1 Online Power and Efficiency Estimation of a Fuel Cell System for

2	Adaptive Energy Management Designs
3	Mohsen Kandidayeni ^{a,b*} , Mehdi Soleymani ^a , Alvaro Macias ^c , João P. Trovão ^{b,d} , Loïc Boulon ^c
4	^a Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
5 6	^b e-TESC lab, Department of Electrical and Computer Engineering, University of Sherbrooke, QC, J1K 2R1, Canada
7 8	^c Hydrogen Research Institute, Department of Electrical and Computer Engineering, Université du Québec à Trois Rivières, QC, G8Z 4M3, Canada
9 10	^d Coimbra Institute of Engineering, Polytechnic of Coimbra, 3030-199, Coimbra, Portugal

11 Abstract

12 The temporal changes of power and efficiency in a fuel cell (FC) stack can cause malperformance in the energy 13 management strategy (EMS) of a FC hybrid electric vehicle. Therefore, the online estimation of these physical 14 attributes is becoming an integral part of any EMS. This paper aims to utilize a two-step method to extract the 15 maximum power and efficiency points of a FC system online. In this respect, an online parameter estimation technique, 16 composed of smooth variable structure filter (SVSF) and Kalman filter (KF), is utilized in the first step to estimate the 17 parameters of a FC semi-empirical voltage model. KF generates statistically optimal estimates for a linear, welldesigned system model in the existence of Gaussian noise. However, these assumptions do not always hold in real 18 19 applications and can lead to unstable estimation. A practical solution to deal with these instabilities is to enforce 20 boundaries on the state estimates through SVSF which is based on sliding mode estimation concept. Hence, unlike the 21 other similar studies, this paper synthesizes the robustness of SVSF with the precision of KF to enhance the 22 characteristics estimation process of a FC stack. In the second step, the updated voltage model is utilized to extract 23 the efficiency and power curves of the real FC system. To corroborate the potential of the proposed approach, a

- 24 thorough comparison with KF, as an attested estimation method, is performed. The experimental tests on a 500-W FC
- 25 stack indicate the superior performance of the SVSF-KF compared to that of KF.
- 26 Keywords: Energy management strategy, Kalman filter, Parameter estimation, Proton exchange membrane fuel cell,
- 27 Smooth variable structure filter

28 I. Introduction

29 Electrification of vehicles is considered a promising solution for decreasing a considerable amount of greenhouse gas 30 emissions caused by transportation sector worldwide [1]. In this regard, several organizations are stressing the 31 potential role of hydrogen with the hope deploying fuel cell hybrid electric vehicles (FCHEVs) in different 32 transportation modes [2, 3]. The powertrain of a FCHEV is typically composed of a proton exchange membrane 33 (PEM) fuel cell (FC), as the primary power source, and a battery pack and/or a supercapacitor (SC) bank, as the 34 secondary one. Since these sources have different energetic characteristics in terms of power and efficiency, an energy 35 management strategy (EMS) is needed to distribute the power between them [4]. The main objective of an EMS is to 36 meet the requested power while minimizing the hydrogen consumption and maximizing the lifetime of power sources. 37 Several EMSs, rule-based, optimization-based, and intelligent-based, have been proposed for FCHEVs, as discussed 38 in [5]. Most of these strategies show very close performance to optimal results. However, the time-varying 39 characteristics of the FC system (power and efficiency) are not usually considered in these strategies. Hence, the 40 excellent results are merely valid for a short period of time [6, 7]. In [8], the importance of considering FC aging in 41 the design of an EMS based on deep reinforcement learning is discussed. In [9], the authors illustrate that the ignorance 42 of updating FC power and efficiency can increase the hydrogen consumption up to 6.6%. In this regard, some efforts 43 have been made to enhance the idea of health adaptation while developing an EMS. Some studies propose the 44 integration of a degradation model to develop a decision-making strategy based on prognostic of the power sources 45 [10, 11]. However, modeling the degradation mechanism under automotive conditions is still an open problem in the 46 literature. Some works suggest the use of an extremum seeking technique based on perturb and observe [12, 13]. 47 Nevertheless, the simultaneous identification of several operating points, which is required in an EMS, highly 48 increases the complexity of these algorithms. The discussed shortfalls have led to the emergence of a new paradigm 49 for formulating an adaptive EMS based on online characteristics estimation in the FC system. Fig.1 illustrates the 50 main notion behind this concept. From this figure, an online estimation technique is used to update a FC model in the

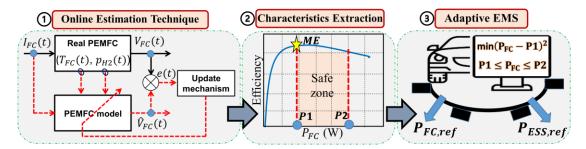


Fig. 1. The process of online characteristics estimation and its inclusion into an EMS design. (I_{FC} : FC current, T_{FC} : FC temperature, p_{H2} : hydrogen partial pressure, V_{FC} : FC measured voltage, \hat{V}_{FC} : FC estimated voltage, e: estimation error, ME: maximum efficiency point, P_{FC} : FC power, P_{ESS} : power of the energy storage system).

56 first step. Subsequently, the updated model is employed to extract the characteristic of the FC system. Finally, the 57 obtained FC characteristics are utilized to define the boundaries and cost function of an EMS.

58 Several studies have been conducted on the online estimation of a FC model. In [14], a polynomial function is used 59 to model the polarization behavior of a 1.3-kW PEMFC. The parameters of this model are estimated online by 60 recursive least square (RLS). RLS is also employed to identify the parameters of a polynomial function representing 61 the efficiency-vs.-power curve of a PEMFC stack in [15, 16] and hydrogen consumption-vs.-power of another stack 62 in [17]. In [18], adaptive RLS is utilized to define a safe operating zone for the FC system of an electric tram. However, 63 all the utilized FC models in [14-18] are purely empirical, derived by polynomial functions, without any insight into 64 the underlying phenomena. These models lack generality and might not be able to simulate the complete FC behavior 65 under different conditions. In [19], Ettihir et al. compare six semi-empirical FC models instead of using a polynomial function. They finally select a current-dependent model, suggested by Squadrito et al. [20], to estimate the polarization 66 67 behavior of the FC. RLS and unscented Kalman filter (KF) are used to update the parameters of this model in [19, 68 21]. However, the performance of the utilized estimation techniques has not been compared. Moreover, the selected 69 model does not take the stack temperature into consideration, which has a great impact on the FC performance. In this 70 regard, in [22], the performance of RLS and KF estimation techniques are compared using Squadrito et al. and 71 Amphlett et al. semi-empirical models. The latter is a multi-input model that considers current, temperature, and 72 pressure to estimate the output voltage [23, 24]. This comparative study illustrates that the multi-input model 73 (Amphlett) is more accurate than the single-input one (Squadrito), and KF is marginally more precise than RLS. The 74 model proposed by Amphlett et al. has been validated for cold startup application in [25]. Moreover, it has become a 75 benchmark model for testing the performance of metaheuristic optimization algorithms [26-28]. In [29], recursive 76 maximum likelihood (RML) algorithm is compared with RLS to estimate the parameters of a PEMFC semi-empirical

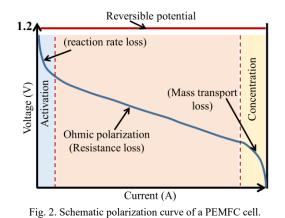
77 model. This paper shows that RML and RLS lead to almost similar results when additional noise is not added to the 78 measured data. In [30], a data fusion method based on covariance intersection and KF is developed to extract the 79 polarization and power curves of a FC system using four semi-empirical models. The main problem with this method 80 is that the less accurate models can influence the estimation of the more accurate ones.

81 Considering the above-discussed estimation techniques, KF has been the most reliable regarding the parameters' 82 estimation of a FC model. However, certain complexities in the FC system modeling can violate the main assumptions 83 of this filter (linearity, Gaussian noise, etc.) and lead to instabilities in the estimation. Therefore, some papers have 84 also considered the stability and robustness aspects. In [31], an estimation technique based on Lyapunov is put forward 85 to identify two parameters of a nonlinear model composed of activation and ohmic overvoltages. In [32], an adaptation 86 law using the Lyapunov method is developed to update the parameters of a FC semi-empirical model for extracting 87 the power and voltage characteristics. The same estimation method is applied in [33] to a FC first-order equivalent 88 circuit model (ECM) to track the remailing useful life of the stack through identifying the internal resistance online. 89 However, the developed estimators based on Lyapunov in [31-33] are unique for the given problems and cannot be 90 generalized for other models and estimation techniques. A new recursive filter, known as smooth variable structure 91 filter (SVSF), is proposed in [34] to deal with the model uncertainties in a broader range. This filter is based on sliding 92 mode and variable structure concepts and compels the state estimates to change around their true values within a 93 boundary. SVSF has been successfully utilized in different engineering problems. Moreover, it has been shown that 94 this filter can be more stable and robust to model uncertainties compared to KF [35]. In [36], RLS is used to estimate 95 the parameters of a battery model, and SVSF is employed for estimating the battery state of charge (SOC). In [37], 96 SVSF is used for reliable SOC and state of health estimation of healthy and aged Lithium polymer cells. The performed 97 experiments indicate that SVSF can estimate the SOC more accurately than extended KF in uncertain scenarios caused 98 by aging or unknown initial values. However, SVSF is still a sub-optimal algorithm compared to KF since it is not 99 that robust to measurement noises. Therefore, researchers have suggested combining these methods (SVSF-KF) to 100 reach a trade-off between KF accuracy and SVSF robustness [38]. In [39], cubature KF and SVSF are combined to 101 improve the robustness and accuracy in the estimation of the effective bulk modulus in an electro-hydrostatic actuator. 102 In [40], KF and SVSF algorithms are merged to develop a thorough fault detection strategy for robust attitude 103 estimation in a small unmanned aerial vehicle (UAV) with faulty gyroscope signals. In [41], concurrent localization 104 and mapping is performed for an autonomous underwater vehicle utilizing a combined SVSF and extended KF.

105 This paper focuses on the first and second steps of the presented process in Fig. 1. In this regard, SVSF-KF 106 algorithm is proposed for the online power and efficiency characteristics estimation of a FC system. KF can result in 107 optimal estimation if all the underlying assumptions are respected. However, it is very sensitive to model uncertainties 108 which are ample in a FC system. SVSF is more stable and robust to model uncertainties but cannot handle a lot of 109 dynamics and measurement noise. Therefore, these two techniques can complement one another, considering the 110 robustness and accuracy. In particular, no study, to the best of the authors' knowledge, has considered the use of this 111 hybrid filter in the FC characteristics estimation. Since FC has a multivariate nature, its modeling certainly goes under 112 some uncertainties. In this regard, the semi-empirical model proposed by Amphlett et al. is used for modeling the 113 voltage behavior of a FC stack. The parameters of this model are estimated online by SVSF-KF, and the power and 114 efficiency characteristics curves are extracted from the updated model. Experiments are carried out on a 500-W 115 Horizon FC to verify the performance of the proposed method. Furthermore, a comparative study is performed with 116 KF as a well-known estimator in this line of work. The remainder of this paper is organized as follows. Section II 117 explains the utilized model for the PEMFC under study. The online estimation techniques are detailed in section III. 118 Section IV illustrates the experimental setup and analyzes the obtained results. Finally, the conclusion is given in 119 section V.

120 II. Fuel cell modeling

121 Fundamentally, the shape of voltage versus current curve is formed by three important irreversibilities in a PEMFC 122 [42]: 1) activation losses: the sluggishness of the reactions happening on the surface of the electrodes which have a 123 nonlinear effect on the voltage; 2) ohmic losses: direct resistance to the flow of electrons and ions through the 124 electrodes and the electrolyte which is linearly proportional the drawn current; 3) concentration losses: the alteration 125 in the concentration of the reactants at the electrodes' surface. The schematic polarization curve of a PEMFC, 126 including the three principal losses, is shown in Fig. 2. It should be noted that there is another voltage loss owing to 127 internal currents and fuel crossover in a FC system that is normally ignored while developing a semi-empirical model. 128 This loss is caused by a small amount of fuel passing across the electrolyte from the anode to the cathode and from 129 electron conduction along the electrolyte. The fuel loss and current are both small, and thus the net impact is normally 130 negligible [43].



The explained characteristics have led to the development of several semi-empirical models for describing the static
behavior of a PEMFC [20, 23, 24]. The general formulation of such models is expressed as:

$$136 \qquad V_{FCN} = E_{Nernst} + V_{act} + V_{ohmic} + V_{con} \tag{1}$$

where V_{FCN} is the cell voltage, E_{Nernst} is the reversible cell potential, and V_{act} , V_{ohmic} , and V_{con} are the activation, ohmic, and concentration losses, respectively. In this study, the model introduced by Amphlett et al. [23, 24] is utilized to estimate the voltage of an open cathode PEMFC stack. As described earlier, this model has been fruitfully used for modeling various PEMFC stacks [22, 44]. FC technology has been considerably improved since this model was introduced. However, the structure of this model is still applicable, given that a suitable parameterization is required to tune the parameters. Considering the number of cells (N_{cell}), the voltage of the PEMFC stack (V_{FC}) is given by:

$$V_{FC} = N_{cell} V_{FCN} \tag{2}$$

144

145 E_{Nernst} is calculated by:

146

147
$$E_{Nernst} = 1.229 - 0.85 \times 10^{-3} (T_{FC} - 298.15) + 4.3085 \times 10^{-5} T_{FC} [ln(P_{H2}) + 0.5 ln(P_{O2})]$$
(3)

148 where T_{FC} is the stack temperature (K), P_{H2} is the hydrogen partial pressure in anode side (N m⁻²), and P_{02} is the 149 oxygen partial pressure in the cathode side (N m⁻²). V_{act} is determined by:

150
$$\begin{cases} V_{act} = \xi_1 + \xi_2 T_{FC} + \xi_3 T_{FC} ln(C_{O2}) + \xi_4 T_{FC} ln(I_{FC}) \\ C_{O2} = \frac{P_{O2}}{\frac{5.08 \times 10^6 \exp(-498/T_{FC})}} \end{cases}$$
(4)

where $\xi_n (n = 1 \dots 4)$ are the semi-empirical coefficients based on fluid mechanics, thermodynamics, and electrochemistry, C_{02} is the oxygen concentration (mol cm⁻³), and I_{FC} is the PEMFC operating current (A). V_{ohmic} is given by:

154
$$V_{ohmic} = -I_{FC} R_{internal} = -I_{FC} (\zeta_1 + \zeta_2 T_{FC} + \zeta_3 I_{FC})$$
 (5)

where $R_{internal}$ is the internal resistor (Ω), and $\zeta_n (n = 1 \dots 3)$ are the parametric coefficients. Finally, V_{con} is calculated by:

$$157 V_{con} = Bln(1 - \frac{I_{FC}}{I_{max}}) (6)$$

158 where *B* is a parametric coefficient (V), and I_{max} is the maximum current (A).

This paper aims to update the introduced voltage model online to extract the power and efficiency characteristics. In this regard, the model needs to be written as a linear-in-parameter equation in the sense of unknown parameters ($V_{FC} =$ $\sum_{i=1}^{n_{\theta}} \theta_i x_i$, where θ_i is the unknown parameters of the model and x_i is the known values or regressors). Assuming $\theta^T = [\theta_1, ..., \theta_{n_{\theta}}]$ and $X^T = [x_1, ..., x_n]$ leads to $V_{FC} = X^T \theta$, where T is the transpose of a vector. In this work, V_{FC} , T_{FC} , and I_{FC} are the three measurable states of the voltage model. To obtain the linear-in-parameter form of the voltage model, using (1) to (6) results in:

$$165 \qquad V_{FC} - E_{nernst} = X^T \theta \tag{7}$$

166 where

$$\theta^{T} = [\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \zeta_{1}, \zeta_{2}, \zeta_{3}, B]$$
$$X^{T} = [1, T_{FC}, T_{FC} ln(C_{O2}), T_{FC} ln(I_{FC}), -I_{FC}, -I_{FC} T_{FC}, -I_{FC}^{2}]$$

167 The power of the FC system (P_{FCS}) is calculated by subtracting the FC stack power (P_{FC}) from the consumed power 168 by the auxiliary systems (P_{Aux}):

 $169 \qquad P_{FCS} = P_{FC} - P_{Aux} \tag{8}$

$$170 P_{FC} = V_{FC} \times I_{FC} (9)$$

$$171 P_{Aux} = P_{fan} + P_{Valve} (10)$$

172
$$P_{fan} = c_1 D_{fan}^2 + c_2 D_{fan} + c_3$$
(11)

where P_{fan} is the power consumption of the cooling fan, c_1 , c_2 , c_3 are empirical parameters, D_{fan} is the duty cycle of the fan, P_{Valve} denotes the consumed power by the hydrogen valve, and V_{Valve} and I_{Valve} are the voltage and current of the hydrogen valve respectively. The empirical parameters and the power consumption of the hydrogen valve are obtained by experiments on the real system. The purge valve power consumption is ignored due to having a fixed cyclic purging (every 10 s for a duration of 100 ms). Finally, the efficiency of the FC system (η_{FCS}) can be calculated based on its voltage [45], as:

180
$$\begin{cases} \eta_{FCS} = \frac{P_{FCS}}{P_{H2}} = \frac{V_{FCS} \times I_{FC}}{\Delta H \times \frac{I_{FC}}{nF}} = \frac{V_{FCS}}{1.254} \\ V_{FCS} = \frac{P_{FC} - P_{Aux}}{I_{FC}} = V_{FC} - \frac{P_{Aux}}{I_{FC}} \end{cases}$$
(13)

181 where P_{H2} is the energy value of consumed hydrogen (W), V_{FCS} is the voltage of the FC system, ΔH is the hydrogen 182 higher/lower heating value (kJ/mol), *n* is the number of electrons transferred for each molecule of fuel (which is 2 183 for hydrogen-oxygen reaction), and *F* is the Faraday constant. Considering the hydrogen lower heating value ($\Delta H =$ 184 241 kJ/mol) in $\frac{\Delta H}{nF}$, 1.254 is achieved as the so-called thermoneutral potential.

185

186 III. Online parameter estimation algorithms

187 The areas of parameter and state estimation are highly important for the further development of PEMFC technology. 188 As discussed in the introduction section, several methods, such as RLS, KF, and Lyapunov-based estimation, have 189 been used for parameters estimation of PEMFC semi-empirical models. RLS minimizes a weighted linear least-190 squares cost function by recursively determining the coefficients that are related to the deterministic input signals. 191 Therefore, the estimated state is solely updated by the available measurements. KF can update and estimate an 192 evolving state since it has two stages of operation: prediction and correction. In the prediction stage, a model of the 193 system is used to predict the evolution of the states even in the absence of measurement. In the correction stage, the 194 difference between the current prediction and the current observation is employed to refine the state estimate. As 195 reported in [22], KF can yield marginally better estimates in a FC system compared to RLS. However, both techniques 196 might result in unstable estimates while working in a real FC system. This is due to the fact that their assumptions, 197 Gaussianity of process and measurement covariances, could be violated. Therefore, the robustness aspect of the algorithm should be considered as well as the accuracy. In this regard, Lyapunov-based estimation has been suggested which can guarantee stability in a particular system. That means by changing the FC model, the Lyapunov function needs to be updated. However, it is not always easy to find a new function for this purpose. The above-discussed aspects have turned the attention of this manuscript to the employment of SVSF which has been introduced as a robust estimator in the literature. SVSF has an integral switching action to assure the convergence of estimation within the vicinity of real values. The key performance benefits of the SVSF over the discussed estimation methods are as follows:

The discussed filtering methods are developed based on the precise knowledge of the system's model.
 Nevertheless, substantial noise and uncertainties can arise in a real application. For instance, when the FC
 system experiences degradation, fault conditions, or any performance drifts, the developed model is not
 precise anymore, and this may afflict the performance of the discussed estimators. On the other hand, SVSF
 maintains robustness and stability within a preset range for bounded uncertainties and noise levels. Hence,
 SVSF is not reliant on a precise model under uncertain conditions.

- The discussed techniques provide the error between measurement and estimation as a performance index.
 Besides this, SVSF provides an index using the chattering signal [34], which can be related to the state of health of the system. This feature is useful in health monitoring studies.
- The nonlinear versions of the discussed estimators normally require local linearization of the nonlinear function around a fixed point to estimate the nonlinear states of the model. This could diminish the optimality and precision of the filter. However, SVSF carries out this nonlinear state estimation without any approximation. It should be noted that for systems with nonlinear measurement models, SVSF also requires local linearization, similar to other filters.
- With all the favorable attributes of SVSF algorithm, it is still considered a suboptimal estimator. It is thus advantageous
 to combine the robust performance of SVSF with accurate performance of KF, as suggested in [38-41].
- 221 Generally, a linear dynamic system and a measurement model are characterized by:

222
$$x_{k+1} = Ax_k + Bu_k + w_k$$
 (14)

223
$$z_{k+1} = H x_{k+1} + v_{k+1}$$
 (15)

where x is the state vector, k is the time index, A is the linear system transition matrix, B is the input gain matrix, uis the input vector, w is the system noise vector, z is the measurement vector (system output), H is the linear measurement matrix, and v is the measurement noise vector. In what follows, KF and the hybrid SVSF-KF methods are explained for the parameter estimation of the model introduced in (14) and (15).

A. Kalman filter

KF is one of the most practiced filters for linear dynamic systems. It offers an optimal solution in the presence of Gaussian white noise if all the fundamental assumptions hold [46]. It employs measurements that are linearly linked to the system's states/parameters and error covariance matrices to calculate the Kalman gain. This gain is applied to the a priori state estimate to generate an updated estimate of the states. This predictor-corrector estimation process is continued in an iterative manner. In this regard, a priori estimate based on the system definition is given by:

234
$$\hat{x}_{k+1|k} = \hat{A}\hat{x}_{k|k} + \hat{B}u_k$$
 (16)

where ^ denotes the estimated vector or values. The corresponding state error covariance matrix (*P*) is defined by:

236
$$P_{k+1|k} = HP_{k|k}H^T + Q_k$$
(17)

where *Q* is the noise covariance matrix of the system, and *T* is the transpose of some vector or matrix. The Kalmangain (*K*) is determined by:

239
$$K_{k+1} = P_{k+1|k} H^T [HP_{k+1|k} H^T + R_{k+1}]^{-1}$$
(18)

where *R* is the measurement noise covariance matrix. Using the calculated Kalman gain, the state estimate is updatedas:

242
$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1}[z_{k+1} - H\hat{x}_{k+1|k}]$$
 (19)

243 Finally, a posteriori state error covariance matrix is determined by:

244
$$P_{k+1|k+1} = [I - K_{k+1}H]P_{k+1|k}$$
(20)

where *I* is an identity matrix.

246 B. Combined smooth variable structure and Kalman filter

247 KF is developed based on the accurate knowledge of the system model and assumes measurement noises are white. 248 However, these assumptions do not always hold under real applications, especially when the system confronts aging, 249 fault conditions, or any other abnormalities. The violation of the assumptions can degrade the performance of KF 250 since the system model is not accurate anymore. SVSF is a fairly new predictor-corrector estimation method that 251 generates suboptimal but highly robust and stable estimates against modeling uncertainties and errors. The preserved 252 robustness and stability of SVSF are due to enforcing the state estimates to change within a boundary layer around the 253 true state trajectory. However, compared to KF, SVSF is still a sub-optimal filter which implies that there is a tradeoff between robustness to modeling uncertainties and estimation precision. In this regard, a combination method has 254 255 been proposed based on the definition of a time-varying boundary layer in [47] to preserve the SVSF robustness while 256 profiting from the exactness of KF. This method provides the basis for the combination of SVSF with extensions of 257 KF and even other existing estimation techniques. The SVSF-KF iterative estimation process is summarized in (21) 258 to (31). Similar to KF, the prediction step begins with the calculation of $\hat{x}_{k+1|k}$ and $P_{k+1|k}$ as follows.

259
$$\hat{x}_{k+1|k} = \hat{A}\hat{x}_{k|k} + \hat{B}u_k$$
 (21)

260
$$P_{k+1|k} = HP_{k|k}H^T + Q_k$$
 (22)

Subsequently, a priori measurement error $(e_{z,k+1|k})$ and the measurement error covariance matrix (S_{k+1}) are calculated as:

263
$$e_{z,k+1|k} = z_{k+1} - H\hat{x}_{k+1|k}$$
(23)

264
$$S_{k+1} = H_{k+1}P_{k+1|k}H_{k+1}^T + R_{k+1}$$
 (24)

At this point, a time-varying smoothing boundary layer ($\psi_{VBL k+1}$) is calculated and utilized to combine SVSF and KF:

267
$$\psi_{VBL \, k+1} = (\bar{A}^{-1} H P_{k+1|k} H^T S_{k+1}^{-1})^{-1}$$
(25)

268 where the bar notation signifies a diagonal matrix ($\overline{A} = diag(A)$), and A is obtained by:

269
$$A = (|e_{z,k+1|k}| + \gamma |e_{z,k|k}|)$$
(26)

270 where γ is the convergence rate (0 < γ < 1). By comparing the defined $\psi_{VBL k+1}$ with a constant smoothing boundary

271 layer ($\psi_{con.}$), proposed by the designer, the update gain is defined as follows:

272
$$\begin{cases} If \ \psi_{VBL \ k+1} \ge \psi_{Con.}: \ K_{k+1} = H^+ diag \left[A \circ sat \left(\overline{\psi}_{Con.}^{-1}, e_{z,k+1|k} \right) \right] \left(\overline{e_{z,k+1|k}} \right)^{-1} \\ If \ \psi_{VBL \ k+1} < \psi_{Con.}: \ Use \ Kalman \ gain \ defined \ in \ (18) \end{cases}$$
(27)

where H^+ is the Pseudoinverse of H, \circ denotes element-by-element multiplication, and the saturation function is calculated as:

275
$$sat(\bar{\psi}_{Con.}^{-1}, e_{z,k+1|k}) = \begin{cases} 1, & e_{z,k+1|k}/\bar{\psi}_{Cons.} \ge 1\\ e_{z,k+1|k}/\bar{\psi}_{Cons.}, & -1 < e_{z,k+1|k}/\bar{\psi}_{Cons.} < 1\\ -1, & e_{z,k+1|k}/\bar{\psi}_{Cons.} \le -1 \end{cases}$$
(28)

In fact, when the value of $\psi_{Con.}$ in the standard SVSF gain is larger than the $\psi_{VBL\ k+1}$, estimation accuracy is decreased owing to the difference between the constant layer and the upper layer. In this case, Kalman gain should be applied to achieve a more precise result. However, when the $\psi_{VBL\ k+1}$ goes beyond the $\psi_{Con.}$, it indicates the existence of modeling uncertainty (which can result in a loss in estimation accuracy). In this case, the SVSF gain in (27) should be employed to assure a stable estimate. After choosing the update gain, the updated state estimates ($\hat{x}_{k+1|k+1}$), state error covariance matrix ($P_{k+1|k+1}$), and the a posteriori measurement error ($e_{z,k+1|k+1}$) are defined by:

282
$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k} + K_{k+1}e_{z,k+1|k}$$
 (29)

283
$$P_{k+1|k+1} = (I - K_{k+1}H)P_{k+1|k}(I - K_{k+1}H)^T + K_{k+1}R_{k+1}K_{k+1}^T$$
(30)

284
$$e_{z,k+1|k+1} = z_{k+1} - H\hat{x}_{k+1|k+1}$$
(31)

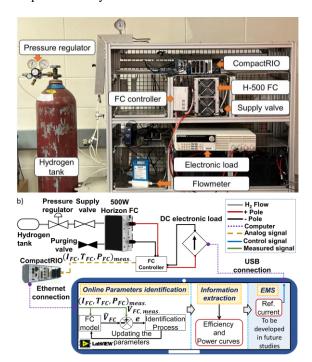
285 IV. Experiments and results analysis

An experimental test bench has been developed to corroborate the performance of the explained online estimation methods. Hereunder, the utilized setup is explained first. Subsequently, the considered scenarios and the achieved outcomes concerning the characteristics estimation are completely discussed.

289 A. Experimental setup

Fig. 3 demonstrates the developed setup for the purpose of this work. As is seen, a Horizon H-500 FC is utilized tocollect the required data for the estimation process. It is an air-cooled FC equipped with two axial fans to provide

292 oxygen on the cathode side and control the stack temperature. This FC is self-humidified and works based on a dead-293 ended anode (DEA) principle. In this regard, the dry hydrogen is continuously supplied by a hydrogen supply valve 294 in the anode inlet at a predefined pressure. The flow rate of hydrogen is between 0 and 6.5 l/min, depending on the requested current from the stack. The voltage of the hydrogen valve (V_{Valve}) is 12 V, and the current of the hydrogen 295 296 valve (I_{Valve}) is 0.72 A. A manual forward pressure regulator is employed to maintain the partial pressure of hydrogen 297 between 0.45 and 0.55 bar. A DEA system simplifies the FC balance of plant as a hydrogen recirculation loop (pump, water separator, and humidifier) will not be needed. Furthermore, during the DEA operation, water backflow in the 298 299 anode around the membrane relatively leads to self-humidification. The anode outlet has a hydrogen purging valve to 300 remove the accumulated water in the catalyst and gas diffusion layers of anode. It also pushes out the nitrogen 301 dispersed from the cathode across the membrane. This valve is normally closed and conducts a cyclic purging (every 302 10 s for a duration of 100 ms) while the FC is under operation. An OMEGA flowmeter (FMA-A2309), calibrated for 303 hydrogen gas, is employed to measure the hydrogen flow. This flowmeter does not require any temperature, pressure, 304 or square root corrections since it has a capillary thermal technology to determine mass flow accurately. Table I 305 provides the specifications of the explained FC system.



306

307 Fig. 3. The experimental setup for testing the online estimation methods, a) testbench picture, b) connection diagram and flow chart code.

308

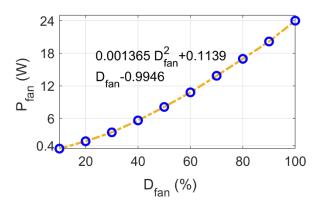
309

TABLE I Specifications of the Horizon H-500 PEMFC					
PEMFC technical data					
Туре	Open cathode				
Number of cells	24				
Hydrogen pressure	0.45-0.55 bar				
Cathode pressure	1 bar				
Ambient temperature	5 °C to 30 °C				
Maximum stack temperature	65 °C				
Over current shut down	42 A				
Hydrogen purity	≥ 99.995% dry H ₂				
Size	130 mm × 268 mm × 122.5 mm				
Cooling	Air (integrated cooling fan)				

312

313 As demonstrated in Fig. 3b, a National Instrument CompactRIO (NI cRIO-9022) is connected to the FC controller to 314 measure the current, temperature, and voltage signals for the estimation purposes. The cRIO communicates with the 315 PC via an Ethernet connection. LabVIEW software is accessible in the PC. The data transfer between the cRIO and 316 the PC is done with a 10-Hz frequency. An 8514 BK Precision DC Electronic Load is used to draw a load profile from 317 the FC system. Fig. 4 shows the power consumption curve of the cooling fan obtained by measuring its voltage and 318 current in different duty cycles. The fitting parameters in (11) have been extracted from Fig. 4. It should be noted that 319 all the tests in this work have been done under the constant cooling fan duty cycle of 34%. If the FC stack temperature 320 reaches 60°C, the duty cycle will change to 100% to avoid over temperature shut down.

321



322

Fig. 4. Consumed power by the cooling fan with respect to duty cycle.

324

323

The actual health state of the explained FC installed on the setup is unknown as it has been used in diverse projects. Hence, to illuminate its actual operational characteristics, the experimental polarization, power, and efficiency curves of this FC are shown in Fig. 5. These characteristics will be employed as the reference curves to assess the performance of the developed adaptive estimator. The measured voltage/power points have been obtained by drawing constant 329 current from the FC system in different levels. It should be noted that the characteristics curves have been extracted 330 at ambient temperature of 15°C with the humidity level of 60%. According to Fig. 5a, the utilized FC can reach a 331 maximum power of 582 W at 42 A. The maximum recommended current to be drawn from this FC is 42 A, and the 332 low voltage shut down is 12 V. The efficiency curve of the FC system in the mentioned ambient conditions is presented 333 in Fig. 5b. From this figure, this FC has gained a maximum efficiency of 55% at around 143 W considering the 334 hydrogen lower heating value. The efficiency curve has been obtained using (13) and considering the auxiliary system 335 power loss explained in (8) to (12). It should be borne in mind that the relation between efficiency and voltage in a 336 PEMFC depends on whether the system or the stack is considered. From Fig. 5, initially, the FC stack voltage has the 337 maximum value while the corresponding efficiency of the FC system is zero. However, the relation between the 338 voltage of the FC system (V_{FCS}) and the efficiency of the FC system (η_{FCS}) is direct, as shown in (13). Fig. 5b also 339 demonstrates a defined safe operation zone for a FC system which is located between the power corresponding to the 340 maximum efficiency ($P_{FCS-Max-Eff.}$) and the maximum power of the FC system ($P_{FCS-Max}$). This zone has been 341 utilized in several studies for designing an EMS [14, 15, 48, 49]. In fact, operation within this zone leads to the increase

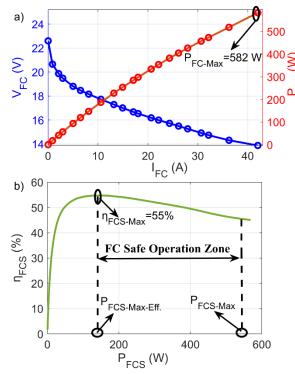
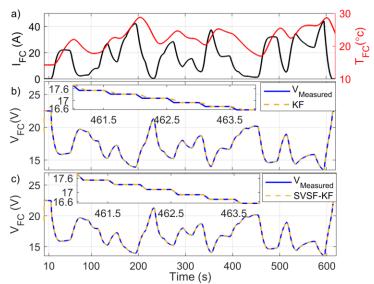


Fig. 5. The reference characteristics of the used PEMFC; a) polarization and power curves obtained by measured data ($P_{FCS-Max}$: maximum power of the FC system), and b) efficiency curve calculated by measured voltage ($\eta_{FCS-Max}$: maximum efficiency of the FC system) along with the representation of the FC safe operation zone.

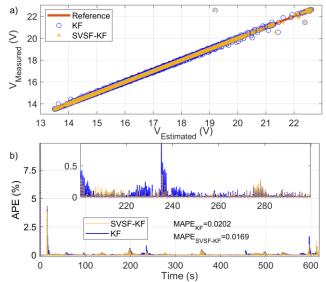
of the FC lifetime and fuel economy. This is mainly due to the fact that by sticking to this zone, FC system is prevented from working in open circuit voltage and low-power regions. Moreover, high-power operation zone is only used when the EMS needs to meet very high-power demand. Therefore, the FC system will operate around its maximum efficiency point most of the time.

351 B. Results and discussion

352 A dynamic current profile, as shown in Fig. 6a, is applied to the FC stack to evaluate the performance of the proposed 353 combined SVSF-KF for online characteristics estimation of the Horizon FC. This dynamic profile along with its 354 corresponded voltage and temperature are recorded for comparison purposes. As is seen, the current profile is 620 s, 355 which leads to 6200 measured data points by having a frequency of 10 Hz for performing the measurement. This 356 dynamic profile covers the minimum and maximum operating current of the FC stack and can provide a good 357 excitation to the system for conducting the online estimation. Fig. 6b represents the estimation of FC stack voltage by 358 KF, and Fig. 6c illustrates the same estimation by the proposed SVSF-KF. From these figures, both adaptive filters 359 are able to estimate the stack voltage with very high accuracy. Fig. 7 compares the estimated output voltage by SVSF-360 KF and KF. Fig. 7a demonstrates the parity plot of the estimated stack voltage by each of the techniques. From this 361 figure, a high density of the estimated voltage points by both techniques is placed on the reference line and dispersed 362 very close to it. This parity plot justifies the satisfactory performance of the proposed hybrid method (SVSF-KF) in 363 terms of voltage estimation as it has reached similar and, on some occasions, better results than KF. Fig. 7b also indicates the absolute percentage error (APE: $\left|\frac{V_{measured} - V_{estimated}}{V_{measured}}\right| \times 100$) and the mean absolute percentage error 364 $(MAPE: \frac{100}{n} \sum_{i=1}^{n} \left| \frac{V_{measured}(i) - V_{estimated}(i)}{V_{measured}(i)} \right|)$ for each of the methods. According to this figure, SVSF-KF has achieved 365 366 the MAPE of 0.0169 while KF has reached the MAPE of 0.0202. It is worth noting that the estimation mismatch around 22 V of measured voltage in Fig. 7a, which corresponds to the jump in the beginning of voltage estimation in 367 368 Fig. 7b, is due to the initialization of the unknown parameters. This behavior swiftly disappears after the convergence 369 of the algorithms. Since both estimation techniques have been tested with the same initial unknown model parameters, 370 they have experienced the same jump in the beginning of estimation process. Overall, it can be said from Fig. 7 that 371 both estimation methods have a very good level of precision for estimating the voltage. In fact, this is due to the fact 372 that at each point, they just try to minimize the error between estimated and measured voltage.



Time (s) Fig. 6. Online voltage estimation by the utilized adaptive filters; a) applied current the FC stack (solid line in black) and the corresponding measured stack temperature (solid line in red), b) comparison of measured voltage with the estimated one by KF, c) comparison of measured voltage with the estimated one by SVSF-KF.



Time (s)
 Fig. 7. Comparison of the voltage estimation by the deployed methods; a) Parity plot of voltage estimation by both techniques, b) the achieved absolute percentage error (APE) and mean absolute percentage error (MAPE) of estimated voltage by KF and SVSF-KF.
 381

However, for the purpose of this work, it is highly important to check whether the updated semi-empirical voltage model is able to accurately estimate the power and efficiency characteristics in the whole operating range of the FC stack. In fact, maximum power is normally among the considered constraints of the system and maximum efficient power is used in the formulation of the cost function in an energy management application. The EMS can be prevented from malfunction by updating the values of maximum power and efficiency. To this end, the updated model by the estimation methods have been used to generate the power and estimation curves. Fig. 8 presents the extracted

characteristics from the updated model. From this figure, it is observed that the updated model by both adaptive filters is capable of estimating precise polarization, power, and efficiency curves. These curves have been extracted by using the obtained parameters at 280 s. To obtain the maximum power and efficiency points at each moment, these two curves need to be plotted at each instant. Then, the maximum value can be easily detected at each curve. Regarding the precision of the estimated characteristics in Fig. 8, no specific conclusion can be still made. Since these curves belong to just one moment, they can change in the next or the previous moment. Therefore, the estimation of maximum power and efficiency points at each instant should come under scrutiny.

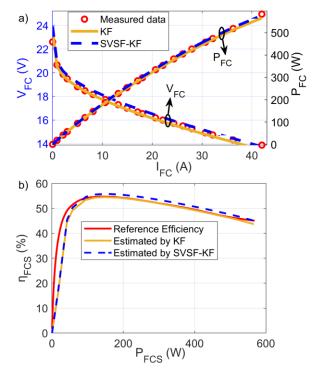
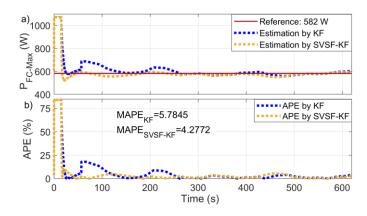


Fig. 8. The estimated characteristics of the PEMFC stack at 280 s; a) polarization and power curves, and b) efficiency curve.

395 396 397 398

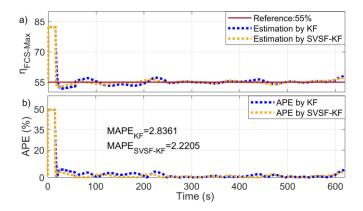
Fig. 9a and Fig. 9b represent the maximum power point tracking and the estimation error by both methods. To obtain Fig. 9a, the estimated power curve of the FC model has been plotted at each timestep, and the maximum value has then been extracted from it. This figure illustrates the required time to obtain the targeted characteristics from the model. The considered reference maximum power is 582 W according to the illustrated experimental power curve in Fig. 5a. Since the performed test is not very long, this value is not expected to change due to degradation. According to Fig. 9a, there is a big jump in the beginning of maximum power point estimation leading to considerable error. SVSF-KF almost converges after around 80 s while KF keeps the jumpy behavior up to around 250 s. From this point 406 (250 s) on, both methods almost show similar behavior. This behavior explains the reason for similarity of the
407 extracted characteristics at 280 s in Fig. 8. From Fig. 9b, the achieved MAPE by SVSF-KF is almost 1.5 % less than
408 that of KF. It is worth reminding that the APE and MAPE of KF and SVSF-KF have been calculated with respect to
409 their performance compared to reference maximum power (582 W).



410

411 Fig. 9. Maximum power point tracking during the whole profile; a) estimation of maximum power point at each moment, and b) maximum 412 power point estimation error considering $P_{FC-Max} = 582 W$ as the reference point.

413 Fig. 10a illustrates the estimation of the maximum efficiency point. Moreover, the estimation error is shown in Fig. 414 10b. During this estimation process, the error has been calculated with regard to the reference maximum efficiency 415 (55%). From this figure, it is also observed that there is a big error in the beginning of the estimation process and after 416 that the error decreases to less than three percent for both methods. Overall, the achieved MAPE by SVSF-KF is 417 almost 0.6 % less than the one obtained by KF. From Fig. 9 and Fig. 10, it can be stated that the estimation of maximum 418 power is more challenging than maximum efficiency. This is due to the fact that the changes in the FC power are 419 much sharper than the efficiency. It should be noted that the big jump in the beginning of voltage, maximum efficiency, 420 and maximum power estimations is due to the initialization of unknown model parameters, which is the same in both 421 algorithms. Another worth noting aspect is that if the performance of the algorithms is compared from 250 s to 600 s 422 (that means after the convergence of KF), it is realized that both techniques lead to almost similar results (Maximum 423 power estimation: $MAPE_{KF}$: 2.09, $MAPE_{SVSF-KF}$: 2, Maximum efficiency estimation: $MAPE_{KF}$: 1.01, 424 $MAPE_{SVSF-KF}$: 1). Assuming a perfectly known model, both algorithms will reach nearly the same results even in a 425 longer test as SVSF-KF uses the same gain as KF to update the estimates in normal conditions. In uncertain conditions, 426 it uses its own particular gain which is more robust than Kalman gain. In fact, this is the principal reason for combining 427 these filters.



429 Fig. 10. Maximum efficiency point tracking during the whole profile; a) estimation of maximum efficiency point at each moment, and b) maximum efficiency point estimation error considering $\eta_{FC-Max} = 55\%$ as the reference point.

431 V. Conclusion

432 Since a FC stack has time-varying maximum power and efficiency points, their online estimate is vital in energy 433 management of FCHEVs. KF is known as an optimal estimator if all the necessary assumptions, like normal 434 distribution of all uncertainties, hold. However, these assumptions can be easily violated in a FC stack that is a multi-435 physical system. One of the well-established solutions to enhance the estimation robustness in this case is to impose 436 limits on the targeted parameters. This can be conveniently accomplished by using SVSF that is based on principle of 437 sliding mode estimation. Thus, this paper puts forward a new estimation method composed of SVSF and KF to 438 estimate the characteristics of a FC stack online. To this end, a semi-empirical FC model, proposed by Amphlett et 439 al., is utilized to determine the output voltage of a 500-W FC stack. The parameters of the utilized model are tuned 440 online by the combined SVSF-KF algorithm. Then, the updated model is employed to extract the power and efficiency curves of the stack at each moment. The performance of this method is compared with KF, which is an attested method 441 442 in the literature. The obtained experimental results, using a developed test bench with a 500-W open cathode Horizon 443 FC stack, indicate that the combined SVSF-KF has superior performance compared to KF in terms of accuracy in 444 voltage, maximum power, and maximum efficiency estimation. Regarding the voltage estimation, the MAPE has 445 decreased from 0.0202 (attained by KF) to 0.0169 (attained by SVSF-KF), marking 16.3 % of error reduction. In case 446 of power and efficiency, the MAPE values have declined from 5.7845 and 2.8361 (obtained by KF) to 4.2772 and 447 2.2205 (obtained by SVSF-KF) respectively, indicating 26 % and 21.7 % of improvement in the estimation accuracy. 448 The presented work in this manuscript provides the basis for designing an adaptive EMS for a FCHEV. In future, the 449 proposed combined filter should be combined with an EMS to estimate the FC characteristics in real-time. This 450 integration enhances the efficiency and robustness of the EMS when the FC characteristics go under temporal changes.

451 Declaration of competing interest

- 452 The authors declare that they have no known competing financial interests or personal relationships that
- 453 could have appeared to influence the work reported in this paper.

454 Acknowledgments

- 455 This work was supported in part by the Fonds de Recherche du Québec Nature et Technologies (FRQNT) (284914 &
- 456 283370), Reseau Québécois sur l'Energie Intelligente (postdoctoral and third cycle scholarships), Natural Sciences
- 457 and Engineering Research Council of Canada (NSERC) [RGPIN-2018-06527 and RGPIN-2017-05924], and Canada
- 458 Research Chairs program [950-230863 and 950-230672].

459 Nomenclature

460	APE	Absolute percentage error
461	cRIO	CompactRIO
462	DEA	Dead-ended anode
463	ECM	Equivalent circuit model
464	EMS	Energy management strategy
465	FC	Fuel cell
466	FCHEV	Fuel cell hybrid electric vehicles
467	KF	Kalman filter
468	MAPE	Mean absolute percentage error
469	NI	National Instrument
470	PEM	Proton exchange membrane
471	QP	Quadratic programming
472	RLS	Recursive least square
473	RML	Recursive maximum likelihood
474	SC	Supercapacitor
475	SOC	State of charge
476	SVSF	Smooth variable structure filter
477	SVSF-KF	Combined smooth variable structure and Kalman filters

Symbols 479 Т 480 Transpose of a vector 481 Ā Diagonal matrix of A Oxygen concentration (mol cm^{-3}) 482 C_{02} Duty cycle of the fan (%) 483 D_{fan} 484 Reversible cell potential (V) E_{Nernst} H^+ 485 Pseudoinverse of H 486 PEMFC operating current (A) I_{FC} 487 Hydrogen valve current (A) I_{Valve} 488 Maximum current (A) Imax 489 Number of cells N_{cell} 490 P_{Aux} Consumed power by the auxiliary systems (W) 491 P_{FC} FC stack power (W) 492 Power of the FC system (W) P_{FCS} 493 Maximum power of the FC system $P_{FCS-Max}$ 494 P_{H2} Energy value of consumed hydrogen (W) Hydrogen partial pressure in anode side (N m⁻²) 495 P_{H2} Oxygen partial pressure in the cathode side (N m^{-2}) 496 P_{O2} Consumed power by hydrogen valve (W) 497 P_{Valve} 498 Power consumption of the cooling fan (W) P_{fan} 499 Internal resistor (Ω) R_{internal} 500 S_{k+1} Measurement error covariance matrix 501 T_{FC} Stack temperature (K) 502 Voltage of the PEMFC stack (V) V_{FC} 503 Cell voltage (V) V_{FCN} 504 Hydrogen valve voltage (V) V_{Valve}

505	V _{act}	Activation loss (V)
506	V _{con}	Concentration loss (V)
507	V _{ohmic}	Ohmic loss (V)
508	c_1, c_2, c_3	Empirical parameters
509	$e_{z,k+1 k}$	A priori measurement error
510	x _i	Known values or regressors
511	ζ_n	Parametric coefficients
512	$\eta_{FCS-Max}$	Maximum efficiency of the FC system
513	$ heta_i$	Unknown parameters
514	ξ_n	Semi-empirical coefficients
515	$\psi_{{\it Con.}}$	Constant smoothing boundary layer
516	$\psi_{\scriptscriptstyle VBL\ k+1}$	Time-varying smoothing boundary layer
517	٨	Estimated vector or values
518	0	Element-by-element multiplication
519	ΔH	Hydrogen higher/lower heating value (kJ/mol)
520	Α	Linear system transition matrix
521	В	Input gain matrix
522	В	Parametric coefficient (V)
523	F	Faraday constant
524	Н	Linear measurement matrix
525	Ι	Identity matrix
526	Κ	Kalman gain
527	Р	State error covariance matrix
528	Q	Noise covariance matrix of the system
529	R	Measurement noise covariance matrix
530	k	Time index
531	n	Number of electrons transferred for each molecule of fuel
532	и	Input vector

- 533 v Measurement noise vector
- 534 *w* System noise vector
- 535 *x* State vector
- 536 *z* Measurement vector (system output)
- 537 γ Convergence rate
- 538
- 539 CRediT author statement
- 540 Mohsen Kandidayeni: Conceptualization, Software, Methodology, Investigation, Writing Original Draft. Mehdi
- 541 Soleymani: Writing Review & Editing, Supervision. Alvaro Macias: Methodology, Software, Validation. João P.
- 542 Trovão: Writing Review & Editing, Supervision, Funding acquisition. Loïc Boulon: Writing Review & Editing,
- 543 Supervision, Funding acquisition.

544 References

- [1] R. Arvidsson, M. Janssen, M. Svanström, P. Johansson, and B. A. Sandén, "Energy use and climate change improvements of Li/S batteries based on life cycle assessment," *Journal of Power Sources*, vol. 383, pp. 87-92, 2018/04/15/2018.
- 548 [2] O. Bamisile *et al.*, "Electrification and renewable energy nexus in developing countries; an overarching analysis of hydrogen production and electric vehicles integrality in renewable energy penetration," *Energy Conversion and Management*, vol. 236, p. 114023, 2021/05/15/ 2021.
- E. Pahon, D. Bouquain, D. Hissel, A. Rouet, and C. Vacquier, "Performance analysis of proton exchange membrane fuel cell in automotive applications," *Journal of Power Sources*, vol. 510, p. 230385, 2021/10/31/ 2021.
- S. Ahmadi, S. M. T. Bathaee, and A. H. Hosseinpour, "Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy," *Energy Conversion and Management*, vol. 160, pp. 74-84, 2018/03/15/ 2018.
- [5] D.-D. Tran, M. Vafaeipour, M. El Baghdadi, R. Barrero, J. Van Mierlo, and O. Hegazy, "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," *Renewable and Sustainable Energy Reviews*, vol. 119, p. 109596, 2020/03/01/ 2020.
- 560[6]R. Pan, D. Yang, Y. Wang, and Z. Chen, "Health degradation assessment of proton exchange membrane fuel561cell based on an analytical equivalent circuit model," *Energy*, vol. 207, p. 118185, 2020/09/15/ 2020.
- 562 [7] M. Raeesi, S. Changizian, P. Ahmadi, and A. Khoshnevisan, "Performance analysis of a degraded PEM fuel
 563 cell stack for hydrogen passenger vehicles based on machine learning algorithms in real driving conditions,"
 564 *Energy Conversion and Management*, vol. 248, p. 114793, 2021/11/15/ 2021.
- 565[8]K. Deng *et al.*, "Deep reinforcement learning based energy management strategy of fuel cell hybrid railway
vehicles considering fuel cell aging," *Energy Conversion and Management*, p. 115030, 2021/11/24/ 2021.
- 567 [9] M. Kandidayeni, A. M. Fernandez, L. Boulon, and S. Kelouwani, "Efficiency Upgrade of Hybrid Fuel Cell
 568 Vehicles' Energy Management Strategies by Online Systemic Management of Fuel Cell," *IEEE Transactions* 569 on *Industrial Electronics*, pp. 1-1, 2020.
- 570 [10] H. Li, A. Ravey, A. N'Diaye, and A. Djerdir, "Online adaptive equivalent consumption minimization strategy
 571 for fuel cell hybrid electric vehicle considering power sources degradation," *Energy Conversion and*572 *Management*, vol. 192, pp. 133-149, 2019/07/15/ 2019.

- 573 [11] K. Song, Y. Ding, X. Hu, H. Xu, Y. Wang, and J. Cao, "Degradation adaptive energy management strategy using fuel cell state-of-health for fuel economy improvement of hybrid electric vehicle," *Applied Energy*, vol. 285, p. 116413, 2021/03/01/ 2021.
- 576 [12] D. Zhou, A. Ravey, A. Al-Durra, and F. Gao, "A comparative study of extremum seeking methods applied to online energy management strategy of fuel cell hybrid electric vehicles," *Energy Conversion and Management*, vol. 151, pp. 778-790, 2017/11/01/ 2017.
- 579 [13] D. Zhou, A. Al-Durra, I. Matraji, A. Ravey, and F. Gao, "Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles: A Fractional-Order Extremum Seeking Method," *IEEE Transactions on Industrial Electronics*, vol. 65, no. 8, pp. 6787-6799, 2018.
- [14] Q. Li *et al.*, "Online extremum seeking-based optimized energy management strategy for hybrid electric tram considering fuel cell degradation," *Applied Energy*, Article vol. 285, 2021, Art. no. 116505.
- T. Wang *et al.*, "An optimized energy management strategy for fuel cell hybrid power system based on maximum efficiency range identification," *Journal of Power Sources*, Article vol. 445, 2020, Art. no. 227333.
- T. Wang, Q. Li, Y. Qiu, L. Yin, L. Liu, and W. Chen, "Efficiency Extreme Point Tracking Strategy Based on FFRLS Online Identification for PEMFC System," *IEEE Transactions on Energy Conversion*, vol. 34, no. 2, pp. 952-963, 2019.
- T. Wang, Q. Li, L. Yin, and W. Chen, "Hydrogen consumption minimization method based on the online identification for multi-stack PEMFCs system," *International Journal of Hydrogen Energy*, vol. 44, no. 11, pp. 5074-5081, 2019/02/26/ 2019.
- [18] Q. Li *et al.*, "Online extremum seeking-based optimized energy management strategy for hybrid electric tram considering fuel cell degradation," *Applied Energy*, vol. 285, p. 116505, 2021/03/01/ 2021.
- [19] K. Ettihir, L. Boulon, M. Becherif, K. Agbossou, and H. S. Ramadan, "Online identification of semiempirical model parameters for PEMFCs," *International Journal of Hydrogen Energy*, Article vol. 39, no. 36, pp. 21165-21176, 2014.
- 597 [20] G. Squadrito, G. Maggio, E. Passalacqua, F. Lufrano, and A. Patti, "An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour," *Journal of Applied Electrochemistry*, vol. 29, no. 12, pp. 1449-1455, 1999/12/01 1999.
- [21] K. Ettihir, M. Higuita Cano, L. Boulon, and K. Agbossou, "Design of an adaptive EMS for fuel cell vehicles,"
 International Journal of Hydrogen Energy, Article vol. 42, no. 2, pp. 1481-1489, 2017.
- 602 [22] M. Kandidayeni, A. Macias, A. A. Amamou, L. Boulon, S. Kelouwani, and H. Chaoui, "Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes," *Journal of Power Sources*, Article vol. 380, pp. 92-104, 2018.
- J. C. Amphlett, "Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell," *Journal of The Electrochemical Society*, vol. 142, no. 1, p. 9, 1995.
- R. F. Mann, J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley, and P. R. Roberge, "Development and application of a generalised steady-state electrochemical model for a PEM fuel cell," *Journal of Power Sources*, vol. 86, no. 1, pp. 173-180, 2000/03/01/ 2000.
- 610 [25] A. Amamou, M. Kandidayeni, A. Macias, L. Boulon, and S. Kelouwani, "Efficient model selection for real-time adaptive cold start strategy of a fuel cell system on vehicular applications," *International Journal of Hydrogen Energy*, vol. 45, no. 38, pp. 19664-19675, 2020/07/31/ 2020.
- 613 [26] M. Kandidayeni, A. Macias, A. Khalatbarisoltani, L. Boulon, and S. Kelouwani, "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," *Energy*, vol. 183, pp. 912-925, 2019/09/15/ 2019.
- 616 [27] S. Xu, Y. Wang, and Z. Wang, "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," *Energy*, vol. 173, pp. 457-467, 2019/04/15/ 2019.
- E. A. Gouda, M. F. Kotb, and A. A. El-Fergany, "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," *Energy*, vol. 221, p. 119836, 2021/04/15/ 2021.
- M. Kandidayeni, A. Macias, A. A. Amamou, L. Boulon, and S. Kelouwani, "Comparative Analysis of Two
 Online Identification Algorithms in a Fuel Cell System," *Fuel Cells*, Article vol. 18, no. 3, pp. 347-358, 2018.
- 624 [30] A. Daeichian, R. Ghaderi, M. Kandidayeni, M. Soleymani, J. P. Trovão, and L. Boulon, "Online characteristics estimation of a fuel cell stack through covariance intersection data fusion," *Applied Energy*, vol. 292, p. 116907, 2021/06/15/ 2021.
- Y. Xing, J. Na, and R. Costa-Castelló, "Real-Time Adaptive Parameter Estimation for a Polymer Electrolyte
 Membrane Fuel Cell," *IEEE Transactions on Industrial Informatics*, vol. 15, no. 11, pp. 6048-6057, 2019.

- [32] M. Kandidayeni, H. Chaoui, L. Boulon, S. Kelouwani, and J. P. F. Trovao, "Online System Identification of a Fuel Cell Stack with Guaranteed Stability for Energy Management Applications," *IEEE Transactions on Energy Conversion*, pp. 1-1, 2021.
- [33] H. Chaoui, M. Kandidayeni, L. Boulon, S. Kelouwani, and H. Gualous, "Real-Time Parameter Estimation of a Fuel Cell for Remaining Useful Life Assessment," *IEEE Transactions on Power Electronics*, vol. 36, no.
 634 7, pp. 7470-7479, 2021.
- 635 [34] S. Habibi, "The Smooth Variable Structure Filter," *Proceedings of the IEEE*, vol. 95, no. 5, pp. 1026-1059, 2007.
- 637 [35] M. Avzayesh, M. Abdel-Hafez, M. AlShabi, and S. A. Gadsden, "The smooth variable structure filter: A comprehensive review," *Digital Signal Processing*, vol. 110, p. 102912, 2021/03/01/ 2021.
- [36] [36] T. Kim, Y. Wang, Z. Sahinoglu, T. Wada, S. Hara, and W. Qiao, "State of charge estimation based on a realtime battery model and iterative smooth variable structure filter," in *2014 IEEE Innovative Smart Grid Technologies Asia (ISGT ASIA)*, 2014, pp. 132-137.
- [37] H. H. Afshari, M. Attari, R. Ahmed, A. Delbari, S. Habibi, and T. Shoa, "Reliable state of charge and state of health estimation using the smooth variable structure filter," *Control Engineering Practice*, vol. 77, pp. 1-14, 2018/08/01/ 2018.
- [38] S. A. Gadsden and S. R. Habibi, "A New Robust Filtering Strategy for Linear Systems," *Journal of Dynamic Systems, Measurement, and Control*, vol. 135, no. 1, 2012.
- 647 [39] S. A. Gadsden, M. Al-Shabi, I. Arasaratnam, and S. R. Habibi, "Combined cubature Kalman and smooth variable structure filtering: A robust nonlinear estimation strategy," *Signal Processing*, vol. 96, pp. 290-299, 2014/03/01/ 2014.
- W. Youn and S. A. Gadsden, "Combined Quaternion-Based Error State Kalman Filtering and Smooth Variable Structure Filtering for Robust Attitude Estimation," *IEEE Access*, vol. 7, pp. 148989-149004, 2019.
- [41] F. Demim, S. Benmansour, N. Abdelkrim, A. Rouigueb, M. Hamerlain, and A. Bazoula, "Simultaneous localisation and mapping for autonomous underwater vehicle using a combined smooth variable structure filter and extended kalman filter," *Journal of Experimental & Theoretical Artificial Intelligence*, pp. 1-30, 2021.
- [42] R. O'Hayre, S.-W. Cha, W. Colella, and F. B. Prinz, "Chapter 1: Introduction," in *Fuel Cell Fundamentals*, 2016, pp. 1-24.
- [43] J. Larminie and A. Dicks, "Operational Fuel Cell Voltages," in *Fuel Cell Systems Explained*, 2003, pp. 45-66.
- 660 [44] A. Saadi, M. Becherif, A. Aboubou, and M. Y. Ayad, "Comparison of proton exchange membrane fuel cell static models," *Renewable Energy*, vol. 56, pp. 64-71, 2013/08/01/ 2013.
- 662 [45] F. Barbir, "CHAPTER 3 Fuel Cell Electrochemistry," in *PEM Fuel Cells*, F. Barbir, Ed. Burlington: Academic Press, 2005, pp. 33-72.
- 664 [46] S. Haykin, "Kalman Filters," in Kalman Filtering and Neural Networks, 2001, pp. 1-21.
- 665 [47] S. A. Gadsden, S. Habibi, and T. Kirubarajan, "Kalman and smooth variable structure filters for robust estimation," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 50, no. 2, pp. 1038-1050, 2014.
- 667 [48] K. Ettihir, L. Boulon, and K. Agbossou, "Optimization-based energy management strategy for a fuel cell/battery hybrid power system," *Applied Energy*, Article vol. 163, pp. 142-153, 2016.
- [49] M. Kandidayeni, A. O. Macias Fernandez, A. Khalatbarisoltani, L. Boulon, S. Kelouwani, and H. Chaoui,
 "An Online Energy Management Strategy for a Fuel Cell/Battery Vehicle Considering the Driving Pattern
 and Performance Drift Impacts," *IEEE Transactions on Vehicular Technology*, Article vol. 68, no. 12, pp.
 11427-11438, 2019, Art. no. 8809281.

673