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Abstract – The Discrete Fourier Transform (DFT) is a 
mathematical procedure that stands at the center of the processing 
inside a Digital Signal Processor (DSP). It has been widely known 
and argued in relevant literature that the Fast Fourier Transform 
(FFT) is useless in detecting specific frequencies in a monitored 
signal of length N because most of the computed results are 
ignored. In this paper, we present an efficient FFT-based method 
to detect specific frequencies in a monitored signal, which will then 
be compared to the most frequently used method which is the 
recursive Goertzel algorithm that detects and analyses one 
selectable frequency component from a discrete signal. The 
proposed JM-Filter algorithm presents a reduction of iterations 
compared to the first and second order Goertzel algorithm by a 
factor of r, where r represents the radix of the JM-Filter. The 
obtained results are significant in terms of computational 
reduction and accuracy in fixed-point implementation. Gains of 
15 dB and 19 dB in signal to quantization noise ratio (SQNR) were 
respectively observed for the proposed first and second order 
radix-8 JM-Filter in comparison to Goertzel algorithm.  

Keywords – Discrete Fourier transform, Goertzel algorithm, one 
frequency detection, low complexity, fixed-point precision.  

1. INTRODUCTION

Digital signal processing (DSP) is an engineering field that 
continues to extend its theoretical foundations and practical 
implications in the modern world [1][2].  From the fulfillment 
of day-to-day needs, such as personal communications, to 
sophisticated systems for biomedical and tactical applications, 
DSP has a strong and ever-increasing participation in the areas 
of work that are revolutionizing our society. DSP is the study 
that deals with the representation of signals as ordered 
sequences of numbers.  DSP also deals with the fact on how to 
process those ordered sequences. There are many reasons for 
typical DSP such as estimating signal parameters, reduce as 
much as possible and eliminate unwanted interference, and 
transform a signal into a form that is more informative.  

Signal monitoring is an expanding domain that deals with 
the detection of any abrupt changes in a specific known 
frequency, such as fault detection machine, or to scan a pre-
selected set of frequencies [1], the recognition of the dual-tone 
multi-frequency (DTMF) signaling [3][4], as in radio-
frequency identification (RFID) tags [5], spectrum analyzer 

based on sliding transforms [6][7], in wireless communication 
with the orthogonal frequency division multiplex (OFDM) [8], 
channelizer [9], and modulated filter banks [10] where low 
complexity, low power consumption and high throughput are 
required, in the detection of coding regions in large DNA 
sequences [11], [12] and [13], and other domains such as the 
detection of any abrupt changes in a specific known frequency, 
deployed in resonance frequency estimation to tune notch filter 
in grid converter [14], in phase lock loop (PLL) [15][16], in 
induction motor fault detection by space vector angular 
fluctuation [17], in real-time (remote/in-situ) detection and 
identification of physical properties and trace chemical/bio 
substances in industrial and other environments and cracks 
detection of structural surface [18]. More recently, many other 
applications on power electronics to monitoring component and 
smart grid power quality [19][20][21]. 

Input/output pruning FFTs are efficient fast Fourier 
transform (FFT), where the efficiency can be increased by 
removing operations on consecutive input values which are zero 
[22][23]. Furthermore, output pruning FFT is a method used to 
compute a discrete Fourier transform (DFT) where only a 
subset of the consecutive outputs is needed. Input/output 
pruning FFTs will be excluded from our performance 
comparison study since the desired kth frequency is obtained by 
computing the first k outputs [22]-[26]. On the other hand, 
sparse FFTs are also efficient tools to compute the DFT where 
the input signal is k-sparse which means the input signal has k 
nonzero entries [27]-[29]. The most well-known technique to 
monitor and control a specific or single frequency is the 
Goertzel algorithm [30]. Goertzel algorithm is a powerful tool 
deployed in tone detection and frequency response 
measurements unlike the FFT, the pruning FFT and Sparse 
FFTs that are performed on blocks of samples. For instance, it 
has been proven that the Goertzel algorithm is more efficient 
than the FFT in DTMF detection [2]. In other words, we can 
state that the Goertzel Algorithm, an efficient method (in terms 
of multiplications) for computing output sequence for a given 
frequency bin in which N iterations is needed to compute each 
frequency of the input sequence of length N.  

More recently, recursive discrete Fourier transform (RDFT) 
were proposed as recursive algorithms that can reduce the 
computational complexity in circuit implementation compared 
to Goertzel algorithm [31]-[35] which will be targeted for the 
computational complexity comparison.  

Based on the recursive one frequency algorithm proposed in 
[36], this paper will propose a novel recursive algorithm 
JM-Filter1 (Jaber-Massicotte Filter) that will reduce the number 
of iterations by a factor of r that will be deployed in the genomic 1 – "Filter Configured to Detect Specific Frequencies of a Monitored 
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DNA sequences in which the radix-2 JM-Filter detects the 
period-3 pattern in a coded Gene sequence [13]. 

This paper is organized as follows: Section 2 describes 
briefly the first and second order Goertzel algorithm. Section 3 
details the proposed first and second order JM-Filter. Section 4 
details the reduced complexity of the proposed method. 
Section 5 draws on the performance results in terms of 
arithmetic complexity and fixed-point accuracy. Section 6 
elaborates the experimental results applied to genomic 
sequences and finally a conclusion is summarized in Section 7. 

2. THE FIRST AND SECOND ORDER GOERTZEL ALGORITHM

The derivation of the first order Goertzel algorithm, which 
is developed in [1] and [30] begins by noting that the DFT can 
be formulated in terms of a convolution, in fact the DFT of 

signal ( )kx  is defined as follows: 
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where N is the length of the input data sequence x(n), 
2 /j N

NW e  , 1j   , and 0,1, 2, , 1k N  , * represents

the convolution product of signal ( )nx  through a linear time 

invariant (LTI) filter with impulse response -
( ) ( )  nk
n nh W x

and evaluating the result, yk(n), at n=N. 
 According to the same references, the filtering operation of 

first order Goertzel algorithm with the associated flow graph is 
depicted in Fig. 1, where we can write the recurrent equations 
as 

( ) ( 1) ( )
k

k n N k n ny W y x
  , (2) 

where 
( 1) 0ky   . 

The filter’s output for the kth frequency is 

( 1)k k NX y 
.

(3)

The transfer function H(z) of the equivalent filter could be 
developed as 
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where the second order Goertzel algorithm is obtained and the 
filtering operation with the associated flow graph is depicted in 
Fig. 2. The recurrent equations are 

( ) ( 1) ( 2) ( )2cos(2 / )k n k n k n ny k N y y x     , (5) 

where ( 2) ( 1) 0k ky y   , 2 /kw k N  and the kth frequency 

output is expressed as: 

( 1) ( 2)
k

k k N N k NX y W y   , (6) 

In case of complex-valued input sequences, the 
computational complexity of the first order Goertzel algorithm 
based on real additions () and real multiplication () is 

4N real  and 4N real , (7) 

and according to Fig. 2, the computational cost of the second 
order Goertzel algorithm is  

2N+2 real  and 4N−2 real , (8) 

which, compared to the DFT equation, gives a reduction of 
almost a factor of two in the number of real multiplications. 
This cost is halved again if the data is real-valued. Furthermore, 
the first order needs more resources than second order to 
execute the complex input data due to the complex value 
twiddle factors in the feedback that should multiply the 
previous data, Eq. (2). Beraldin and al. [37] showed an 
interesting overflow analysis in fixed-point implementations 
for the first and second order Goertzel algorithm. In fixed-point 
implementation, it was concluded that the first-order filter 
achieves better accuracy than the second-order filter. Thus, the 
first-order version is more interesting in terms of accuracy than 
the second-order version but lack in practicality in terms of 
implementation complexity. 

3. THE FIRST AND SECOND ORDER JM-FILTER

The one iteration Decimation in Time (DIT) FFT algorithm 
expressed as [38] - [39]: 
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Fig. 1 The first order Goertzel algorithm. 

Fig. 2 The second order Goertzel algorithm. 
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where  N
x  represents the operation x modulo N, 

0,1,...., 1v V  , 0,1,...., 1q r  , and /V N r . 

To compute a specific frequency X(k) for a given k, the 
values of q and v must be known in advance. And so, by 
adopting the following notation [39]: 

 

0          0 and 

2     1 and 

( 1)     ( 1) and ( 1)
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By defining the second part of the Eq. (9) as follow: 
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therefore, Eq. (9) can be expressed as: 
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where k=qV + v, and 
 2 2k

j j qV v
k N N

NW e e
 

  
  .   

By examining equations (1) and (12) we can clearly notice 
that the filtering process of Goertzel algorithm is performed in 
the spatial domain  nx , meanwhile the proposed JM-Filter, the 

filtering process is accomplished in the radix-r partial DFT 
frequency domain defined by  pa  which will highlights the 

difference between the referenced models in figures 1 and 2 and 
the proposed models in figures 3 and 4. If the radix r is set to 2 
in equation (12), we will obtain the radix-2 JM-Filter and so on. 

As a result, the radix-r first order JM-Filter could be derived 
as: 
     ( )1

k
N pk p k py W y a

  , (13) 

where  1 0ky    with p=0,1,…,V – 1, and the kth computed 

frequency is given by: 

  

2

1

j k kr
k N k VX e W y


 

 . (14) 

Applying the recursive DFT formula as in [32] by using Eq. 
(13), the radix-r second-order JM-Filter will be 

       ( )1 2,2cos(2 / ) pk p k p k py k N y y a     , (15) 

where    2 1 0k ky y   , and from which the kth computed 

frequency is 

     
2

1 2

j k kr
k N k V k VX e W y y


 

   . (16) 

The filtering operation for the first and second-order 
JM-Filter with the associated flow graphs are depicted in Fig. 3 
and 4, respectively.  

By examining Fig. 2 and Fig. 4, it is evident that the 
reduction in computation is mainly performed on the input 
sequence, where the length of the sequence x(n) in Fig. 2 is N 
meanwhile the length of the sequence a(p) in Figs 2 and 4 is 
reduced to N/r. The kth computed frequency is obtained by mean 
of Eq. (14) and (16) where the complexity reduction of the 
sequence a(p) is elaborated in the next section for radices r = 2, 
4 and 8. 

4.  COMPLEXITY REDUCTION 

By examining Eq. (12), further reductions in terms of 
complexity could be achieved for the radix-2 case, since 

  
2

1
j mv mvj mvre e


    . (17) 

And so, based on Eq. (17), we can re-write Eq. (12) as 

          

1

( )
0

1 1
mv v

p Vm p p V p
m

a x x x 


     , (18) 

from Eq. (13) the radix-2 JM-Filter first order filter would be 

          1 1
vk

Nk p k p p V py W y x x
      (19) 

Fig. 3 The radix-r first order JM-Filter. 

Fig. 4 The radix-r second order JM-Filter. 

 pa

1z

( )k ny
kX

k
NW 

 px

2
( 1)j r v

re


 

2
j k kr

Ne W


 

 2V px 

 ( 1)r V px  

2
2j v

re




 V px 

2
j v

re




1z

 2cos kw

1z

( )k ny
kX

1

k
NW 

2
j k

re




1

 pa

 px

2
( 1)j r v

re


 

 2V px 

 ( 1)r V px  

2
2j v

re




 V px 

2
j v

re






and the kth computed frequency is given by the Eq. (14) (as 
shown in Fig. 5) 

    11
k k

k N k VX W y
  . (20) 

Applying Eq. (17) and (18) on Eq. (15) and (16), the radix-2 
second-order JM-Filter will be (Fig. 6) 

       ( )1 2,2cos(2 / ) pk p k p k py k N y y a     , (21) 

where    2 1 0k ky y   , and from which the kth computed 

frequency is: 

       1 21
k k

k N k V k VX W y y
    . (22) 

With the same reasoning as above, further reductions in 
terms of complexity for the radix-4 could be achieved 

  
2
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   , (23) 

therefore, based on Eq. (23), we can re-write Eq. (13) as 
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(24) 

the radix-4 first order JM-Filter (Fig. 7) would be 

     ( )1
k

N pk p k py W y a
  , (25) 

and the kth computed frequency is given by 

    1

k k
k N k VX j W y

  . (26) 

The radix-4 second-order JM-Filter (Fig. 8) will be1 
 

1 The equations (13), (25), (29) and  (15), (21), (27), (32) are repeated to ensure 
the complete uniformity of each version of the algorithm in which a(p) is 
computed according to the radices 2, 4 and 8.  

       ( )1 2,2cos(2 / ) pk p k p k py k N y y a     ,
 

(27) 

where    2 1 0k ky y   , and from which the kth computed 

frequency is 

       1 2

k k
k N k V k VX j W y y

    , (28) 

with k=0,1,…,N – 1 to compute all frequencies.  

By examining Eq. (13) further reductions in terms of 
complexity could be achieved for the radix-8 case, therefore, 
we can re-write Eq. (13) for the radix-8 first order JM-Filter 
(Fig. 9) as: 
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Fig. 5 The radix-2 first order JM-Filter. 

 

Fig. 6 The radix-2 second order JM-Filter. 
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Fig. 7 The radix-4 first order JM-Filter. 

Fig. 8 The radix-4 second order JM-Filter. 
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and the kth computed frequency is given by  
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( 1)

j k
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The radix-8 second-order JM-Filter (Fig. 10) will be  

  ( ) ( 1) ( 2)2cos(2 / )k p k p k p py k N y y a     , (32) 

where ( 2) ( 1) 0k ky y   , and the kth computed frequency is 

  4
( 1) ( 2)

j k
k

k N k V k VX e W y y
    

   , (33) 

with k=0,1,…, N – 1. 
 
 

5. PERFORMANCE RESULTS – COMPLEXITY AND ACCURACY 

Goertzel and JM-Filter are dedicated to compute an 
arbitrary specific frequency (a single frequency) and not a 
subset of consecutive K frequencies as usually performed by 
input/output pruning FFT methods [22][23][24]. According to 

[22] and [23] the only frequency that could be detected or 
monitored is the first one  X(0) (k=0) and that is why input/output 
pruning FFTs will be excluded from our performance 
comparison study due to the increasing complexity associated 
with the computation of the desired kth frequency that is 
obtained by computing the first k outputs.  

The performance evaluation results are based on real 
additions () and real multiplication () for the execution of 
the Goertzel and the proposed JM-Filter algorithm for different 
radix-r. In term of accuracy, the algorithms are executed in 
fixed-point that is defined by the Signal to Quantization Noise 
Ratio (SQNR).  

A. Complexity – Number of Real Arithmetic Operations 

As detailed in Section 2, the computational complexity of 
the first order Goertzel algorithm in the case of complex-valued 
input sequences is 
 4N real  and 4N real , 
and from Fig. 2, the computational cost of the second order 
Goertzel algorithm is thus [30] 
 2N+2 real  and 4N−2 real , 
which gives a reduction of almost a factor of two in the number 
of real multiplications and if the data is real-valued, this cost is 
almost halved again.  

In general, for the radix-r case, the computational 
complexity of the first and second order radix-r JM-Filter are 
respectively 

 4N/r+
 p

MULT
aN real  and 4N/r+

 p

ADD
aN real , 

 2N/r +2 +
 p

MULT
aN real  and 4N/r–2+

 p

ADD
aN  real , 

where 
 p

ADD
aN and 

 p

MULT
aN  are the total number of the required 

operations required to compute  pa . As a result, and according 

to Fig. 5 and 6, the computational complexity of the first and 

second order radix-2 JM-Filter, including 
 p

MULT
aN  and

 p

ADD
aN , is 

respectively 
 2N real  and 3N real , 
 N + 2 real  and 3N − 2 real , 
which give us a reduction in the multiplications’ computational 

cost by a factor of 2, where 
 

0
p

MULT
aN    and we need 3N real 

additions compared to 4N real additions needed by Goertzel 
algorithm as shown in Table I.  

According to Fig. 7 and 8, the computational complexity of 
the first and second order radix-4 JM-Filter is respectively 
 N real  and 5N/2 real , 
 N/2+2 real  and 5N/2−2 real , 
which give us a reduction in the multiplications’ computational 

cost by a factor of 4, where 
 

0
p

MULT
aN   ,  and we need 5N/2 real 

additions compared to 4N−2 real additions required for 
Goertzel algorithm.  

 Based on Fig. 9 and 10, the computational complexity of 
the first and second order radix-8 JM-Filter is respectively: 

Fig. 9 The radix-8 first order JM-Filter. 

Fig. 10 The radix-8 second order JM-Filter. 
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 N real  and 13N/8 real , 
 3N/4 + 2 real  and 13N/8 − 2 real , 

where 
  2p

MULT
a

N
N  and where 

 

9

8p

ADD
a

N
N  . 

The Table I summarize the complexity operations for the 
proposed JM-Filter radices-2, 4, 8 and r, Goertzel algorithm and 
the previously published RDFT algorithms [23]-[27].  

B. Accuracy – SQNR Evaluations 

Goertzel algorithm is the most powerful algorithm used in 
the detection of specific frequencies in monitored signal’s 
applications. Their implementation is very attractive in fixed 
point due to the reduction in cost compared to the floating-point 
implementation. In digital signal processing, signal-to-
quantization noise ratio (SQNR) is a measure of signal strength 
relative to the background noise.  

 The model illustrated in Fig. 11 represents the simplified 
transmitter-receiver commonly used in orthogonal frequency-
division multiplexing (OFDM) communication systems with a 
quadrature phase-shift keying (QPSK) modulation. The first 
block represents the inverse FFT (IFFT) at the transmitter, the 
intermediate block is the analog to digital converter (ADC) with 
finite Q-bit word length that is connected to the FFT block in 
order to reconstruct the input fixed-point signal. Several fixed-
point simulations were conducted to compute the SQNR in term 
of the input/output data (called variable data) bit’s word-length 
(bit width) and the twiddle factor (called coefficient) [40]. The 
SQNRs’ simulations, are calculated based on this equation 

 
 

   10SQNR 10log
ˆQ

x
dB

x x

 
 
  

, (34) 

where x  define the norm-L2 function of the signal x, x  and 

Qx  represent the signal x in floating and fixed-point 

respectively. The norm is calculated on the complex valued 
signal sequence of length N measured in decibels (dB). The 
higher the ratio, the less obtrusive the background noise is. Two 

major concerns in the computation of the Goertzel algorithm are 
the speed and high SQNR. The fixed-point implementation 
generates noise sources due to the bit representation in 
hardware implementation that propagate through the system 
that can modifies the overall system accuracy.  

According to [41], the first order Goertzel algorithm 
performs better than the second order in fixed-point 
implementation due to the presence of two recursions in the 
second order, in which both methods have the same number of 
iterations N. To increase the SQNR for real-valued input 
sequences, [42] proposed to apply a scaling factor O(1/N) on 
the input data for the first order and a scaling factor O(1/N2) for 
the second order. With regard a complex-valued input 
sequence, [41] proposed a scaling factor π/4N to the input 
sequence x(n) for the first order filter. Applying a scaling factor 
on the recursive filter will assure its stability by avoiding 
overflow. Therefore, the scaling factor has an important role in 
the accuracy and stability of the filter.  

In our performance comparison between the proposed 
JM-Filter versus Goertzel algorithm, the scaling factor is 
maximized for all possible scenarios to avoid overflow and to 
maximize the accuracy (SQNR). The analysis is performed for 

different sequence length which was applied on the first/second 
order Goertzel and the JM-Filter for the radices-2, 4 and 8. In 
our fixed-point model, the integer part of the input sequence 
word-length  kX  is fixed to 2-bit which will include the sign 

bit. The rest of the bit word-length is given to the fractional part.  
On the other hand, the integer part of the coefficients is fixed to 
1-bit which is the sign bit and the rest is dedicated for the 
fractional part.  

Table I  Computational complexity in terms of real arithmetic operations for the first and second order Goertzel algorithm and the 
cited RDFT compared to the proposed first and second order JM-Filter (radices-2, 4 and 8) for a complex valued sequence signal of 
length N.  

Methods 
First Order Second Order 

    
Goertzel [30] 4N2 4N2 2N(N+3) 4N(N+2) 

[32] − − 2N(N+1) 4N(N+1) 
[33] − − 2N(N+3) 4N(N+2) 
[34] − − N2/2-8 N2+9.5N-22 
[31] − − (N+1)(N-2) N(2N+7)-2 
[35] − − 2N(N+1) 4N × (N + 1) 

JM-Filter radix-2 2N2 3N2 N(N+2) N(3N -2) 
JM-Filter radix-4 N2 5N2/2 N(N/2+2) N(5N/2-2) 

JM-Filter radix-8* N2 13N2/8 N(3N/4+2) N(13N/8-2) 

JM-Filter radix-r 
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*Including the trivial multiplication  ± 2 2 and ±j 2 2  to compute a(p). 

 

 
Fig. 11 Fixed-point simulation with QPSK signals. 
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Fig. 12 presents the fixed-point evaluation results in which 
the variable data and coefficients word-length are fixed to 
24-bit. The sizes of the simulated input sequence are 64, 256, 
1024 and 4096 (mostly used in the OFDM systems). Table II 
shows the SQNR and scaling factor. The scaling factors was 
adjusted to maximize the accuracy. Table III shows the 
complexity evaluation for Goertzel and JM-Filter methods 
based on real value operations to compute one specific output 
frequency considering N complex-valued inputs.  

Our proposed method reveals substantial gains compared to 
the first/second order Goertzel algorithm. The improvement in 
accuracy results can be explained by the following points: (i) 
with the increasing radix of the JM-Filter, the total amount of 
iteration will decrease that is associated with a reduction in the 
arithmetical operations, and (ii) by decreasing the total amount 

of iteration and to avoid overflow, the scaling factor is an asset 
in improving the accuracy of our proposed method.  

 The fixed-point results of the radix-2 FFT have been added 
as reference. We have not applied a scaling factor at each stage 
of the FFT process as it was proposed in [40][41]. We only 
applied the adjustment of scaling factor at the input sequence in 
the same manner for Goertzel and the proposed filters. The loss 
of accuracy comes from the recursive operations and the 
presence of multiplication operations in the feedback of filters.  

For an input sequence of length 4096, the first order radix-8 
JM-Filter manifests a gain of 15.7 dB compared to the first 
order Goertzel algorithm, meanwhile the second order radix-8 
JM-Filter manifests a gain of 19.3 dB in comparison to the 
second order Goertzel algorithm. Significant and interesting 
gain is observed for the second order, but the first order stay the 
best avenue in fixed-point.  

6. EXPERIMENTAL RESULTS IN GENOMIC SIGNAL PROCESSING 

DNA processing or Genomic signal processing is an 
expanding domain in which the four nucleotides A, C, G, and T 
need to be converted into numerical value that should be 
processed. The coding region of a gene exhibits a period-3 
pattern, that is translated into large peaks in the spectral domain 
that will occur at k = N/3 of the DFT coefficients [43][44]. In 
this subsection we will be deploying the radix-2 second order 
JM-Filter for the period-3 pattern detection as shown in Fig. 13 
in which the FFT, Goertzel and the radix-2 JM-Filter have 
exactly given the same prediction of the period-3 behavior [13].  

To evaluate the complexity reduction of the proposed 
JM-Filter, the computational time for the period-3 pattern was 
performed on the genomic sequence NC_003281 (chromosome 
III of C.elegans) of length M = 13 783 801 [45] in which the 
applied window sizes N are 348, 840, 1500, 2520 and 3864. The 
detection of the exons’ period 3 behavior is accomplished by 
sliding the window on the sequence of length M. Fig. 14 shows 
the computational time and the speedup is shown in Fig. 15 in 
which different window sizes were applied. The second order 
Goertzel and JM-Filter are coded in C language and compiled 

Table II Accuracy (SQNR) and scaling factor maximizing the SQNR for reference and proposed methods.  

METHODS 

Sequence length (N) 

64 256 288 1024 4096 
Scaling 
Factor 

SQNR 
(dB) 

Scaling 
Factor 

SQNR 
(dB) 

Scaling 
Factor 

SQNR 
(dB) 

Scaling 
Factor 

SQNR 
(dB) 

Scaling 
Factor 

SQNR 
(dB) 

FFT 2 126.6 2 119.7 − − 1 110.2 1 104.0 
 First Order 

Goertzel 1/2 111.7 1/2 101.7 2 100.9 1/2 90.2 1/2 78.4 

Proposed  
JM-Filter 

Radix-2 1/2 114.0 1/2 105.4 2 105.2 1/2 95.7 1/2 84.4 
Radix-4 1/2 115.3 1/2 108.1 2 108.0 1/2 100.1 1/2 89.9 
Radix-8 1 123.4 1/2 109.2 − − 1/2 102.3 1/2 94.1 

 Second Order 

Goertzel 1/40 89.7 1/192 70.1 144 71.0 1/1024 49.8 1/3584 32.2 

Proposed  
JM-Filter 

Radix-2 1/36 92.4 1/106 76.7 162 72.5 1/426 58.1 1/1536 41.0 
Radix-4 1/16 101.2 1/70 80.9 64 81.2 1/227 65.1 1/904 47.7 
Radix-8 1/8 106.1 1/33 86.8 − − 1/128 69.5 1/512 51.5 

 

 

Fig. 12 Accuracy comparison between the first order (solid line) 
and second order (dashed line) Goertzel algorithm versus the 
proposed JM-Filter for the radices 2, 4 and 8 where the FFT is 
added as reference. All N output frequencies are computed for all 
methods. 
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on the Intel® C 64’ compiler for applications running on Intel® 
64 (ICC) version 19.0.4.243 build 20190416. For a comparative 
study, the Intel®’ optimized MKL FFT function is also added. 
The technical specification of the used platform is:  two Intel® 
processors Xeon® CPU E5-2620 v3 with 12 cores (total of 24 
cores) at 2.40 GHz and 258 GB of RAM memory. Fig. 15 
reveals a speedup of 2.35 for a different window size more than 
1500 that is due to the complexity reduction by factor of 2. The 
gain is greater than of 2 is associated to the reduction of memory 
access’ time caused by reducing the amount of iterations to N/2.  

7.  CONCLUSION 

 This paper has presented a more efficient algorithm for 
computing a specific frequency compared to the well-known 
Goertzel algorithm, in which we have proven a reduction in the 
arithmetic computational load by a factor of r, where r is the 
radix of the introduced JM-Filter, and a significant gain in 
accuracy in term of SQNR. The accuracy gain is principally 
because the recursive equation of our proposed algorithm 
compared to Goertzel has been reduced from N to N/r. 

 
Fig. 13 Detection of period-3 behavior by deploying three 
methods: the FFT, Goertzel and the proposed JM-Filter where all 
three methods have manifested a matched result. The dashed line 
describes the ideal gene positions.  
 

 
Fig. 14 Computational time for proposed and Goertzel methods, 
both for second order algorithm, and the FFT for different window 
sizes N. 

 
Fig. 15 Computational time ratio between our proposed method 
and Goertzel for different window sizes N. 
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Table III Complexity evaluation for Goertzel and proposed methods based on real value operations to detect one output frequency. 

METHODS 

SEQUENCE LENGTH (N) 

64 256 288 1 024 
Number 
of iter.   

Number 
of iter.   

Number 
of iter.   

Number 
of iter.   

FFT Radix-2 6 768 1 152 8 4 096 6 144 10 20 480 30 720 10 20 480 30 720 
 First Order 

Goertzel 64 256 256 256 1 024 1 024 288 1 152 1 152 1 024 4 096 4 096 

Proposed  
JM-Filter 

Radix-2 32 128 192 128 128 768 144 576 864 512 2 048 3 072 
Radix-4 16 64 160 64 256 640 72 288 720 256 1 024 2 560 
Radix-8* 8 64 104 32 256 416 36 288 468 128 1 024 1 664 

 Second Order 

Goertzel 64 131 258 256 515 1 026 288 579 1 154 1024 2 051 4 098 

Proposed  
JM-Filter 

Radix-2 32 66 190 128 258 766 144 290 862 512 1 026 3 070 
Radix-4 16 34 158 64 130 638 72 146 718 256 514 2 558 
Radix-8* 8 50 102 32 194 414 36 218 466 128 770 1 662 

*Including the trivial multiplication  ± 2 2 and ±j 2 2  to compute a(p). 

  



The future work will be exploring the overflow analysis for 
our proposed JM-Filter for radices-2, 4 and 8 and the 
implementation on a pipelined specific-integrated circuit and on 
FPGA structure.  
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