltage changing with 
battery SOC. The dual-polarization model is an improved 
model of the Thevenin model, which takes into account the 
charging and discharging process more accurately and is 
considered to be the best model for the lithium-ion battery 
simulation [44]. Although the ECM models are simple and the 
efficiency calculation is high, they cannot reflect the 
mechanism of reaction that occurs inside the battery. Therefore, 
the reduced-order electrochemical models that can directly 
reflect the internal micromechanical reaction process of the 
battery have been extensively studied [49]. However, the 
electrochemical model involves numbers coupled with partial 
differential equations, and the calculation is too large. To 
reduce the computational burden complexity, some order 
reduction techniques are used. Although developing the 
reduced-order electrochemical battery models can be time-
consuming, it can be done once, and the results can be 
generalized into different models with the same essential 
features.  for the reduction of complex electrochemical models, 
such as the Galerkin projection [50], the ε-embedding method 
[49], and domain decomposition and polynomial 
approximation methods [51], etc. Since many key parameters 
of the electrochemical model cannot be directly measured, 
parameter identification methods are used to identify the key 
parameters. Standard parameter identification methods include 
the genetic algorithm [52], Fisher information matrix [53], 
homotopy algorithm [49], etc. Amir et al. [54] used the 
reduced-order electrochemical model proposed by Masoudi et 
al. [49] in the EMS of the plug-in HEV. Therefore, applying the 
reduced-order electrochemical model to EMS has good 

prospects. The above ECMs are summarized in Table III, where 
V is the terminal voltage, 𝑉5( is the open-circuit voltage, 𝐼1&2 is 
the battery current,	 𝑅$  is the internal resistance, 𝑉7  is the 
polarization voltage and 𝑉(7 is the capacitance-voltage. 
 

    2)  Degradation 
Despite the discussed advantages of lithium-ion batteries in 

FCV applications, battery aging remains a barrier to their full 
penetration in the market.  As an AES, the battery pack has the 
advantages of high power density and long life cycle [55, 56]. 
However, the lifetime of the battery declines due to the number 
of charging/discharging cycles and the temperature variation 
[57]. Battery degradation is a complex process influenced by 
many factors, such as battery SOC, depth of discharge (DOC), 
temperature, and charge/discharge rates [58]. The degradation 
mechanism of lithium-ion batteries comes from mechanical and 
chemical degradation mechanisms. The mechanical 
degradation mechanism is related to the volume change and 
stress generated when lithium-ion is repeatedly intercalated into 
the active material. In contrast, the chemical degradation 
mechanism is connected to the reactions, such as solid 
electrolyte interphase formation, electrolyte 
decomposition/reduction, and active material dissolution [59]. 
Moreover, battery aging can be divided into two types: cycle 
aging and calendar aging. Cycle aging occurs when the battery 
is charged/discharged due to the battery's current rate (𝐶0&2)), 
utilization mode, temperature conditions, SOC, and DOD [60]. 
Wang et al. [61] established a cycle aging model by studying 
the relationship between DOD, temperature, and 𝐶0&2), and the 
aging of lithium-ion batteries. Then, Hu et al. [31] applied it to 
an EMS problem of an FCV. Suri et al. [62] replaced the pre-
exponential coefficient in the previous model with a function of 
the SOC variable and applied it to the EMS of HEVs. On the 
other hand, calendar aging refers to the aging of the battery over 
time in storage mode, which is mainly concerned with battery 
temperature and SOC [63]. Sarasketa-Zabala et al. [63] 
analyzed the effect of temperature and SOC on calendar life and 
built a calendar life model under static and dynamic operating 
conditions. Zhang et al. [64] took cycle and calendar aging in 
EMS and applied this model to evaluate calendar aging. In 
another work, Song et al. [65] discretized the model and used it 
for designing an EMS. The above models are summarized in 
Table III, where 𝐸&  is the activation energy, 𝜂  is the 
compensation factor for 𝐶0&2) , 𝐴8  is the accumulated Ah-
throughput, and 	𝛼 , 	𝛽 , 	𝛼+ , 	𝛽+ , 	𝛼# , 	𝛽# , 	𝑎 , 	𝑏 , 𝑐,  and 𝑑  are the 
fitting coefficients. 
 

    3)  Thermal  
The performance of the lithium-ion battery is strongly linked 

to temperature [66]. To study the effect of battery temperature 
on hydrogen consumption of FCV, Zheng et al. [67] built a 
lumped capacitance thermal model based on the energy balance 
among the generated heat 𝑄9:;, the heat loss 𝑄<=>>, the mass 
𝑚1&2	 , and the service time T. In addition, Tang et al. [68] 
studied the EMS of PHEV by a control-oriented thermal model. 
The heat generated by the internal resistance 𝑟 and temperature 
influence coefficients 𝑑𝐸5(/𝑑𝑇 is considered, and the heat loss 
is neglected. The above models are summarized in Table III, 
where 𝐶7, 𝐼 , and 	𝑇  are the heat capacity, current, and 
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temperature of the battery, respectively. In addition to thermal 
modeling efforts based on a single state, thermal distributions 
inside a power pack are also modeled. To better comprehend 
the thermodynamic properties of battery cells in a pack during 
simulated drive cycles, a three-dimensional thermal model has 
been constructed [69]. Using the porous electrode and 
concentrated solution concept in [70], a thermal model for 
lithium-ion battery packs has been constructed. During the 
discharging and charging operation, rechargeable batteries' 
temperature fluctuates as a result of internal heat generation; a 
full investigation of battery heat generation considering many 
contributing elements is conducted in [71]. 
 

Table III 
The summary of Lithium-ion battery modeling 

 

Model Equation Ref 
Basic  [46] 

 [47] 
 [48] 

Degradation  

 [31, 
61] 

 
[62] 

 [63, 
64] 

 [65, 
72] 

Thermal 
 [67] 

 [68] 

 

C.  SC Modeling  

The SC is mainly composed of an electrode, a separator, and an 
electrolyte, which separate positive and negative charges to 
store the energy [73]. Table IV presents the SC model presented 
in this section. 
 
    1)  Basic 
Like lithium-ion batteries, SCs are modeled using ECM. 

Among various ECMs, the simple RC model is suitable for 
simulating the energy behavior of an SC [74]. To improve the 
accuracy of the model,  a series resistance, 𝑅/, is used to mimic 
the charge and discharge resistance behaviors, and a parallel 
resistance, 𝑅7, represents the self-discharge loss [75]. 
 

    2)  Degradation 
Therefore, with the advantages of a long life cycle, high-power 
density, temperature independence, and unlimited 
charging/discharging cycles, the SC can replace or work with 
the battery to provide peak power for the FCV [76, 77]. Despite 
the superior performance of SCs, degradation is still an 
important issue. The two leading indicators of SC degradation 
are an increase in equivalent series resistance (ESR) and a 
decrease in capacitance [78]. Since an increase in voltage and 
temperature may accelerate the decomposition of SC 
electrolytes and the side reactions within the electrode, voltage, 
and temperature are the two main factors affecting the aging of 
SCs [79]. In the EMS, Lhomme et al. [80] assumed that the 

expected service life of SCs under normal operating conditions 
is continuous, and the degradation model of SCs can be 
expressed by the ratio of service time 𝑡@/)  to the expected 
lifetime	𝐿AB. This model cannot reflect the internal mechanism 
of SC degradation. Therefore, the application of SCs’ aging 
models for energy management needs to be further studied. 
 

    3)  Thermal 
SCs operate at a high circulation rate and generate much heat 

inside, which can significantly impact the performance and 
lifetime of the SC [23]. Studies on SC thermal models can be 
divided into two categories: some are based on geometric and 
compositional differential equations, while others propose 
comprehensive models to describe SC thermal dynamics [81]. 
However, there are few studies on the effect of the heat 
generated by SC on the performance of an EMS. Therefore, it 
would be interesting to integrate SC thermal management into 
an EMS design. 
 

Table IV 
The summary of SC modeling 

 

Model Equations Ref 
Basic  [74] 

 [75] 

Degradation  [80] 

IV.  THE LATEST DEVELOPMENT IN ENERGY MANAGEMENT 
STRATEGIES AND METHODS FOR FUEL CELL VEHICLES 
 A comprehensive review of recent advances in EMSs for 

FCVs is performed in this section. In addition, a detailed 
analysis of the advantages and disadvantages of EMSs is 

 
Fig. 5. The classification of EMSs for an FCV. 
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provided. These strategies are rule-based and optimization-
based, as shown in Fig. 5. 
 

A.  Rule-based 
The rule-based EMSs are generally determined based on 

expert knowledge and without prior knowledge of a drive cycle. 
These strategies are classified into deterministic, fuzzy logic 
control (FLC), and frequency-based approaches. The 
deterministic approaches can be generally classified into the 
thermostat, load follower, operating mode, and state machine 
control (SMC). Li et al. [82] developed an EMS based on a 
combination of FLC and Haar wavelet transform for a tramway. 
Chen et al. [83] suggested an adaptive  EMS with FLC 
parameter tuning to guarantee an acceptable performance in 
different driving conditions. Zhou et al. [84] put forward an 
online EMS according to a combination of obtained parameters 
from offline optimized FLCs utilizing a data fusion method. 
Zhang et al. [85] developed an adaptive FLC-based EMS. 
Driving pattern recognition is performed using the features 
extracted from the historical velocity window with a multilayer 
perceptron NN (MLPNN). Generally, the frequency-based 
EMS breaks down the requested power into high and low 
frequencies. Fu et al. [86] designed a hierarchical EMS based 
on a low-pass filter and the equivalent consumption 
minimization strategy (ECMS) to enhance the energy sources' 
lifetime, performance, and hydrogen economy. An optimized 
frequency decoupling EMS via the FLC approach was 
introduced by Fu et al. [87] to prolong the FCS lifetime and 
ameliorate hydrogen economy. 

B.  Optimization-Based EMSs 
The optimization-based strategies are classified into global and 
local methods. According to the main features and objectives of 
the optimization-based EMSs, the related papers are 
summarized in Table V. 
 
    1)  Global Optimization  
    Global optimization strategies need traffic and road 
conditions knowledge in advance to calculate the optimal 
operation trajectory of power sources. However, precise road 
information is challenging to get in real-time, and the 
computation burden is high, making it challenging for the FCV 
real-time application. 
 
          a)  Dynamic Programming (DP)  
DP is one of the most vital approaches for computing global 

optimal solutions in an FCV. It is often used as a benchmark 
solution for other EMSs. For instance, Ansarey et al. [88] 
offered an optimal solution for the hydrogen economy using a 
multi-dimensional DP. After introducing a model to estimate 
the effect of EMS on the FC degradation phenomena, Fletcher 
et al. [33] proposed an optimal EMS by using stochastic DP to 
improve the hydrogen economy and lifespan of the powertrain. 
Li et al. [89] developed an optimal EMS based on a multi-
objective DP method to match the hydrogen consumption and 
the battery SOH in a range-extended bus. Zhou et al. [90] 
focused on developing a unified DP algorithm to solve the EMS 
problem. Ali et al. [91] introduced an advisory DP for a real-
time optimal EMS. A state space is defined as driver-dependent 

and driver-independent states, and then a statistical model is 
developed for FCV state prediction. Peng et al. [92] introduced 
a scalable and adaptive rule-based EMS. The rules are 
determined by the results of a two-dimensional DP under 
different driving profiles. 
 

          b)  Metaheuristic Algorithm 
As one of the most famous metaheuristic algorithms, GA is 

often combined with other approaches to improve overall 
performance. Zhang and Tao [93] offered a combination of 
FLC with a low pass filter to extend the FCS lifetime and 
enhance the hydrogen economy. A modified GA is used to seek 
the best parameters of the FLC membership functions and fuzzy 
rules. Another popular metaheuristic algorithm is the particle 
swarm optimization (PSO) algorithm. Geng et al. [94] 
investigated a constrained multi-objective PSO algorithm to 
solve an EMS problem for an FC/Battery PHEV. Koubaa et al. 
[95] suggested an online EMS integrated with a derivative-free 
algorithm. In this work, a set of rules is defined to restrict the 
search space of the PSO algorithm. Ahmed Fathy et al. [96] 
proposed a metaheuristic-based EMS for a hybrid electric 
power system that uses a coyote optimization method. 
 

    2)  Local Optimization  
A local optimization strategy replaces the global cost 

function with an instantaneous cost function to calculate the 
optimal power split among different power sources. 
 
          a)  Pontryagin’s Minimum Principle (PMP) 
PMP-based EMS simplifies the constrained global 

optimization problem into the local Hamiltonian minimization 
problem. To take the operating conditions of the FCS into 
account, an adaptive PMP-based EMS was developed by Ettihir 
et al. [97], suggested the integration of an online identification 
approach to allocate the requested power between the FCS and 
the battery unit. Jiang et al. [35] developed a real-time EMS 
based on a two-dimensional PMP for a hydrogen-powered bus 
with an FC/battery/SC powertrain. Li et al. [98] suggested an 
adaptive PMP-based for an FC/Battery vehicle, in which the co-
state estimation is implemented by Markov-based driving cycle 
prediction. Song et al. [65] proposed an adaptive EMS 
employing PMP, considering both hydrogen consumption and 
power source durability. 
 
          b)  Equivalent Consumption Minimization Strategies 
(ECMSs) 
ECMS is a local optimization method derived from PMP 

optimality conditions. ECMS adds an "equivalent factor" (EF) 
that has the same effect as the co-state factor of PMP, which is 
highly dependent on driving cycle information and powertrain 
constraints. Xu et al. [99] suggested an adaptive ECMS-based 
EMS for a city bus to meet complex and changeable road 
conditions. Due to uncertainties in a driving profile, there is no 
guarantee for the battery SOC charge-sustenance and local 
optimality of ECMS unless the EF is optimally corrected in 
real-time. For example, Han et al. [100] proposed an EF 
adaptation approach for extracting the optimal global EF based 
on the DP optimization result. Li et al. [37] designed an online 
adaptive ECMS for an FCV to update EF and FCS dynamic 
power variation according to the SOH of powertrain sources. 



 8 

 
          c)  Convex Optimization (CO) 
Due to the complexity of powertrain components’ models, 

EMS approaches have to cope with various challenges, such as 
nonlinear mathematical models, equality and inequality 
constraints, and implementation issues. Convex optimization 
(CO) can effectively solve the above issues. The CO-based 
approach needs the EMS optimization problem to be 
formulated strictly convex. The performance of optimal results 
is strongly related to the fidelity of the approximated models. 
For instance, to deal with sub-optimality and computational 
time burden, Hu et al. [101] introduced a CO-based approach 
to optimize both EMS and component dimensioning problems 
rapidly. In another work, Hu et al. [102] suggested an optimal 
EMS and battery and SC sizing using the CO method. Wu et al. 
[103] proposed a CO method for EMS and component 
dimensioning in a logistics plug-in FCV to optimize the total 
energy and power source costs while fulfilling the determined 
requirements. Caux et al. [104] formulated an EMS problem as 
a piecewise linearization model. Chen et al. [105] proposed an 
alternating direction method of multipliers (ADMM) approach 
to solve a QP-based EMS problem. 
 

          d)  Model Predictive Control (MPC) 
MPC-based EMSs are mainly based on predictive models 

where trip information and future driving data can be integrated 
into different EMS approaches. The performance of this method 
depends on powertrain and system modeling, driving cycle and 
external disturbance prediction, prediction horizon, and 
sampling time. In general, MPC techniques are dependent on a 
specified model and parameters. Hence, they lack adaptability. 
Luna et al. [106] proposed a nonlinear MPC to extend the FCS 
lifespan and augment efficiency and performance by taking into 
account the local operating constraints of the powertrain 
sources. Liu et al. [107] put forward a hierarchical MPC-based 
EMS to enhance the efficiency of FCS while considering the 
safe operational zone of the compressor system. Hu et al. [31] 
established a multi-objective and cost-optimal MPC approach 
to optimize the total running cost of an electric bus, including 
the costs of hydrogen consumption and powertrain component 
degradation. A multi-objective MPC is investigated by Pereira 
et al. [108], where they recommended the integration of a 
nonlinear MPC with a recurrent NN as a nonlinear dynamic 
model. To effectively distribute the requested power under 
changeable driving conditions and multiple driving patterns, 
Zhou et al. [45] introduced adaptive EMS, including a Markov 
driving pattern recognizer and a multi-mode MPC. Another 
type of MPC is based on explicit model predictive control 
(EMPC). In this approach, the non-linear system cost function 
can be optimized in an offline process, and the computational 
burden is effectively reduced. Arce et al. [109]  used EMPC for 
an FCV to monitor motor power requirements, maintain the 
SOC of the battery near its optimal value, and improve 
performance and durability. Using EMPC in the upper layer to 
allocate the power demand among the different power sources,  
 

          e)  Game Theory (GT) 
Generally, GT involves decision-makers, playing policies, 

and payoff functions. In a GT problem, Nash equilibrium is a 
steady-state situation where no decision-maker has an incentive 

to change its state. GT can be categorized into two main groups: 
non-cooperative and cooperative. In the former, the decision-
makers make individual decisions to maximize their payoff 
functions with self-centeredness. In the latter, the objectives of 
all decision-makers should be achieved as far as possible. To 
improve the EMS robustness in the case of complex driving 
profiles, Sun et al. [110] proposed an EMS based on GT. This 
strategy incorporates future driving patterns into a prediction 
window. Since the optimized answers for a given driving 
profile cannot take different possible driving patterns into 
account, Zhang et al. [111] suggested a non-cooperative GT-
based EMS with an adaptive utility function. 
 
          f)  Nonlinear Control (NC) 
Nonlinear control (NC) approaches are robust against 

external disturbances, parameter changes, and model 
uncertainty. Moreover, they can efficiently work with time-
variant powertrain systems. In [112], El Fadil et al. proposed a 
solution to the EMS problem to satisfy the stability of the 
closed-loop powertrain system while tracking the SC current 
and DC voltage fluctuation. To deal with complex driving 
conditions, in [113], an EMS is proposed by Mane et al. to 
control a hybrid powertrain system properly. In [48], an 
adaptive EMS was suggested by Zhang et al. to split the power 
between FCS and battery under different driving conditions. 
 

          g)  Robust Control (RC) 
Previous research studies concentrated on ideal FCSs and 

neglected the uncertainty concept. However, operation 
conditions change over time, and the approximated modeling 
brings numerous sources of inaccuracies. From this perspective, 
Nwesaty et al. [114] proposed a disturbance-rejection EMS 
using the H∞ approach. The system is formulated as a linear 
parameter-varying system. Wu et al. [115] provided an analysis 
based on a Lyapunov function and singular perturbation theory 
with local closed-loop stability. The suggested adaptive EMS is 
model-free and does not require an observer to estimate the 
SOC level. 
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          h)  Extremum Seeking (ES) 
Extremum Seeking (ES) framework, as an online adaptive 

local optimization technique, can be successfully applied to find 
the optimal operating point of a static nonlinear system. Zhou 
et al. [151] provided a survey of online ES-based strategies and 
classified them as first-order, band-pass, and high-pass filter-
based methods. Zhou et al. [137] proposed an online adaptive 
EMS based on a fractional-order ES algorithm to improve 
convergence speed and robustness. Additionally, the proposed 
approach strengthens the durability of the system. Wang et al. 
[136] suggested a data-driven-based ES approach based on a 
forgetting factor recursive least square (RLS) online 
identification algorithm. [136] presented an online ES 
framework based on RLS identification with a forgetting factor 
to enhance the estimation accuracy. 
 

          i)  Neural Networks (NNs) 
 The applications of NNs in FCVs are explained in several 

examples. In most cases, the NN applications focus on their 
combinations with other approaches to improve their 
performance. For instance, Song et al. [142] developed a multi-
mode EMS based on a learning vector quantization NN as a 
driving pattern recognition method. According to the NN 
results, this EMS automatically switches to the GA-optimized 
thermostat strategy. Liu et al. [144] suggested a multi-objective 
hierarchical prediction EMS where a backpropagation NN is 
used to predict speed on a prediction horizon. Zhang et al. [85] 
presented a multilayer perceptron NN regarding driving pattern 
recognition. After developing the model, an adaptive fuzzy 
EMS is proposed for allocating the power according to the 
requested profile. In [108], a recurrent NN model is trained to 
model the behavior of a PEMFC, and then a nonlinear MPC is 
developed for the EMS of an FCV. 
 

          j)  Reinforcement Learning (RL) 
For the first time, radial-basis NNs were suggested by Lin et 

al. [138] to achieve adaptive optimal control for the FCV EMS 
through RL theory without prior knowledge of future driving 
cycle profiles. Yuan et al. [147] put forward a hierarchical RL-
based EMS. This work combined short-term and long-term 
speed predictions with a rolling optimization technique. Lin et 
al. [149] offered an online recursive RL-based method to 
minimize the final cost of a plug-in FCV to deal with various 
driving conditions. Sun et al. [148] developed a hierarchical 
multi-objective RL using ECMS and a transition probability 
matrix. Furthermore, an adaptive fuzzy filter was suggested for 
addressing high-dimensional state-action space to decrease 
computational time. 

C.  Component Sizing and Optimization-Based 
   The most challenging aspect of component sizing in FCVs is 
proper sizing of the battery and electric motor to modify the 
whole vehicle's weight to achieve a more excellent full-electric 
range. Table VI summarizes the design details for several FCVs 
in the literature. Kim et al. [152] proposed a pseudo-SDP 
controller based on stochastic DP for optimizing the 
compressor size in an FCS and hydrogen consumption. Hu et 
al. [153] introduced CO to optimize hydrogen consumption and 
component sizing and improve the durability of PEMFCs. In 
[101], Hu et al. developed a CO framework for optimizing 
power distribution and component sizing and studied the effect 
of driving patterns on different actual bus routes. Hu et al. also 
dealt with optimal EMS and sizing of battery and SC utilizing 
a CO method in [102]. A dynamic battery SOH model was 
integrated to quantitatively examine the impact of the battery 
replacement strategy on the studied system performance. Xu et 
al. [117] proposed a multi-objective problem that integrated DP 
into the component sizing problem and used a two-loop frame 
to select the best component size. Therefore, Hu et al. [36] used 
the obtained DP results for real-time soft-running strategies to 
achieve a good hydrogen economy, system durability, and 

Table V 
The summary of optimization-based EMSs’ key features and objectives 

Methods Advantages Disadvantages Hydrogen  
consumption 

PEMFC 
lifetime 

Battery 
lifetime 

DP Global optimal; benchmark High computing burden; 
dimension disaster  [88-92, 116, 117] [33, 92, 117] [89, 117] 

GA Global stochastic optimal; Depending on the initial 
population and parameter tuning [93, 118] [93] — 

PSO Simple; good robust; fast 
convergence; few parameters 

Relying on initial conditions 
and search speed;  [94, 95] [95] — 

PMP Near global optimum; relatively small 
computational burden 

Real time implementation 
difficult; complex mathematics [35, 65, 98, 119, 120] [35, 65, 97, 98] [65] 

ECMS Real-time implementation Local optimization;  
driving cycle sensitivity  

[37, 99, 100, 121, 
122] [37, 99, 122] [37, 122] 

CO Low computational burden; easy to 
implement Must be convex form; [101-105] — [102, 103] 

MPC High real-time implementation; good 
optimization effect 

Predicted horizontal sensitivity; 
poor adaptability,  the 
computational time dependents 
on the optimization window 

[31, 40, 45, 107, 108, 
123-126] 
 

[31][40, 41, 45, 
106, 108, 124, 
127, 128] 

 

[31, 124] 

GT Trade-off of conflicting goals 
Dimensionality curse;  
instantaneous optimization 
 

[110, 111, 129] [110] [111, 129] 

NC Real time implementation; robustness  Mathematical complexity [48, 113, 130, 131] [48, 131] [131] 
RC System Robustness; real-time control Complex robust controllers [115, 132, 133] [114, 115] [114, 115] 

ES Real time implementation, good 
optimization effect 

Only static systems are 
available [134-136] [136, 137] — 

NN Learning and adaptive; low 
computational burden 

Black-box model; relying on 
available data [85, 108, 138-145] [108, 141, 144] — 

RL self-learning; adaptive Dimension disaster; local 
optimum [146-149] [147, 148] [150] 
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battery sizing. Furthermore, Wu et al. [103] suggested a CO 
framework for EMS and component sizing for a plug-in FC 
urban logistics vehicle.  

 

D.  Multi-level-based 
   Due to the increasing complexity of powertrains and the 
requirement to accomplish various objectives, multi-level 
control architectures are gaining attention. Generally, a high-
level powertrain controller manages the hybrid powertrain 
system's functions. The high-level powertrain controller also 
transmits orders to each subsystem module and receives 
measurement signals and diagnostic status from each subsystem 
at each sample period. The low-level control systems change 
local-level inputs to carry out the high-level powertrain 
controller's commands [154]. 

E.  Multi-Stack Fuel Cell System 
The literature introduces multi-stack FCS (MFCS) to solve the 
shortcomings and weaknesses of single-stack FCS. Herr et al. 
[155] proposed an EMS based on the MILP method to prolong 
the powertrain systems' useful life through a prognostics and 
health management (PHM) approach. Fernandez et al. [156] 
introduced an EMS based on an adaptive state machine to 
improve hydrogen consumption and lifespan. The suggested 
system was integrated with a Kalman filter identification 
method to determine each FCS's maximum power and 
efficiency points. Yan et al. [157] presented a hierarchical 
control method based on an equivalent fitting circle strategy in 
another study. Zhang et al. [158] proposed a hysteresis-based 
EMS to make activation time evenly distributed and decrease 
the number of switches over a three-stack MFCS. 
Khalatbarisoltani et al. [159] proposed a decentralized convex 
optimization framework to solve the multi-objective power 
distribution problem for modular FCVs. 

V.  PLATFORMS FOR VALIDATION 
To further verify the effectiveness of the EMS approaches, 

researchers usually use several verification methods to analyze 
and test the developed EMSs under various driving conditions. 
These verification methods can be divided into model-in-the-
loop, software-in-the-loop, hardware-in-the-loop, small-scale 
test bench, and real-vehicle on-road test. The characteristics of 
the EMS validation methods are summarized in Table Ⅶ. 

A.  Model-In-the-Loop 
Model-in-the-loop (MIL) designs the FCV model and EMS 

controller on the MATLAB/Simulink platform, is the most 
common verification method. For instance, Li et al. [141] 

verified the feasibility and validity of the proposed MPC-based 
EMS in the MATLAB/Simulink environment. 

B.  Software-In-the-Loop 
Software-in-the-loop (SIL) platform refers to designing and 

testing a controller using a vehicle simulator. The EMS is often 
verified using a MATLAB/Simulink environment. For 
instance, Ahmadi et al. [160] examined the proposed EMS over 
different driving cycles via Advanced Vehicle Simulator 
(Advisor) software. Another well-known MATLAB-based 
software is Autonomie. This software provides several modular 
and plug-and-play powertrain models to develop a simulation 
environment for evaluating different EMSs and improving 
overall system efficiency through virtual design and analysis. 

C.   Hardware-In-the-Loop  
In a typical real-time Hardware-In-the-Loop (HIL) simulator, 

a virtual mathematical model inside a real-time processor can 
replace the physical powertrain system. This simulator imitates 
the FCV behavior and a dedicated electronic control unit 
(ECU), as shown in Fig. 6. Several vital points should be 
considered in the implementation process of a HIL simulator, 
such as the dynamic behavior of components (FCS, battery, 
sensors, and actuators), numerical solver stability, time-step, 
and latency jitter. A compromise between the desired control 
simulation precision, computational time, and behavior of the 
FCV system should be considered. To improve the performance 
of computational time, several model reduction techniques can 
be employed before the implementation step, e.g., linearization, 
space reduction, and discretization. To select an appropriate 
iterative method (e.g., Euler, Runge-Kutta, Pantelides), desired 
model accuracy, processor unit computational performance, 
and solver stability should be considered comprehensively. 
Owing to limited computation capabilities in real-time 
simulators, the formulated powertrain model should be 
implemented efficiently via the C, Java, and VHDL languages 
[161, 162]. A real-time system can generate accurate outputs 
from the computations based on the logical results and the 
physical time when those results are generated [163]. When a 
controller responds to a request, its response time typically falls 
into a variation interval, also known as latency jitter. A 
powertrain system can only allow a certain amount of latency 
without damage or failure. In order to provide a reliable 
automation solution, the latency of a control unit should be at 
least five times smaller than the latency of the process the 
controller is meant to control. For appropriate hardware 
selection, requirements should include handling the processor 
interrupts in real-time and providing a software environment 
that can handle the required elapsed time and latency jitter. 
Various commercial platforms can be found on the market, e.g., 
RT-Lab, Typhoon, Speedgoat, and dSPACE. For instance, Li et 
al. [164] utilized the RT-LAB real-time simulation platform to 
verify the SMC EMS. Song et al. [165] demonstrated the 
validity of the proposed EMS by establishing a real-time HIL 
simulation system using Typhoon HIL 602. Moreover, Zhou et 
al. [151] compared the performance of different extremum-
seeking algorithms based on a dSPACE HIL real-time 
simulation platform.  
 

Table VI 
The information on the sizes and weights of FCVs 

EMS Weight FCS Battery SC References 

SDP - 78.5kW 4.87 Ah - [152] 

CO 14.5 t 100 kW 6.5 kWh  0.6kWh [102] 

DP 1.10 t 40 kW 150 Ah - [117] 

DP 2.235 t 40 kW 10 Ah - [36] 

CO 6.40 t 54 kW 29 kWh - [103] 
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Fig. 6. Hardware-in-the-loop (HIL) simulator test system for the powertrain 
of an FCV. 
 

Table Ⅶ 
The characteristics of EMS validation methods 

Methods Ref Advantages Disadvantages 
MIL [141] Simple and easy to 

implement 
Ideal scenario and simple 
vehicle model 

SIL [160] High-fidelity plant modeling 
and user-friendly  

Ideal scenario and the 
powertrain  models are 
based on quasi-static 

HIL [151, 
161-165] 

Fast; precise; safe; reliable 
and improved EMS 
controller development 
efficiency 

Cannot meet the 
requirement of high 
accuracy in real time 

Small-scale 
test bench 

[74, 166] Near real vehicle testing and 
easy to change vehicle 
structure 

High cost; fragile 
components 

Real-Vehicle 
On-Road 
Test 

[36, 167-
169] 

The most effective 
verification method  

High costs; difficulty in 
changing vehicle structure 

 

D.   Small-Scale Test Bench 
   A small-scale test bench is an excellent choice to verify the 
implementation feasibility of an EMS. This test bench typically 
consists of a controller, real powertrain components, such as 
FCS, a battery and/or SC unit, and a converter. For example, 
Carignano et al. [74] verified the economy and durability of an 
EMS in a hybrid FCS/SC test bench. Moreover, Ou et al. [166] 
validated an adaptive PMP on an FC/battery experimental 
platform. 

E.  Real-Vehicle On-Road Test 
   On-road testing is the most accurate way to investigate the 
feasibility of an EMS. However, it is not suggested in many 
situations due to the high expense and operational challenges. 
In this approach, an EMS is deployed in an experimental 
vehicle to verify the controller's performance under real-world 
road conditions. To evaluate the performance of an FLC, Gao 
et al. [167] conducted some tests on a regular bus route in 
Beijing. After a 3-month demonstration run of an FC hybrid 
urban bus, Hu et al. [36] showed that the proposed EMS could 
strike a good balance between hydrogen economy and system 
durability. In [168], Bae et al. proposed a plug-in HEV 
ecological adaptive cruise controller and tested it in Southern 
California. In a study conducted with a fleet of four autonomous 
cars, Rama et al. [169] developed a route-optimized EMS.  

VI.  OUTLOOK AND FUTURE TRENDS 
 With the development of communication technologies, 

advanced optimization algorithms, AI, and intelligent 
transportation systems, many forward-looking and 
revolutionary approaches are expected to emerge in the 

upcoming research fields of the FCV EMS. This section 
presents a vision of the future of EMSs from several emerging 
perspectives. 

A.  Precise representation 
Accurate modeling methods of the powertrain components 

are essential for enhancing the efficiency of the FCVs’ EMS. 
Several advanced modeling methods based on data-driven 
approaches have been recently introduced to improve power 
source modeling using measured and recorded data. For 
instance, Eddahech et al. [170] used the NN to build a highly 
accurate SC model. Vichard et al. [171] applied echo state NN 
to the PEMFC degradation model. However, few pieces of 
literature have applied these advanced modeling methods to the 
EMS of FCVs. Therefore, the combination of advanced 
modeling methods needs to be further investigated. Auxiliary 
systems of the FCVs, such as air conditioning and cooling 
systems, power conditioning systems, power steering, and 
electronic boards, consume energy during FCV operation. In 
addition, the auxiliary components of the FCS, such as 
compressors, fans, and pumps, consume some of the generated 
power. However, in the modeling and designing process of the 
EMSs, these power consumption and losses are usually ignored 
or treated as constants. This ignorance can lead to inaccuracies, 
specifically for heavy-duty FCV applications. In this regard, 
taking these losses into account is vital, and the effect on the 
FCV performance is an area for further research. 

B.  Fault Diagnosis and Fault-Tolerant Control 
From a control point of view, faults and failure modes in an 

FCS can be categorized into stack, actuator, and sensor faults. 
The FC stack is the most expensive component of FCS because 
of its limited lifetime. The most frequent faults in the FC stack 
are fuel or air starvation, electrode poisoning, flooding, and 
drying. The actuator faults are the cooling system, controller 
area network (CAN) bus, terminal connector, fuse, and high-
voltage cables. These Faults can result in performance decline 
and severe safety concerns. In the literature, Fault-tolerant 
control (FTC) is proposed to satisfy the performance desires 
and keep the operation safe in case of a fault occurrence [172]. 
Several diagnoses and prognosis apparatuses have been offered 
[173-175]. Integrating advanced fault diagnosis techniques and 
FTC approaches is critical for future FCV applications. For 
instance, a fault-tolerant MPC-based EMS is proposed for a 
microgrid application in [176]. Another work suggests a 
reliable and robust EMS for a hybrid hydraulic-electric vehicle 
based on fuzzy logic and a neural network in [177]. 

C.  Modular Energy System 
With all the promising characteristics of SFCS in the FCVs, 

it is necessary to advance them regarding efficiency, reliability, 
modularity, durability, and cost to penetrate this highly 
competitive automotive market. One of the sustainable 
solutions is to introduce a modular FCS [178]. Considering the 
detailed fluidic and electric characteristics, this modular FCS 
provides better outcomes concerning the hydrogen economy 
and efficiency than an SFCS. Additionally, thanks to the 
modular FCS's inherent redundancy, this system's reliability is 
increased under FCS and converter fault conditions. This 
modular-based system also benefits from the more flexible 
implementation characteristic of the FCVs. Thus, this new 
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concept is a forward-looking solution compared to the previous 
approaches. 

D.  Advanced Optimization 
A transition from single objective (hydrogen consumption) 

to multi-objective and CO-optimization is another gradually 
increasing potential research trend in the future FCV EMSs. 
These multiple objectives can be formulated either with a 
weighted cost function or several constraints. These advanced 
objectives for both FCS and battery pack of the FCV include 
health condition and degradation [31], thermal monitoring and 
management [39], safety, driver comfort, scheduling and 
refueling time, and path planning. For instance, a combination 
of prognostics-enabled decision-making approaches with 
EMSs has become an exciting research trend that aims to 
amalgamate health information as part of the management 
system [179]. Integrating thermal management objectives into 
the EMS algorithms is vital to keep the FCS safe and efficient 
during operation. For instance, in [180], a pseudo-spectral 
optimization approach is used to determine the ideal power split 
while considering FCS's thermal dynamics to prevent stack 
overheating and reduce hydrogen consumption. Co-optimizing 
drivetrain operation with vehicle dynamics has been suggested 
by [181] to increase energy efficiency. Since terrain 
information is predictable, a hierarchical EMS is recommended 
[182]. [183] proposes a suitable control technique for 
simultaneous speed planning and energy economy to address 
different influences from complex traffic environments. [184] 
suggests a bi-level convex method for eco-driving a connected 
FCV through signalized intersections. One of the future trends 
could be the combination of advanced techniques with 
complementary characteristics. The main challenge is that these 
methods may no longer be appropriate for real-time EMS 
applications in the FCVs due to the computational burden issue. 
Distributed/Decentralized optimization algorithms (DOAs) 
have been suggested to address this problem [159]. One of the 
future research trends of the FCV EMS lies in integrating 
advanced AI and machine learning methods. Among these 
approaches, the RL methods are essential subjects that attract 
much attention from academic researchers [185]. Integrating 
these approaches into the FCV EMSs should be addressed in 
future trends. Generally, the EMS optimization problems are 
solved under a single driving profile or a set of standard cycles 
for a relatively short time window in a single FCV. However, 
as shown in Fig. 7, considering a trip-ahead EMS and other 
facilities is necessary for the scheduling problem. This concept 
inspires shifting from a short timescale with a small space to a 
longer timescale with a bigger space. 
FCV automation may be a new research hotspot in the 

upcoming industry. It will provide higher degrees of automation 
by using new technologies, e.g., adaptive cruise control, 
advanced driver assistance systems, advanced emergency 
braking, lane-keeping assist, parking assistance, blind spot 
assist, cross-traffic alerts, and forward-collision warning in 
automated (L3) FCVs with a driver and fully automated (L4) 
FCVs without a driver. 
 

 
Fig. 7. The scheme of multi-scale EMS: (a) trip-ahead information, (b) a 
long timescale for EMS in a working day. 
 

E.  Integrating Connected Vehicles Technologies and Cyber-
Physical Systems 
The next generation of FCVs will employ higher levels of 

connectivity technology, e.g., V2V, V2I, V2X, and ITSs, to 
improve the performance of EMSs. These upcoming trends can 
set valuable structures to direct FCV technology toward a more 
coordinated, autonomous, intelligent, and safer system. 
Additionally, from the powertrain point of view, these trends 
will improve driving quality, overall efficiency, powertrain 
lifetime, and road capacity [186]. Different types of data, such 
as GPS and GIS information, requested power profiles, 
velocities, SOC levels, remaining distances, drivers’ behaviors, 
and prices, can be shared by considering information provided 
by other vehicles and infrastructures. For instance, 
HomChaudhuri et al. [187] developed a multilayer method for 
a group of HEVs. The higher-level control system established 
optimal velocity trajectories in the presence of traffic lights, and 
the lower-level controller was in charge of power distribution 
employing ECMS. Turri et al. [188] introduced a multi-control 
scheme for a platoon of three conventional heavy trucks in 
which the velocity trajectories are planned centrally. Generally, 
in the platooning concept, the longitudinal dynamics of a fleet 
of connected heavy-duty vehicles are regulated to minimize 
inter-vehicular distances [189], as shown in Fig. 8. The FCV 
platooning technique will be developed in the next generation 
of EMS, along with real-time data sharing between FCVs and 
the cloud-based networks via V2V communication systems. 
This can increase safety and control during maneuvers and 
reduce air resistance to decrease hydrogen consumption and 
final cost. From an energy perspective, the central idea of eco-
driving is to find the best way to reduce energy consumption by 
optimizing the velocity trajectory [190], as shown in Fig. 9. 
Fleming et al. [191] presented an eco-driving control problem 
that considered the driver’s preferences. Zhao et al. [192] 
proposed an eco-driving model of mixed traffic flow with the 
V2X technology. A receding horizon MPC is applied to 
minimize fuel consumption. Several studies have sought to 
alleviate the computation time in this problem [181, 184]. 
Additionally, coordinated control strategies are devised with 
terrain and traffic considerations [182, 183].  
A cyber-physical system (CPS) embeds cyber processes into 
physical devices to link the cyber and physical layers. Sensors 
and actuators provide the interface between the physical and 
cyber layers. As shown in Fig. 10, future EMS problems can be 
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considered with this emerging perception where each connected 
FCV examines other vehicles’ behavior with different 
powertrains and objectives.  
 

 
Fig. 8. The platooning technology for designing an EMS. 
 

 
Fig. 9. The eco-driving for developing an EMS. 
 

 
Fig. 10. The scheme of CPS for an energy management design. 

F.  Vehicle-to-Grid 
As shown in Fig. 11, V2G is a systemic framework where a 

fleet of plug-in FCVs, PHEVs, and EVs, as distributed power 
systems, could be linked with the grid. Furthermore, as a 
flexible energy storage system, they can help flatten the 
generated power of sustainable energy and balance their extra 
power. Fernandes et al. [193] developed an FCV parking lot 
with the capacity to generate electricity, heat, and hydrogen. 
Garcia-Torres et al. [194] studied the importance of day-ahead 
optimal scheduling for EV/FCV. 

 
Fig. 11. The scheme of V2G, adopted from [194]. 

VII.  CONCLUSION 
This paper summarizes almost all the existing EMS 

approaches for FCVs in the open literature. Considering the 
application of modeling methods in EMS, three kinds of power 
source modeling are first summed up from the existing 
literature, including typical modeling, degradation modeling, 
and thermal modeling. Then, the recent advances in FCV EMSs 
are comprehensively reviewed regarding rule-based and 
optimization-based methods. The basic principles, 
characteristics, and main objectives of each approach are 
discussed. Furthermore, the verification methods of EMSs are 
classified into five aspects: MIL, SIL, HIL, small-scale bench 
test, and real-vehicle on-road test. Finally, a broad and detailed 
vision of the future direction of EMS for FCV is presented 
based on current research hotspots, such as artificial 
intelligence algorithms, intelligent transportation systems, 
automated driving, and advanced optimization algorithms. 
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