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Abstract Microfluidics typically uses either a syringe
pump that regulates the flow rate in microchannels or

a pressure pump that controls the inlet pressures to
drive the flow. In the context of pressure-driven flow, a
reservoir holder containing liquid samples is normally

used to interface the pressure pump with the microflu-
idic chip via soft tubing. The tubing connecting the
pump and holder transports the pressurized air while
the tubing connecting the holder and chip transports

the liquid samples. The pressure output from the pump
is usually assumed to be stable and the same as that
applied to the liquid in the chip; however, in practice

this assumption is often incorrect and may negatively
impact chip performance. This assumption is critically
challenged when applied to microfluidic chips involv-

ing dynamic control of fluids since the pressures are
constantly varied (at > 10 Hz). This study presents
a method for investigating, quantifying and modelling
the pump stability and the dynamics of the air tubing

using two pressure sensors. The relationship between
the pressure output from the pump and the reservoir
holder pressure is generalized as a first-order linear sys-
tem. This relationship allows the software that controls
the pressure pump to output the required pressure to
the reservoir holder and thus to the microfluidic chip.
These results should significantly improve the perfor-

mance of microfluidic chips using active fluid control,
and may also benefit passive fluid control applications.
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1 Introduction

1.1 Microfluidics context

Microfluidics deals with fluid flows at the micrometre
scale. This enabling technology has been applied in a
wide range of fields such as biological assays (Crab-

tree et al. 2012; Atabakhsh and Ashtiani 2018; Azizi
et al. 2019), material synthesis (Wang et al. 2017a,
Wang et al. 2017b), biofuels (Bodénès et al. 2019), drug

screening Rasponi et al. 2015, and many more. Droplet
microfluidics is a subset of microfluidics that considers
monodispersed picoliter- to nanoliter-sized droplets as
reaction vesicles. The immiscibility of the two phases

in combination with good wetting conditions (meaning
that one fluid preferably wets the channel surface) al-
lows the isolation of the dispersed phase droplets (typi-

cally water) within the continuous phase fluid (typically
oil). Hence, the chemical reactions designed to occur in
the droplets are confined, minimizing cross contamina-

tion and enhancing mixing. Other major advantages of
using microfluidics include reduced reagent consump-
tion and shortened reaction time.

Generally, droplet manipulation methods are cate-
gorized as either passive or active. Passive approaches
generally rely on microchannel network arrangement,
geometry, and applied pressures or flow rates to achieve

the desired droplet manipulations. Active methods use
external forces to better control the fluid. Although
there exists a wide variety of methods to drive the flow
for both passive and active microfluidic solutions, the
syringe pump and pressure pump are the most widely
utilized.

A syringe pump is generally more lenient than a
pressure pump in terms of microchip design (Glawdel
and Ren 2012); however, the performance is compro-
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mised due to inherently long-term persistent transient
behaviour (Korczyk et al. 2011). Additionally, a pres-
sure pump responds much faster than a syringe pump
when a change in setpoint is required (Kieffer et al.
2012); thus, pressure pumps exhibit desirable behaviour
both on short and long timescales. The short-term dy-
namics are especially important for active microfluidics
that involves frequent adjustment of the applied pres-
sures to the chip.

1.2 Motivation

A novel method has been developed for active manipu-
lation of droplets in a microfluidic platform without the
use of external components such as electrodes (Wong
and Ren 2016, Hébert et al. 2019). Central to this method
is a controller that calculates the pressures that must
be applied to the chip inputs to achieve the desired ma-
nipulation of the droplets. This controller design uses
a fluid dynamics model to issue pressure pump com-
mands multiple times per second. It requires fast ac-

tuation, and a pump that can provide rapid pressure
adjustments.

Although a pressure pump provides key advantages

for active manipulation of droplets, the associated setup
requires an interface between the pressurized air from
the pump and the fluid to be driven in the chip; this
is achieved by the so-called reservoir holder. Figure 1

schematically represents the setup. Flexible tubing is
used to connect the pressure pump outlets to the reser-
voir inlets to transport the pressurized air. Secondary

tubing transports the liquid sample from the reservoir
holder outlet to the microfluidic chip. The performance
of this active method for droplet manipulation can be
challenged due to the dynamic difference between the
output pressures specified by the controller and the ap-
plied pressures to the chip, Ppump,output 6= Pchip,input.
This issue has not been so much of a concern for passive

methods, which do not require fast pressure actuation.
These dynamic differences in command and actual at-
chip pressures are due to a combination of components:
the communication between the controller and pump;
the response of the pump; the dynamics of the air tub-
ing; and the dynamics of the liquid sample tubing. The
communication delay is very small in comparison to the

mechanical dynamics, and we assume this is negligible.
The liquid sample tubing has a much higher resistance
and modulus than the air tubing, and so we assume
that this is also negligible (please see supplemental).
The dynamic response of the pump is typically in the
vicinity of 100ms, and the dynamics of the air tubing
are unknown. This study thus focuses on investigat-
ing the dynamic behaviour of the air tubing and the

pressure pump and quantifying the deviations from the
requested pressures and the pressures applied to the
chip. Understanding these dynamic behaviours is not
only useful to improving the performance of the active
controller by including these in the controller model,
but also highly beneficial to other active microfluidic
methods that involve the use of pressure pumps.

1.3 Literature overview

While there exists pertinent literature, the context dif-
fers sufficiently to justify the investigation of the case
under study on its own. The two closest comparable ap-
plications are transmission lines for unsteady pressure
measurement, and blood flow in arteries - these will be
elaborated below.

The system of differential equations that accurately
describe the physical system is too complex to have a
useful analytical solution. The 1mm thick tubing falls

within the thick-walled cylinder classification based on
its ratio to the inner diameter: di/th = 1 < 40, (Schmid
et al. 2013). The relationship between inner pressure

and radial strain for thick-walled tubing is available in
the literature (Schmid et al. 2013); however, measuring
the radial strain of the small tubing (i.e. 1 mm inner
diameter and 3 mm outer diameter) is experimentally

challenging. Consequently, the experimental approach
with two pressure sensors is favoured; the pressure drop
over the air tubing can be accurately measured and

incorporates the effects of the radial strain.

1.3.1 Transmission lines for unsteady pressure
measurement

The dynamic response of transmission lines for pressure
measurement is of interest when considering unsteady
phenomena. By using a lumped parameter model, the
gas is assumed to move as a unit rather than as a wave.

The soundness of this assumption can be gauged by
comparing the tubing length to the wavelength based
on the speed of sound in the medium. Either way, the fi-
nite propagation speed within the tubing entails a time
delay. Considering a tubing length of 50 cm and the
physical properties of air at room temperature, the cor-

responding delay from the propagation is on the order
of 1 ms. The spring and inertia are represented using
a second-order model with the following damping ra-
tio and natural frequency that fully characterizes the
system response (Doebelin and Manik 2007).

ζ =
64µL2

πd4t
√
γPρ

√
0.5 + V/Vt (1)
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Fig. 1 Overview of the typical setup for pressure-driven flow. The focus of this study is on the difference in pressure for the
air tubing (∆Pair). The tubing carrying the liquid sample is already considered in the model (∆Psample) from previous work
(Wong and Ren 2016; Hébert et al. 2019).

ωn =

√
γP/ρ

L
√

0.5 + V/Vt
(2)

where ζ is the damping ratio [ ], ωn is the natural fre-
quency [rad/s], µ is the dynamic viscosity [kg m−1s−1],
L is the tubing length [m], dt is the internal diameter
[m], γ is the heat capacity ratio [ ], P is the pressure

[Pa], ρ is the density [kg m−3], V is the pressure sensor
dead volume [m3], and Vt is the tubing volume [m3].

Note that the dependence of the parameters on pres-

sure means that such a lumped parameter model is valid
only for small pressure changes. However, the more sig-
nificant limitation in the application of this model stems
from the derivation that hinges upon the rigidity of the
walls. Such assumption fundamentally disagrees with
the soft tubing under study.

1.3.2 Blood flow in arteries

The study of the flow of blood through our arteries cou-
ples the fluid flow with the wall deformation under pul-
satile conditions from the heartbeat. Modelling and an-
alyzing this phenomenon helps to understand the mech-
anism behind cardiovascular conditions for instance.

The relative scale of the arteries inner and outer di-
ameter allows simplifying the problem by making thin-

walled assumptions (Čanić et al. 2006). However, the
dimensions of the air tubing do not allow such simpli-
fications; the inner diameter and wall thickness are of
the same order of magnitude. Therefore, thin-wall as-
sumptions are deemed unreasonable.

1.3.3 System of differential equations

The air tubing can be described using a system of dif-
ferential equations. The coupling between the fluid flow
and the wall deformation can hence be represented (Babbs

2010). Although the equations accurately characterize
the physics, the lack of simple analytical solutions ren-
ders them impractical.

−∂Q
∂x

=
∂A

∂t
(3)

−1

ρ

∂P

∂x
=
∂u

∂t
+

8πν

ρA
u (4)

P = Pext +
1

C0

(
V − V0 +

D

E

dV

dt

)
(5)

where

C0 =
2πLr30
Eh0

, (6)

and Q is the volumetric flow rate [m3s−1], x is the co-
ordinate axis along the longitudinal direction [m], A is
the tubing cross-section area (circular) [m2], t is time
[s], ρ is the density [kg m−3], P is the internal pressure
[Pa], u is the velocity along the x direction [m s−1], ν is
the dynamic viscosity [kg m−1s−1], Pext is the external

(atmospheric) pressure [Pa], V is the volume [m3], V0
is the initial volume [m3], D is the material damping
modulus [Pa], E is the material elastic modulus [Pa],
L is the tubing length [m], r0 is the initial outer radius
[m], h0 is the initial wall thickness [m].
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1.3.4 Thick-walled tubing deformation

The radial strain without considering the viscoelastic
behaviour of the tubing (i.e. constant elastic modulus)
is given in a textbook (e.g. Schmid et al. 2013).

εr =
P

E

(
r2o + r2i
r2o − r2i

+ ν

)
(7)

where εr is the radial strain [ ], P is the internal tubing
pressure [Pa], E is the tubing elastic modulus [Pa], ro
is the outside tubing radius [m], ri is the inner tubing
radius, and ν is the tubing material Poisson ratio [ ].

While a relationship between the radial strain and
the inner pressure is available, the measurement of the
tubing expansion is challenging with off-the-shelf strain
sensors; the outer tubing diameter is only a few mil-
limeters. A novel approach to measure strain using dis-
persed graphene in a soft silicone matrix was investi-

gated (Boland et al. 2016, goophene technical note).
The results were unfortunately not promising enough to
further the efforts in implementing such a novel strain
sensor. The signal noise and intrinsic strain sensor dy-

namics were the main obstacles. Furthermore, as the
results will show, the tubing dynamics is of first or-
der rather than second order. The two pressure sensors

used are deemed to be sufficient for the experimental
approach.

1.4 Pressure-driven flow actuation dynamics

The dynamics of the actuation system can be separated
into two parts: the pump dynamics and the tubing dy-
namics. As conceptually illustrated in Figure 2, the

pump dynamics characterizes the time response from
the requested pressure (Preq) to the pump output (P1)
while the tubing dynamics occurs from the pump out-
put (P1) to the reservoir holder (P2). The reservoir
holder pressure quantifies more faithfully the pressure
applied to the fluid tubing inlet than the pressure at
the output of the pump. Nonetheless, using the pres-
sure pump output as the intermediary point allows an-
alyzing the pump and tubing dynamics independently.

The tubing dynamics is investigated systematically
by varying inner and outer diameters, length, material,
and reservoir holder vial volume. The pump dynamics is
considered for the commercial system MFCS-EZ avail-
able from Fluigent and the custom in-house pressure
pump, µPump (Gao et al. 2020).

Fig. 2 Separation between pump and tubing dynamics.

1.5 Overview of this study

The objective of this study is to experimentally quan-
tify the dynamics of the soft tubing and develop the
associated models. These models can be used to pre-
dict the actual pressure applied to the microfluidic chip
for fluid pumping. The availability of such models is
impactful on microfluidic studies under pressure-driven
flow where soft air tubing is often used to connect the
pump output to the reservoir holder input (see Figure

1); the actual pressure applied to the chip is often as-
sumed to be the pump output that is incorrect. First,
a simple, yet practically useful method is presented for

identifying the pressure change over the soft tubing us-
ing two pressure sensors at either end of the tubing of
interest. Then, the pressure change over the soft tubing
is measured under different operating conditions such

as varying tubing length, material and vial volume. Fol-
lowing the experimental studies, a simple linear model
and a nonlinear model are developed and validated to

predict the system response. Finally, the performance
of the models is compared and their limitations are dis-
cussed.

2 Experimental methods and materials

The MFCS-EZ and µPump can arbitrarily and inde-
pendently control the pressure output at each of their
outlet via a desktop computer software. The sampling
rate is about 10 Hz (i.e. 100 ms period). The two pres-
sure sensors at the two ends of the tubing respectively
record simultaneously with 1 mbar accuracy every 1
ms. The data is post-processed using Matlab to fit a
first order model.

2.1 First order model fit

The pressure data recorded provides the information
about the system in the time-domain; however, the dy-
namics of a system is rather characterized in the fre-
quency domain (s ∈ C) and expressed as a transfer
function (G(s)). The transfer function is the ratio of the
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output (Y (s)) over the input (U(s)). A general model of
the first order can be fully characterized by the scaling
constant (k) and the time constant (τ). In response to a
step input, the output is about 63% of the steady value
after one time constant and about 98% of the steady-
state value after four time constants (Close et al. 2002).

G(s) =
Y (s)

U(s)
=

k

τ · s+ 1
(8)

The Matlab function tfest is used to find the trans-
fer function with no zeros and one pole (i.e. first order
as per Equation 8) that best fits the data. The first
order is selected because of the minimal response over-
shoot and to keep it simple for easier integration within
control designs for instance.

2.2 Pressure sensors

2.2.1 Pressure sensor specification

The specifications for the two identical pressure sen-
sors used are summarized in Table 1. The manufac-

turer datasheet accuracy is ±0.1% F.S. Therefore, in
order to match the ±1 mbar accuracy of the Fluigent
pump output, the range is limited to 1 bar although the
pressure pump has a range up to 2 bars. Note that each

pressure sensor is provided with a factory calibration to
accurately convert its voltage output to gauge pressure.

The resolution of the measurements is determined

by the smallest voltage increments and should be less
than the targeted accuracy level. The Arduino com-
municates via a SPI protocol to an external analog-

to-digital converter (ADC) with 12-bit resolution (Mi-
crochip MCP3202 ). An accurate voltage reference pro-
vides the constant 5 V supplied to the ADC (Maxim
Integrated MAX6250 ). The sampling is achieved at 1

ms intervals (i.e. 1 kHz) through the use of interrupts
on the Arduino to ensure proper and consistent data
collection while continuously sending the data to the
computer via USB. The 1 ms interval is selected based
on the propagation of a pressure wave at the speed of
sound through the media.

2.2.2 Pressure sensor location

The choice of location for the two pressure sensors aims
to accurately measure the pressure at either end of the
tubing. The additional components are shown in green

in Figure 3. The junctions connecting the pressure sen-
sors to the normal setup are rigid (i.e. steel). Note that
a custom reservoir holder had to be manufactured to
add the fourth port to measure P2. This approach was
preferred than inserting a junction at one of the other

reservoir holder port because of its lesser impact on the
flow.

The minimum time resolutions of the junctions added
to the system are thoroughly assessed. Details are pre-
sented in the supplementary material S1. Based on the
results of the assessment, the minimum time constant
that can confidently be investigated using the junctions
is 10 ms.

Table 1 Specification summary for the pressure sensors (TE
Connectivity U536D-H00015-001BG).

Range 0 to 1 bar

Accuracy ± 1 mbar

Resolution 0.24 mbar

Sampling 1 kHz

2.3 Tubing materials and dimensions

The various tubing materials and dimensions investi-

gated are summarized in Table 2. The microfluidic pres-
sure pumps and reservoir holder typically use barbed
connections. The MFCS-EZ from Fluigent comes equipped

with 1 X 3 mm tubing. Nonetheless, the barbed connec-
tions are also functional for the closest imperial equiv-
alent that has an inner diameter of 1/16” (∼1.59 mm).
The variety of materials for the metric size is more re-

stricted. Hence, the different materials are investigated
in the imperial size only.

The elastic modulus of each material is experimen-
tally determined using a straightforward approach with

a ruler and suspended weights. The details and the plot
are presented in the supplementary material S2.

3 Results and discussion

As shown in Figure 2, the system dynamics can be sep-
arated into the pump dynamics and the tubing dynam-
ics. The results supporting this separation are presented
in the supplementary material S3. The rest of the re-
sults is separated into these two main sections before
addressing model validation, and finally, limitations.

3.1 Pump dynamics

The control strategy previously implemented neglects
the dynamics introduced by the soft tubing and the ac-
tuation when adjusting the requested pressure (Wong
and Ren 2016). The controller design relied solely on
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Fig. 3 Experimental setup to measure the impact of the air tubing dynamics (∆Pair). Two pressure sensors are strategically
located to measure the pressure at either end of the air tubing with minimal impact.

Table 2 Details of the materials and dimensions of the various tubing.

inner X outer diameter Wall thickness Material label E(1) [MPa] Lengths [cm]

1 X 3 mm 1 mm Medium silicone 4 20.4, 30.2, 30.1, 50.3, 66.5

1/16” X 1/8”

(1.59 X 3.18 mm)

1/32”

(0.79 mm)

Soft silicone 1 66.5

Medium silicone 4 66.5

Hard Tygon 7 66.5
(1) Elastic modulus. See Figure S2.1 for experimental strain-stress curve with linear fit. Uncertainties: ±0.5 MPa.

the model of the plant (i.e. the microfluidic chip and
fluid tubing), hence excluding the pump and air tubing.

The requested pressure to the pump was assumed to in-
stantly correspond to the pressure at the fluid tubing
inlet in the vial at the reservoir holder. These dynamics

were shown to be reasonably neglected for the current
running rate of the system at 10 Hz. Nevertheless, bet-
ter understanding the short-term actuation dynamics
is critical to increasing the controller performance; fur-

thermore, increasing the system sampling rate would
magnify the impact of the short-term actuation dynam-
ics and challenge the controller performance.

Note that there are limitations due to the “black-
box” nature of commercial products such as Fluigent ’s
MFCS-EZ. Moreover, the implementation of such active
control platform on regular desktop computers limits
the consistency of the actuation delay due to scheduling
handled by the operating system (Windows). The pump
dynamics is determined as per Equation 8. The input
is the requested pressure and the output is the pump
output pressure (P1).

3.1.1 Fluigent

The commercial nature of the Fluigent MFCS-EZ pump
restricts the information available concerning both the

internal components as well as the controller. Conse-
quently, it is treated as a black-box for which the re-

quested pressure is the input and the provided pressure
is the output.

The first order model is observed to match the re-
sponse fairly well for certain pressures. However, the

time constant varies with respect to the pressure and
displays significant hysteresis effects in the lower pres-
sure range (see Figure 4). Moreover, at high pressures,

the first order model (or even a second order model)
differs significantly from the response. Note that as the
pressure output will eventually match the requested
pressure, the scaling constant (k) is set to one.

3.1.2 µPump

In contrast to the lack of information available for black-

box commercial systems such as the Fluigent pump,
µPump is a customized system designed and built in-
house. All details pertaining to the hardware and the
software are available (Gao et al. 2020). The pressure
output is controlled by the internal circuit of the Con-
trolAir E/P transducer (T900-CIM ).

The response follows more closely a second order

system than a first-order system due to the better de-
fined oscillations. Nonetheless, there appears to be a
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relatively slow integral component for the closed-loop
controller. Thus, although the output pressure rapidly
approaches the requested pressure, there is a noticeable
period where the steady-state error is slowly eliminated
through the integral component. Hence, the second or-
der model somewhat differs from the µPump dynamics.
A crude simplification can be made to simply repre-
sent the delay in achieving the requested pressure us-
ing a first order model. Considering that the pump will
achieve its target output pressure, the scaling constant
value is set to one while the time constant is shown in
Figure 5. Similarly to the Fluigent pump, there is signif-
icant hysteresis effects present. However, the overall be-
haviour is much more constant over the pressure range.
Moreover, the time constant is also generally smaller
for µPump compared to Fluigent.

Fig. 4 Time constant (τ) variations with pressure for the
Fluigent MFCS-EZ pump. The error bars represent ± 1 stan-
dard deviation from the overall mean time constant.

3.2 Tubing dynamics

The previous section concerning the pump dynamics
is mainly pertinent within the context of active mi-

crofluidics. The tubing dynamics, on the other hand, is
relevant to both passive and active microfluidics. The
tubing dynamics is determined as per Equation 8. The
input is the pump output pressure (P1), and the output
is the tubing end at the reservoir holder inlet (P2).

3.2.1 Pressure variations

As previously indicated by the literature about unsteady
pressure measurement, the dynamic behaviour of the
tubing is expected to depend on pressure.

The scaling constant (k) exhibits dependence on the
pressure as shown in Figure 6(a); however, there is no
significant difference whether the pressure is increasing
or decreasing. As opposed to the time constant that
considers short term transients, the scaling constant
characterizes the steady state that is less prone to hys-
teresis effects. The value is close to but slightly less
than one. This is attributed to the pressure difference
between the tubing ends that is required to drive the
flow. Considering that the difference in pressure is pro-
portional to flow rate (Bruus 2008), the value of the
scaling constant (k) is expected to decrease with in-
creasing flow.

For the metric 1X3 mm tubing, the time constant

variations with pressure are shown in Figure 6(b) for
both increasing and decreasing pressure. The time con-
stant for increasing pressure is consistently larger than

the one for decreasing pressure. This is attributed to
the compliance of the tubing. When the pressure is
increased, part of the air flows in the outward radial
direction to rationalize the increase in diameter. More-

over, from an energy analysis perspective, the expan-
sion of the tubing requires some energy that is then
stored as elastic energy in the expanded tubing. When

the pressure is decreased, the tubing contracts back to
a smaller diameter. The elastic energy that was stored

Fig. 5 Time constant (τ) variations with pressure for
µPump. The error bars represent ± 1 standard deviation from
the overall mean time constant.
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in the wall is transferred back to the flow. Thus, the en-
ergy exchange from the flow to the wall elasticity and
vice versa results in hysteresis effects for the time con-
stant (τ).

For the imperial tubing, different tubing materi-
als are investigated. However, the dynamics is too fast
to be captured accurately by the experimental setup,
as shown in Figure 7. All materials exhibited a be-
haviour with time constants less than 10 ms. Com-
pared to the metric tubing, both the inner diameter and
wall thickness vary due to the restricted availability of
sizes; nonetheless, the faster dynamics is attributed to
the larger inner diameter rather than the thinner wall.
The wall thickness influences the tubing expansion and
hence, the change with respect to pressure; the nomi-
nal starting inner diameter at zero pressure determines
the time constant scale. Figure 6 shows such decreasing
time constant value with increasing diameter (i.e from
the increased expanded tubing diameter).

3.2.2 Length variations

The time constant is expected to get smaller with the

tubing length. The longest length of 66.5 cm for the im-
perial tubing has a time constant already too small to
accurately quantity; thus, only the metric tubing is con-
sidered henceforth. The results of the linear fit for the

tubing time constant for different lengths are presented
in Figure 8. The scaling constant is not significantly
affected by the change in length and thus is omitted.

The details of the linear fit are included in Table 3.

The general trend is for the time constant to increase
with increasing length as expected.

3.2.3 Vial volume variations

Similarly to the length variations, the vial volume vari-

ations only take into account the metric tubing. The
vial attached to the reservoir holder contains the sam-
ple to be injected into the microfluidic chip. The small
quantities required to perform the manipulations at the
microfluidic scale entails small changes of the sample
volume in the vial. However, variations over long peri-

ods of time as well as in the initial volume when filling
the vial can potentially lead to changes in the dynamics.
The significance of these changes is herein assessed.

The different volumes investigated for the vial are
approximately: 0.3 ml, 1 ml, and 2 ml. The results
for length variations previously presented all considered
the 2 ml vial volume (i.e. empty vial). The relationship
for the scaling constant k does not vary significantly

with volume. However, the time constant relationship

does change more significantly depending on the vol-
ume of the vial. Nevertheless, the change of the time
constant over the full volume and pressure range is rea-
sonably small. The linear fit is mainly at the same time
constant scale as shown in Figure 9. Hence, volume vari-
ations are neglected.

3.2.4 Tubing dynamics results summary

The experimental setup can only confidently quantify
tubing dynamics with a time constant larger than 10
ms. All results for the 1/16”X1/8” tubing are faster;
hence, they are not quantified. Nonetheless, such fast
dynamics is considered to be negligible within the mi-
crofluidic pump context. Consequently, only the dy-
namics for the 1X3 mm tubing are herein summarized.
Generally, the value for the scaling constant (k) is con-
sidered constant as it weakly depends on pressure.

As for the time constant (τ), the results for the dif-

ferent lengths and volumes are summarized in Table 3.
As previously mentioned, although there are some vari-
ations for different vial volumes (over the 1.7 ml range),

they are deemed negligible. The overall tubing length
affects much more significantly the time constant. Fur-
thermore, the tubing length can easily be measured
and maintained constant whereas the vial volume is ex-

pected to vary while the experiments are performed.

3.3 Validation

3.3.1 Repeatability for k and τ

The repeatability of the experimental quantification of
the scaling and time constants is assessed by alternat-
ing between two pressures. The data is averaged over
three datasets each consisting of 10 increasing steps and
10 decreasing step responses. The repeated results are
summarized in Tables 4 and 5.

The data obtained from the successive steps (previ-
ously in Figure 6, the first two data points) is compared
against the results of the repeated test. The time con-

stant all match within the time resolution of the system
(i.e. 1 ms). The scaling constant shows more variations
between the single and repeated data for the 200 mbar
setpoint. However, the discrepancy is within 3%; there-
fore, it is not considered significant.

3.3.2 Model verification

Two models are used for verification: linear and nonlin-
ear.

The linear model (Equation 8) depends solely on
two parameters: the scaling constant (k) and the time
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(a) Scaling constant k. (b) Time constant τ .

Fig. 6 Experimental quantification of first order dynamics over the pressure range for the 1X3 mm medium silicone tubing of
66.5 cm length and 2 ml vial volume. The trend of the decreasing and increasing data shows the hysteresis effects. The time
constant is consistently smaller for decreasing pressure compared to increasing pressure. The error bars represent ± 1 standard
deviation from the overall mean constant.

(a) Scaling constant k. (b) Time constant τ .

Fig. 7 Experimental quantification of first order dynamics over the pressure range for the 1/16”X1/8” medium silicone tubing
of 66.5 cm length and 2 ml vial volume. Similar results are obtained for all three materials (Table 2). The time constant is too
small to accurately quantify with the current experimental setup. The error bars represent ± 1 standard deviation from the
overall mean constant.

constant (τ). The two values are constants determined
by averaging over the pressure range. The nonlinear

model uses the linear fit to determine the value of the
two parameters (k and τ) based on the pressure. The
sensitivity of the scaling constant (k) to pressure changes
is weak while the sensitivity of the time constant (τ) is
more significant. The difference between the input and
output pressure is fairly small at all time; furthermore,
the linear relationship is fairly shallow. Therefore, the

pressure used for the nonlinear model is taken as the
mean of the input and output pressure (P1 and P2).
This average pressure is used to calculate the time con-
stant based on the linear fit from Table 3. The scal-
ing constant is considered constant at its mean value.
Equation 9 shows how the linear equation for the time
constant (τ(x, u)) is included in the linear model struc-
ture.

ẋ =
[

−1
τ(x,u)

]
x+

[
k

τ(x,u)

]
u

ẋ = f(x, u) =

(
−1

aτ · P̄ + bτ

)
x+

(
k

aτ · P̄ + bτ

)
u

(9)

where ẋ is the derivative of the state vector, x =
[
P2

]
is the state vector, u =

[
P1

]
is the input, τ(x, u) =

aτ · P̄ + bτ is obtained from the linear fit parameters
from Table 3, P̄ is the mean of u and x (i.e. P1 and
P2), and k is the scaling constant.

Simulink is used to simulate the nonlinear system
(Equation 9). However, expressing such a nonlinear sys-
tem concisely within the context of controller design is
challenging. Hence, a pragmatic approach instead uses
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Table 3 Summary of the variations in the time constant (τ) depending on tubing length (Figure 8) and vial volume (Figure
9) for 1X3 mm tubing.

Tubing length [cm] Vial volume [ml]
Time constant τ(P ) [ms]

a
(1)
τ [ms ·mbar−1 × 10−3] b

(2)
τ [ms]

20.4(3) 2 -9.37 8.9

30.2 2 -14.5 20.2

40.1 2 -8.11 24.0

50.3 2 -14.0 31.9

66.5 2 -20.7 43.2

66.5 1 -19.7 38.9

66.5 0.3 -11.3 32.3
(1) aτ is the slope of the linear fit.
(2) bτ is the intercept of the linear fit.
(3) The associated dynamics are too fast to reliably quantify.

Table 4 Repeatability summary for 100 mbar pressure set point.

Scaling constant (k) [ ] Time constant (τ) [ms]

mean inc. dec. mean inc. dec.

Single data 0.9755 0.9754 0.9755 41 44 38

Repeated data 0.9760 0.9760 0.9759 42 44 39

Table 5 Repeatability summary for 200 mbar pressure setpoint.

Scaling constant (k) [ ] Time constant (τ) [ms]

mean inc. dec. mean inc. dec.

Single data 0.9593 0.9595 0.9592 40 41 38

Repeated data 0.9834 0.9835 0.9833 41 42 39

Fig. 8 Summary of the time constant (τ) fit for different
lengths. Tubing dimensions of 1X3 mm. The detailed data is
presented in Table 3.

the simple linear first order with constant parameters
for controller design.

A different and more diverse pressure signal is used
to assess model validity. The prediction of the full non-

Fig. 9 Summary of the time constant (τ) fit for different
volumes (ml). Tubing dimensions of 1X3 mm. The detailed
data is presented in Table 3.

linear relationship is compared to the simpler first-order
linear model. The performance for the prediction is as-
sessed using the mean square error (MSE) and the max-
imum error between the predicted and actual pressure
output (P2).
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MSE =
1

n

n∑
i=1

(P2i − P̂2i)
2 (10)

where MSE is the mean square error [mbar2], n is the
number of data points [ ], P2i is the measured pressure
at the reservoir holder for the ith datapoint [mbar], and
P̂2i is the predicted pressure at the reservoir holder for
the ith datapoint based on the measured P1 [mbar].

Figure 10 shows the validation signal as well as the
prediction for both the linear and nonlinear model with
their corresponding error. This is specifically for the
1X3 mm tubing that is 66.5 cm long and with the 2
ml vial. The slightly larger MSE and maximum error
for the linear model compared to the nonlinear model
demonstrates the small performance decrease that must
be conceded for the simpler model. Furthermore, the
difference between the two pressure sensor measure-

ments represent the assumption that the pressure in-
stantly propagates without any modelling involved; the
MSE and maximum error are both much more signif-

icant than either of the models. Therefore, the use of
the model, albeit with some assumptions and simplifi-
cations, still nevertheless improves the accuracy of the
reservoir holder pressure prediction.

The first order linear model performance for each
case is summarized in Table 6. Their respective param-
eter taken as the mean are also included. Note that for

the various volumes for the 66.5 cm long tubing, the
same parameters are used. Nevertheless, the prediction
from the model still outperforms the absence of model.

Hence, this confirms the validity of the model even with
varying volume, only the tubing length should be con-
sidered when determining the scaling and time constant

parameter values.

3.4 Limitations

In general models do not aim to fully and exactly de-
scribe a system with 100% accuracy in all circumstances.
The objective is rather to develop a mathematical rep-
resentation of the system with sufficient accuracy under
certain operating conditions. In this study, the linear
model is validated for pressures between 0 and 1 bar;
the linear model is hence meant to be used for a pres-
sure range from 0 to 1 bar. The pressure from the pump
is changed every 100 ms (10 Hz).

The maximum actuation frequency of 10 Hz is of
special note because of its larger value than the time
constant range identified. The variations in time con-

stant with pressure are likely to impact more the pre-
diction error for a faster pressure actuation. However,

the current setup frequency is mainly limited by the
Fluigent pump proprietary software and the µPump
E/P transducer.

The tubing length is limited between 20.4 cm and
66.5 cm as this corresponds to the range investigated.
Moreover, the vial volume is varied only between 0.3
ml to 2 ml. The only tubing dimensions are 1X3 mm
although other conclusions are drawn for the larger
1/16”X1/8” tubing that exhibited a response too fast
for the measuring apparatus. Finally, although different
tubing materials were investigated for the 1/16”X1/8”
tubing, no conclusive quantification could be extracted
from the results. Only the soft silicone tubing was con-
sidered for the 1X3 mm as it is the most widely available
materials for these tubing dimensions.

4 Conclusion

4.1 Summary

The dynamics investigation is mainly pertinent within
the context of active microfluidics; short-term oscilla-
tions are much less important than long-term behaviour

and stability for passive microfluidics. Nonetheless, ex-
amining the dynamics of the pump and the tubing is
beneficial for both active and passive microfluidics.

On one hand, passive microfluidics aims for stability
and dampened short-term oscillations that can be pro-
vided by a longer, smaller inner diameter tubing. On the

other hand, active microfluidics benefits from shorter
delays for the propagation of the pressure from the
pump output to the reservoir holder provided by shorter
and slightly bigger tubing that is the imperial tubing
with 1/16” inner diameter. The dynamics of the 1X3
mm tubing for various lengths operated between pres-
sures of 0 bar to 1 bar and volumes from 0.3 ml to 2 ml

can be approximated using a first-order model; the pa-
rameters are summarized in Table 6. Such a first-order
linear model is shown to improve the prediction error
comparatively to the absence of any model. Moreover,
the complexity of the nonlinear model only marginally
improved the performance and hence, is deemed unnec-
essary.

4.2 Future work

The relationship between the pump output and reser-
voir holder pressure can be included within the previ-

ous control design strategy (Wong and Ren 2016) to en-
hance performance. The addition of the dynamics intro-
duced by the pump response time as well as the pressure
propagation through the tubing hence would eliminate
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(a) Output pressure P2 from the measurement, nonlinear model, and linear model.

(b) Prediction error for the output pressure P2 without a model (P2 = P1), with the
nonlinear model, and with the linear model.

Fig. 10 Model validation and comparison between no model, the nonlinear model and the simple linear model simulations.
The similar MSEs show that there is not significant prediction error improvement for the more complex nonlinear model
compared to the simpler linear model. (1X3 mm tubing, 66.5 cm long, 2 ml vial). Either model significantly improves upon
the no-model prediction.

the previously built-in assumption that the pressure re-
quested is applied instantaneously to the sample tubing
inlet. The consideration of the pump and air tubing dy-
namics can be achieved by arranging the subsystems in
series: pump, air tubing, and microfluidic chip. For the
state-space modelling, this results in matrix concatena-
tion.

The improved model that considers the air tubing
can be leveraged in a grey-box system identification
study. Briefly, the grey-box system identification fixes
the model structure–including the air tubing–to main-
tain physical meaning of the identified parameters. The

system identification algorithm requires the input (pres-
sure) and output (droplet position) to be recorded while

a droplet moves within the channel. The model struc-
ture used is essential to the quality of the results ob-
tained. The inclusion of the tubing dynamics within
the model is envisioned to enable a better description
of the physical system. Thus, the results obtained from
the system identification algorithm would be more nar-
rowly distributed.

Furthermore, a more detailed analysis of the be-
haviour of the two different pumps would help to deter-
mine a model describing their behaviour better than the
crude first order linear model herein presented. The be-
haviour could be better represented by a second order
system for instance. Increasing the complexity would
enable a more accurate model. Moreover, the signifi-
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Table 6 Performance for each first order linear model for the mean parameter values based on length compared against the
no-model performance.

Tubing length [cm] Vial volume [ml]
Linear model Performance criteria

k τ MSE(1) [mbar2] e
(2)
max [mbar]

20.4 (3) 2 0.99 4 1.6 17.9

30.2 2 0.99 13 2.3 12.6

40.1 2 0.98 20 3.0 12.4

50.3 2 0.99 25 3.8 15.9

66.5 2 0.98 33 3.2 15.8

66.5 1 0.98 33 18.2 11.4

66.5 0.3 0.98 33 21.0 11.2

66.5(4) 2 – – 84.5 66.7
(1) MSE is mean squared error as per Equation 10.
(2) emax is the maximum error over the validation data.
(3) The associated dynamics are too fast to reliably quantify.
(4) No-model performance. (i.e. P̂2 = P1).

cant hysteresis could be taken into account rather than
averaged out.

Author contributions

MH participated in the conceptualization, data cura-
tion, formal analysis, investigation (performing the ex-
periments), methodology, project administration, su-

pervision of WB, software development, validation, and
writing (at all stages).

WB contributed to the software and resources used
for the experiments, more specifically, the pressure mea-
surement apparatus and custom reservoir holder man-

ufacturing.

JPH participated in the conceptualization, method-
ology, and the review and editing of the manuscript.

CLR participated in the manuscript review and edit-
ing, conceptualization, project administration, and su-
pervision of both MH and WB. CLR also led the fund-
ing acquisition.

Acknowledgements

The authors acknowledge the funding provided by NSERC
in the form of grants supplied to Prof. Carolyn Ren
and scholarships awarded to Marie Hébert and William
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14 Marie Hébert et al.

H. J. Crabtree, J. Lauzon, Y. C. Morrissey, B. J. Taylor,
T. Liang, R. W. Johnstone, A. J. Stickel, D. P. Man-
age, A. Atrazhev, C. J. Backhouse, et al. Inhibition
of on-chip pcr using pdms–glass hybrid microfluidic
chips. Microfluidics and nanofluidics, 13(3):383–398,
2012.

E. O. Doebelin and D. N. Manik. Measurement sys-
tems: application and design. 2007.
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Figure 1 Overview of the typical setup for pressure-
driven flow. The focus of this study is on the difference
in pressure for the air tubing (∆Pair). The tubing carry-
ing the liquid sample is already considered in the model
(∆Psample) from previous work (Wong and Ren 2016;
Hébert et al. 2019).

Figure 2 Separation between pump and tubing dynam-
ics.

Figure 3 Experimental setup to measure the impact of
the air tubing dynamics (∆Pair). Two pressure sensors
are strategically located to measure the pressure at ei-
ther end of the air tubing with minimal impact.

Figure 4 Time constant (τ) variations with pressure
for the Fluigent MFCS-EZ pump. The error bars rep-
resent ± 1 standard deviation from the overall mean
time constant.

Figure 5 Time constant (τ) variations with pressure

for µPump. The error bars represent ± 1 standard de-
viation from the overall mean time constant.

Figure 6 Experimental quantification of first order dy-

namics over the pressure range for the 1/16”X1/8” medium
silicone tubing of 66.5 cm length and 2 ml vial volume.
Similar results are obtained for all three materials (Ta-

ble 2). The time constant is too small to accurately
quantify with the current experimental setup. The error
bars represent ± 1 standard deviation from the overall

mean constant.

Figure 6(a) Scaling constant k.

Figure 6(b) Time constant τ .

Figure 7 Experimental quantification of first order dy-
namics over the pressure range for the 1/16”X1/8” medium
silicone tubing of 66.5 cm length and 2 ml vial volume.
Similar results are obtained for all three materials (Ta-
ble 2). The time constant is too small to accurately
quantify with the current experimental setup. The error
bars represent ± 1 standard deviation from the overall
mean constant.

Figure 7(a) Scaling constant k.

Figure 7(b) Time constant τ .

Figure 8 Summary of the time constant (τ) fit for dif-
ferent lengths. Tubing dimensions of 1X3 mm. The de-
tailed data is presented in Table 3.
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Figure 9 Summary of the time constant (τ) fit for dif-
ferent volumes (ml). Tubing dimensions of 1X3 mm.
The detailed data is presented in Table 3.

Figure 10 Model validation and comparison between
no model, the nonlinear model and the simple linear
model simulations. The similar MSEs show that there
is not significant prediction error improvement for the
more complex nonlinear model compared to the simpler
linear model. (1X3 mm tubing, 66.5 cm long, 2 ml vial).
Either model significantly improves upon the no-model
prediction.

Figure 10(a) Output pressure P2 from the measure-
ment, nonlinear model, and linear model.

Figure 10(b) Prediction error for the output pressure
P2 without a model (P2 = P1), with the nonlinear
model, and with the linear model.




