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Abstract: An efficient participation of prosumers in power system management depends on the
quality of information they can obtain. Prosumers actions can be performed by automated agents
that are operating in time-changing environments. Therefore, it is essential for them to deal with
data stream problems in order to make reliable decisions based on the most accurate information.
This paper provides an in-depth investigation of data and concept drift issues in accordance with
residential prosumer agents. Additionally, the adaptation techniques, forgetting mechanisms,
and learning strategies employed to handle these issues are explored. Accordingly, an approach
is proposed to adapt the prosumer agent models to overcome the gradual and sudden concept
drift concurrently. The suggested method is based on triggered adaptation techniques and
performance-based forgetting mechanism. The results obtained in this study demonstrate that
the proposed approach is capable of constructing efficient prosumer agents models with regard to
the concept drift problem.

Keywords: adaptation; concept drift; data streaming; forecast; modeling; prosumer; regressor;
supervised machine learning

1. Introduction

In recent years, the growth of distributed generation and residential prosumers [1] has motivated
energy companies to develop new ways of commercializing energy. Their main objective is to reduce
the cost and improve the power system management. Accordingly, decentralized optimization
processes that enable more participation of final customers expected to help this ambition [2]. In order
to facilitate higher cooperation of end customers (including both consumers and prosumers), intelligent
decision-making systems are required [3]. In the residential sector, these systems’ aim of minimizing
the energy cost must also account for customers comfort. For instance, controllable loads, such as
heating, ventilation, and air conditioning (HVAC), allow the cost reduction based on dynamic tariffs
by taking into account preferable temperature set-points [4].

The intelligent systems are considered as agents since they can perceive the environment and
take decisions according to an objective [5]. The quality of the decisions of an agent depends on
the information that they have [6]. Consequently, it is crucial to have reliable information about the
environment. However, information can become unreliable due to shifting on weather conditions,
integration of new devices, change of user preferences, and degradation of appliances.
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Generally, for a residential prosumer agent, it is possible to distinguish two environments that
are labeled as local and external. The former refers to the behind-the-meter resources [7], while the
latter describes situations where the prosumer agent can interact with other agents and information
services. In most cases, the external environment only collects data of either weather variables or their
forecast, but in a decentralized management scheme, it is possible to consider the external environment
as a multi-agent system (MAS) [8]. The agent is able to perceive the local environment by observing
the power consumption data of different appliances. In fact, it constructs a time-series database by
accumulating new information from a data stream [9]. However, this process is problematic since
agents have limitations on memory and processing time [10]. In addition, the data stream can drift
over time, thus causing previously trained data models of appliances to lose accuracy [11]. Therefore,
model adaptation on the basis of recent data is essential [12].

In this regard, several approaches have been developed to address the problems related to
non-stationary data streams. In automated machine learning, active and adaptive learning algorithms
have been utilized. The active learning techniques query for the information that they need each
time for training a model [13]. Beside, the adaptive learning methods only update the models when
they detect a drift [14]. Particularly, studies have considered retraining after fixed-size data windows
and rule-based models as adaptation methods, applied to residential appliances models [15,16].
Therefore, they have underestimated the importance of drift issues on data management. Moreover,
other researches have been conducted on training the models incrementally without analyzing the
changes on data streams. For example, Farzan et al. increased the information of a transition matrix
of a discrete-time Markov model to simulate both electricity and heating demands of individual
households [17]. Yoo et al. trained a Kalman filter, recursively, in order to forecast a household load,
considering temperature and occupancy variables [18]. However, adding the information of new
samples directly to the models limits the set of models that can be used to represent the behavior of
appliances. The applicability of these incremental learning techniques should be examined in detail
according to the conditions of prosumer agents [19].

Considering the above restrictions, the main objective of our study is to investigate adaptation
methods that can be useful for prosumer agents to have more reliable information. Through extensive
analysis, this paper contributes to:

• The definition of the main criteria when choosing an adaptation algorithm in the context of
prosumer agents. Here, the issues that the adaptation techniques address are examined to
determine the best solution for models management, future concept assumptions, mixed drifts,
and selection of training strategies.

• The identification of suitable algorithms for adapting the prosumer agents models to overcome
environment changes. The algorithms are estimated with different adaptation strategies and
forgetting mechanisms, such as Adaptive Windowing (ADWIN) [20], FISH [21], and Drift
Detection Method (DDM) [22], in order to identify their required features in the prosumer
agent context.

• Proposition of a new adaptation algorithm based on triggered adaptation techniques and
performance-based forgetting mechanisms. The proposed method is non-iterative; thus, it is
less computationally complex than other methods in the literature. The suggested approach is
capable of training several appliances’ models in relatively fast data streams for the prosumer
agent context, using a single data window.

This paper is organized as follows: Section 2 presents the problem of prosumer agents obtaining
accurate information in a changing environment. The concept drift definition with the implications
of the prosumer agent is also discussed in this section. Section 3 explains the main criteria dictating
the choice of a particular adaptation algorithm for the agents. Next, Section 4 presents the proposed
adaptation algorithm for prosumer agent models. Section 5 presents the experimental setup and the
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comparison of results obtained by using different algorithms followed by the concluding remarks in
Section 6.

2. Problem Statement

The local environment of the prosumer agent is composed of several appliances and local power
generation systems. In order to reduce the number of variables, residential appliances are aggregated
into two main groups, namely fixed loads and controllable loads. Controllable loads correspond to
the appliances that can give some flexibility to the user, allowing him to modify energy consumption
according to external signals he receives. Particularly, controllable loads that are examined in this
study consist of heating systems because they are the most common flexibility source in the residential
sector. In order to forecast both household power demand and know the thermal dynamics, the local
environment is modeled with the data window that the agent creates from the data stream, as shown
in Figure 1. These models have been generally constructed based on supervised machine learning
methods. [23]. For fixed loads and local power generation, the models objective is only to forecast total
power since the agent cannot take any action over these two elements. On the other hand, the model
of controllable loads is developed to estimate the internal temperature based on the household power
consumption profile, decided by the residential agent. As mentioned, this decision has to take into
consideration the occupants’ comfort levels.

Generation
Forecast

Thermal
Dynamics

Fixed Load
Forecast

Adaptive Learning

Data Streaming Data Window

Figure 1. Adaptive learning application.

In all cases, residential prosumer agents need to adapt their models to new environmental
conditions. An essential prerequisite to perform effective adaptations is to analyze the causes of data
changes and the impacts of these changes on agents knowledge. In this context, it is important to
notice that, for data-driven models, the underlying joint probability between features and targets
is known as a concept, and it is assumed to be invariant over some interval of time. However,
this underlying distribution could evolve over time sufficiently to cause a so-called concept drift [11].
The formal definition of concept drift is presented in Equation (1), where the X stands for the input
features (or observations), y is the target variable (or label), and, hence, P(X, y) is the joint distribution
(or concept [21]) evaluated at time t and t + m.

Pt(X, y) 6= Pt+m(X, y). (1)

Due to causality between the features and the target, it is suitable to consider the following form
of the joint probability distribution [24].

Pt(X, y) = Pt(y|X)Pt(X), (2)

where Pt(y|X) is the posterior probability of the target given the features, and Pt(X) is the prior
distribution of the features. For example, weather variables as features are subject to changes with
seasonal conditions that are explained by the term Pt(X). Besides, Pt(y|X) being the conditional
distribution on features could also incorporate time-dependent effects, such as degradation of appliances.
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As mentioned, the solution to deal with inaccuracy due to concept drift is to adapt the models
parameters. However, before choosing an adaptation technique, it is meaningful to look at the
characteristics of the concept drifts that can appear in the data streams of residential prosumers.
Therefore, a prosumer-oriented study on the quantitative and qualitative measures of drift is provided
below based on a general framework, discussed in Reference [25].

2.1. Drift Magnitude

Drift Magnitude D(t, t + m) measures the distance between two probability distributions at two
different instants t and t + m for m > 0. Generally, drift magnitude is measured with the Hellinger
distance H2 since it has a non-negative value, and the distance between A and B concepts is the same as
B and A [26]. However, it is possible to use other distance metrics, such as the total variation distance.

D(t, t + m) = H2(Pt(X, y),Pt+m(X, y))

= 1−
∫ ∞

−∞

∫ ∞

−∞
Pt(X, y)Pt+m(X, y)dXdy.

(3)

The drift magnitude can be used for drift classification. For example, a minor drift does not
necessitate training the model. However, a major drift can imply the need for either retraining or
changing the models (in case of ensemble learning mechanisms). In the data streams that a prosumer
receives, it is possible to identify several minor drifts during the day at short timesteps that do not
necessarily match with a gradual drift, especially for the fixed loads. Besides, when the time step
goes bigger, the drift magnitude does not always increase, which means that there could be recurring
concepts. For example, for the power generation model, if the prosumer has photovoltaic panels,
the concept at dawn may be closer to the concept at night than at noon.

2.2. Drift Duration

The drift duration noted as m can define either a sudden (abrupt) or progressive (gradual or
extended) transition between two concepts, depending on its value. As an example, in the local
environment of a prosumer agent, a sudden concept drift (small drift duration) occurs when appliances
are added, removed, or changed. Other special cases of concept transition like blip drifts and
probabilistic drifts are hard to recognize by the prosumer since they can be mistaken for outliers
in the data stream.

2.3. Drift Subject

Distinguishing a drift subject is difficult for prosumer agents since similar changes on features
distribution can cause different drift subjects. However, it is important to mention that not all the drifts
will require retraining the models. Normally, two categories of drift types are considered according to
its causes [25]:

• Real concept drift: This type occurs when the posterior probability, P(y|X) changes over time
and requires a retraining of the model. The change can occur in either a portion of the domain of
X (sub-concept drift) or all of it (Full-concept drift).

Pt(y|X) 6= Pt+m(y|X). (4)

• Virtual concept drift: It happens when, instead, it is the distribution of the features P(X), which
changes over time while the posterior probability, P(y|X) remains the same. In that case, it is not
always necessary to update the model.

Pt(y|X) = Pt+m(y|X) Pt(X) 6= Pt+m(X). (5)
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2.4. Drift Predictability

The drift in a data stream can be related to independent events, such as seasons and days of
the week. Consequently, it is possible to predict some aspects of the drift if the occurrence of these
events is known. Furthermore, a concept drift can be predicted if a known recurrence pattern exists.
Nevertheless, in the context of a prosumer agent, there can be different concept drifts coming from
different environmental changes that cannot be well differentiated, so it will be barely impossible to
anticipate the occurrence of certain types of drift. Moreover, define a magnitude threshold to identify
the data that corresponds to previously seen concepts depends on the timestep that the prosumer
agent uses.

3. Adaptive Algorithms

In this section, the adaptation algorithms are classified in order to identify suitable methods for
residential prosumer agents problems. This classification is preceded by an examination of sub-issues
that an adaptation algorithm faces [21]:

• The appearance of gradual drifts makes it impractical to assume that the concept of future
data is always closer to the latest data. Therefore, instead of assuming the concept of future
data, it will be useful to implement an algorithm that recognizes the distribution of the features
of arriving data. Besides, in some applications of prosumers, the robustness of the methods is
essential to differentiate outliers from concept drifts. However, in this study, the agent trusts the
external information he receives from measurement systems and weather information services.

• In the data stream, there could be different kinds of drifts mixed and outliers data samples.
Another important concern with the concept drift in the specific context of the prosumer agent is
the concurrence of the drift types. Thus the agent could be facing sudden drifts, gradual drifts,
and incremental drifts within one timeframe [27]. For that reason, adaptation algorithms that
were made to solve problems related to specific cases of drift are not the best option for the agent.
Here, we test some of those algorithms to validate this affirmation.

• It is impractical for a prosumer agent to have different models trained with different data sets
and ensemble the forecasts. Therefore, considering the available mechanisms to update the
agents knowledge, when using a single model, the only strategy is to adapt the parameters.
Nevertheless, in addition to parameters’ adaptation, it is also possible to combine the models
by weighting them as in ensemble learning [28]. The choice of the method should be made
by taking into account the residential agent’s restrictions related to the processing time and
hardware limitation. Normally, the models of three main groups are used to provide information
for other processing systems, such as a Home Energy Management Systems (HEMS), with a
practical objective, like either minimizing energy cost or maximizing comfort. These systems
usually provide results in five to fifteen minutes intervals, thus limiting convenient exploitation
of ensemble learning.

• Not all adaptation techniques may work for all the models. The adaptation of parameters
depends on the model type since some models can be trained incrementally, for example, by using
adaptive linear neuron rule (ADALINE) or recursive least squares (RLS) [29], while others have
to start from zero every time. The drawback of incremental learning is that outliers are directly
included in the model’s knowledge. Notwithstanding, it can reduce memory usage and processing
time. Besides, the choice of the learning strategy depends on the nature of data and the rate of
data collection. Thus, the residential agent could be receiving and processing the data under both
forms of single or batch measurements. For instance, the labels of the models could be given every
time while the features could be queried in batches each several hours.

According to the above considerations, the taxonomy of adaptive learning algorithms is presented
in Figure 2. This classification is different from other ones, previously provided in Reference [14,30],
due to the specificity of the prosumer agent. The new arrangement is to highlight the main concerns
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of agents over the choice of an algorithm, involving an adaptation strategy, model management,
data acquisition, a forgetting mechanism, and a learning strategy. In Figure 2, blind adaptation refers to
a case in which the algorithm updates the model parameters at a pre-defined frequency without specific
verification of the occurrence of concept drift in the data stream [30]. Alternatively, some algorithms
utilize a method to detect concept drift before triggering the adaptation. This mechanism is sometimes
referred to as active adaptation.

Adaptation
Strategy

Triggered
(Active)

Adaptive Learning Algorithms

Blind

Model
Management

Ensemble Single
model

Data
Management

Single point Window

Forgetting
Mechanism

Time based Performance
based

Learning
Strategy

Incremental Retraining
Data

Acquisition

Figure 2. Taxonomy of adaptive learning.

The forgetting mechanism can be time-based in case the oldest samples are deleted, while the size
of the data window either is kept fixed, changes according to a rule, or assigns fading factors to make
old samples irrelevant. In addition, this mechanism can be performance-based in accordance with the
adequacy of the samples for training the model or their similarity with future samples considering
their statistical properties.

Now, with all the considerations for the prosumer agents’ problem, the following algorithms
were selected to adapt the models of the local appliances. In addition, they present some remarkable
characteristics that can be useful to formulate new methods.

3.1. Drift Detection Method

This method proposed in Reference [22], starts with the premise that more items of the same
concept in the data window will reduce prediction error. Consequently, it is possible to take an
error increase as a proof of concept drifts [31]. This is under the assumption that the base learner
controls over-fitting.

For classifiers, the error can be modeled as a random variable from Bernoulli trials; then,
the Binomial distribution gives the general form of the probability for the variable. In that context,
if Pt is the error rate of the learner at time t, then the standard deviation st will depend on the window
size Nt as follows [22]:

st =

√
Pt(1−Pt)

Nt
. (6)

The algorithm storages the minimum value encountered of Pmin and the corresponding smin.
Subsequently, two validations are made according to the confidence level:

• Warning level: confidence level is 95%, so it is reached when Pt + st ≥ Pmin + 2smin.
• Drift detection: confidence level is 99%, so it is reached when Pt + st ≥ Pmin + 3smin.

When the drift is detected, the onset of a new concept is declared starting at the time when
the warning first appeared. As can be noted, this method was designed for sudden drifts. Hence,
for residential agents, the algorithm will detect a drift several consecutive times when there are gradual
drifts. For that reason, in order to apply this method, it was deemed necessary to define a minimum
distance in time between a warning level and drift detection. Furthermore, the regressor models of the
residential agent need to be considered as multi-label classifiers to implement this method. The method
is summarized in Algorithm 1.
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Algorithm 1: Drift Detection method.
input :Data stream of labels (y) and features(X)

output :Trained model
Set initial conditions of Pmin and smin;
begin

if New sample is added at time t then
Calculate Pt and st with Equation (6);
Compare Pt + st with the warning level and the drift detection conditions;
if A drift is detected then

Resize the window data since the warning level appeared or to a minimum size;
end
Train the model with the resulting data window;

end
end

3.2. Gold Ratio Method

This method proposed in Reference [32] was also designed for adapting to sudden drifts.
It assumes that the concept has changed if, at any time, the error of the model surpasses a defined
level. The significance test must be sensitive enough to discover concept drift as soon as possible and
robust to avoid mischaracterizing noise as concept changes. When the accuracy decreases, the oldest
examples should be forgotten, and the size of the data window can be optimized by using a search
algorithm in one dimension. The search algorithm used here is the Golden Ratio method. Considering
a unimodal function, in the interval between a minimum window size (Nmin) and the current size
(Ncurrent), the accuracy function has only one max at Nopt. Then, the algorithm minimizes the number of
function evaluations by dividing the range using the golden ratio (τ = 0.618); in so doing, the optimal
window size is clustered fast [32].

The stopping criteria for the method is the minimum size of the search interval (100 samples
proves to be adequate for the prosumer agent case). The significance test was done by using the root
mean squared error (RMSE), and the acceptance level was adjusted according to the base learner.
For the fixed load model, it is suitable to accept a higher RMSE since it is the most unpredictable signal.
If no concept drift is detected, then the windows continue growing by adding more samples because a
bigger training set will improve learning results if the concept is stable. The complete procedure is
presented in Algorithm 2.

3.3. Klinkenberg and Joachims’ Algorithm

The idea of this method proposed in Reference [33] is to select the window size to minimize
the estimated generalization error. In the original case, the base learner is a support vector machine
(SVM) because of the residual errors of the training (αε− estimator) can give an upper bound of the
leave-one-out errors without training the learner several times. However, the generalization error can
still be minimized by using different window sizes and using k-fold cross-validation, assuming that
most recent samples have a higher correlation with future features. In that way, this method can also
be seen as a search method as presented in Algorithm 3.
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Algorithm 2: Gold ratio method.
input :Data stream of labels (y) and features (X)

output :Trained model
begin

When a sample is added, calculate the R2 coefficient of the regressors;
if R2 coefficient is lower than expected then

Na = Nmin + 0.618(Ncurrent − Nmin);
Nb = Nmin + (1− 0.618)(Ncurrent − Nmin);
Train the model with the Na and Nb most recent samples;
if the accuracy of the model with Na data is bigger than the one with Nb then

The new search space is between [Nb, Ncurrent];
else

The new search space is between [Nmin, Na];
end
Train the model with the resulting data window;

end
end

Algorithm 3: Klinkenberg and Joachims’ Algorithm.

input :Data stream of labels (y) and features (X)

output :Trained model
begin

Divide the current data window in k sub-windows;
Take the last sub-window for testing (cross-validation);
for k− 1 times do

Train the model adding an older sub-window each time;
Perform the cross-validation test;

end
Train the model with the number of sub-windows that performed better on the test;

end

3.4. Fish Method

For sudden concept drift, it should be possible to find the moment of the drift tD by evaluating
extensively for all the samples the likelihood between the distributions before and after that sample,
using the Hotelling test, for example [21].

TD = maxP(dri f t|tD). (7)

However, when the drift is gradual, it is not only the distance in time which is relevant to select
the samples needed to train the models. For that reason, the Fish method proposes to estimate also the
distance in the feature space of the samples respect to the new ones [21]. Thus, for each sample in the
window, it will be necessary to calculate the combined distance [34].

dt = d(T)t + βd(s)t , (8)

where d(T)t is the distance in time, and d(s)t is the distance in feature space of a sample in time t with
respect to the future features. Note that the existence of gradual drifts makes it necessary to give some
relevance to the distance on feature space β > 0. Subsequently, by organizing the samples according
to their distance, it is easy to pick up the N closest samples to train the models. This method is best
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suited for the residential agents’ problems since it can account for both sudden and gradual drifts.
The problem is to define a good distance function that gives reliable insights without increasing too
much the processing time. The prosumer models have few features, so the feature space distance is
calculated as the Euclidean distance because it is easy to compute and works well in low-dimensional
spaces [35]. The method is summarized in Algorithm 4.

Algorithm 4: Fish method.
input :Data stream of labels (y) and features (X)

output :Trained model
begin

Calculate the distance dt for each sample in the data window;
Organize the samples according to their distance;
Train the model with the N closest samples;

end

3.5. ADWIN

This algorithm proposed in Reference [20] is based on hypothesis testing. The idea is that, when
two sub-windows have different averages µ, the expected values are different. Like in a Hoeffding
test, the null hypothesis is that the expected values are the same. The test can be written as follows
for two different sub-windows of sizes N0 and N1: If |µ̂0 − µ̂1| > ε, then the null hypothesis is false.
Here, µ̂ corresponds to the average value of the sub-window, and ε depends on the confidence value δ

according to:

ε =

√
N0 + N1

2N0N1
ln

4(N0 + N1)

δ
. (9)

For the problem of residential agents, analyzed in this paper, the confidence value is taken as
0.5%. The ADWIN method is summarized in Algorithm 5.

Algorithm 5: ADWIN algorithm.

input :Data stream of labels (y) and features (X)

output :Trained model
begin

Divide the available data in sub-windows;
Calculate ε with Equation (9);
while the null hypothesis is false do

Drop the oldest sample;
Perform the hypothesis test for every pair of sub-windows;

end
Train the model with the resulting data window;

end

4. Proposed Algorithm

Given the collection of algorithms we presented above, we propose herein a hybrid approach that
we think is best suited for the prosumer agents problem. Similar to the Drift Detection method and
Gold Ratio method, the proposal is to use triggered adaptation. The algorithm will reduce the training
set of the models only when the expected performance drops below a defined value, not each time that
a new sample arrives.

To check the performance of the models, the procedure will be cross-validation using batches
of the same size as the forecasting horizon (24 h, in this case), like in the Klinkenberg and Joachim’s
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method [33]. The measurement of fit, in this case, is the RMSE because it gives more weight to bigger
deviations; thus, it is better to identify the appearance of concept drifts [36]. It is relevant to mention
that the threshold to accept the results of the cross-validation depends on the nature of the target
variable of each model [37]. The test data set will be the closest batch to future features. Now, to identify
that batch, the distance will be measured as in the FISH method [34] as a combined distance in time
and space of the samples. If the result of the cross-validation test is not good enough, then the model
will be retrained only with the closest N batches. The parameter N needs to be tuned according to the
model to avoid convergence problems in training but knowing that, when a concept drift appears, it is
safer to train with a small amount of data to ensure that all samples correspond to the new concept.
Figure 3 summarizes the proposed algorithm with the procedure for when new data arrives.

Furthermore, forgetting data is a risky task since there are gradual drifts. The proposal here is to
store a data window that contains the N selected samples, as well as the samples that were not selected
but fall in between selected samples.

Get the future features

Divide the data in
sub-windows

Calculate the distance
between the sub-windows

and the future features

Make cross validation
with the closest

sub-window as test set

Train the model with the
N closest sub-windows

Train the model with all
the data available

Forget data until the oldest
sub-window selected

Forget old data only if
there is no memory space

YESNO

Start

Wait for new data
to start again

Are the results acceptable?

Wait for new data
to start again

Figure 3. Flowchart of the proposed algorithm.

5. Numerical Results

In order to validate our proposal, we now report the results of a numerical experiment where we
use a neural network as the power generation model, a decision tree for the fixed load, and a linear
model for the thermal load. The details of the models implemented on Scikit-learn [38] are shown
here below:

Power Generation: The base learner is a feed-forward neural network that forecasts the power
output of a generation system Pgen, as shown in Figure 4. The hidden layers of the network have
100× 5 neurons; the activation function is a hyperbolic tangent, the step size is fixed at 0.0001, the initial
state of weights is 1, and the method used to train the model is stochastic gradient descent. The data
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used in this case was synthetically created by simulating a photovoltaic array in PVlib [39] library with
random cloud coverage (from 0 to 100% with transmittance offset of 0.75) and real temperature of
Trois-Rivières, QC, in 2018.

Time of the day
Total solar irradiance

Wind speed
Wind direction

Cloud coverage
External Temperature

Neural
Network

Predicted PV
Power generation

Figure 4. Model of power generation.

Fixed Load: The model to forecast the fixed load consumption Pf ix is a decision tree where the
quality of a split is measured using the mean squared error, and nodes are expanded until all leaves are
pure [40]. The variables considered in this model are a cosine signal with a period of 24 h, the number
of the day (from 1 to 7), the temperature, and the previous consumption (since the agent obtains data
every 5 min, 288 samples correspond to 24 h). This model is presented in Figure 5. The data used in
this case is real measurements of the power demand of a house in Trois-rivières, QC, during 2018.

Cos(Time of the day)
Day of the week

External temperature
Decision

TreeHistorical fixed consumption

Predicted fixed
consumption

Z ... Z
-1 -288

Figure 5. Model of fixed load.

Controllable Load (Thermal model): This model s based on the equivalent circuit 5R1C proposed
in the standard ISO 13790:2008 [41]. The inputs in this case are the external temperature Text, the fixed
load consumption Pf ix, the solar irradiance Pirr, and the power demand of the heating system Pheat.
The output will be the internal air temperature Tair. We assume that there is no special ventilation
system, so there is only one external temperature as shown in Figure 6.

Heating consumption
Fixed load consumption

Total solar irradiance
External temperature

Previous internal temperature

Predicted
internal
temperature

Z
-1

Hv

Hw

Hm

Hi

Hs

Figure 6. Model of thermal dynamics.

The following equation describes the model.

T(t)
air = α1T(t)

ext + α2T(t−1)
air + β1P(t)

heat + β2P(t)
f ix + β3P(t)

irr , (10)

where T(t−1)
air corresponds to the internal temperature at timestep t− 1. This linear model is trained

by using Ordinary Least Squares (OLS) to find the parameters α1, α2, β1, β2, and β3, which are
combinations of the original parameters of the standard circuit model. The data used, in this case,
corresponds to real measurements in a house in Trois-rivières, QC, during 2018.
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The results presented here correspond to simulations starting in two different days when there
are suspicions of concept drift: A spring day (19 April 2018) and a summer day (23 August 2018).
As mentioned, when the concept changes, old data gives inappropriate data to the models, therefore
the error is reduced by training only with the most recent data. In the selected days, there are symptoms
of concept drift because when training the models with sliding windows, some times the smaller
data window leads to lower errors. Training with sliding windows can be seen as a way to perform
adaptation because, every time the agent receives new data, it retrains the models with the most recent
data, adding the new samples and forgetting the oldest. Here, the training with sliding windows is
used to detect possible concept drifts in data with the evolution of the RMSE. The normalized RMSE
(RMSE) is obtained by dividing the RMSE into the range of the label signal.

The maximum limit of training data for each model is 8064 samples (28 days sampled every
5 min), and the minimum to ensure convergence is 2016 (7 days). The limits were established according
to the models, the linear thermal model can be fitted with less than 2016 samples, but the power
generation model does not converge with less than that. This information about the base learners is
relevant since it is used to tune parameters of the adaptation methods. Here, the models started with
previous knowledge (1 month of data) before beginning the adaptation. In the case that the agent does
not have enough information, the parameters of the models can start with prior values [42].

5.1. Spring Day

As can be seen in Figure 7 with the evolution of the RMSE, running over 48 h, some periods seem
to present concept drifts. For the power generation model, close to the 19 h of April 19th, it is possible
to see an increase of the error when using a window of 8064 samples, that ends close to the 18 h of
the next day. Similarly, for the thermal model, the biggest data window lead to a higher error most of
the time, until the 14 h of April 20th. For these reasons, these days were chosen to test the adaptation
techniques. On the other hand, for the fixed load forecast, the errors with both sizes of sliding windows
are close most of the time, and some outliers on the label data may create prominent peaks.

Before presenting the results, it is pertinent to mention some characteristics of the the weather
data on these days: the external temperature fluctuates in a range from 1.4 ◦C and 9.3 ◦C, with a mean
of 6.06 ◦C; the maximum irradiation of 945 kJ/m2/h is reached at 12 h of the first day. The heating
system of the house has a capacity of 15 kW, and the internal temperature goes from 17.6 ◦C to 21.1 ◦C,
with an average of 19 ◦C.

Afterwards, the models were adapted during the selected period with the techniques presented
earlier. The average RMSE (and NRMS) for each case is presented in Table 1. The results obtained with
the proposed method are systematically better than the most straightforward adaptation by sliding
window, which means that implementing the method gives more reliable information to the prosumer
than not doing so, even though the error reduction may be small. Other algorithms will occasionally
perform better for adapting specific models. For example, the golden ratio method reduces the error
when adapting the power generation model, but it is not suitable to adapt the thermal load model.
Furthermore, the proposed method forgets less data, thus making it possible for the prosumer to use a
single database for all three models.
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(a) Root mean squared error (RMSE) for the power generation model using fixed window sizes
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(b) RMSE for the fixed load model using fixed window sizes
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(c) RMSE for the thermal model using fixed window sizes

Figure 7. Identification of possible concept drifts in a spring day.

Another aspect that should be analyzed when choosing an algorithm is the dispersion of the
error. Algorithms can be deluded by outliers and recurring concepts, leading to an increase in the error.
Consequently, choosing a robust algorithm with low average error and low dispersion is important to
give reliable information to the prosumer. In this regard, the performance of the proposed method is
comparable with the others, as can be seen in Figure 8. One compelling case is the FISH method to
adapt the thermal model because it is less sensible than the all the other algorithms.
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Table 1. Average RMSE and Average NRMSE for a spring day.

Power Generation [kW] Fixed Load [kW] Thermal Load [◦C]

Full memory
(8064 samples) 0.68479 (20.89%) 2.22717 (35.71%) 0.65367 (21.57%)

Drift Detection
Method 0.70753 (21.65%) 2.36283 (37.90%) 0.74063 (24.37%)

Gold Ratio
Method 0.68168 (20.77%) 2.08994 (33.47%) 0.7432 (24.45%)

Klinkenberg
Method 0.70976 (21.64%) 1.99740 (32.02%) 0.653353 (22.01%)

FISH
Method 0.69418 (21.15%) 2.22050 (35.63%) 0.64908 (21.59%)

Adwin
Method 0.69573 (21.19%) 1.89000 (30.31%) 0.70723 (23.33%)

Proposed
Method 0.67787 (20.67%) 1.97518 (31.68%) 0.62385 (20.52%)
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8064 
 samples

DDM Gold 
 Ratio

K&J Fish ADWINProposed 
 method

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
M

SE
 [k

W
]

(c) RMSE for the thermal load model

Figure 8. RMSE dispersion in the spring day.

5.2. Summer Day

Similarly to the procedure to choose the spring day, we train the models using sliding windows
to identify another day with signs of concept drift. On August 23rd, at 16 h, the error of the power
generation model goes bigger when using 8064 samples than 2016, as shown in Figure 9. For the
thermal load, the error with the bigger data window also surpasses the other at the same time. Again,
the results for the fixed load model are close, making it challenging to identify concept drifts. On these
selected days, the external temperature has a range from 12.6 ◦C to 29 ◦C, with a mean of 22.4 ◦C;
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the maximum irradiation is 2900 kJ/m2/h; and the internal temperature goes from 24 ◦C to 28.3 ◦C,
with an average of 25.8 ◦C.
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(b) RMSE for the fixed load model using fixed window sizes
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(c) RMSE for the thermal model using fixed window sizes

Figure 9. Identification of possible concept drifts in a summer day.

In Table 2, the average RMSE for the selected summer days is displayed. Again, the proposed
method performs better than the sliding window for all models. Nevertheless, for the fixed load
model, the Klinkenberg and Joachims method achieves a lower average error. This result suggests that
adapting different models with different techniques is preferable in some cases, even if that implies
managing different databases for each model.
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Table 2. Average RMSE and average NRMSE for a summer day.

Power Generation [kW] Fixed Load [kW] Thermal Load [◦C]

Full memory
(8064 samples) 0.44479 (17.32%) 2.80095 (34.55%) 0.47161 (19.82%)

Drift Detection
Method 0.44250 (17.24%) 2.55943 (31.58%) 0.44122 (18.775%)

Gold Ratio
Method 0.45597 (17.80%) 2.43693 (30.04%) 0.47094 (19.79%)

Klinkenberg
Method 0.53091 (20.64%) 2.39652 (29.55%) 0.44375 (19.04%)

FISH
Method 0.46619 (18.17%) 2.95768 (36.87%) 0.79645 (32.82%)

Adwin
Method 0.46240 (18.05%) 2.69773 (33.26%) 0.43769 (18.81%)

Proposed
Method 0.43797 (17.06%) 2.71268 (33.52%) 0.4423 (18.68%)

In this case, the dispersion of the error is comparable for all the methods, but, for the fixed load
model, Drift Detection and Gold Ratio Methods seem to be less sensitive to outliers and recurrent
concepts. On the other hand, in Figure 10, it is shown that the FISH method has the biggest dispersion
in all three models, which means it is not suitable for the kind of drift that appears on these days.
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Figure 10. RMSE dispersion in the summer day.
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5.3. Results Analysis

As mentioned before, for the case of the prosumer agents, concept drift can appear in different
ways, and they are hard to predict. As a consequence, forgetting data becomes a difficult decision
because the agent could lose relevant information for the forecast. In this context, the proposal of
keeping in memory more data than only the training set seems to be adequate for the agent. However,
for some models, other methods obtain a better result using fewer data. For example, for the fixed load
model, ADWIN and Klinkenberg’s methods had the lowest average errors. It is relevant to mention
that these methods assume that future samples are more strongly related to the most recent data in
memory, and it is not possible to keep that assumption when there are gradual drifts.

Another key finding of the experiment is in comparison with the average error when using a
fixed data window. In particular, it is possible to observe that some adaptation techniques were not
adequate since they lead to an increase in the error. In contrast, the proposed method always had a
better performance than using a simple sliding data window. As for the parameters of the proposed
algorithm, the error threshold for accepting the result of the cross-validation was 0.8 kW for the power
generation model, 2 kW for the fixed load model, and 0.8 ◦C for the thermal model. For the parameter
N, the used value was 2016 since it ensures convergence on the training of all the models in the tested
periods. Tuning algorithms parameters depends on knowledge about the performance of the base
learners, so the agents should have validated the models beforehand.

A final remark is that most of the algorithms have a fixed number of operations or training
processes. The only method that has an indefinite amount of operations is the gold ratio search,
for which the complexity is estimated at O(log 1

100 ) (100 is the minimum search interval in this
case) [43]. Inevitably, this method takes more processing time than the others presented here. Since the
models are trained with different amounts of samples every time, it is complicated to establish a metric
to compare processing times.

6. Conclusions

Prosumer agents will play an essential role in energy management systems as they move towards
decentralization. Then, it will be necessary to address their information needs to achieve adequate
decisions. In particular, it is important to recognize that the agent environment is subject to change,
and the models of different appliances need to be adapted to overcome different kinds of concept drift.

In order to formulate strategies to give the residential prosumers more reliable information upon
which to base their decisions, this paper presented relevant criteria to account for when choosing
adaptive algorithms to train the models of the local environment. Some of the existing algorithms
in the literature were tested here with satisfactory results as they occasionally performed better than
having a fixed window size.

Additionally, in this paper, we proposed another method that works for the information needs of
the agents. The method depends on the number of batches selected to train the models; this parameter
should be small to ensure that most of the samples correspond to the new concept but big enough to
ensure the convergence when training the model. In experimental results, this algorithm was the only
one that systematically produced better results than that obtained with a fixed data window size.

Author Contributions: Conceptualization, D.T., K.A., N.H., and A.C.; methodology, D.T. and N.H.; validation,
R.M. and S.K.; formal analysis, D.T., K.A., R.M., and N.H.; writing–original draft preparation, D.T.; writing–review
and editing, R.M., S.K., and A.C.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Laboratoire des technologies de l’énergie d’Hydro-Québec,
the Natural Science and Engineering Research Council of Canada, and the Foundation of Université du Québec à
Trois-Rivières.

Acknowledgments: The authors would like to thank the Laboratoire des technologies de l’énergie d’Hydro-Québec,
the Natural Science and Engineering Research Council of Canada, and the Foundation of Université du Québec à
Trois-Rivières.

Conflicts of Interest: The authors declare no conflicts of interest.



Energies 2020, 13, 2250 18 of 19

References

1. U.S. EIA. Annual Energy Outlook 2019 with projections to 2050. Available online: https://www.eia.gov/aeo
(accessed on 20 December 2019).

2. GWAC. GridWise Transactive Energy Framework. GridWise Archit. Counc. Trans. Energy 2013, 1, 1–23.
3. Lian, J.; Zhang, W.; Sun, Y.; Marinovici, L.; Kalsi, K.; Widergren, S. Transactive System. Part I: Theoretical

Underpinnings of Payoff Functions, Control Decisions, Information Privacy, and Solution Concepts; Technical Report
December; Pacific Northwest National Laboratory: Richland, WA, USA, 2017.

4. Yoon, J.H.; Baldick, R.; Novoselac, A. Dynamic demand response controller based on real-time retail price
for residential buildings. IEEE Trans. Smart Grid 2014, 5, 121–129. [CrossRef]

5. Nagi, K. Transactional Agents: Towards a Robust Multi-Agent System; Springer Berlin Heidelberg: Karlsrule,
Germany, 2001.

6. Odell, J.; Giorgini, P.; Müller, J. Agent-Oriented Software Engineering V; Springer: Berlin/Heidelberg, Germany, 2004.
7. Damisa, U.; Nwulu, N.I.; Sun, Y. Microgrid energy and reserve management incorporating prosumer

behind-the-meter resources. IET Renew. Power Gener. 2018, 12, 910–919. [CrossRef]
8. Zhang, Y.; Huang, T.; Bompard, E.F. Big data analytics in smart grids: A review. Energy Inform. 2018, 1, 1–24.

[CrossRef]
9. Khamphanchai, W.; Saha, A.; Rathinavel, K.; Kuzlu, M.; Pipattanasomporn, M.; Rahman, S.; Akyol, B.;

Haack, J. Conceptual Architecture of Building Energy Management Open Source Software (BEMOSS).
In Proceedings of the 2014 5th IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Istanbul,
Turkey, 12–15 October 2014; pp. 1–6. [CrossRef]

10. Bifet, A.; Gavaldà, R. Adaptive Learning from Evolving Data Streams. In Advances in Intelligent Data Analysis
VIII; Springer: Berlin, Germany, 2009; pp. 249–260. [CrossRef]

11. Loeffel, P.X. Adaptive Machine Learning Algorithms for Data Streams Subject to Concept Drifts. Ph.D. Thesis,
Iniversité Pierre et Marie Curie, Paris, France, 2018.

12. Zaknich, A. Principles of Adaptive Filters and Self-Learning Systems; Springer: Murdoch, Australia, 2005.
13. Balasubramanian, V.; Ho, S.S.; Vovk, V. Conformal Prediction for Reliable Machine Learning; Elsevier: Waltham,

MA, USA, 2016. [CrossRef]
14. Gama, J.; Zliobaité, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A Survey on Concept Drift Adaptation.

ACM Comput. Surv. 2013, 46. [CrossRef]
15. Al-Ali, A.; Zualkernan, I.A.; Rashid, M.; Gupta, R.; Alikarar, M. A smart home energy management system

using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 2017, 63, 426–434. [CrossRef]
16. Keshtkar, A.; Arzanpour, S. An adaptive fuzzy logic system for residential energy management in smart

grid environments. Appl. Energy 2017, 186, 68–81. [CrossRef]
17. Farzan, F.; Jafari, M.A.; Gong, J.; Farzan, F.; Stryker, A. A multi-scale adaptive model of residential energy

demand. Appl. Energy 2015, 150, 258–273. [CrossRef]
18. Yoo, J.; Park, B.; An, K.; Al-Ammar, E.A.; Khan, Y.; Hur, K.; Kim, J.H. Look-ahead energy management of a

grid-connected residential PV system with energy storage under time-based rate programs. Energies 2012,
5, 1116–1134. [CrossRef]

19. Bouchachia, A.; Gabrys, B.; Sahel, Z. Overview of some incremental learning algorithms. In Proceedings of
the IEEE International Conference on Fuzzy Systems, London, UK, 23–26 July 2007. [CrossRef]

20. Bifet, A.; Gavaldà, R. Learning from Time-Changing Data with Adaptive Windowing. In Proceedings of the
2007 SIAM International Conference on Data Mining, Minneapolis, MN, USA, 26–28 April 2007; Society for
Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007; pp. 443–448. [CrossRef]

21. Zliobaite, I. Adaptive Training Set Formation. Ph.D. Thesis, Vilnius University, Vilnius, Lithuania, 2010.
22. Gama, J.; Medas, P.; Castillo, G.; Rodrigues, P. Learning with Drift Detection. In Advances in Artificial

Intelligence-SBIA 2004; Springer: Berlin, Germany, 2004; Volume 3171, pp. 286–295. [CrossRef]
23. Murphy, K. Machine Learning: A Probabilistic Perspective; The MIT Press: Cambridge, MA, USA, 2012;

pp. 27–71. [CrossRef]
24. Moreno-Torres, J.G.; Raeder, T.; Alaiz-Rodríguez, R.; Chawla, N.V.; Herrera, F. A unifying view on dataset

shift in classification. Pattern Recognit. 2012, 45, 521–530. [CrossRef]
25. Webb, G.I.; Hyde, R. Characterizing Concept Drift. Data Min. Knowl. Discov. 2016, 30, 964–994, arXiv:1511.03816v6.

https://www.eia.gov/aeo
http://dx.doi.org/10.1109/TSG.2013.2264970
http://dx.doi.org/10.1049/iet-rpg.2017.0659
http://dx.doi.org/10.1186/s42162-018-0007-5
http://dx.doi.org/10.1109/ISGTEurope.2014.7028784
http://dx.doi.org/10.1007/978-3-642-03915-7_22
http://dx.doi.org/10.1016/c2012-0-00234-7
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1109/TCE.2017.015014
http://dx.doi.org/10.1016/j.apenergy.2016.11.028
http://dx.doi.org/10.1016/j.apenergy.2015.04.008
http://dx.doi.org/10.3390/en5041116
http://dx.doi.org/10.1109/FUZZY.2007.4295640
http://dx.doi.org/10.1137/1.9781611972771.42
http://dx.doi.org/10.1007/978-3-540-28645-5_29
http://dx.doi.org/10.1007/978-94-011-3532-0_2
http://dx.doi.org/10.1016/j.patcog.2011.06.019


Energies 2020, 13, 2250 19 of 19

26. Cieslak, D.A.; Hoens, T.R.; Chawla, N.V.; Kegelmeyer, W.P. Hellinger distance decision trees are robust and
skew-insensitive. Data Min. Knowl. Discov. 2012, 24, 136–158. [CrossRef]

27. Widmer, G.; Kubat, M. Learning in the presence of concept drift and hidden contexts. Mach. Learn. 1996,
23, 69–101. [CrossRef]

28. Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2012.
29. Palnitkar, R.; Cannady, J. A Review of Adaptive Neural Networks. In Proceedings of the IEEE SoutheastCon,

Greensboro, NC, USA, 26–29 March 2004; pp. 38–47. [CrossRef]
30. Kuncheva, L.I.; Gunn, I.A. A concept-drift perspective on prototype selection and generation. In Proceedings

of the International Joint Conference on Neural Networks, Vancouver, BC, Canada, 24–29 July 2016; pp. 16–23.
[CrossRef]

31. Bifet, A.; Gavaldà, R.; Holmes, G.; Pfahringer, B. Machine Learning for Data Streams: With Practical Examples in
MOA; The MIT Press: Cambridge, MA, USA, 2018.

32. Koychev, I.; Lothian, R. Tracking Drifting Concepts by Time Window Optimisation. In Research and Development
in Intelligent Systems XXII; Springer: London, UK, 2006; pp. 46–59. [CrossRef]

33. Klinkenberg, R.; Joachims, T. Detecting Concept Drift with Support Vector Machines. In Proceedings of
the Seventeenth International Conference on Machine Learning, Stanford, CA, USA, 29 June–2 July 2000;
pp. 487–494.

34. Aggarwal, C.C. Towards systematic design of distance functions for data mining applications. In Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD ’03,
Washington, DC, USA, 24–27 August 2003; ACM Press: New York, NY, USA, 2003; p. 9. [CrossRef]

35. Aggarwal, C.C.; Hinneburg, A.; Keim, D.A. On the Surprising Behavior of Distance Metrics in High
Dimensional Space. Am. J. Dermatopathol. 2001, 30, 420–434. [CrossRef]

36. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against
avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

37. Touzani, S.; Granderson, J.; Fernandes, S. Gradient boosting machine for modeling the energy consumption
of commercial buildings. Energy Build. 2018, 158, 1533–1543. [CrossRef]

38. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.;
Nothman, J.; Louppe, G.; et al. Scikit-learn: Machine Learning in Python. Psychol. Sci. 2012, 25, 1682–1690.
[CrossRef]

39. Holmgren, W.; Hansen, C.; Mikofski, M. pvlib python: A python package for modeling solar energy systems.
J. Open Source Softw. 2018, 3, 884. [CrossRef]

40. Alpaydin, E. Introduction to Machine Learning Second Edition, 3rd ed.; The MIT Press: Cambridge, MA, USA,
2010; pp. 350–380. [CrossRef]

41. Jokisalo, J.; Kurnitski, J. Performance of EN ISO 13790 utilisation factor heat demand calculation method in
a cold climate. Energy Build. 2007, 39, 236–247. [CrossRef]

42. Gelman, A.; Carlin, J.; Stern, H.; Rubin, D. Bayesian Data Analysis; Chapman & Hall: London, UK, 2004.
43. Chong, E.; Zak, S. An Introduction to Optimization, 4th ed.; Wiley and Sons: Hoboken, NJ, USA, 2013.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10618-011-0222-1
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1109/SECON.2004.1287896
http://dx.doi.org/10.1109/IJCNN.2016.7727175
http://dx.doi.org/10.1007/978-1-84628-226-3_5
http://dx.doi.org/10.1145/956750.956756
http://dx.doi.org/10.1007/3-540-44503-X_27
http://dx.doi.org/10.5194/gmd-7-1247-2014
http://dx.doi.org/10.1016/j.enbuild.2017.11.039
http://dx.doi.org/10.1088/1751-8113/44/8/085201
http://dx.doi.org/10.21105/joss.00884
http://dx.doi.org/10.1007/978-1-62703-748-8_7
http://dx.doi.org/10.1016/j.enbuild.2006.06.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	Drift Magnitude
	Drift Duration
	Drift Subject
	Drift Predictability

	Adaptive Algorithms
	Drift Detection Method
	Gold Ratio Method
	Klinkenberg and Joachims' Algorithm
	Fish Method
	ADWIN

	Proposed Algorithm
	Numerical Results
	Spring Day
	Summer Day
	Results Analysis

	Conclusions
	References



