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Résumé 

Au cours des dernières décennies, des recherches importantes ont été proposées concernant la 

modélisation des robots manipulateurs et la commande de mouvement. La commande de 

mouvement a des applications critiques dans de nombreux domaines, notamment la robotique 

industrielle et les systèmes autonomes. Un modèle mathématique précis d'un bras robotique 

articulé manipulateur à 6-DOF spécifique comprend le modèle cinématique et dynamique du robot 

représenté. Cette étude compare trois modèles dynamiques d'un bras robotique articulé. Des 

modèles CAO à trois niveaux de détail ont été développés à l'aide de SOLIDWORKS pour simuler 

la dynamique du bras robotique à six articulations ABB IRB-140. Les trois modèles différents sont 

conçus pour extraire des valeurs précises des paramètres de masse et d'inertie. Le premier modèle 

est très détaillé et proche de la conception réelle du robot. Le deuxième modèle est approximatif, 

utilisant des parallélépipèdes avec un choix de densité qui permet aux masses de correspondre aux 

masses des corps. Le troisième modèle est simplifié et considère les liens comme des tiges. Cette 

dernière approche est utilisée par plusieurs travaux dans la littérature en raison de sa simplicité. 

Les modèles ont été comparés en termes de prédictions de couple au niveau des articulations et en 

termes de consommation d'énergie par ces articulations et par le robot dans son ensemble. Les 

modèles géométriques directe et inverse ainsi que le modèle cinématique ont été utilisés pour 

déterminer les paramètres dynamiques et calculer le couple dans chaque articulation. Les modèles 

intégraient les spécifications techniques du bras ainsi que la représentation simplifiée, semi-

détaillée ou détaillée des structures de liaison. Nous comparons ces modèles en tant que prédicteurs 
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de couple et de consommation d'énergie. Nous avons constaté que ces trois modèles produisaient 

des graphiques de vitesse angulaire, de couple et de consommation d'énergie avec des différences 

de profil relativement mineures. Ils semblaient tous être des prédicteurs adéquats des performances 

du robot au cours d'une tâche de 30 secondes. La consommation d'énergie des trois modèles évalue 

l'impact des différents modèles conçus, soulignant l'adéquation de chaque modèle à différentes 

situations. La différence globale de consommation d'énergie des trois modèles est de 0,53 % de 

moins pour le modèle détaillé et de 6,8 % de moins pour le modèle simplifié par rapport au modèle 

semi-détaillé. Sur la base de ces résultats, les trois modèles dynamiques testés dans cette étude 

semblent dignes de confiance pour prédire la consommation d'énergie pour les bras robotiques 

articulés. 

L'algorithme de commande par modes de glissement est utilisé pour le contrôle de mouvement, 

avec et sans perturbations, afin de minimiser l'impact des erreurs de modélisation et de mesure et 

d'évaluer la robustesse pour les trois modèles de robot manipulateur. Les résultats de la simulation 

montrent que la méthode de commande par mode glissant est robuste et fonctionne de manière 

satisfaisante même en cas de perturbations externes. La commande par mode glissant offre des 

performances adaptées pour contrôler des modèles de robots avec des perturbations non 

modélisées. Généralement, les résultats des contrôleurs examinés sur trois modèles (détaillé, semi-

détaillé et simplifié) sont proches avec une légère différence en pourcentage. Le contrôleur sous 

perturbation avait également des résultats relativement proches par rapport au contrôleur sans 

perturbation. La méthodologie de commande en mode glissant a une réponse dynamique 

appropriée et une performance d'erreur de suivi minimale à partir des résultats de simulation. 

L'inconvénient le plus important de cette technique est l'effet du phénomène de broutage avec 

l'entrée de contrôle, mais les résultats globaux pour les modèles sont satisfaisants. 
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Mots-clés : Robots manipulateurs industriels, Conception assistée par ordinateur (CAO), 

Représentation D-H, Modèle dynamique et simplifications, Consommation d'énergie, Commande 

robuste, SMC, Cinématique Simulink, dynamique, Théorème de stabilité de Lyapunov, suivi de 

trajectoire 

Abstract 

In recent decades, significant research has been proposed regarding manipulator modeling and 

motion control. Motion control has critical applications in many areas, including industrial 

robotics, autonomous systems, etc. 

A precise mathematical model of a specific 6-DOF manipulator articulated robotic arm includes 

the kinematic and dynamic model of the robot represented. This study compares three dynamic 

models of an articulated robotic arm. CAD models at three levels of detail were developed using 

SOLIDWORKS to simulate the dynamics of the six-jointed robotic arm ABB IRB-140. The three 

different models are designed to extract precise values of the mass and inertia parameters. The first 

model is very detailed and close to the actual robot design. The second model is approximate, 

using parallelepipeds with a density choice that allows the masses to match the link masses. The 

third model is simplified and considers the links as rods, an approach repeatedly appearing in the 

literature because of its simplicity. The models were compared in terms of their predictions of 

torque in the proximal joints and energy consumption by these joints and by the robot overall. 

Forward and inverse kinematics and differential kinematics were used to model the dynamic 

parameters and compute torque in each joint. The models incorporated the technical specifications 

of the arm along with the simplified, semi-detailed, or detailed representation of the link structures. 

We compare these models as predictors of torque and energy consumption. We found that these 

three models yielded graphs of angular velocity, torque, and energy consumption with relatively 
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minor differences in profile. They all appeared to be adequate predictors of robot performance 

during a 30-second task. Energy consumption of the three models evaluates the impact of the 

various designed models, highlighting the suitability of each model for different situations. The 

overall difference in energy consumption of the three models is 0.53% less for the detailed model 

and 6.8% less for the simplified model compared to the semi-detailed one. Based on these results, 

the three dynamic models tested in this study appear to be worthy of confidence for predicting 

energy consumption by articulated robotic arms. 

The Sliding mode controller algorithm is employed for motion control, with and without 

disturbances, to minimize the impact of the error in the property inputs to the controller and 

evaluate the model's robustness for three robot manipulator models. The simulation results show 

that the sliding mode control method is robust and performs satisfactorily even in external 

disturbances. Sliding mode control offers suitable performances for controlling robot models with 

unmodeled disturbances. Generally, the controller results examined on three models (detailed, 

semi-detailed, and simplified) are close with a slight percentage difference. The controller under 

disturbance also had relatively close results compared to the controller without disturbance. The 

sliding mode control methodology has an appropriate dynamic response and minimum tracking 

error performance from simulation results. The most significant disadvantage of this technique is 

the chattering phenomenon effect with control input, but the overall results for the models are 

satisfactory. 

 

Keywords: Industrial robot manipulators, Computer-aided Design (CAD), D-H representation, 

Dynamic model and simplifications, Energy consumption, Robust Control, SMC,Simulink 

kinematics, dynamics,Lyapunov stability theorem, trajectory tracking  
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Nowadays, industrial robots perform in various industries. Any repetitive operation is an excellent 

job for a robot, especially if it's difficult or dangerous. The application of robots in manufacturing 

industries is precious. Robots have been employed for high-volume production, but as the 

technological advancements reduced the cost of industrial robots, more choices and possibilities 

are extended for wide-range industrial processes. In the last decades the growth of digital 

technologies, new techniques and new technologies in industries also their implementation in 

production lines motivates the industries worldwide to always observe these advancements and 

modernization and development in automation of their production procedures to stay competitive. 

The fourth technological revolution "Industry 4.0" can be labeled in many ways as intelligent 

factories, smart industry, or advanced manufacturing refers to the execution of production 

technologies, funded by different digital technologies and new materials, sensor technology that 

reinforces the evolution of robotic technologies [1]. The development of digital technology and 

the development of other technologies are contributing to the growth of automated industrial 

technology so that each year the representation of service robots for logistics in the production 

process is being expanded and improved [2]. An increase in representation will continue. It can be 

predictable will reach around 1000.000 robot units with constant growth in 2020 [3]. 

The modeling and control issues are required to ensure the performance of any task according to 

the expected input with minimum error. Proper control systems are essential to high-performing 

industrial manipulators, and good models are necessary for well-functioning control systems. 

Control of robotics arms has been considerably investigated in the literature. Authors have 

presented various control methods such as PD and PID Control, Intelligent controllers, Feedback 

Linearization Control, Lyapunov Based Control, and Robust Control. 



 

3 
 

 Between the methods, Sliding mode control is an overall robust control technique in robotics that 

addresses parameter uncertainty and bounds disturbances. SMC method is based on the Lyapunov 

stability theory [4]. It mainly attempts to specify the nominal feedback control law and a 

disciplinary control action that leads the controlled system to the desired operation, expressed as 

the sliding surface. In literature, various forms of the sliding mode controller for different 

manipulator arms types were studied. 

A four-linked SCARA robot manipulator with uncertain parameters includes a non-singular-

terminal sliding mode control proposed for the SMC strategy's efficiency by Shankar J et al. [5]. 

A robust nonlinear control technique with an uncertainty analyzer is employed to track position 

within the robot's workspace to a cinematically redundant mobile manipulator with four degrees-

of-freedom robotic arm mounted on three mobile bases examined by Mishra et al. [6]. A smooth 

sliding mode control and primary approach for a flexible joint robotic manipulator with 

constrained motion and force control were presented by Huang et al. [7]. A suggested continuous 

control integrated with a genetic algorithm guarantees stability and quick convergence discussed 

by Wang and Sun [8]. 

The nonlinear sliding manifolds' analysis focuses on two objectives, improving the transient 

effects on the control input. Second, it delivers a finite convergence time of the sliding system on 

the manifold, which is not met by the classic linear manifold design. Much less work is currently 

in the literature concerning investigating nonlinear sliding functions among the research on 

decreasing or eliminating chattering in sliding mode control. Between the analysis of nonlinear 

functions, research on Terminal Sliding Mode Control (TSMC) on nonlinear sliding functions is 

developed to provide a fast convergence of the tracking error in a finite time [9-13].   
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Si et al. [14] stimulated the dynamic model of the two-link flexible manipulator with payload using 

the Euler Lagrange equation. A fast NTSMC was suggested for the trajectory tracking problem of 

the two-link flexible manipulator. Moreno and Osorio introduced a Lyapunov-based approach for 

investigating the stability of a class of second-order sliding mode controllers called the super-

twisting sliding mode controller (STSMC) [15]. A new terminal sliding mode for the control 

method of a typical robotic manipulator dependent on finite time and differential stability theory 

principle of inequality with the support of the model-based approach for robotic manipulators in 

mind, the TSMC technique to controlling robots was analyzed by Liu et al. [16]. Studied sliding 

operations with the variation of the parameters over time to improve the control's robustness and 

quick convergence presented by Choi et al. [17]. 

The primary problem of sliding mode control is the high-frequency chattering phenomenon arising 

from the control signals during the undertaking of this control system. Chattering is caused by an 

unsteady term in the sliding mode control law. Asif et al. [18] presented a terminal sliding mode 

control that configures a control law for trajectory tracking non-holonomic mobile robots to 

eliminate the chattering phenomenon and provide stability by utilizing the Lyapunov theory 

controlled by velocity inputs that enforce kinematic configurations. A new form of chatter-free 

sliding PID control principles for continuous mechanical plants, which ensures exponential 

convergence, is considered by Vicente et al. [19]. A nonlinear reaching law reduces the 

discontinuous gain and thus chattering when the sliding manifold is contacted, studied in [20,21]. 

Another technique employed by multiple researchers is increasing the degree of the sliding 

functions from one to a specific degree. Operating the virtual time derivative order of the control 

law suggested by [22]. Choosing discontinuous time derivative, then the actual control law is 

created by a series of integrals with continuous nature, ensures proven chattering avoidance by the 
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noted method. This technique has been employed by Hamerlain et al. on a specific robot trajectory 

tracking [23]. 

The two major subjects of this thesis are the study of analyzing the impact of dynamic models with 

different classes of detail and the control of the 6 degrees of freedom (DOF) robotic arm industrial 

manipulators. Suitable control systems are fundamental to high-performing industrial 

manipulators, and good models are essential to well-functioning control systems. Variable 

structure control is a way of controlling the dynamics of a model-based linear and the nonlinear 

system where the control law alters accordingly with some predefined rules in the control process 

and has various types based on the controlling strategy utilized among the sliding mode control 

that is widely employed in controlling a dynamic system with uncertainty and disturbance.  

Considerable studies implementing robust control strategies utilize random, constant, or sine 

signals as modeling or measurement errors. To our knowledge, this is the first time that a realistic 

model (with real parameters of the robot) is employed along with simplified and semi-simplified 

models to obtain as close as possible to the real modeling errors, attempt to design and structure 

the real model of a specific robot to evaluate not only the errors but also the performances in terms 

of consumed energy and the implementation of the control strategy. Most control strategies are 

based on dynamic models, in which variables are embedded as torque or forces, depending on 

whether the joint is revolute or prismatic. Unlike robust controllers, precise controllers rely on the 

dynamic model's precision [24, 25]. Robust control strategies can be designed to yield the proper 

dynamic behavior when faced with modeling errors and unmodeled dynamics[26]. However, 

studies repeatedly show that the dynamic modeling of robots is highly challenging. 

Adequate models are necessary for well-functioning control systems. The modeling problem is 

necessary before applying the control techniques to guarantee the execution of any task according 
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to the desired input with minimum error. The derivation of forwarding and inverse kinematics is 

an important step in robotic modeling based on the representation of Denavit Hartenberg (DH). 

Two basic methods of modeling a dynamic manipulator are the Newton-Euler formulation, in 

which each term is expressed separately, and the Euler-Lagrange formulation relies on mechanical 

systems' energy properties to compute the equations of motion [27], which defines the system as 

based entirely on potential energy and kinetic energy [28]. This application of the Euler-Lagrange 

formulation requires precise knowledge of the inertia and center of mass of each of the various 

links of the robot at any time. Some researchers, therefore, prefer approaches based on model 

parameter identification [29-37]. Others use approximation methods, considering links as 

parallelepipeds or rods having masses equal to the robot, to simplify the inertia and center of mass 

calculations [38-46]. It must be understood that parameter identification and approximation 

methods both generate the error due to measurement and noise in the former case and 

simplification in the latter point. 

Robotic manipulator arms with more than three degrees of freedom have complex kinematic and 

dynamic equations with multiple variable elements. To study the motion of the robotic manipulator 

arm, such as speed and acceleration, path and trajectory planning, thorough analysis for force and 

torque computations, and also study critical issues such as energy for optimization of the 

manipulator robotic arms requires an analytical and mathematical model. Methods for modeling 

robot arms have been developed. In some methods, the actual model of the robot arm is simplified 

with assumptions for the robotics arm presented in classical calculations. Today, with the help of 

CAD/CAM engineering 3D design software, a 3D model of a robotic arm can be designed. With 

the abilities built into these types of software, the mass properties are also evaluated for the 3D 

model. An approximate result can be obtained from mass properties such as the center of mass and 
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inertia tensors of a complex chain mechanism such as a robotic arm. Despite these facilities 

provided by 3D engineering design software and powerful analytical math software, proper 

kinematic and dynamic models can be obtained and organized for the robotics arms. The more 

precise the robot's mathematical models are, the more complex the equations related to its torque 

and energy and more variable elements. To analyze and solve these equations, powerful and 

helpful software such as MATLAB can be used. 

A precise mathematical model of a specific 6-DOF manipulator articulated robotic arm includes 

the kinematic and dynamic model of the robot represented. This study compares three dynamic 

models of an articulated robotic arm. CAD models were developed for this purpose using SOLID 

WORKS software. The three different models are designed to extract precise values of the mass 

and inertia parameters. The first model is very detailed and close to the actual robot design. The 

second model is approximate, using parallelepipeds with a density choice that allows the masses 

to match the link masses. The third model is simplified and considers the links as rods, an approach 

repeatedly appearing in the literature because of its simplicity [47]. We compare these models as 

predictors of torque and energy consumption. 

For an actual application of a serial or parallel robot, the physical parameters of these systems 

should be identified in the best possible way. The data of mass, inertia matrices, mass centers, 

friction forces, etc., delivered for any software, implies an error percentage that must be considered 

in the calculus. MATLAB is an adequate tool for developing algorithms, evaluating and validating 

models, and simulating system responses. Still, the computational time for calculating algebraic 

operations in robotics is not very efficient. In some cases, the detailed level of modeling results is 

the heavy and slow simulation of path tracking with many points. 
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A robust controller is synthesized to overcome close-to-reality modeling errors and appreciate their 

performances. The Sliding mode controller algorithm is used for motion control, the developed 

basis of with and without disturbances to evaluate the model's robustness for three different robot 

manipulator models. The executed algorithm analyzes a thoroughgoing trajectory to prove the 

performance and conduct of the designed sliding mode controller of the robot to perform tasks 

undertaking the controller. 

The impact of the three different dynamic models on the performances of the robot and some 

fundamental concepts related to torque equations and energy consumption on a movement path 

over a fixed time interval were examined and explored to evaluate the three dynamic models as 

predictors of the robot's performance. A control module and a robustness controller (SMC) were 

included to minimize the impact of the error in the property inputs to the controller implemented 

for three models to examine the effect of different models on the performance and dynamic 

response of three other models. In the end, the studies represented some significant outcomes based 

on comparing the different models. 
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1.1 Industrial serial manipulators 

This chapter provides an introduction to industrial robots and control strategy, in particular the 

series manipulators. First, introduce some terminology, followed by a short overview of the 

demand for industrial robots and typical applications, to how industrial serial manipulators (ISM) 

are usually designed and controlled to associate with desirable characteristics for an ISM. 

As the title indicates, robotics is the acknowledgment and investigation of robots. Karel Capek 

coined the robot, the Czech word “robota,” implying (forced labor) in 1921 [48]. Robots are 

artificial computerized machines that execute tasks by human controls and aim to make work more 

straightforward. According to RIA ( RIA: Robot Institute of America), a robot is a 

"reprogrammable multifunctional manipulator developed to move materials, specialized parts, 

tools or devices through variable programmed motions to execute different tasks" [49]. 

In this thesis, the representation "robotic manipulator" is utilized. A scientist named George Devol, 

Jr. designed the first robotic arm in the 1950s, before which robotics mainly was a product of 

science fiction and imagination [50]. Numerous multiple functional scope exploration applications 

have been slowly developed by robotics. The importance of robots in assisting industrialization 

was not realized until the 1980s, when robotic arms were designed for use in automobiles and other 

manufacturing assembly lines [51]. The robotic arm's outcome has been molded to do the intended 

job, and it can be organized for almost any activity, such as gripping like a hand, tightening screws, 

creating works of art, etc. A robotic arm manipulator is an interconnected set of sensors, power 

supplies, control systems, and software that work independently to execute a task [52]. These 

robots can be stationary, such as on an assembly line, or they can be mobile and transported to 

different locations. Manipulator robotic arms have various forms and sizes but are often organized 

by the degree of freedom (DOF).  
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A robotic arm is a mechanical mechanism, usually programmable, similar to a human feature. The 

arm robot can be the entire mechanism or part of a more complex robot. Each direction of motion 

on the robot is assumed to be an axis of motion, and each axis is considered one degree of freedom. 

The typical joint motion of a robotic manipulator arm, yaw, pitch, and roll, allows locating the 

tools in a work space and are named position axes [53]. The manipulator's joints allow rotational 

motion ( in the articulated robot) or translation (linear) motion. The links of the manipulator can 

be considered as a kinematic chain. The end of the manipulator driveline is named the end-effector 

and is similar to the human hand. According to the application, the end-effector or robotic tools 

can be designed to perform any chosen actions such as welding, gripping, spinning, Etc. Robotic 

arms perform various parts of welding, turning, and positioning in automotive assembly lines [54]. 

The robot manipulator field is one of the exciting areas in industrial, educational, and medical 

applications. The robot manipulator is one of the motivating disciplines in industry and academic 

applications and a critical branch to control sciences because of its intellectual aspects, non-linear 

characteristics, and real-time execution. It performs in unexpected, dangerous, and inhospitable 

cases which humans cannot reach. For example, working in chemical or nuclear reactors is 

extremely risky, while operating a robot instead of a human applies no risk to human life. It was 

developed to improve human work, such as manufacturing or manipulating heavy materials and 

unpredictable environments. Thus, modeling and analyzing the robotic manipulators and applying 

control strategies are essential before using them in these cases to work with high precision [55].  

The robotic manipulator has immeasurable duties, so it is organized to be flexible in the general 

motions from which to proceed. There are three main subsystems in robot manipulators: 

mechanical, electrical, and control. The mechanical system of the robot includes all moving 

elements. It consists of a group of links (rigid bodies) connected by joints that allow the motion of 
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the selected link. The mechanical system moves the end-effector (the top link) to the XYZ position 

regarding the base frame [56]. This motion depends on the electrical system (ex., motors, power 

amplifiers, and other electronic circuits) and the movements performed by some rotations and 

translations towards the different links. Due to the group of assignments and duties in robot 

manipulators, their structure is split into two main classes: serial manipulators and parallel 

manipulators. The manipulator's arm consists of links attached in series, forming an open-loop 

chain. A single kinematic chain links the end effector to the base frame at the end of the chain. On 

the other hand, parallel manipulators form a closed-loop chain finished by the end effector and are 

connected to the base frame by two or more kinematic chains (e.g., arm or legs). The only 

drawback of the finite parallel manipulator and the serial manipulator is that the parallel robot 

manipulators suffer from a limited workspace compared with serial robot manipulators [57].  

There are two specific joint types used on the industrial manipulator. The first type is described in 

texts by a cylinder, which only permits relative rotation between two links. This joint is called 

revolute, or rotary joint (e.g., human joints)and is the most regular type of joint in a robotic 

manipulator. The second type of joint is called a prismatic or sliding joint. A square box symbolizes 

it. This type of joint allows only relative linear motion between two links along its axis. Both types 

are described as R and P joints, respectively. The robot manipulator whose all joint variables are 

prismatic is known as a Cartesian manipulator, while the robot whose all joints are revolute is 

known as an articulated manipulator [58]. Figure 1 presents a schematic diagram of a robot 

manipulator. It consists of some joints, and each one of these joints will have a motor to actuate 

the expected link. 
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Figure 1: Manipulator with Revolute and Prismatic Joints [59]. 

The fundamental matter for investigating the robot manipulator issue has two sides. The first is the 

mathematical modeling of the manipulator and actuators, which contains the analysis of 

forwarding and inverse kinematics. Then the second issue is the control of the robot manipulator 

[60]. The robot motions' analysis is necessary before implementation in the existing system. 

Therefore, computer simulations are required to perform any controller, where developing a 

different mathematical model for any robot manipulator is crucial for running simulations [61]. In 

recent years, industrial and commercial systems with high efficiency and outstanding 

implementation have carried the advantage of robot technology. Many control classifications of 

research and multiple control applications were introduced during the last years, focusing on the 

control of robotic systems [62]. 

1.2 Control for Robotics 

One of the most important and applicable matters in robotics is motion control. Because the robot's 

procedure must be accurate without affecting surrounding circumstances. Controlling 
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manipulators is a significant research scope to modify the time record of joint inputs demanded to 

move the end-effector to perform the critical task. 

It is crucial to control and adapt the robot manipulator in the control system. Typically, two control 

systems are used, the open-loop (OL) control system and the closed-loop (CL) control system [63]. 

The controller sends a signal to the motor in the OL control system but does not estimate the error 

measure. On the other hand, in the CL control system, the controller sends the signal to the motor, 

and the output signal will be fed back to express the motor's present state. CL controller has some 

benefits over the OL controller, such as disturbance rejection like friction in motors, enhanced 

reference-tracking execution, and stabilization of an unstable operation. A control system consists 

of devices and tools like sensors, controllers, and actuating devices that provide a valid task to 

robot manipulators [64]. When the controller is proceeding, the robot manipulator during the 

working environment, the sensor or feedback system collects the data about the robot manipulator 

state and the surrounding circumstances. It then controls the information to modify and enhance 

the system's behavior. The Control system provides some functions for the mechanism (robot arm), 

such as: 

1- Providing the ability to move the robot manipulator in the surrounding environments. 

2- Collecting information about the robot manipulator in the working spaces. 

3- Using this information gives a methodology to control the robot manipulator. 

4- Storing the data, then providing it to the robot manipulator, then updating it instantly. 

A controller is utilized to modify the conduct of the physical system based on the input value 

through analyses and motions. During the first decade, many control methods and methodologies 

were suggested to control the motion of robot manipulators, such as point-to-point, continuous 

trajectory sequence, velocity, and systematic movements [65].A variety of robot manipulators and 
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their architectures influence the control strategy. On the other hand, the mechanical design of the 

manipulator affects the sort of controller. Although manipulator robots have a variety of 

assignments in all applications, this is the case restricted behavior compared with humans. 

Therefore, the control technique should be used to obtain the preferred behavior. Every robot has 

a controller that continuously reads from sensors like motor encoder, force sensors, vision sensor, 

and depth sensor, which updates the actuator commands to achieve the desired robot behavior [66].  

The fundamental structures of the closed-loop control system illustrated in Figure 2 include some 

significant elements. 

 

 

 

 

 

Figure 2: Block diagram of a closed-loop control system [59]. 

The closed-loop control system involved the reference input or the set point of the closed-loop, 

r(t), the summer and comparator section, the controller, the controlled system including plant and 

actuator, the output or the measured value y (t), and the feedback loop. The plant 𝐺𝑃(𝑠) is the 

mechanism like a robot manipulator, and it contains the actuators, gears, and mechanical 

components. The controller 𝐺𝑐(𝑠) is a tool that is utilized to correct the error signal e(t) = r(t) - 

y(t) and provide applicable input to modify the behavior of the mechanism and improve the 

features of the closed-loop system. The controller emphasizes reducing the error between the set 
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point and the feedback signal. Nevertheless, if the input signal and feedback signal are not equal, 

the controller will update the position signal until the difference between both signals is zero. Some 

unpredictable disturbance variables 𝐷𝑡(𝑠) may influence the output signal. The sensor H(s) is the 

instrument that evaluates the output signal. Many systems may be unstable due to nonlinearity, so 

an adequate control system must create control output to follow the desired response. The desired 

reaction for a control system ensures that the critical point in developing a control system is to 

ensure that the dynamic response of the closed-loop systems is steady and stable [67]. 

There are two approaches used in control theory to control systems, the linear method and the 

nonlinear method [68]. Operating linear control is relevant only when the controlled system can 

be modeled mathematically [69]. The fact is that most mechanisms have nonlinear aspects. 

Therefore, linear controllers fail to satisfy the requirements due to system nonlinearities. Nonlinear 

variations and parameters such as gear backlash, load variations, etc. parameters have unexpected 

effects on the controlled systems like a robot manipulator, decreasing the performance. Therefore, 

it can be supposed that the robotic manipulator is a linear model when working in a small space or 

has a high transmission ratio between the joints and their linkages. Nonlinear methods are 

considered a general case compared to linear methods because they can be applied successfully to 

linear methods [70]. Still, the linear approach is lacking in solving and controlling nonlinear 

problems. Standard processes are used to solve the nonlinearities in the control systems, such as 

sliding mode control and status feedback control. 

Different controlling strategies employed to solve the optimal control issue include tracking the 

position and reducing the vibrations. The optimization algorithm controls and estimates its 

execution index like angular acceleration, force, torque, etc. [71]. Many numerical optimization 

methods have been developed to design more suitable mechanisms.  
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 Advanced robot control laws can enhance the robot's operations. The improvement of the robot 

design itself may also donate substantially to the increase in execution and capabilities. Combining 

the proper controller with suitable sensors equips some sense and awareness of the workspace and 

enhances its precision and speed. Current challenges in the robotics application have influenced 

the research of robot control in several essential topics such as modeling, position and motion 

control, and robust control [72]. The issues can motivate robot modeling, simulation, and control 

design research. Therefore, position and trajectory control is fundamental research in robotic 

control. The motion control problem has received significant interest in robotics. 

The arm robot manipulator trajectory tracking design and control requires more than kinematic 

and dynamic to enhance effectiveness and improve efficiency. Advanced control theorem and 

artificial intelligence can help reach the purpose, such as adaptive control. Artificial controls 

applied in trajectory tracking of an arm robot manipulators are Fuzzy logic controllers (FLC), 

Artificial Neural Network (ANN) and the combination of FLC and ANN and Genetic Algorithm 

(GA) [73]. The complications of kinematics and dynamics modeling can be avoided by using rules-

based and learning based on artificial intelligence. The control of robotic manipulators using 

different controllers is discussed in the following subsections: 

 

1.2.1 PD and PID Control 

The PD (Proportional-Derivative) and PID (Proportional-Derivative-Integral) are the classic 

methods of controlling a system. The PID and PD controllers are the most utilized controls in 

various industrial applications as these are the first choices of an engineer for their simplicity, 

flexibility, and stability.  
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Despite all advantages of the PID, this controller is unable to control uncertainty for a non-linear 

system. A manipulator robotic arm is a non-linear system that different PID control such as PID 

and state feedback control methods, PD-FUZZY logic controller, intelligent PID controllers, H∞ 

PID control, and hybrid PD-PID control controller techniques are used to control the robot's 

trajectory and position [74]. A PID or PD controller can be experimentally implemented to control 

a manipulator arm robot considering the servo driver velocity and the actuator torque also suggest 

guaranteeing stabilization of the robot, which has higher dynamics and excessive noise. PID 

controllers are appropriate to eliminate the steady state error of the position. PD and PID present 

an integration action to the closed loop to enhance the execution tracking of a trajectory [75]. 

 

1.2.2 Intelligent controllers 

An intelligent controller is a type of controller that is able to indicate the solution intelligently, 

relying upon the conditions, just like a human. These controllers anticipate keys for such a system 

that is complicated to illustrate, such as manipulator robotic arms. Developing a controller for such 

a system is difficult due to the impossibility of getting actual models. These issues can be resolved 

by enforcing intelligent controls like fuzzy logic and artificial ANN [76]. 

The fuzzy logic controller is a typically intelligent controller method with human decision-making 

characteristics. The fuzzy logic strategy can employ human experience knowledge that deals with 

indefinite and ambiguous details to control the optimal control problem. Even though Commonly 

fuzzy logic method controllers use IF-THEN rules to solve the issue, the method includes the   

degree of truth other than true and false or 1 and 0. A fuzzy logic-based controller is employed for 

the motion and position for tracking the trajectory and vibration control [77]. 
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An Artificial Neural Network (ANN) controller is straightforward and quick to configure 

classification and predict without comprehending the problem behaviors of the mechanism. The 

ANN controller is an excellent tool for developing learning about the required output and input 

relations. ANN controllers, especially for mathematically undefined configurations, are suitable 

for escaping mathematical modeling complications. The architecture of ANN involves four main 

layers Input Layers, Hidden Layers, Custom layers, and Output Layers. Various Neural networks 

are used to control the rigid and flexible robotic arms presented to control the position, trajectory 

monitoring and tip distraction, motion regulation, and force and torque on the dynamic model [78]. 

 

1.2.3 Feedback Linearization Control 

Applying the feedback linearization approach to solving robotics control problems is based on the 

computed torque technique. The feedback linearization control technique works according to 

inner-outer loop control techniques. The inner loop should linearize the mechanism, such as the 

manipulator's arm. On the other hand, the outer loop gains the standard conditions for the closed 

loop. Figure 3 depicts the control motion system (inner and outer control loops) of a manipulator 

robot arm manipulated by a DC motor [79].  

 

 

 

 

Figure 3: Robotic system with motion control system, inner and outer loop controller [80]. 
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The Computed Torque Control (CTC) involves PD control at the outer loop to a linearized system 

by the feedback linearization control. In robotics, CTC is employed to implement the PD 

controllers separately for every joint at the outer loop [81]. The feedback linearization method has 

two critical features that require attention, model error and the outer loop controller configuration. 

The feedback linearization technique is based on the identical model of the mechanism. Hence, 

the controller is sensitive to modeling errors such as parameter errors and unmodeled dynamics. 

Robust control strategies or adaptive controllers generally manage parameter uncertainty. to 

estimate a limited quantity of parameters adaptive controllers can be a practical approach. The 

feedback linearization control continuously linearized the mechanism elements until the outcomes 

of the plant are considered a linear system. Thus, applying one or multiple linear control techniques 

is possible to reach the desired performance. Considerable controllers for the outer loop control 

are proposed, such as the standard PD loop of CTC, linear optimal control, sliding mode control, 

and  𝐻 ∞ ∕ 𝜇  robust optimal controllers [82]. 

 

1.2.4 Lyapunov Based Control 

An essential tool for controlling a mechanism is the Lyapunov stability theory based on the 

destruction of the energy function. Lyapunov stability theory is not formative to designing a 

controller, but a simple form of the equations of motion with some reasonable assumptions 

authorizes a derivation of stabilizing controllers [83]. These assumptions enclose bounded 

disturbances and bounded parameter deviations. The inertia-based control technique attempts to 

reshape the robot's energy function, setting an entirely different behavior like the CTC approach. 

Investigations indicated and presented the passivity controllers are more robust than CTC. Another 
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development of Lyapunov stability theory is the sliding mode control (SMC), which is regarded 

as a robust control approach [83,84]. 

 

1.2.5 Robust Control 

To provide proper conduct of the closed loop robot, despite the errors and disturbances in models, 

it is expected to develop robust controllers. Modeling errors are typically divided into parameter 

errors and unmodeled dynamics that differently influence the closed loop system. The standard 

control algorithm considered in many studies in advanced controls is illustrated in Figure 4. 

 

Figure 4: Standard robust control problem [85]. 

K(s) as controlled signal is supplied with measurement signals y and has to stabilize P(s) as plant 

signal deal with u as input signals. The p(s) is usually a generalized plant that includes weighting 

parametric and dynamic uncertainty, input signal thresholds, and the simulated robot's dynamic 

model [85]. 
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The popular robust control strategy that is the primary and widely used type of variable structure 

control methodology for linear and nonlinear systems is the sliding mode control (SMC), also 

named Variable Structure Switching (VSS) control [86]. Sliding mode control is a popular robust 

control strategy in robotics that addresses parameter uncertainty and bounded disturbances. SMC 

method is based on the Lyapunov stability theory. It primarily attempts to define the nominal 

feedback control law and a corrective control action that leads the controlled system to the 

expected operation, described as the sliding surface. SMC is qualified to change the system's 

dynamics by applying a high-frequency switching control law even if the system has good 

feedback for nonlinear and discontinuous systems [87]. Many researchers have utilized various 

sliding mode control strategies for nonlinear multi-input and multi output systems. The system's 

stability in sliding mode control will be guaranteed if the matching condition is verified when there 

is uncertainty and external disturbance in the system. The main disadvantage of the SMC is the 

chattering effect on the system problem, which is harmful to actuators leading to low accuracy in 

trajectory tracking and causing wear and heat to the mechanical parts [88]. Many methods to 

reduce or eliminate a system's chattering problem are mainly into two branches: the estimated 

uncertainty method and the boundary layer saturation method. The advantages of SMC controls 

include their robustness concerning unspecified parameter deviations or disturbances once it is in 

the sliding mode. The SMC technique does not need a precise model. On the other hand, there are 

two principal drawbacks to the SMC control. One is the specification of the control law required 

to push the system to the switching surface and the other is the necessity to reduce chattering near 

the switching surface [89- 91]. 

By investigating and studying the research performed in the field of modeling and control 

concerning industrial robot arms in recent years, the present study, for the first time, deals with the 
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different levels of modeling in the field of industrial robots and aims to study the effects of 

simplification on models with different levels in details. The primary purpose of this research is to 

find a confirmation to prove the efficiency and acceptable accuracy of the fundamental modeling 

of a robot arm with fewer computational elements. Because the use of simplified models 

significantly impacts the number of calculations and, as a result, has a direct effect on an essential 

factor as calculation time. 

The computational time for calculating algebraic equations in robotics is not very efficient. 

Another valuable result of this study is that the three models reach nearly the same values for the 

total energy consumption by the robot executing a path of movement over a single time interval, 

suggesting that they all could give acceptable results in different situations. For this reason, using 

a simplified state of the actual model improves and optimizes the calculus process. Its meaningful 

advantage is that it uses only a simplified model, significantly saving computing resources and 

time. This model could guide the development of simulation to be used in control and could also 

inform classical computing theory for robotic arm kinematics and dynamics modeling. 

We compare these models as predictors of torque and energy consumption to analyze the effects 

of simplification in the results and the amount of difference in the final results for torque and 

energy in three different models at different levels of detail, to investigate and substantiate the 

suggestion of employing simplification in robotics calculous for more efficient computational 

time. 

A control module and a robustness controller (SMC) included to minimize the impact of the error 

in the property inputs to the controller. The simulation results show that the sliding mode control 

method is robust and performs satisfactorily even in external disturbances. Sliding mode control 

offers suitable performances for control of robot models with unmodeled disturbances. Generally, 
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the controller results examined on three models (detailed, semi-detailed, and simplified) are close 

with a slight percentage difference. The sliding mode control methodology has an appropriate 

dynamic response and minimum tracking error performance from simulation results. The most 

significant disadvantage of this technique is the chattering phenomenon effect with control input, 

but the overall results for the models are satisfactory. 

We found that these three models yielded graphs of torque and energy consumption with relatively 

minor differences in profile. Energy consumption of the three models evaluates the impact of the 

various designed models, highlighting the suitability and worth of confidence for predicting energy 

consumption by articulated robotic arms for each model in different situations. The overall 

difference in energy consumption of the three models is 0.53% less for the detailed model and 

6.8% less for the simplified model compared to the semi-detailed one. The simulation outcomes 

indicate that the sliding mode control method is robust and performs satisfactorily even in external 

disturbances. Sliding mode control offers suitable performances for controlling robot models with 

unmodeled disturbances. 

In this study, particularly for a  specific industrial articulated robotic arm with six degrees of 

freedom, three different dynamics models, the detailed, semi-detailed, and simplified, will be 

developed. The effects of the three dynamic models will be examined and compared in terms of 

features related to the dynamic model, such as torque and energy consumption. The impact of 

implementing the advanced control technique has been accomplished by determining the proper 

classic sliding mode control to force the system's trajectory to slide along the desired trajectory 

with proper switching controls, which is determined by the equivalent controls method for three 

different models. State-of-the-art advanced control methods, specifically in the robotic field 

presented in Chapter Two, and general design procedures consist of mathematical models and 
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CAO design of the robot to obtain the three different models and system modeling for the design 

and implementation of the SMC controller are summarized and presented in Chapter Three. 

Chapter Four presents an analysis and comparison of the simulation results of the plan. 

Conclusions drawn from this study are presented in Chapter Five. 
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In the recent development in the control, advanced control strategies are well specified for the 

procedures under the effect of parametric uncertainties due to modeling error, nonlinearities, and 

external disturbances. Among the various robust control methods, sliding mode control (SMC) has 

made awareness of the control engineer due to its superiorities. SMC has procreated as a control 

corresponded to other robust control strategies. Its distinct components are insensitive to matched 

uncertainties, reduced order sliding mode equations, zero error convergence of closed loop system, 

and nonlinear control.  

This section illustrates the literature review of SMC development in control technology. The 

development of SMC-based technique with the integration of intelligent control in control 

engineering has been investigated by assuming numerous applications. A general review of some 

well-known nonlinear control methods is presented, followed by a more detailed review of the 

sliding mode control, which concentrates on the work launched to date on reducing the high-

frequency chattering problem and studying nonlinear sliding functions for robotic applications, 

especially on manipulator robots, which will put our research work into context. The following 

subsections present the basics of sliding mode control and concern the SMC implementation in 

different applications like process control, power electronics, and drives, especially Robotics. in 

this literature, the latest outcome of SMC, such as integration of SMC with different control 

techniques and progress in the SMC to make control strategy intelligent have been addressed. 

2.1 General Overview 

Nowadays, the exponential development of numerical computation tools authorizes an efficient 

execution of complex real-time control algorithms. Nonlinear digital controllers are increasingly 

utilized to handle complex systems among these algorithms. Several outcomes of nonlinear 

systems are described in detailed references, particularly in [92-95].Applications concerning these 
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nonlinear regulators are increasingly operated in industry and research. These controllers can also 

contain intelligent algorithms that perform at artificial neural networks [96] or fuzzy logic 

principles [97]. On the other hand, developed control techniques, e.g., fuzzy and neural networks 

and a combination of both is remarkable for concerning non-linear systems and also variable 

robotic manipulator dynamics [98-100]. 

In the classical nonlinear control strategies, feedback linearization control is a well-known 

technique in the scientific literature [94]. This method combines linearizing the system by balance 

and involving classic linear feedback control in the new linearized system. This approach carries 

a distinct form in robotic applications, known as the partitioned law or (computed torque approach) 

[101]. In actual applications, the feedback linearization approach is executed with some parameter 

adaptation methods to drive the robust control of modeling disturbances and uncertainties [102]. 

This technique can be integrated with intelligent strategies to provide robustness [103]. The 

backstepping control approach is another well-known nonlinear approach. This method is 

established on the advanced structure of Lyapunov functions developed from tracking errors 

[104,105]. However, this approach is appropriate for systems with triangular gable configurations, 

and the compiling of the control law evolves more complicated with the high order of the system. 

In scientific literature, this method is usually executed with adaptive techniques and with 

intelligent spectators and state estimators [106,107]. 

In the approaches noted above, sliding mode control remains an attractive nonlinear control 

technique to research, given its simplicity of performance and its natural robustness regarding 

disturbances and modeling uncertainties. Equivalent to previous approaches, sliding mode control 

can combine with intelligent techniques to enhance expected execution [108- 110]. The sliding 

mode control method is a robust control method for the complex higher order nonlinear systems 
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under parametric uncertainties and external effects. The sliding mode function was first emanated 

in variable configuration systems in the 1950s in the former Soviet Union [111 - 113]. 

In the early design phase, the variable structure system could not pay attention to the control field. 

The performance complexity, precisely the chattering problems with sensors, actuators, and 

switching systems. But there are some critical benefits to this method as it adjusts the system's 

dynamic conduct by choosing a suitable switching function, which creates the closed loop response 

insensitive to reached uncertainty in the system. Such a valuable component draws attention to the 

researchers for contribution to SMC evolution. In a recent development, SMC design approaches 

to the main issues like the elimination of chattering, the balance of the effect of unformed 

dynamics, adaptability in an uncertain system and enhancement in the dynamic execution of the 

closed loop system. The crucial benefit of selecting an SMC controller over the linear control like 

PID, as SMC supplies presence of stability and robustness execution in multiple uncertain systems 

where PID fails in the issue of an uncertain environment. Presently, sliding mode control (SMC) 

has been executed as the automatic controller for considerable applications like robotics, motion 

control problems, industrial process control, aerospace and power electronics applications [114- 

118]. 

The principal logic of SMC as a control strategy for different applications is due to the more proper 

execution for nonlinear systems, convenience to multiple input/output (MIMO) systems, and 

admits that it applies to discrete-time systems with an adequate strategy [119]. SMC method equips 

the excellent interpretation while negotiating with determinate uncertainties and disturbances and 

unmodeled dynamics [120,121] over the other specified techniques like robust adaptive control 

[122], H infinity control [123], and backstepping control [124]. The primary phase in developing 

the SMC is to set the switching function, which systems state on a sliding surface. After that, the 
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choice of proper control law makes system states on the sliding manifold in internal and external 

disturbances/uncertainties. However, the fundamental structure of the SMC is at the origin of the 

phenomenon of chattering under control [125]. Thus it is not appropriate in the actual procedure. 

The chattering appeared in some researchers then handled control, and there was a method named 

second order sliding. The refined classic SMC grew up in the 1980s when the “second order 

sliding” concept was presented [126]. Then in the following step of the evolution of SMC in the 

2000s, higher order conceptions were acquired attention largely [127]. 

The need for evolution in the classic algorithm is due to the restrictions like the basic setup needs 

a relative degree of the system to be equal to the sliding variable. In addition, it makes it difficult 

to compensate for the high frequency switching control signal [128,129]. In advanced control, 

digital computers and microcontrollers increase due to digital control performance, and the 

algorithm is more efficient than analog methods. The first tries were taken for a discrete system 

variable control system in Russia in 1967. Regardless, the discrete-time sliding model was 

presented by Drakunov and Utkin firstly in control literature [130]. In the mid of 80s, the discrete 

sliding different researchers caused mode-control attention. [102,118,131-138] because of the 

switching-based control law and the absence of a switching function in the control law. One 

significant altercation with the classical SMC is that the system states it carries infinite time to 

reach stability. The researchers had the new inspiration to improve the system's performance in 

scrolling mode, and the system should reach equilibrium in a finite time. The new control name 

was terminal sliding mode control (TSMC) [139]. Despite the benefit of TSMC but system states 

take time to achieve stability if the initial condition is far away from the origin. Therefore the new 

evolved control algorithm as non-singular terminal sliding mode control (NTSMC) was emanated 

[140–142].  
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SMC execution is feasible nowadays in the rising technological world hence there are numerous 

applications encountered in the literature. Improvement in advanced control in the current decade 

has grown, and due to this, the usage of intelligent computers has attracted considerable attention. 

The feasibility of undertaking intricate control algorithms are achievable because of high-speed 

computers. Manipulator robots are used in various sectors in factories, surgery, laser cutting, 

painting, picking and positioning, warehouse storage, assembly, welding, etc., has attained 

comprehensive significance. The dynamics of the manipulator system are influenced by parametric 

uncertainties, nonlinearity, strong dynamic coupling and variable temporal structures [143]. SMC 

is beneficial in its elaborate set of features, and various SMC configurations have been used for 

industrial robot manipulators [144]. One class of nonlinear systems is under-actuated systems 

established in robotics and control theory with different fields of industry. The control of an under-

actuated system is challenging because the system has a lower number of actuators than the number 

of variables to be controlled. The robustness is the exceptional point in controlling under-actuated 

systems, and SMC has been capable of controlling the under-actuated system with the influence 

of structured and unstructured uncertainties [145 -147]. 

 

2.2 Sliding Modes Control (SMC) 

Sliding modes to control possibility came from later work on irregular structure systems [148]. 

Theoretically, it is handled by a control method that controls closed loop dynamical behavior 

corresponds to a sliding surface. Closed loop behavior is designed by selecting slide surfaces 

because closed-loop system dynamics elements control the whole system's behavior. The sliding 

surface can be illustrated as relation (1):  
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𝑠 = 𝑒̇ + 𝜆𝑒 = 0 ;  𝜆 > 0                                                                                                   (1) 

Where trajectory error is indicated by e, exponential error convergence as (2): 

𝑦̈ =  𝑓(𝑦) + 𝑢                                                                                                                   (2) 

The system state y; u, the control law is presented as (3):  

𝑢 = 𝑢0 = −𝑓 + 𝑦̈𝑑 − 𝜆𝑒̇                                                                                                  (3) 

Outcomes in 𝑠̇ = 0 are, System converges exponentially for zero initial state s(𝑡0). The closed loop 

dynamics of the System are converged towards the sliding surface by adding a discontinuous term 

as 𝑘. 𝑠𝑔𝑛(𝑠) in control u0 for k > 0. At s = 0, the System will reach the sliding surface in finite 

time. An estimation on 𝑓, 𝑓 is available in the presence of parametric uncertainties, then the control 

law becomes  𝑢̂= k.Sgn(s) + u  therefore, 

𝑢 = −𝑓 + 𝑦̈𝑑 − 𝜆𝑒̇ − 𝑘 𝑠𝑔𝑛(𝑠) 

that creates,  

 𝑠̇ = 𝑓 − 𝑓  − 𝑘 𝑠𝑔𝑛(𝑠)                                                                                                 (4) 

It will be  possible to obtain the Lyapunov stability and convergence to sliding surface by selecting 

k > || 𝑓 − 𝑓|| [149].The classic SMC can provide an exponential stability with entire details about 

the system and also it delivers asymptotic stability of the system under the effect of uncertainties. 

Terminal types of the SMC, TSMC and NTSMC are referenced to increase convergence properties 

of dynamical systems. Method focused on controlling robust robot functions in unstructured 

situations. Terminal sliding mode controller and fast finite time SMC modified types of classic 

SMC enforce finite time closed-loop convergence to equilibrium and convergence of tracking error 
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to zero [150]. The authors indicate that terminal sliders provide robustness to parametric 

uncertainty without recourse to high frequency switching control similar to conventional sliders. 

The concept of terminally sliding surfaces developed control synthesis of non-linear systems [151]. 

Most of the study papers on sliding mode control focus on two critical topics, chattering reduction 

on the control input and the study of nonlinear sliding manifolds. The chattering phenomenon 

originated from a discontinuous term in the control input, whose intent to absorb disturbances and 

matched or unmatched uncertainties and improve the control's robustness [152].The problem with 

chattering is that it implements the control input uncontrolled high-frequency commutations with 

very physical features or excite high-frequency dynamics on the closed loop system. Research 

endeavors on this subject have attempted to treat or prevent chattering while compromising on or 

keeping the identical level of robustness [153]. 

 

2.3 SMC For Robotic Manipulator Arms 

It facilitated a specific method for developing a passivity-based terminal dynamic sliding mode 

control that ensures global finite time convergence for robot manipulators [154]. A new form of 

chatter-free sliding PID control regulation for continuous mechanical plants, which guarantees 

exponential convergence, is considered by Vicente et al. [19]. Regulated a non-linear integral 

control input for inertial and gravity dynamics, while proportional plus derivative control includes 

a closed-loop system trajectory stabilizer. A decentralized system model-free controller provides 

better performance than a model-based adaptive controller with or without finite-time 

convergence. A smooth sliding mode control and primary approach for a flexible joint robotic 

manipulator with constrained motion and force control presented by Huang et al. [7]. Few 
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components of reduced dynamics of constrained robots have been worked upon to zero the motion 

and tracking errors. It facilitated a specific method in [155] for developing a passivity-based 

terminal dynamic sliding mode control that ensures global finite time convergence for robot 

manipulators. In robotics, the terminal sliding mode control is an attractive approach. TSMC 

provides a more significant convergence accuracy to the robot's motion [156- 158]. A new terminal 

sliding mode for the control technique of a specific robotic manipulator dependent on finite time 

and differential stability theory principle of inequality with the support of the model-based method 

for robotic manipulators in mind, the TSMC approach to controlling robots was analyzed by Liu 

et al. [16]. The stability control of two flexible link manipulators investigated the subject of non-

minimum phase problems and complicated dynamics and consequently suggested an optimized 

continuous non-singular terminal SMC control strategy. A recommended continuous control 

integrated with a genetic algorithm guarantees stability and quick convergence discussed by Wang 

and Sun [8].A four-linked SCARA robot manipulator with uncertain parameters contains a 

nonsingular-terminal sliding mode control presented to correspond to the efficiency of SMC 

strategy by Shankar J et al. [5]. Model-based proportional derivative and feedforward controller is 

also molded and employed to control the motion of a SCARA robot with high tracking precision. 

Studied a changeable fractional order for terminal sliding mode controller structured for handling 

robot manipulators with external disturbances and uncertainties by Nojavanzadeh and 

Badamchizadeh [159]. Lyapunov stability theorem demonstrates that adaptive control is utilized 

to evaluate the upper limit of uncertainties and stability of a closed loop system. The purpose of 

tracking in finite time is achieved. Razzaghian et al. [160] investigated the practical tracking 

control design of robot manipulators via continuous fractional order NTSMC according to time 

delay analysis. Time delay analysis applied to counterbalance unknown dynamics of robot 
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manipulators provoking a model-free structure and suggested controller can perform finite time 

stability in both achieving step and sliding phase prompting to control execution better as 

corresponded to using the boundary layer strategy. The research study of Zhu et al. [161] explored 

a terminal sliding mode control for the constant Markovian jumping manipulator systems, and 

numerical analysis is noted to define the practicality of the theoretical outcomes and also be able 

to guarantee the manipulator to track the excellent trajectory. Another method for the position 

analysis of the robotic manipulators presented in [162], in universal Extended Kalman Filter 

principles, which has a more reasonable outcome than classic Extended Kalman Filter in terms of 

convergence speed, robustness, and measure accuracy. Moreover, the position of each joint is set 

to use in a non-singular Fast TSMC.Therefore, using non-singular fast TSMC maintains finite time 

convergence and does not include the singularity problem of terminal sliding mode will be a better 

key for the preferred trajectory tracking of robotic manipulators. A finite time continuous terminal 

sliding mode controller with concern with respect to a Stewart platform which was planned to 

counterbalance for time varying external disturbances, model-free dynamics has shown by Luong 

et al. [163]. The simulation influences occurred with good tracking control results with evolution 

in model elements and time varying external disturbances and also, parametric investigation on 

developing parameters for the controller noted as future work. 

Rsetam et al. [164] analyze the control motion of a single link flexible joint two Degree of freedom 

robot, a nonlinear and under-actuated fourth order system, employed hierarchical NTSMC. Based 

on the nature of the mechanism, a two-fold disintegration of the system is into rigid and flexible 

sub systems, respectively. The Lyapunov theorem is utilized to derive the presented control, 

qualified to stabilize both sub-systems in a finite time. Rapid multiple terminals switched sliding 

mode control techniques for robot manipulators having the effects of global high-speed 
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convergence delivering global non-singularity studied in [165]. Si et al. [14] facilitated the 

dynamic model of the two-link flexible manipulator with payload employing the Euler Lagrange 

equation. A fast NTSMC was suggested for the trajectory tracking problem of the two-link flexible 

manipulator. A substantial relative movement control in the multi robotic system with a specific 

approach named artificial potential field method for path planning, rapid adaptive gain NTSMC 

strategy for developing a robust controller has been offered by Nair et al. [166]. 

A robust nonlinear control approach with an uncertainty analyzer is used to track position within 

the robot's workspace to a cinematically redundant mobile manipulator with four degrees-of-

freedom robotic arm mounted on three mobile bases examined by Mishra et al. [6]. It combines a 

decentralized PID control law for feedback part to raise the stability of the entire system, which 

improves performance temporary, a feedforward compensation used to support the control 

assignment by contrasting the results of known dissimilarities from recalled reference acceleration. 

This method provided no limit on the control design for lumped disturbances and mentioned can 

be improved for fast varying lumped disturbances in future work. 

The design of adaptive control strategies for the robot, manipulators have been a practical field of 

research in recent decades.  Energy-based views of organizing a robust adaptive control technique 

for robotic manipulators [167]. Using adaptive sliding control technique to balance supposed 

dynamics of the model and to overcome unmodeled dynamics achieved. 

A PID fast terminal sliding mode dynamic inverse control technique for a mobile robots to balance 

nonlinear and non-holonomic effects for trajectory tracking of dynamic established by Mallem et 

al. [168]. The terminal sliding mode control technique is implemented to guarantee the finite time 

convergence of tracking errors. 
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A constructive fault tolerant control approach for an uncertain non-holonomic scheme employs 

the minimum dilation degree and auxiliary states transformation proposed in [169], a constructive 

terminal slide technique. Non-holonomic systems face the problem of being subject to non-

integrable conditions whose behavior should yield with limitations. The robot parking problem 

describes the efficiency of operating the standard non-holonomic designs with a control strategy. 

A hierarchical fast terminal sliding mode control approach, trained by Zheng et al. [170] based on 

the sliding-mode control methods' features. The control strategy efficiently maintains two wheeled 

robots counterbalanced, and tracks expected momentum by further studies per intensive sample 

outcome. Simultaneously, the control strategy avoided decreasing shaking through rough terrain 

and expected weather. Asif et al. [18] presented a terminal sliding mode control suggested the 

configuration of a control law for trajectory tracking non-holonomic mobile robots eliminate the 

chattering phenomenon and provide stability by utilizing the Lyapunov theory controlled by 

velocity inputs that enforce kinematic configurations. Khoo et al. [171] described the integral 

terminal sliding mode obliging control of multi-robot networks that supply finite time convergence 

for a first-order non-linear system with applied disturbances. The control mode used for 

collaborative consensus control of 2 degrees of freedom first ordered specific types of mobile 

robots. It demonstrated that finite-time consensus tracking of multi-robot networks could be 

achieved on sliding surfaces. Henghua et al. [172] suggested an NTSM control for position 

identification and synchronizing of multiple manipulator configurations. A limited time reaching 

law improves the cumulating rate and  chattering avoidance. It delivers a steady state of NTSM 

with the existence of external disturbances. Multiple adaptive terminals sliding mode configuration 

with outcome recurring fuzzy wavelet neural networks provided for a set of networked 

heterogeneous  multi-directional robots are given by Wu et al. [173]. Results of succeeding control 
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methods were confirmed via simulations. The studied technique would be an attractive case for 

research to perform experiments to validate the usefulness of the proposed approach and consider 

collision. The integral terminal sliding mode considers the adaptive synchronization control 

system for multiple robotic manipulators with actuator saturation combined by Dongya et al. [174]. 

Limited time stability is studied by considering Lyapunov theory, and simulation results have 

presented the methods' efficacy. A design of robust adaptive controller for parallel manipulators, 

on sliding mode a model-based adaptive control proposed by Bennehar et al. [175]. The adaption 

loop corresponds to the model-based control loop's varying time state and unspecified components. 

To estimate the efficacy of the studied controller, some practical investigations are performed on 

4 DoF parallel robots. The train results have indicated enhanced tracking performance of the 

instructed controller. Future work suggested applying the proposed controller on redundantly 

actuated parallel manipulators with different internal joint forces. Illustrated a stable, adaptive, and 

rapid control strategy for controlling the n-DOF robotic manipulator in [176].The strategy for 

controlling was a Combination of multiple terminal sliding mode controllers and radial base neural 

networks to avoid modeling problems that ensure the robust performance of the robot, eliminate 

the chattering phenomenon, and enhance control performance. A control dysfunction in the 

application studied by Jun et al. [9] for a specific 6-DOF wire manipulated parallel robot (WD-

PR).kinematic and dynamic equations for the wire parallel wired robot presented entirely, 

matching control law is developed by NTSM, continuous NTSM and stability estimation is 

considered by Lyapunov theory. 

Much less work is currently in the literature regarding the study of nonlinear sliding functions 

among the research on the reduction or elimination of chattering in sliding mode control. Between 

the analysis of nonlinear functions, research on Terminal Sliding Mode Control (TSMC) on 
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nonlinear sliding functions is developed to provide a fast convergence of the tracking error in a 

finite time in [9-13]. An investigated sliding functions with the variation of the parameters over 

time to enhance the control's robustness and quick convergence presented by Choi et al [17].  

 

2.4 Control Of Chattering Levels 

The major issue of sliding mode control is the high-frequency chattering phenomenon occurring 

on the control signals during the execution of this control system. Chattering is generated by an 

unsteady term contained in the sliding mode control law. In a numerical implementation, the 

commutations made by the discontinuous period do not appear instantaneously, leading to 

Chattering.  

A specific method to decrease chattering is to smoothen the discontinuous term using a saturation 

function. This technique is named the boundary layer approach [94]. The drawback of the approach 

is that the robustness of the control is decreased, and the system stays within a boundary of the 

sliding manifold. A nonlinear reaching law reduces the discontinuous gain and thus chattering 

when the sliding manifold is contacted, studied in [20,21]. 

Another method to reduce chattering consists of increasing the order of the system explored by 

Laghrouche et al. [177]. That is known as higher order sliding mode control (HOSM). A particular 

case of HOSM is second-order sliding mode control. Different applications of second order sliding 

mode control were proposed in many studies [177-187]. Nevertheless, the disadvantage of HOSM 

method is that the stability verifications are primarily based on geometrical forms. To handle this 

issue, Moreno and Osorio presented a Lyapunov-based technique for examining the stability of a 
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specific class of a second order sliding mode controller, named the super-twisting sliding mode 

controller (STSMC) [15]. 

The study of nonlinear sliding manifolds concentrates on two different goals, enhancing the 

transient impacts on the control input. Second, it provides a finite convergence time of the sliding 

system on the manifold, which is not met by the classic linear manifold design. use of sliding 

functions with time-varying parameters to enhance robustness and transient behavior of the control 

input explored by Choi et al. [17] and Stepanenko and Su [188]. Nowadays, the research focuses 

on terminal sliding mode control, where nonlinear sliding functions are designed to guarantee a 

fast and finite convergence time on the sliding surface [189-195]. 

The other chattering component is that the sliding surface is never exactly achieved in training. 

Chattering is typically disfavored because it can exhilarate unwanted dynamics in the mechanism. 

Nevertheless, in specific applications, for example, in power electronics, Chattering does not 

necessarily negatively affect as indicated by Slotine and Li [94]. 

In the scientific literature concerning sliding mode control, the primary research principle aims to 

reduce and eliminate the chattering phenomenon on the control inputs. Multiple techniques have 

been generated to prevent or stop chattering. in the best-known method, a methodology of 

softening the discontinuous term in the control law consists in replacing the periodical term of the 

control law 𝑘𝑠𝑔𝑛(𝑆) with the term 𝑘 · 𝑠𝑎𝑡 (𝑆/Φ) [94]. The sat function is described as follows : 

𝑠𝑎𝑡 (
𝑠

Φ
) = {

1 𝑓𝑜𝑟 
𝑠

Φ
 > 1 

𝑠

Φ
 𝑓𝑜𝑟 − 1 ≤

𝑠

Φ
 ≤ 1

−1 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                                                                  (5) 

With this method, chattering on the control input is eliminated. Regardless, the convergence of the 

error stays in residents of the sliding surface. The amplitude is straight conditional on the selected 
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value of Φ. Tracking performance is consequently influenced. Other functions that correspond to 

the (sign) function are also proposed and examined in the literature, such as using a sigmoid 

function instead of the sign function [196]. 

Another method used by considerable researchers is increasing the degree of the sliding functions 

from one to a specific degree. Utilizing the virtual time derivative order of the control law proposed 

by [22]. Choosing discontinuous time derivative, then the actual control law is formed by a series 

of integrals with continuous nature, guarantees proven chattering avoidance by the mentioned 

technique. This technique has been used by Hamerlain et al. on a typical robot trajectory tracking 

[23]. 

Focused on the second order to avoid chattering on the control input studied in [197,198]. 

Nevertheless, higher order sliding mode control requires forming a new sliding surface, which 

means the demand for studies. A typical approach of this method used only for sliding functions 

with second order is known as Super-Twisting, presented by Moreno and Osorio [15].  This 

approach provided eliminates chattering without having to use derivative sliding surface terms in 

the expression of the control law. 

Reducing chattering with Different methods suggested in literature consists of modifying the 

conventional reaching law. A nonlinear reaching law permits a dynamic adaption to the control 

law with the variation of the sliding function organized by Alattas et al [199]. Therefore, the 

addition of the state vector from the sliding surface, the greater this gain is and tends to get the 

vector back to the surface. Thus, it is theoretically possible to decrease high-frequency switching 

in a steady state without concerning the convergence time or system tracking error. Two potential 

reaching laws to eliminate chattering were studied in [200].The first reaching law includes a term 

proportional in the sliding function to enable the system to reach the sliding surface quickly if far 
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from the surface. Also, the proportional representation decreases the effort needed by the 

discontinuity of sign function sgn(s), and hence enables the reduction of the chattering levels on 

the control input step. This reaching law is shown by : 

𝑆̇ =  −𝑘. 𝑠𝑔𝑛(𝑠) − 𝑄. 𝑠  (Q is the terms of equation determined by finite amount and time)  (6) 

The second suggested reaching law involved a fractional power of the sliding function that 

multiplies the sign of this one. The proposed reaching law function demonstrates that the reaching 

law generates a finite reaching time of the sliding surface if the term of alpha is real and between 

zero and one. The proposed reaching law function is presented as follows: 

𝑆̇ =  −𝑘. |𝑠|𝛼𝑠𝑔𝑛(𝑠)                   (0 ≤ 𝛼 ≤ 1)                                                                          (7) 

Due to technological advances and the development of intelligent computers, the implementation 

of the advanced control algorithm is possible. The growth of advanced control algorithms, 

particularly the sliding mode control, is considered due to the competence and ease of 

implementation of linear and nonlinear systems. In this survey, general application areas of the 

SMC control, especially robotic applications, are considered. The different configurations of SMC 

methods for those applications have been studied. The generation of SMC controlling techniques 

with a robotic application point of view, such as second order sliding mode controllers, super 

twisting controllers, and arbitrary order sliding mode controllers, are explained. Also, the 

improvement of the SMC control method with the integration of other techniques was 

concerned.Recent advancements in the SMC control state that integrating and combining the 

different intelligent techniques with the SMC control strategy is the next step in sliding model-

based control strategies. The adaptive and intelligent method based on the SMC strategy has 
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developed and is much more effective in uncertain systems with the effect of structured and 

unstructured uncertainty. 

Sliding mode control remains an attractive nonlinear control technique to research, given its 

simplicity of performance and its natural robustness regarding disturbances and modeling 

uncertainties. Equivalent to previous approaches, sliding mode control can combine with 

intelligent techniques to enhance expected execution. The sliding mode control method is a robust 

control method for the complex higher order nonlinear systems under parametric uncertainties and 

external effects. Presently, sliding mode control (SMC) has been executed as the automatic 

controller for considerable applications like robotics, motion control problems, industrial process 

control, aerospace and power electronics applications. SMC method equips the excellent 

interpretation while negotiating with determinate uncertainties and disturbances and unmodeled 

dynamics over the other specified techniques like robust adaptive control, H infinity control, and 

backstepping control. 

Classic SMC grew up when the “second order sliding” concept was presented. Then in the 

following higher order conceptions were acquired attention largely. One significant altercation 

with the classical SMC is that the system states it carries infinite time to reach stability. terminal 

sliding mode control (TSMC) had the new inspiration to improve the system's performance in 

scrolling mode, and the system due to reach equilibrium in a finite time.because of in TSMC 

execution, system states take time to achieve stability if the initial condition is far away from the 

origin. Therefore the new evolved control algorithm as non-singular terminal sliding mode control 

(NTSMC) was emanated. Terminal types of the SMC, TSMC and NTSMC are referenced to 

increase convergence properties of dynamical systems. Method focused on controlling robust 

robot functions in unstructured situations. Terminal sliding mode controller and also fast finite 
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time SMC as another strategy, modified types of classic SMC enforce finite time closed-loop 

convergence to equilibrium and convergence of tracking error to zero. 

Improvement in advanced control in the current decade has grown, specially in Manipulator robots 

that are used in various sectors. The dynamics of the manipulator system are influenced by 

parametric uncertainties, nonlinearity, strong dynamic coupling and variable temporal structures 

because of the SMC is beneficial in its elaborate set of features, and various SMC configurations 

have been used for industrial robot manipulators most of the study papers on sliding mode control 

focus on two critical topics, chattering reduction on the control input and the study of nonlinear 

sliding manifolds. 

Table 1 demonstrates a comprehensive classification of the methods selected in the literature 

reviewed in this the researchers' level of interest, and the mechanisms chosen for research in the 

field of sliding mode control. In general, different types of sliding mode control in the latest works 

in control of robotics are exciting and significant for researchers and the overall effort for the 

research conducted on the control of manipulator arms using sliding mode control indicates the 

effectiveness of this control method. The quality of the performance of this method in different 

forms for manipulator robotic arms shows the acceptable results and the capability of this control 

method. Among the forms of the sliding mode control method, the terminal sliding mode control 

method has received more attention from researchers. Significant convergence time and finite time 

convergence are the reasons for choosing the TSMC model in the sliding control. On the other side 

in the literature review, it can be concluded that other forms of sliding mode control, such as the 

classical form of the SMC and non-singular terminal SMC control , provide acceptable results and 

using the both methods has great interest to research. Table 1 also shows that most researchers 
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have used the classical form of the sliding mode control method to evaluate the performance and 

quality of the sliding mode control method. 

Table 1: Classification of the SMC methods. 

 
Method 

 
Mechanism 

 
Subjects/Target 

 
 

 
Classical Sliding 

control 
 
 

 
- Flexible joint robotic manipulator [7] 
- 3 DOF Manipulator [19][17] 
- 6 DOF  Manipulator [165][167][173] 
- 4 DOF Manipulator [6][175] 
- Parallel manipulator [176] 
 

 
- Compare model free/based adaptive controller [7] 
- Finite time convergence [19][17] 
- Track the trajectory [165][6] 
- Investigate efficiency of SMC strategy [167][173][175][176] 
 

 
 
 

Terminal sliding 
mode control 

 

 
- 3 DOF Manipulator [155] 
- 6 DOF  Manipulator 
 [156-158][163][171][9] 
- 4 DOF Manipulator [16][10] 
- SCARA robot [159][11-13] 
- Parallel manipulator [174] 
- Markovian manipulator systems [161] 
- Mobile robot [168][169][170][18] 
 

 
- Significant convergence time [155-158] 
- Examine differential stability theory [16][174] 
- Studied handling with external disturbances [159] 
- Track the trajectory [161][163][169][170][171] 
- Finite time convergence [168][18][10-13] 
- Investigate efficiency of SMC strategy [9] 

 
 

Non-singular 
terminal SMC 

control 
 

 
- Two flexible link manipulators [8][14][166] 
- SCARA robot [5] 
- 6 DOF Manipulators [160][162][172] 
- Single link flexible joint [164] 
 

 
- TSMC with a genetic algorithm guarantees convergence time[8] 
- Investigate efficiency of SMC strategy [5] 
- Finite time convergence [160] 
- Track the trajectory [162][164][14][166][172] 
 

 

Another significant issue that attracts attention in the literature review and latest works related to 

sliding mode control is the combination of each form of sliding mode control with specific 

mathematical functions to control the chattering phenomenon. These functions are used in the part 

of the control law function. Among the essential methods of interest to researchers, we can mention 

the boundary layer approach, nonlinear reaching law, high order sliding mode control (second-

order), and super twisting sliding mode. In general, in the literature review, it can be found that 

the mentioned methods have an acceptable ability to solve the chattering phenomenon in the 

sliding mode control method. 



 

46 
 

 

 

 

 

 

 

Chapter Three 
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3.1. Robotic-arm presentation 

The robot considered in this study is the ABB IRB 140 (M2004), shown in Figure 5. Its 6-axis 

articulated structure is one of the most widely used in many industrial fields.  

 

Figure 5: The ABB IRB 140 robot located in the UQTR automation laboratory. 

 

According to the ABB technical documentation [201], this industrial robot can be mounted on the 

floor or a wall at any angle and even inverted for a wide variety of working ranges. It is used 
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mainly for arc welding, assembly, cleaning/spraying, machine tending, material handling, packing, 

and deburring. It weighs about 98 kg with an end effector weighing up to 5 kg, including a payload 

with a reach of about 810 mm that can be mounted on its mounting flange. Up to 1.5 kg of 

equipment can be mounted on its upper arm. Its joint limits allow ample functional workspace 

duty. These are summarized in Table 2 [201]. 

Table 2: Joint limits of the ABB IRB 140 robot. 

Joint Type Limits (  ) 

1 Rotational +180 to -180 

2 Rotational +110 to -90 

3 Rotational +50 to -230 

4 Rotational +200 to -200 

5 Rotational +120 to -120 

6 Rotational +400 to -400 

 

The manipulator includes the IRC5 controller [202], a multi-robot controller with PC tool support 

that optimizes robot performance for short cycle times and precise movements, and RobotWare 

(Robot Studio), which allows ABB robot programming on a PC without shutting down production. 

A program can be built on the ABB Virtual Controller, an exact copy of the software that runs 

robots in production. Robot Studio allows very realistic simulations to be performed using simple 

robot programs and configuration files identical to those used in the field. 
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3.2. Robot models 

3.2.1. Forward and inverse kinematics 

3.2.1.1. Forward kinematics 

The purpose of the forward kinematics model is to determine the position and orientation of the 

robot end-effector as a function of joint angle and displacement relative to the base frame or other 

reference. To achieve this mathematically, a global coordinate frame must be assigned to the base 

frame and a local reference frame given to each joint [203-205]. Homogeneous transformation 4×4 

matrices are then computed for the robot joint axes using a formalism such as D-H (Denavit-

Hartenberg) to define and interpret robot spatial geometry and end-effector location in a fixed 

reference system [205]. Figure 6 shows the D-H parameter and link assignments for a rotational 

joint. 

 

 

 

 

 

 

 

 

Figure 6: D-H parameters and link assignments for a rotational joint. 
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The kinematic function thus maintains a fixed relationship between the two successive joint axes 

it supports. This relationship can be defined using two parameters: link length a and link twist α. 

Link offset d and joint angle θ are used to describe the nature of the connection between adjacent 

links [204]. 

 

The D-H parameters can be defined as follows: 

αi - 1: Twist angle between joint axes zi and zi - 1 measured about xi - 1 

ai - 1: Distance between joint axes zi and zi - 1 measured along the standard normal 

θi: Joint angle between joint axes xi and xi - 1 calculated about zi 

di: Link offset between axes xi and xi -1 measured along zi 

 

The four transformations between the two axes can be defined as follows: 

i-1
i 1 1 1 1T = Rot( , ) ( , ) Rot( , ) (0,0, )i i i i i i ix Trans x a z Trans d− − − −      (8) 

As indicated in relation (1)  𝑇𝑖
𝑖−1   is the homogeneous transformation matrix, Rot (𝑥𝑖−1, 𝛼𝑖−1) is 

rotation around an axis 𝑥 by the Trans (𝑥𝑖−1, 𝑎𝑖−1) is the transfer along axis x to the value of the 

𝑎, Rot (𝑧𝑖, 𝜃𝑖) is rotation around axis z by the 𝜃, Trans (0,0,𝑑𝑖) is the transfer along axis z to the 

value of the d. 
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Therefore, the following homogeneous transformation matrix can be obtained: 

i i

i i-1 i i-1 i-1 i-1

i i-1 i i-1 i-1 i-1

θ θ i-1

θ α θ α α i αi-1
i

θ α θ α α i α

c s 0 a
s c c c s d s

T = s s c s c d c
0 0 0 1

− 
 

− − 
 
 
 
 

 (9) 

Where c and s indicate the cosine and sine of angles θi and αi. 

 

3.2.1.2. Inverse kinematics 

The inverse kinematics model is used to calculate the joint values and hence the collective joint 

configuration corresponding to the desired pose of the end effector. In a reference coordinate 

system, the variables representing each joint may be determined according to the location 

requirements of the manipulator end [206]. The first three joints proximal to the base frame of the 

IRB 140 determine the end-effector position and the remaining three determine effector orientation 

[205]. The inverse kinematics problem can be solved using analytical or numerical methods [207, 

208]. Analytical solutions of joint variables are based on configuration data. Since a given end-

effector position may be reached via multiple joint configurations, multiple values for each joint 

may be obtained as solutions. Figure 7 shows different configurations for the proximal joints. The 

primary joints determine the position of the end-effector [209]. 
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(a)      (b) 

 

 

 

 

 

 

  

                       (c)                                                                                (d) 

Figure 7: Configurations of the three proximal joints of the IRB 140 manipulator arm, A – Right 

and above; B – Right and below; C – Left and above; D – Left and below. 
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3.2.2. Forward and inverse differential kinematics 

Differential kinematics define the relationship between joint angular velocities and the 

corresponding end-effector linear and angular velocity. The study of velocities and static forces 

leads to the Jacobian matrix of the manipulator, an essential tool for analyzing and controlling 

robotic motion, finding singularities and redundancy, determining inverse kinematics equations, 

and describing velocity and force manipulability ellipsoids [2]. 

A Jacobian matrix is a multidimensional form of the derivative. Depending on the number of joints, 

it can be of any dimension (including non-square). The number of rows in a Jacobian matrix equals 

the number of degrees of freedom in Cartesian space. For example, three if only robot position is 

considered, or six if position and orientation are considered. The number of columns corresponds 

to the number of joints comprising the manipulator. 

Considering the end-effector linear velocity vector  𝑝̇𝑒, the angular velocity vector ωe and the joint 

velocity vector 𝑞̇,  Jp would then be the (3 × n) matrix that links the linear velocity vector to the 

joint speed vector and Jo would be the (3 × n) matrix that links the angular velocity vector to the 

joint speeds vector as expressed in equation (10.1) and (10.2) or in its compact form in equation 

(11) [210]. 

( )e pp J q q=                                                                                                                          (10.1) 

( )e OJ q q =  (10.2) 

e
e

e

p
v = = J(q)qω

 
  
 

     
P

O

J
J = J

 
  
 

   (11) 

𝑣𝑒 presented the End-effector velocity, and  J  indicated The Jacobian matrix. 
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Equation (4) represents the manipulator differential kinematics equation. The (6 × n) matrix J is 

the manipulator geometric Jacobian, a function of the joint variables. Each joint is prismatic with 

linear velocity or revolute with angular velocity. It is convenient to proceed separately for linear 

and angular velocities [210]. The linear velocity-time derivative of pe(q) is expressed in equation 

(12), whereas angular velocity is expressed in equation (13). 

n n
e

e i i i
i=1 i=1i

pp =   q = JP q
q



       i i-1 e i-1JP = z ×(p p )−  (12) 

𝐽𝑃𝑖 position components in the Jacobian matrix 

n n

e n i-1 i i
i=1 i=1

ω = ω = ω , i = JO  q       i i-1JO = z  (13) 

𝐽𝑜𝑖 orientation components in the Jacobian matrix 

The Jacobian matrix can also be partitioned in equation 14 as follows: 

1

n

n

1

JP JP
J = ...

JO JO

 
 
 
 
 

           
i-1

i

i i-1 e i-1

i-1

    for a prismatic joint0

   for a revolute joint.

z
JP

=
JO z ×

... ... ...

... .. .
(p p )
z

. ..

  



 
 

− 

  
 


 
 
 

 (14) 

3.2.2.1. Forward differential kinematics  

The joint angles 𝑞1, 𝑞2, and 𝑞3 define the IRB 140 end-effector position in space, while joint angles 

𝑞4, 𝑞5, and 𝑞6 describe the end-effector orientation. Using the effector velocity (15), tabled D-H 

parameters, and the transformation matrices, the Jacobin matrix will be obtained for the three 

proximal links [210]. 

e
e

e

p
v = = J(q)qω

 
  
 

 (15) 
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The transformation matrix representing the reference frame and end-effector position for an 

articulated robotic arm with six degrees of freedom is defined as follows: 

11 12 13

21 22 230
6

31 32 33

r r r x
r r r y

T = r r r z
0 0 0 1

 
 
 
 
 
 
 

 (16) 

The Jacobian matrix is defined as follows: 

J =(
vJ

wJ
)          (17) 

Such as: 

vJ  The linear velocity 

wJ     The angular velocity 

vJ =  

(

 
 
 
 
 1 2 3

1 2 3

1 2 3

x x x
q q q
y y y
q q q
z z z
q q q

  

  

  

  

  

   )

 
 
 
 
 

  (18) 

Matrix 𝐽𝑤 is obtained from the transformation matrices 𝑇01 , 𝑇02  and 𝑇03 , such that 𝑟13, 𝑟23 and 𝑟33 

in each of the transformation matrixes correspond to, 2
0 Z  and 3

0 Z  

wJ = ( 1
0 Z 2

0 Z 3
0 Z ) (19) 
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𝐽 = (
vJ

wJ
) = 

(

 
 
 
 
 
 
 1 2 3

1 2 3

1 2 3

x x x
q q q
y y y
q q q
z z z
q q q

  

  

  

  

  

  

1
0 Z 2

0 Z 3
0 Z )

 
 
 
 
 
 
 

  (20) 

3.2.2.2. Inverse differential kinematics  

Suppose the relationship between the joint space variable and the orientation space variable is 

highly nonlinear. In that case, the inverse kinematics solution will be redundant and closed-form 

or even non-existent. The inverse kinematics problem begins with the linear mapping of the joint 

velocity space and the operational velocity space using differential equations. Depending on the 

desired end-effector position and orientation, the desired joint velocity can be obtained via simple 

inversion of the Jacobian matrix, which must be invertible. J is square, and its determinant is not 

equal to zero. As mentioned above, the Jacobian matrix can be of any dimension and is not always 

square or invertible. In this case, the pseudo inverse of the generalized inverse can be used, as 

defined in equations (21) and (22) below [210]. 

e
e

e

p
v = = J(q)qω

 
  
 

 (21) 

-1
eq = J (q)v .  (22) 

𝐽−1  inversion of the Jacobian matrix 
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3.2.3. Dynamic model 

A dynamic model allows the expression of robot function in terms of joint acceleration forces and 

torque. The method most used to determine this model is the Euler-Lagrange approach. The model 

of an n-jointed robotic arm can be expressed as in equation 23 [211]: 

n

ij j i i i i
j=1

M q + V +G = Q = τ para i =1,.. 2,. .. .. n. ., .  (23) 

Where 𝑞̈ is the joint acceleration vector, M is the inertia matrix, Vi the Coriolis vector, G is the 

gravitational vector, and 𝜏 is the force and torque vector. 
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3.3. Mathematical models of the robot 

Figure 8 shows the frame assignments, and Table 3 lists the D-H parameters of the ABB IRB 140 

industrial robot, with the global coordinate system shown below [212]:T 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Figure 8: ABB IRB 140 frame assignments. 
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Based on the frame assignment, modified D-H parameters are defined as follows: 

Table 3: DENAVIT-HARTENBERG parameters for the ABB IRB 140 robotic arm. 

 

LINK 

 

a (mm) 

 

α (˚) 

 

d (mm) 

 

q (˚) 

 

1 

 

a1 = 70 

 

-90 

 

d1 = 352 

 

𝑞1 

 

2 

 

a2 = -360 

 

0 

 

0 

 

𝑞2 + 90 

 

3 

 

0 

 

-90 

 

0 

 

𝑞3 

 

4 

 

0 

 

90 

 

d4 = 380 

 

𝑞4 

 

5 

 

0 

 

-90 

 

0 

 

𝑞5 

 

6 

 

0 

 

0 

 

d6 = 65 

 

𝑞6 

 

With D-H parameters, we can achieve the individual transformation matrix for each link by 

substituting the link parameters into the relationship (9), giving: 

 

𝑞2
′ = 2′  = 𝑞2 + 𝜋/2 (24) 
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𝑇0
1 = (

𝐶1 0 −𝑆1 𝑎1. 𝐶1
𝑆1 0 𝐶1 𝑎1. 𝑆1
0 −1 0 𝑑1
0 0 0 1

) (25) 

𝑇1
2 = (

𝐶2 −𝑆2′ 0 −𝑎2. 𝐶2′

𝑆2 𝐶2′ 0 −𝑎2. 𝑆2′

0 0 1 0
0 0 0 1

)  (26) 

𝑇2
3 = (

𝐶3 0 𝑆3 0
𝑆3 0 −𝐶3 0
0 1 0 0
0 0 0 1

) (27) 

𝑇3
4 = (

𝐶4 0 −𝑆4 0
𝑆4 0 𝐶4 0
0 −1 0 𝑑4
0 0 0 1

)  (28) 

𝑇4
5 = (

𝐶5 0 𝑆5 0
𝑆5 0 −𝐶5 0
0 1 0 0
0 0 0 1

) (29) 

𝑇5
6 = (

𝐶6 −𝑆6 0 0
𝑆6 𝐶6 0 0
0 0 1 𝑑6
0 0 0 1

)  (30) 

After obtaining a homogeneous transformation matrix for each link, position and orientation are 

achieved by applying the forward kinematic chain in the global frame. The pose matrix of the end-

effector relative to its base frame is obtained as shown below: 

𝑇6
0 = 𝑇1

0 .  𝑇2
1 .  𝑇.  𝑇. 𝑇.  𝑇6

5
 5
4

4
3

3
2           0

6

r11 r12 r13 x
r21 r22 r23 y

T = r31 r32 r33 z
0 0 0 1

 
 
 
 
 
 
 

                                       (31) 
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Such that: 

𝑟11 = −𝑆6(𝑆4𝐶1𝐶2′3 + 𝐶4𝑆1) − 𝐶6(𝐶5(𝑆1𝑆4 − 𝐶4𝐶1𝐶2′3) + 𝑆5𝐶1𝐶2′3)                          (32.1) 

𝑟12 = 𝑆6(𝐶5(𝑆1𝑆4 − 𝐶4𝐶1𝐶2′3) + 𝑆5𝐶1𝐶2′3) − 𝐶6(𝑆4𝐶1𝐶2′3 + 𝐶4𝑆1)                             (32.2) 

𝑟13 = 𝐶5𝐶1𝑆2′3 − 𝑆5(𝑆1𝑆4 − 𝐶4𝐶1𝐶2′3)                                                                           (32.3) 

𝑟21 = 𝐶6(𝐶5(𝐶4𝑆1𝐶2′3 + 𝐶1𝑆4) − 𝑆5𝑆1𝑆2′3) − 𝑆6(𝑆4𝑆1𝐶2′3 − 𝐶1𝐶4)                             (32.4) 

𝑟22 = −𝑆6(𝐶5(𝐶4𝑆1𝐶2′3 + 𝐶1𝑆4) − 𝑆5𝑆1𝑆2′3) − 𝐶6(𝑆4𝑆1𝐶2′3 − 𝐶1𝐶4)  (32.5) 

𝑟23 = 𝐶5𝑆1𝑆2′3 + 𝑆5(𝐶4𝑆1𝐶2′3 + 𝐶1𝑆4)                                                                           (32.6) 

𝑟31 = −𝐶6(𝑆5𝐶2′3 + 𝐶4𝐶5𝑆2′3) + 𝑆4𝑆6𝑆2′3                                                                     (32.7) 

𝑟32 = 𝐶6𝑆4𝑆2′3 + 𝑆6(𝑆5𝐶2′3 + 𝐶4𝐶5𝑆2′3)                                                                        (32.8) 

𝑟33 = 𝐶5𝐶2′3 − 𝐶4𝑆5𝑆2′3                                                                                                  (32.9)   

 

The X, Y, and Z position coordinates of the IRB140 robot relative to the base frame are computed 

as follows: 

 

𝑋 = 𝐶1𝑎1 + 𝑑6(𝐶5𝐶1𝑆2′3 − 𝑆5(𝑆1𝑆4 − 𝐶4𝐶1𝐶2′3)) + 𝑑4𝐶1𝑆2′3 − 𝐶1𝐶2𝑎2 (33) 

𝑌 = 𝑆1𝑎1 + 𝑑6(𝐶5𝑆1𝑆2′3 − 𝑆5(𝐶4𝑆1𝐶2′3 + 𝐶1𝑆4)) + 𝑑4𝑆1𝑆2′3 − 𝐶2𝑆1𝑎2 (34) 

𝑍 = 𝑑1 + 𝑑4𝐶2′3 + 𝑎2𝑆2 + 𝑑6(𝐶5𝐶2′3 − 𝐶4𝑆5𝑆2′3) (35) 

𝐶𝑖 and 𝑆𝑖 stand for the cosine and sine of the joint angle 𝑞𝑖. 

𝐶𝑖𝑗 and 𝑆𝑖𝑗 stand for the cosine and sine of the sum 𝑞𝑖 + 𝑞𝑗. 



 

62 
 

There are generally two approaches to solving inverse kinematics, analytical and geometrical. The 

Pieper solution is selected in the present case because of its simplicity and ease of implementation. 

For 𝑞1, 𝑞2, and 𝑞3, which define the end-effector position in space, a geometrical approach is 

implemented to determine the joint variables. An analytical solution is then applied to calculate 

angles 𝑞4, 𝑞5, and 𝑞6, which define the end-effector orientation [213]. According to Figure 8, robot 

frame assignments, 0 and 1 have the same x and y axes, having different offsets only in the z-

direction. Therefore, the wrist component projections will be the same on frames 0 and 1 [214, 

215]. To obtain the first joint angle 𝑞1, the arctangent function is used, which gives two solutions: 

𝑞1 = 𝑎𝑡𝑎𝑛2(𝑝𝑦, 𝑝𝑥), 𝑞1′ = 𝜋 + 𝑞1 (two possible answers) (36) 

Since the second and third links are planar, changes in the position vector in the y-axis direction 

only concern q1. The solutions for q2 and q3 are obtained by considering Figure 9: 

 

 

 

 

 

 

 

 

Figure 9: Projection of the second and third links on the x–y plane of the tool center point. 
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The value of 𝑞3 is obtained by applying the cosine law: 

𝑤2 = 𝑏2
2 + 𝑏3

2 − 2𝑏2𝑏3cos (180 − 𝜇) (37) 

𝑏3 = 𝑑4 + 𝑑6 (d6 is the distance from joint 6 to the tool center point) 

𝑏2 = 𝑎2 (38) 

𝑤2 = ℎ2 + 𝑘2 (39) 

𝑐𝑜𝑠 (180 − 𝜇) = − 𝑐𝑜𝑠 (𝜇) (40) 

ℎ2 + 𝑘2 = 𝑎2
2 + (𝑑4 + 𝑑6)

2 + 2𝑎2(𝑑4 + 𝑑6)cos (𝜇)  (41) 

cos (𝜇) = ℎ2 + 𝑘2 − 𝑎2
2 − (𝑑4 + 𝑑6)

2/2𝑎2(𝑑4 + 𝑑6) (42) 

The values of h and k in terms of the tool center point (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) and 𝑞1 are as follows: 

ℎ = 𝑝𝑧 − 𝑑1 (43) 

𝑘 =  [(𝑝𝑧 − 𝑎1cos (𝑞1))
2

−
+ + (𝑝𝑦 − 𝑎1sin (𝑞1))

2] 
1
2⁄  (44) 

cos(𝜇) = (𝑝𝑧 − 𝑑1) 
2 + (𝑝𝑥 − 𝑎1cos (𝑞1))

2 + (𝑝𝑦 − 𝑎1sin (𝑞1))
2 − 𝑎2

2 − (𝑑4 + 𝑑6)
2/2𝑎2(𝑑4 +

𝑑6) (45) 

sin(𝜇) =  ( 1 − 𝑐𝑜𝑠2 (𝜇))
1
2⁄−

+  (46) 

𝜇 = 𝑎𝑡𝑎𝑛2(sin 𝜇  cos 𝜇) (47) 

Finally, 𝑞3 = − (
𝜋

2
+  𝜇) rotation occurs in the opposite direction (four possible answers). 

Using similar trigonometric relationships to solve 𝑞2: 

𝑞2 = 𝛽 − 𝛿 (48) 
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𝛽 = 𝑎𝑡𝑎𝑛2(ℎ, 𝑘) (49)  

𝛿 = 𝑎𝑡𝑎𝑛2((𝑑4 + 𝑑6)𝑠𝑖𝑛𝜇 , 𝑎2 + (𝑑4 + 𝑑6)𝑐𝑜𝑠𝜇) (50) 

𝑞2 = 𝑎𝑡𝑎𝑛2(ℎ, 𝑘) − 𝑎𝑡𝑎𝑛2((𝑑4 + 𝑑6)𝑠𝑖𝑛𝜇 , 𝑎2 + (𝑑4 + 𝑑6)𝑐𝑜𝑠𝜇) (51) 

Substituting the values of h and k gives: 

𝑞2 = 𝑎𝑡𝑎𝑛2[(𝑝𝑧 − 𝑑1), 1),  ((𝑝𝑧 − 𝑎1cos (𝑞1))
2

−
+ + (𝑝𝑦 − 𝑎1sin (𝑞1))

2] 
1
2⁄ − 𝑎𝑡𝑎𝑛2((𝑑4 +

𝑑6)𝑠𝑖𝑛𝜇, 𝑎2 + (𝑑4 + 𝑑6)𝑐𝑜𝑠𝜇) (52) 

 

𝑞2 = − ((𝛽 − 𝛿) −
𝜋

2
 ) (eight possible answers) (53) 

Joint angles q4, q5, and q6, corresponding to the wrist section of the manipulator, define the 

orientation of the end effector. Euler's formula determines these angles in the following inverse 

kinematics solution. We need a transformation matrix ( 3
6 R ) between joints 3 and 6. 

The Z-Y-X Euler rotation will take an axis whose location depends on the previous rotation. 

Furthermore, we must describe this tool’s frame rotation relative to the global frame. The Euler 

angles and their corresponding equations are given below [204]. 

 

 

 

 

Figure 10: Z-Y-X Euler rotations of the distal joints. 
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For final rotation  

0
6 ' ' ' z y xz y x
R = R = R (α) R (β) R (γ)  (54.1) 

α α β β
0
6 α α γ γ

β β γ γ

c s 0 c 0 s 1 0 0
R = s c 0 X 0 1 0 X 0 c s

0 0 1 s 0 c 0 s c

     −
     

−     
     −
     

                                                         (54.2) 

𝑅𝑧(𝛼) is rotation around axis z by the 𝛼 

𝑅𝑦(𝛽) is rotation around axis y by the 𝛽 

𝑅𝑥(𝛾) is rotation around axis x by the 𝛾 

α β α β γ α γ α β γ α γ
0
6 α β α β γ α γ α β γ α γ

β β γ β γ

c c c s s s c c s c + s s
R = s c s s s + c c s s c c s

s c s c c

 −
 

− 
 −
 

                                                                (55) 

With reference to the forward kinematics equations: 

1 23 1 23 1
0
3 1 23 1 23 1

23 23

c c c s s
R = s c s s c

s c 0

 − −
 

− 
 − −
 

               (56.1) 

( )
T3 0 0

6 3 6R = R R                                                                                                           (56.2) 

1 23 1 23 23 α β α β γ α γ α β γ α γ
3
6 1 23 1 23 23 α β α β γ α γ α β γ α γ

1 1 β β γ β γ

c c s c s c c c s s s c c s c + s s
R = c s s s c x s c s s s + c c s s c c s

s c 0 s c s c c

   − − −
   
− − − −   
   − −
   

                           (57.1) 

11 12 13
3
6 21 22 23

31 32 33

A A A
R = A A A

A A A

 
 
 
 
   (57.2) 
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On the other hand, for frames 4, 5, and 6, the Euler angle can be considered a Z-Y-Z set. The 

transform matrix ( 3
6 R ) for this set will be found as follows: 

' ' '
3
6 z y xz y x

R = R = R (α)R (β)R (γ)        (58.1)        

α α β β γ γ
3
6 α α γ γ

β β

c s 0 c 0 s c s 0
R = s c 0 X 0 1 0 X s c 0

0 0 1 s 0 c 0 0 1

     − −
     
     
     −
     

                                                         (58.2) 

α β γ α γ α β γ α γ α β
3
6 α β γ α γ α β γ α γ α β

β γ β γ β

c c c s s c c s s c c s
R = s c c c s s c s + c c s s

s c s s c

 − − −
 

+ − 
 −
 

                                                        (59) 

Where 𝑅63  is given above as matrix (57.2) and can be considered as follows: 

11 12 13
3
6 21 22 23

31 32 33

A A A
R = A A A

A A A

 
 
 
 
         

As a result, the solution for q4, q5, and q6 will be: 

( )2 2
5 31 32 33q = β = atan2 + A + A   ,  A  (60) 

32 31
4

β β

A Aq = α = αtan2  ,  
s s

 −
  
   (61) 

23 13
6

β β

A Aq = γ = αtan2   ,  
s s

 
  
   (62) 

( )' ' 2 2
5 31 32 33q = β = atan2 A + A   ,  A−

 or 
'
5 5q = q−  (63) 
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' ' 32 31
4 ' '

β β

A Aq = α = αtan2   ,  
s s

 −
  
   or 

'
4 4=180+qq  (64) 

' 23 13
6 ' '

β β

A Aq = γ = αtan2   ,  
s s

 
  
   or 

'
6 6q =180+q  (65) 

𝑞4 = 𝛼 = rotation of axis 4 

𝑞5 = 𝛽 = rotation of axis 5 

𝑞6 = 𝛾 = rotation of axis 6 

If  β =  𝑞5 = 0 or  𝑞5 = 𝛽 = 180° then 𝑞5= 𝛽 and 𝑞6 = 𝛾 (will be in a parallel configuration) 

If β = 𝑞5 = 0, as result 𝑞4 = 𝛼 = 0, and finally 𝑞6 = 𝛾 = 𝑎𝑡𝑎𝑛2 (−𝐴12 ,  𝐴11) 

If β = 𝑞5 = 180°, as result 𝑞4= 𝛼 = 0, and finally 𝑞6 = 𝛾 = 𝑎𝑡𝑎𝑛2 (𝐴12, −𝐴11) 

The inertial data and mass center position for our purposes are obtained via 3D CAD modeling 

software (SolidWorks) for the detailed, semi-detailed (rectangular) and simplified models, which 

consider factors such as geometry, the density of each link (assumed to be uniform in all models), 

their significant values related to mass and other physical properties such as mass center position 

and inertia matrices represented in their respective reference frames for the three proximal links. 

c1
1

c1 c1

c1

x
p = y

z

 
 
 
   , 

c2
2

c2 c2

c2

x
p = y

z

 
 
 
   , 

c3
3

c3 c3

c3

x
p = y

z

 
 
 
    (66) 

xx1 xy1 xz1
1

1 xy1 yy1 yz1

xz1 yz1 zz1

I I I
I = I I I

I I I

 
 
 
 
  , 

xx2 xy2 xz2
2

2 xy2 yy2 yz2

xz2 yz2 zz2

I I I
I = I I I

I I I

 
 
 
 
  , 

xx3 xz3
3

3 yy3 yz3

xz3 yz3 zz3

I 0 I
I = 0 I I

I I I

 
 
 
 
   (67) 
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so that 𝑝𝑐𝑖𝑖  is the mass center position of each link  and 𝐼𝑖𝑖  are inertia matrices. 

Assuming a constant and homogeneous density, a comparative estimate of the mass of each link 

is possible. The volume of each link is determined using SolidWorks software. The relationship 

of an element's volume to the robot's total volume is multiplied by the total mass to give a supposed 

link mass value. 

Position vectors 
j-1 *

ip   calculated from the origin of the link frame j-1 to the mass center of link i, 

expressed in the base reference frame, and unit vectors that point to rotation axes 1j−z   for the three 

proximal links of the robotic arm, are obtained as follows [211]: 

0 * 0 0 1
c1 1 1 c1= p + R p ,  p                                                                                                    (68.1) 

1 * 0 1 0 1 2
c2 1 2 1 2 c2= R p + R R p ,      p                                                                                        (68.2) 

0 * 0 0 1 2
c2 2 1 2 c2= p + R R p ,  p                                                                                             (68.3) 

2 * 0 1 2 0 1 2 3
c3 1 2 3 1 2 3 c3= R R p + R R R p ,      p                                                                            (68.4)  

1 * 0 1 0 1 2 3
c3 1 3 1 2 3 c3= R p + R R R p ,      p                                                                                  (68.5)             

0 * 0 0 1 2 3
c3 3 1 2 3 c3= p + R R R p ,  p                                                                                         (68.6)                                                                                                    

0 = 0 0 1 , 
 

z                                                                                                              (69.1)                                             

0
1 1 0= R z ,  z                                                                                                                (69.2)  

0 1
2 1 2 0= R R z  z                                                                                                         (69.3)                                                                                                        
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The following Jacobian submatrices Jvi and Jwi for the proximal links express the partial rate of 

change of the linear velocities of the mass centers and angular velocities of each link [210]: 

0 *
v1 0 c1

| 0 0 0 0
J = × | 0 0 0 0

| 0 0 0 0
,

 
 
 
 
 

z p               (70.1)           
ω1 0

| 0 0 0 0
J = | 0 0 0 0 ,

| 0 0 0 0

 
 
 
 
 

z
       (70.2) 

0 * 1 *
v2 0 c2 1 c2

| |0 0 0
J = × | × |0 0 0 ,

| |0 0 0

 
 
 
 
 

z p z p             (70.3)           
ω2 0 1

| |0 0 0
J = | |0 0 0 ,

| |0 0 0

 
 
 
 
 

z z
            (70.4)  

0 * 1 * 2 *
v3 0 c3 1 c3 2 c3

| | | 0 0
J = × | × | × | 0 0 ,

| | | 0 0

 
 
 
 
 

z p z p z p
    (70.5)          

ω3 0 1 2

| | | 0 0
J = | | | 0 0

| | | 0 0

 
 
 
  

z z z
           (70.6)                                          

The following matrices Ii correspond to the inertia tensors of the proximal links over their mass 

centers and are expressed relative to the base reference frame [216]: 

T0 1 0
1 1 1 1I = R I + R ,      

                                                                                              (71.1) 

T0 1 2 0 1
2 1 2 2 1 2I = R R I R R ,      

                                                                                       (71.2)  

T0 1 2 3 0 1 2
3 1 2 3 3 1 2 3I = R R R I R R R                                                                                    (71.3)                                                                       

In the dynamic analysis of this manipulator, friction in joints was not considered. For the tracking 

of a path, the vector of generalized forces was deemed to be shown below: 

n

ij j i i i i
j=1

M q + V +G = Q = τ para i =1,.. 2,. .. .. n. ., .  (72) 

The first term in the equation represents the inertial forces, the second term centrifugal and Coriolis 

forces, and the third term gravitational forces. This equation may be written as follows [211]: 
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Mq + V + G = Q. (73) 

So that, 

( )
n

T T
vi i vi ωi i ωi

i=1
M = J m J + J I J ,  (74) 

n n
ij jk

i j k
j=1 k=1 k i

M M1V = q q ,
q 2 q

  
− 

  
  (75) 

n
T i

i j vj
j=1

G = m g J .−  (76) 

The inertia matrix of the manipulator is symmetric, positive definite, and therefore always 

invertible [217]. 

3.4. CAD designs of the robot 

To investigate the kinematic and dynamic behavior, the ABB IRB 140 arm industrial robot was 

first modeled in SolidWorks using three methods. To design the robotic arm models, referenced 

the dimensional and physical specifications available in the company's documents [201] and the 

actual model of the robot in the Mechatronics laboratory of the UQTR university were used. An 

accurate and detailed model is shown in Figure 11, the less detailed rectangular model in Figure 

12, and the simplified model in Figure 13. SolidWorks provides the mass and inertia characteristics 

for the three different models of the robotic arm (mass center positions and inertia matrices). 

Density was assumed uniform and constant in all parts and links. Details of each model and results 

for the proximal links are summarized in Table 4. 
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Figure 11: Detailed SolidWorks model of the ABB IRB 140 robotic arm. 

 

 

 

 

 

Figure 12: Semi-detailed rectangular SolidWorks model of the ABB IRB 140 robotic arm. 

 

 

 

 

 

Figure 13: Simplified SolidWorks model of the ABB IRB 140 robotic arm. 
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Table 4: Mass property results of each model provided using SolidWorks software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Links Parameter (unit) Detailed Model Rectangular Model Simplified Model 

 

 

 

 

Link 1 

 
 
 
 
 
 

Weight (kg) 35 35 35 

Xc (mm) 277.87 17.87 0 

Yc 373.12 103.12 181.37 

Zc -199.03 -79.03 0 

Ixx (kg.m2) 6.5 1.5 1.1 

Ixy 1.1 0.1 0 

Ixz 3.05 0.05 0 

Iyy 2.02 0.002 0 

Iyz 5.07 0.07 0.1e-5 

Izz 1.4 0.04 1.1 

 

 

 

 

Link 2 

Weight (kg) 25 25 25 

Xc (mm) 218.29 178.29 0 

Yc 229.73 9.73 255.24 

Zc 112.43 72.43 0 

Ixx (kg.m2) 0.9 0.1 1.6 

Ixy -0.03 -0.03 0.1e-5 

Ixz 0.1 0.01 0 

Iyy 1.3 0.03 0 

 Iyz -0.01 -0.01 0 

Izz 0.95 0.05 1.6 

 

 

 

 

Link 3 

Weight (kg) 18 18 18 

Xc (mm) -24.56 14.56 0 

Yc -219.96 -199.96 195.69 

Zc -25.86 -15.86 0 

Ixx (kg.m2) 2.5 1.5 0.6 

Ixy -0.001 -0.001 0.3e-5 

Ixz 0.09 0.09 0 

Iyy 2.7 0.7 0 

Iyz -0.8 -0.02 0 

Izz 0.5 0.2 0.6 
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3.5. Evaluation of robot performance 

To evaluate the predictive skill of the three models, we focused on energy consumption by the 

three proximal joints and total energy consumption by the robot over the same time and path of 

movement. In the proposed modeling, it is possible to calculate energy consumption by each joint 

at a specific time using joint torque and angular velocity with equation (77). The integrated energy 

consumption by the robot is presumed to be the sum of all energy consumption by the joints. 

𝐸𝑖 = ∫ 𝜏𝑖
𝑡𝑓
𝑡0

(𝑡). 𝑞𝑖̇(𝑡) 𝑑𝑡 (77) 

 

3.6. Control Strategy - Sliding Mode Control (SMC) 

One method of robust control technique for controlling a complicated and nonlinear mechanism 

like a manipulator robotic arm is called sliding mode control (SMC) methodology, a type of 

variable structure control system (VSCS). The most crucial feature of the sliding mode control is 

the complete insensitivity to parametric uncertainty and external disturbances during the sliding 

process. The VSCS utilizes a high-speed switching control law to perform two purposes. First of 

all, it forces the nonlinear system's form trajectory along a user-defined surface in the state space, 

named the sliding or switching surface [218]. The control approach has one gain if the state 

trajectory of the mechanism is above the surface and a different gain if the controlling object, such 

as trajectory in robotics, drops below the surface, and because of this named sliding surface. 

Secondly, it keeps the mechanism state control object on this surface by following the time [219]. 

During the controlling process, the control system's structure differs from one to another, and thus 

it donates the name variable structure control. This model also permits the elimination of 
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interactions among the joints of the manipulator. A general equation of the motion can represented 

in the space state by [210]: 

𝑥 ̇ =  𝑓 ( 𝑥 , 𝑡 )  +  𝑔 ( 𝑥 , 𝑡 ) . 𝑢                                                                                   (78)  

Where u is the control input, x is the output, and the functions f ( x , t ) and g(x, t ) are nonlinear 

functions. 

The control input variable is : 

𝑢𝑖(𝑥, 𝑡) = {
𝑢𝑖
+(𝑥, 𝑡)              𝑖𝑓  𝑆𝑖(𝑥, 𝑡) > 0

𝑢𝑖
−(𝑥, 𝑡)              𝑖𝑓  𝑆𝑖(𝑥, 𝑡) < 0

                                                        (79) 

Where 𝑢𝑖, is the ith component of u , and 𝑆𝑖(𝑥, 𝑡) = 0 is the ith component switching hypersurfaces 

S( x, t ) = 0 ,  𝑆 ∈ 𝑅𝑚. 

According to the presented rules with discontinuous control, the system is named a variable 

structure system since the controller  switches alternatively based on the state of the mechanism. 

The sliding mode appears on a switching surface S(X) = 0, which pushes the machine to behave 

Type equation here.as a linear time uniform system, which can be assumed to be stable. For to be 

linear, the surfaces can be written as : 

𝑠𝑖(𝑥) = 𝑥𝑛 +∑ 𝜆𝑖 . 𝑥𝑖
𝑛
𝑖=1                                                                                       (80) 

The condition for the sliding mode to exist on the ith surface is provided by the following equation: 

lim
𝑠𝑖→0

+
𝑆̇ < 0        and           𝑙𝑖𝑚

𝑠𝑖→0
−
𝑆̇ > 0                                                                  (81) 

Which is the 𝑆𝑆̇ < 0 too close of 𝑆𝑖(𝑥) = 0 , when all the trajectories shift towards the 

switching surface. In the perfect sliding mode on 𝑆𝑖 the related control is the equal control 

issued from the equation (78) and given by the equation for 𝑆̇ = 0: 
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𝑢𝑒𝑞 = 𝑔
−1(𝑥, 𝑡)[𝑥̇(𝑡) − 𝑓(𝑥, 𝑡)]                                                                                     (82) 

So, the discontinuous control input presented in relation (79) can note as follow: 

𝑢𝑖 = {
𝑢𝑖𝑒𝑞
∗ + ∆𝑢𝑖

+              𝑖𝑓  𝑆𝑖 > 0

𝑢𝑖𝑒𝑞
∗ + ∆𝑢𝑖

−               𝑖𝑓  𝑆𝑖 < 0
                                                                      (83) 

Where 𝑢𝑒𝑞 illustrates the low-frequency, and ∆𝑢 presented the high-frequency discontinuous 

term. For the functional case, the control equation is known by evaluated value due to error 

modelling and variation of the parameters as follows: 

𝑢𝑒𝑞
∗ = 𝑢𝑒𝑞 + ∆𝑢𝑒𝑞                                                                                                   (84) 

The formula equivalent to discontinuous control input in (83), the term high frequency ∆𝑢 can be 

represented differently, such as the equation based on the Classical Reaching Law, it's one of the 

methods reported in the literature for alleviating chattering in sliding mode [220]. Classical 

reaching law can express in four principal subcategories that are represented as the following: 

Constant reaching law: 

𝑠̇ = −𝜀. 𝑠𝑔𝑛(𝑠)      ,           𝜀 > 0                                                                                           (85) 

Exponential reaching law: 

𝑠̇ = −𝜀. 𝑠𝑔𝑛(𝑠)  − 𝑘𝑠    ,           𝜀 > 0       𝑘 > 0                                                                   (86) 

Power rate reaching law: 

𝑠̇ = −𝑘 |𝑠𝛼|. 𝑠𝑔𝑛(𝑠)   ,          0 <  𝛼 < 1       𝑘 > 0                                                              (87) 

General reaching law: 

𝑠̇ = −𝜀. 𝑠𝑔𝑛(𝑠) − 𝑓(𝑠)    ,           𝜀 > 0    where f(0)=0 and sf(s)>0 when s≠0                   (88) 
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To obtain a robust sliding mode control based on reaching law, considering general equation 

motion as below: 

𝑥̈ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑑(𝑡)                                                                                                 (89) 

where f(x) and g(x) are unknown equation and g(x)>0 and d(t) is the term of disturbance. 

As sliding surface and derivative of the sliding surface, the combination of error of models and 

considering satisfy the Hurwitz condition can describe as follows: 

𝑠 = 𝑒̇ + 𝑐𝑒        ,            𝑐 > 0 

𝑒 = 𝑟 − 𝑥(𝑡) 

𝑒̇ = 𝑟̇ − 𝑥̇(𝑡)                                                                                                                     (90) 

For the derivative of the sliding surface equation considering the effect of external disturbance as 

d(t), 

𝑠̇ = 𝑒̈ + 𝑐𝑒̇ = 𝑟̈ − 𝑥̈ + 𝑐(𝑟̇ − 𝑥̇) = 𝑟̈ − 𝑓(𝑥) − 𝑔(𝑥)𝑢 − 𝑑(𝑡) + 𝑐(𝑟̇ − 𝑥̇)                     (91) 

In order to obtain the robust control sliding mode based on exponential reaching law, from relations 

of (86) and (91): 

𝑟̈ − 𝑓(𝑥) − 𝑔(𝑥)𝑢 − 𝑑(𝑡) + 𝑐(𝑟̇ − 𝑥̇) = −𝜀. 𝑠𝑔𝑛(𝑠)  − 𝑘𝑠  

𝑢 =  
1

𝑔(𝑥)
( 𝑟̈ − 𝑓(𝑥) − 𝑑(𝑡) + 𝑐(𝑟̇ − 𝑥̇) + 𝜀. 𝑠𝑔𝑛(𝑠) + 𝑘𝑠                                          (92) 

Derivative of the sliding surface equation also can be with considering (91) described with the 

disturbances term as follow: 

𝑠̇ = −𝜀. 𝑠𝑔𝑛(𝑠)  − 𝑘𝑠 + 𝑑𝑐 − 𝑑                                                                                    (93) 
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The disturbance term 𝑑𝑐 must satisfy the conditions for reaching the sliding surface, and the term 

d should be limited. dl and du are lower and upper term of disturbance, respectively as: 

𝑑𝑙 ≤ 𝑑(𝑡) ≤ 𝑑𝑢                                                                                                               

when        s(t)> 0 , 𝑠̇ = 𝜀 − 𝑘𝑠 + 𝑑𝑐 − 𝑑                 we want 𝑠̇(t)<0 ,   so let  𝑑𝑐 = 𝑑𝑙 

when        s(t)< 0 , 𝑠̇ = −𝜀 − 𝑘𝑠 + 𝑑𝑐 − 𝑑              we want 𝑠̇(t)>0 ,   so let  𝑑𝑐 = 𝑑𝑢 

there for, if we define 𝑑1 = 
𝑑𝑢−𝑑𝑙

2 
   , 𝑑2 = 

𝑑𝑢+𝑑𝑙

2 
 , then we can get, 

𝑑𝑐 = 𝑑2 − 𝑑1. 𝑠𝑔𝑛(𝑠)                                                                                               (94) 

The discontinuity of the sign function will generate chattering in the closed loop system. for this 

reason, the sign function is usually substituted by a saturation function sat (𝑠/𝜀), where sat(.) is 

described as follows: 

𝑠𝑎𝑡(𝑥) = {
𝑥                 𝑖𝑓 |𝑥| ≤ 1

𝑠𝑔𝑛 (𝑥)     𝑖𝑓 |𝑥| > 1
                                                                              (95)                      

Employing this alternative will present a tracking error. The trade-off between the tracking error 

and control bandwidth will be created by setting the boundary layer properly. 

As mentioned before, the position of the robot's end-effector in this case study depends on the 

three first joints and links. For this reason, the control strategy implements for the first three joints 

of the robot. Generally, for the three links, the robot's sliding mode control can describe as follows: 

𝑠 = 𝑒̇ + 𝑐𝑒 

𝑒 = 𝜃𝑑 − 𝜃 

𝑠̇ = 𝑒̈ + 𝑐𝑒̇ = 𝜃𝑑̈ − 𝜃̈ + 𝑐𝑒̇                                                                                           (96) 
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𝑠̇ = −𝜀 𝑠𝑔𝑛(𝑠)                                                                                                            (97) 

(96) and (97), 

𝜃̈ =  𝜃𝑑̈ + 𝑐𝑒̇ + 𝜀 𝑠𝑔𝑛 (𝑠)                                                                                           (98) 

 

The general equation of the robot relly on the dynamics of the robot described as relation (72), 

𝑀𝜃̈ + 𝑉 + 𝐺 = 𝜏 

So that, 

𝜃̈ = 𝑀−1(𝜏 − 𝑉 − 𝐺)                                                                                                  (99) 

With relations (98) and (99), obtain the main equation of sliding mode control as follows; 

𝜏 = 𝑀 (𝜃𝑑̈ + 𝑐𝑒̇ +  𝜀 𝑠𝑔𝑛(𝑠)) + 𝑉 + 𝐺                                                                     (100) 

Assuming the presence of the disturbances for the robot in the working space to determine and 

track of end-effector position, considering inverse kinematics and dynamics of the robot 

manipulator, we can achieve the following equation for controlling in the sliding mode technique: 

𝑀𝜃̈ + 𝑉 + 𝐺 = 𝜏 + 𝑑 

𝑋̈ = 𝐽(̇𝜃)𝜃̇ + 𝐽(𝜃)𝜃̈ 

𝜏 = 𝑀. 𝐽−1(𝑋𝑑̈ + 𝑐𝑒̇ +  𝜀 𝑠𝑔𝑛(𝑠) − 𝐽(̇𝜃)𝜃̇) + 𝑉 + 𝐺                                                (101) 

That J is the jacobian matrix of the robot, and X is the end-effector position matrix. 
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Chapter Four 

Results and Discussion 
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4. 1. Impact of simplifications on dynamics model of the robot  

Based on the mass and inertia characteristics of the robot and the calculated end-effector position, 

orientation, velocity and acceleration and the torque of each joint in the three proximal links (the 

principal determinants of the end-effector position), the dynamic kinematic model of the robot 

developed in SolidWorks was examined in MATLAB in full detail over a 30 second interval 

without a payload at the effector end of the robotic arm. Forward and robot kinematic models were 

derived from Denavit-Hartenberg parameters, and a procedure was developed to solve the inverse 

kinematics. Trajectory planning was based on a fifth-order polynomial. For each rotating joint of 

the robot, the values in Table 2 were used to cover all possible angles. The changes in angle over 

time for the three proximal links are shown in Figure 14. The velocity and acceleration diagrams 

are shown in Figures 15 and 16. The torque variations for a position and path corresponding to a 

single, uninterrupted time interval are shown in Figures 17 to 19. 

 

 

 

 

 

 

 

 

Figure 14: IRB 140 robot proximal joint angle variations. 
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Figure 15: IRB 140 robot proximal joint angular velocity. 

 

 

 

 

 

 

 

 

Figure 16: IRB 140 robot proximal joint angular acceleration. 
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Figure 17: Torque variations for the first proximal joint of the IRB 140 robotic arm. 

 

 

 

 

 

 

 

 

Figure 18: Torque variations for the second proximal joint of the IRB 140 robotic arm. 
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Figure 19: Torque variations for the third proximal joint of the IRB 140 robotic arm. 

The results obtained for all three joints are coordinated and appear to be relatively close in the 

semi-detailed and simplified models. The detailed model shows higher torque for most of the time 

in joint 1, some of the time in joint 2, and practically all the time in joint 3. It is worth noting that 

the semi-detailed and simplified models both track the detailed model quite closely for at least 

some of the time and that this time varies from one joint to the next. 

It is also clear that joint 2 experienced much more torque than the other joints. This joint provides 

most of the reaching capability of the robotic arm. In addition to its weight and gravitational force, 

the link also bears a share of the weight and gravitational force of the third link. As the robot 

reaches further away from the center of gravity, the mass of the remaining links creates additional 

torque. The bends in the torque curves are due to changes in the direction of the arm movement 
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based on the task path defined. In addition, these changes in direction in the defined path cause all 

three joints to have equal torque values at various points. 

Due to the choice of a fifth-order polynomial trajectory, the joint torque curves have little or no 

noise in all three models. Torque starts at zero for the joint 1, rises quickly then falls back to zero 

smoothly overall. For joints 2 and 3, it starts at non-zero values and drops, rises to new values, and 

ends at other different values at the end of the path. This profile is due to the positions and 

movements against gravity encountered over the defined trajectory. 

In the case of joints 1 and 2, the semi-detailed and simplified models show more torque than the 

detailed model does during some periods. The opposite is seen in general in the case of joint 3. In 

addition, the simplified model shows slightly less torque than the semi-detailed model at the 

beginning and end periods and lags the semi-detailed dynamics throughout the path. Since there is 

no difference in link weight and density from one model to the next, these differences in torque 

must reflect differences in the center of mass and inertia tensors. Differences between the torque 

at joint 1 and joint 2 are due likely to the effect of weight and torque imposed by other links. Both 

the first and second joints clearly are affected by the gravitational force of the other links, and only 

the third joint carries its gravitational force without much additional torque. 

At the midpoint of the simulation (15 seconds), joint angular velocity has peaked, and acceleration 

is at its point of inflection. At this instant, link 1 is at one of its lowest torque values while the 

second and third joints are at their peak values. This pattern is observed for all three models and is 

undoubtedly related to joint acceleration and the gravitational force of the links. According to the 

frame assignments defined for the robotic arm, link 1 does not exert a gravitational force and only 

undergoes joint acceleration, and torque is therefore at its lowest value. The second and third links 

exert gravitational force and are subject to angular acceleration in the joints. The outcome of these 
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two acceleration vectors while crossing over traces the overall acceleration of these two links. 

When joint acceleration falls to zero, the most significant portion of the torque is expected to be 

gravitational, which is an opposing force resisting the movement of the robotic arm. 

One of the main aims of this study is to examine how well different dynamic models predict energy 

consumption by each rotational joint and by the robot overall, using equation (77). These results 

are shown in Figure 20a - 20c (joints) and Figure 21 (robot). 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 



 

86 
 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 



 

87 
 

Figure 20: Energy consumption for the joints: (a) Energy consumption by the proximal joint 1 

based on three models, (b) Energy consumption by the proximal joint 2 based on three models, 

(c) Energy consumption by the proximal joint 3 based on three models. 

 

 

 

 

 

 

 

 

Figure 21: Energy consumption by the IRB 140 robotic arm, based on three models. 

Energy consumption follows a pattern that differs in form only slightly from one joint to the next 

or from one model to the next. Joint 2, which has the highest torque, consumes the most energy. 

Over this 30-second simulation, energy consumption by the joints and by the whole robotic arm 

increased, but most rapidly during the middle period. The increases reflect changes in gravitational 

forces on the links as they move away from the initial centers of mass. Joint 2 and the arm as a 

whole show strikingly similar energy consumption patterns with all three models. In the case of 

the joint, the semi-detailed and the simplified models track each other closely, and in the case of 

the whole arm, the detailed and semi-detailed models do so. This may reflect the influence of the 

mass properties and shape characteristics of each model. The semi-detailed model gives the highest 
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energy consumption in both cases, whereas the simplified model gives the lowest, except for joint 

1. The overall difference is 0.53% less for the detailed model and 6.8% less for the simplified 

model compared to the semi-detailed. Based on these results, the three dynamic models tested in 

this study all appear to be worthy of confidence for the prediction of energy consumption by 

articulated robotic arms. 

4. 2. Robust controller results 

The following Simulink model is employed as the Algorithm Implementation for the carried out 

simulation of the motion control of the robotic arm manipulator. Simulink allows creating blocks 

that have all of the features and capabilities of built-in any types of function, including multiple 

input and output ports, the ability to get vector or matrix signals of any data class supported by 

Simulink, real or complex signals, signal frames, the ability to operate at multiple sample rates and 

simple. The block function of the plant implemented all equations for the dynamic equations of 

motion, such as the inertia, gravity, and Coriolis Centrifugal parameters, to obtain the torque and 

force equation of the robot, presented in Chapter Three of this study, and the mass properties of 

the robot, which consist of mass center points and inertia matrixes for three different models that 

presented in Chapter Four of this study. A classic sliding mode controller with an approach of 

expositional reaching law based on the method shown in chapter Four is implemented in the 

controller block function, schematic diagram of the controller model is represented in figure 22. 

The Sliding mode controller algorithm is used for motion control, designed basis of with and 

without disturbances to evaluate the model's robustness for three different robot manipulator 

models. The value of disturbance applied based on the sine and cosine trajectory of the joint 

variable is predefined as a percentage of the input signal to examine the robustness of the designed 

controller. 
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Figure 22: Simulink Model of Robot Manipulator. 

The implemented algorithm examines a thorough trajectory to verify the performance and behavior 

of the designed sliding mode controller of the robot to execute tasks undertaking the controller. 

The Simulink model of the trajectory is presented in figure 23. 

 

 

 

 

The trajectory tracking of the joints is shown in Figure 

 

 

Figure 23: Simulink Trajectory Model of Robot Manipulator. 
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A circular trajectory is defined in the robot's working space considering avoiding singularity to 

perform the robot's task and estimate the chosen controller's execution. The motion of the end 

effector starts somewhere in the working space outside of the circular trajectory. Figures 24 and 

25 present executing the assigned task of the robot under taking the SMC controller. 

 

 

 

 

 

 

Figure 24: Projection of X-Y Trajectory of Robot Manipulator. 

 

 

 

 

 

 

 

Figure 25: Projection of X-Y-Z Trajectory of Robot Manipulator. 
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After starting the simulation, robot effort to reach the circle path, execute a circular motion, and 

remain in a specified way. Getting the specified path from any starting point in the robot workspace 

indicates that the controller is working correctly. 

The SMC response for the three different robot models (Detailed, Semi-Detailed, and Simplified) 

for the first three links and joints is depicted in Figures 26, 27 and 28 for angular position. Figures 

29,30, and 31 illustrate the plot of angular position tracking error of the model's joints and 

demonstrate the steady state error. Figures 29 to 31 indicate the plot of angular position error of 

the models' joints that relative values demonstrate the steady state error of models. To evaluate the 

performance of the controller's general time and frequency performance requirements in the time 

domain, performance in the Steady state error, Speed of response, Rise time, and settling time. 

Based on figures 26 to 31, SMC's performance for the angular position, Table 5 is represented. 

Table 5: Performance of SMC of angular position for the different models. 

SMC Performance Rising time (sec) 
 

Settling time (sec) 
 

Overshoot (%) 
 

Steady state error (%) 
 

  Detailed    

Arm 1 0.304 0.47 1.73 0.096 

Arm 2 0.301 0.78 2.01 0.076 

Arm 3 0.306 0.52 1.92 0.063 

  Semi-Detailed    

Arm 1 0.283 0.683 1.36 0.073 

Arm 2 0.276 0.765 1.48 0.051 

Arm 3 0.295 0.697 1.26 0.046 

  Simplified   

Arm 1 0.183 0.653 1.2 0.0036 

Arm 2 0.168 0.423 1.2 0.0021 

Arm 3 0.146 0.389 1.2 0.002 
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Figure 26: Angular position of the joints for the detailed model using SMC: (a) Angular position 

of joint One, (b) Angular position of joint Two, (c) Angular position of joint Three. 
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(c) 

Figure 27: Angular position of the joints for Semi-Detailed Model using SMC: (a) Angular 

position of joint One, (b) Angular position of joint Two, (c) Angular position of joint Three. 
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(c) 

Figure 28: Angular position of the joints for the simplified model using SMC: (a) Angular 

position of joint One, (b) Angular position of joint Two, (c) Angular position of joint Three. 
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(c) 

Figure 29: Angular position tracking error for Detailed Model using SMC: (a) Angular position 

tracking error of joint One, (b) Angular position tracking error of joint Two, (c) Angular position 

tracking error of joint Three. 
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(c) 

Figure 30: Angular position tracking error for Semi-Detailed Model using SMC: (a) Angular 

position tracking error of joint One, (b) Angular position tracking error of joint Two, (c) Angular 

position tracking error of joint Three. 
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(c) 

Figure 31: Angular position tracking error for Simplified Model using SMC: (a) Angular 

position tracking error of joint One, (b) Angular position tracking error of joint Two, (c) Angular 

position tracking error of joint Three. 

Figures 32, 33, and 34, indicate the plot of sliding surface (s). The sliding surfaces are smooth and 

converge to zero as expected. The average reaching time to the sliding manifold in the simplified 

model is about 0.29 sec and in the semi-detailed is around 0.34 sec, and in the detailed model is 

about 0.49 sec. For the same controller structure and initial condition and input, the response time 

and reaching time for three different models are so close. The reaching time is the least for the 

simplified model, the semi-detailed model, and the most for the detailed model, respectively. 

 

 

 

 

 

Figure 32: Sliding surfaces for Detailed Model. 
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Figure 33: Sliding surfaces for Semi- Detailed Model. 

 

 

 

 

 

 

Figure 34: Sliding surfaces for Simplified Model. 

Table 5 of the performance of SMC of angular position for the different models and compersion 

between figures 32-34 demonstrate that the three different models' performances are almost the 

same. Generally, considering all measured parameters for all three models underperforming the 

same SMC controller, the Simplified model had the best performance, and then the Semi-Detailed 

and detailed models, respectively. 

The robustness of the SMC controller is examined based on the value of disturbance applied to the 

sinusoidal trajectory of the joint variable is predefined as 35% of the input signal. The SMC with 

disturbance response for the three different robot models (Detailed, Semi-Detailed, and Simplified) 

for the first three links and joints is shown in Figures 35, 36, and 37 for angular position. Figures 

38, 39, and 40 depict the model's angular position tracking error plot and present the steady state 

error. Figures 41, 42, and 43 indicate the diagram of sliding surfaces for the SMC controller with 

disturbances term. 
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Figure 35 : Angular position of joints for Detailed Model with disturbance. 

 

 

 

 

 

Figure 36: Angular position of joints for Semi-Detailed Model with disturbance. 
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Figure 37: Angular position of joints for Simplified Model with disturbance. 

 

 

 

 

 

Figure 38: Angular position tracking error of joints for Detailed Model with disturbance. 

 

 

 

 

 

Figure 39: Angular position tracking error of joints for Semi-Detailed Model with disturbance. 
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Figure 40: Angular position tracking error of joints for Simplified Model with disturbance. 

 

 

 

 

 

Figure 41: Sliding surfaces with disturbance for Detailed Model. 

 

 

 

 

 

Figure 42: Sliding surfaces with disturbance for Semi-Detailed Model. 
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Figure 43: Sliding surfaces with disturbance for Simplified Model. 

Based on figures 35 to 40, the SMC controller under the disturbance of 35% of input amplitude 

result indicates a good performance response. Performance for the angular position is represented 

in Table 6. 

Table 6: Performance of SMC of angular position for three different models under disturbance. 

 

SMCPerformance 

under disturbance 

 
Rising time (sec) 

 

 
Settling time (sec) 

 

 
Overshoot (%) 

 

 
Steady state error (%) 

 

  Detailed    

Arm 1 0.524 0.379 1.84 0.0999 

Arm 2 0.661 0.768 2.01 0.0804 

Arm 3 0.516 0.497 1.96 0.0692 

  Semi-Detailed    

Arm 1 0.455 0.693 1.34 0.0786 

Arm 2 0.481 0.662 1.47 0.0553 

Arm 3 0.467 0.629 1.29 0.0512 

  Simplified   

Arm 1 0.343 0.608 1.2 0.0038 

Arm 2 0.398 0.333 1.2 0.0027 

Arm 3 0.384 0.299 1.2 0.0031 

According to Table 5, the SMC considered disturbances outcomes, and the performances with 

disturbance and without disturbance are almost the same. Nevertheless, results with disturbances 

show that the Steady State error is increased to 4.5% and 6%, and 7% for the Simplified and Semi-

detailed and Detailed models, respectively. Overshoot remains the same. Rise times are increased 

on average by 0.31sec, and settling times are decreased on average by 0.09sec. 
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Figures 41, 42, and 43 show the diagram of the sliding surface under disturbance. The sliding 

surfaces for the controller with disturbance, the same as the controller without disturbance, are 

smooth and converge to zero as expected. The average reaching time to the sliding manifold in the 

simplified model is about 0.39 sec and in the semi-detailed is around 0.47 sec, and in the detailed 

model is about 0.63 sec. Same as the simple SMC controller, controller under disturbance for the 

same controller structure and initial condition and input, the response time and reaching time for 

three different models are close. The reaching time is the least for the simplified model, the semi-

detailed model, and the most for the detailed model, respectively. 
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Conclusion 
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The dynamics of an industrial robotic manipulator arm having six degrees of freedom or 

articulations (the ABB IRB 140) were studied using detailed, semi-detailed, and simplified models 

in SolidWorks. Using mass and inertial data, forward/inverse kinematic characterization, end-

effector position and orientation, and joint torque associated with the three proximal links (the 

most critical determinants of the accuracy of the robotic arm movement), the dynamic model thus 

developed was examined in MATLAB in full detail. Forward kinematics of the robot were derived 

from Denavit-Hartenberg parameters, and a procedure was developed to solve the inverse 

kinematics, with trajectory planning based on fifth-order polynomial and forward and inverse 

differential kinematics in Spong formulation [216]. The steps of this development are described in 

detail herein. Energy consumption on a path of movement over a fixed time interval was examined 

to evaluate the three dynamic models as predictors of the robot's performance. 

Our most notable finding is that link dimensions and geometry directly affect how the center of 

mass position and inertial characteristics change and hence the suitability of the torque equations. 

The position of the center of mass in dynamic calculations and models must be chosen carefully. 

On the other hand, the simplified model used in classical computational methods provides 

acceptable results. How close these results are to the behavior of the real robot remains to be seen. 

However, any data of mass properties for mechanical mechanisms like inertia matrices, mass 

center points, friction, and gravity forces provided by any software indicates an error percentage 

that must be considered in the dynamics equation calculus. 

MATLAB is a helpful tool for implementing algorithms, estimating and validating models, and 

simulating system responses. Still, the computational time for the calculus of algebraic equations 

in robotics is not very efficient. Another valuable result of this study is that the three models reach 

nearly the same values for the total energy consumption by the robot executing a path of movement 
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over a single time interval, suggesting that they all could give acceptable results in different 

situations. In some cases, with more degree of freedom in the robotic field, results are heavy and 

slow-performing a simulation or generating equations such as torque and energy equations with a 

high number of points. For this reason, using a simplified state of the actual model improves and 

optimizes the calculus process. The torque requirement for different robot positions and operations 

may be computed over different periods and paths. The quality of the approach developed in this 

study could be tested further by comparing energy consumption by the robot during different tasks.  

A control module and a robustness controller (SMC) included to minimize the impact of the error 

in the property inputs to the controller. The simulation results show that the sliding mode control 

method is robust and performs satisfactorily even in external disturbances. Sliding mode control 

offers suitable performances for control of robot models with unmodeled disturbances. Generally, 

the controller results examined on three models (detailed, semi-detailed, and simplified) are close 

with a slight percentage difference. The controller under disturbance also had relatively close 

results compared to the controller without disturbance. The sliding mode control methodology has 

an appropriate dynamic response and minimum tracking error performance from simulation 

results. The most significant disadvantage of this technique is the chattering phenomenon effect 

with control input, but the overall results for the models are satisfactory. 

The study of significant issues, such as the impacts of different mathematical and dynamic models 

of a chain mechanism such as a robotic arm, has not been attended to in the literature review. Since 

the equations related to torque and force in robotic arms with more than three degrees of freedom 

are heavy equations with many mathematical and trigonometric elements, analyzing these 

equations for software such as MATLAB with high equation-solving capabilities is also time-

consuming. Therefore, simplifying force and torque equations will increase the calculation speed 
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and decrease the calculation time. One of the ways to simplify the equations and dynamic models 

of the manipulator robotic arms is to suppose the robotic arm mechanism in simpler geometric 

shapes such as a rod. The advantage of this assumption is to eliminate the techniques of finding 

the center of mass and the equations based on the moment of inertia. Analyzing the impact of these 

assumptions on the final accuracy of robot models and to what extent these results will be 

acceptable was one of the objectives of this research that had not been addressed so far. For the 

investigation, in this case, powerful design software such as SolidWorks was employed to design 

according to the actual mechanism of the case of the studied robotic arm. Although in this study, 

as much as possible, an accurate model of the arm of the robot is prepared, and it is also considered 

that the manufacturer's material and the weight of the parts match the real robot, this information 

is the exclusive property of the robotic arms manufacturer companies. Although reliable details 

are available to researchers in this field that provide by official companies, these points can be 

counted as one of the limitations of this research.  

As a follow-up to our work, we intend to study a novel kinematics model based on quantum 

computing for the same case of study, an articulated six-jointed IRB 140 ABB robotic arm. The 

model establishes the position and the orientation expressions using quantum tools. The robot's 

position is determined through the successive elementary translations and rotations starting from 

the end-effector until the base frame. In contrast, the orientation model of the robot is extracted 

from the quaternion's representation of the orientation. The presented quantum model is based on 

the equivalence between the quaternions and the Pauli matrices or gates. The main advantage of 

this novel model is that it utilizes only one qubit to model the position and orientation. A novel 

kinematics model based on quantum computing denotes a massive saving in computing resources 

and time. This quantum kinematics model is a step ahead of future quantum models and simulation 
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software adapted to future quantum computers. The proposed techniques and results can also be 

used in the classic computing theories for robotic arms kinematics modeling [212]. 
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