
WINDOWING COMPENSATION IN FOURIER BASED SURROGATE ANALYSIS 

ABSTRACT 

This paper shows how adding a second step of windowing 
after each phase randomization can reduce the False 
Rejection Rate in Fourier based Surrogate Analysis. 
Windowing techniques improve the resolution of the Power 
Spectrum estimation by reducing the sampling gap caused by 
the periodic extension of the Fourier Series. However, it adds 
a time domain non-stationarity which affects the Surrogate 
Analysis. This effect is particularly problematic for short low-
pass signals. Applying the same window to the surrogate data 
allows having the same non-stationarity. The method is tested 
on order 1 autoregressive process null hypothesis by Monte 
Carlo simulations. Previous methods were not able to yield 
good performances for left-sided and right-sided tests at the 
same time, even less with bilateral tests. It is shown that the 
new method is conservative for unilateral tests as well as 
bilateral tests. 

Index Terms—LTV, Surrogate Analysis, Surrogate Data, 
Nonlinear Analysis, Windowing 

1. INTRODUCTION

The Surrogate Analysis (SA) is a hypothesis test aimed at 
assessing the nonlinear nature of a signal [1]. It has been 
applied to a wide variety of domain [2], notably in the study 
of brain activity [3, 4]. More recently, it has been used as a 
feature for Low-Back-Pain diagnostic with electromyogram 
(EMG) sensors [5] and to study the non-randomness of the 
phase spectrum in the Fourier domain [6]. It has also been 
extended for distinguishing between nonlinear and non-
stationary data [7]. 

Multiple versions of the SA have been developed but can 
generally be categorized in two groups: Fourier based and 
ARMA process based. Both approaches were proposed in [1]. 
By far, the Fourier approach has been the most popular [8], 
probably for its simplicity of implementation since it does not 
require any model selection step. However, the Fourier based 
SA is well known for its sensitivity to signal artifacts. An 
important example of such artefacts is the impact of limited 
number of data. One solution to this artefact is the method 
matching ends. It was first proposed in [1] by recommending 
tailoring the data length in order to have similar first and last 
data point values. Later, it was analysed in [9] that matching 
the ends gave reasonable performances for reducing the effect 
of the “periodicity mismatch.” (difference between the first 

and last data point) when the number of data available is high. 
Another solution is to apply windowing techniques [10] 
which have the advantage of not requiring a variable data 
length or initial point. This makes it easier to implement or to 
compare results between different time series, especially 
when the data length is small. Also, nonlinear methods can be 
biased by the data length [11]. Windowing techniques [10] 
improve the resolution of the Power Spectrum estimation 
needed for the generation of surrogate series in Fourier based 
SA by reducing the sampling gap caused by the periodic 
extension of the Fourier Series. In [1, 12], the windowing is 
applied in the generation of the surrogate’s data. However, 
these surrogates are compared to the unwindowed original 
series. This leads to a spreading in the power spectrum of the 
surrogate signal which is not present in the original signal, 
producing a bias. The results showed the trade-off between 
reducing the sampling gap and avoiding the frequency 
spreading. Indeed, it indicated that using the windowing 
techniques is useful up to a certain data length. Above, the 
windowing worsens the bias. Moreover, even in the best 
cases, it remained largely optimistic, yielding between 10 and 
25% of False Rejection Rate (FRR) when a 5% rate would be 
expected. Nonetheless, it is clear that the application of 
windowing techniques is important: without it, the FRR were 
shown to be over 30%. 

A different approach would be to compare the surrogate to 
the windowed version of the original signal. However, the 
windowing process adds time domain non-stationarity. The 
windowing of a stationary ARMA process makes its variance 
changing from sample to sample. It has been shown that the 
SA may be very sensitive to non-stationarity [7, 13]. This 
effect has even been exploited notably in [14]. The non-
stationarity caused by the windowing in the original data will 
not be present in the surrogate series. Clearly, the windowing 
adds a bias. The biases in SA make either the left or right-
sided test over-optimistic. Also, it makes the bilateral tests 
always over-optimistic. The bilateral tests are important when 
the type of nonlinearity that might be present is unknown. 

This paper presents a method for compensating the non-
stationarity caused by the windowing in surrogate analysis. 
The method consists of keeping the window on the original 
series and applying the same window on every surrogate data 
series. This adds the same non-stationarity to the surrogate 
series as in the original series. The analysis is conducted by 
Monte Carlo simulations on an order 1 autoregressive process 
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(AR(1)) as in [12], but considering the unilateral and bilateral 
tests. Although the added windowing replaces the sampling 
gap artifact by a frequency smoothing artifact, it will be 
shown that the overall effect is conservative. 

The paper is organized as follows: Section 2 describes the 
basic numerical methods testing methodology. Section 3 
reviews the classical windowing method for the SA found in 
the literature and presents the proposed approach. The results 
are reported in Section 4 and discussed in Section 5. Finally, 
the conclusions are drawn in Section 6. 

2. NUMERICAL METHODS

This section describes the conditions and results of the 
numerical experiments done by Monte Carlo simulations. 

2.1. Nonlinear Method 

The nonlinear method used in this paper is the FD 
calculated by the Higuchi’s method [15]. A similar use of FD 
in the context of SA was notably used in [16] for 
magnetoencephalography (MEG) signals. The FD is easily 
calculated, even with a low number of data points. The 
method necessitates the selection of the time intervals (k). For 
speed, we only used k from 1 to 5.  

2.2. Window method 

In [12], different windows were tested. In this paper 
different systems are tested. Hence, the best window 
proposed in [12], the Welch Window [17], is used throughout 
this paper. The Welch Window is a parabola centered at N/2, 
as shown in Fig. 1 (b): 

𝑤(𝑛) = 1 − ቆ
2𝑛 − (𝑁 + 1)

𝑁 − 1
ቇ

ଶ

(1) 

2.3. Test Signal 
The AR(1) process is used for the tests. It follows the 

relation: 
𝑥(𝑛) = 𝛼ଵ𝑥(𝑛 − 1) + 𝑒(𝑛) (2) 

where x is the signal, α1 is the process parameter controlling 
the cut-off frequency and e is an independent identically 
distributed random variable called process noise. In this 
paper, the noise has a normal distribution. This process was 
used in [12] with α1 = 0.995. This choice was appropriate in 
order to highlight the windowing effect. The sampling gap in 
FFT is much more obvious in low pass signals. We used the 
same α1 in most of this paper analysis. However, we also 
show results with α1 =0.9, which clearly reduce the sampling 
gap problem and give an advantage to the System 1, with no 
windowing. An AR(1) process with α1 = 0.9 is shown in 
Fig. 2 (d). As in [12], the first data were removed in order to 
attain the steady state regime. The transient regime can be 
seen as non-stationary, which can affect the SA. We used an 
extra 2000 data points in order to have a relative impact of 
5×10-5 in the case where α1 = 0.995. 

2.4. Performance Measure: The False Rejection Rate 

The FRR is used to compare the performances of the 
different systems. It is often called “Type 1 error.” A perfectly 
fair or balanced test should give a FRR of exactly 5%. When 
the FRR is lower, the test is considered conservative while if 
it is higher, the test is said to be optimistic. 

2.5. Monte Carlo Simulations 

Monte Carlo simulations were conducted in order to obtain 
the FRR of the different systems. The number of tests per 
point in these graphs was 20 000. The same signals were 
tested for every method. This gives a maximum error of 1% 
at 3 standard deviations when the FRR is of 50% and 0.2% 
when FRR is at 5%. In the first simulation, α1 was set 
to 0.995. These are shown in Fig. 3 (a-c). The right-sided (a), 
left-sided (b) and bilateral tests results are shown. In (d), the 
results for the bilateral test is given for α1 = 0.9. 

Fig. 1.  Time domain representation of an example of 256 data 
points of an AR(1) signal with α1 = 0.9 and its processed versions 
by the proposed system. The signal variables are given with respect 
to the proposed system shown in Fig. 2 (d). The figure presents the 
original signal x (a), the Welch window (b), the original windowed 
signal xw (c), a surrogate of the windowed signal s (d) and the 
windowed surrogate signal sw (e). 



3. SURROGATE ANALYSIS AND WINDOWING

The SA compares a nonlinear feature, such as the Fractal 
Dimension (FD) [15] used in this paper, of a signal to the 
distribution same feature obtained on random signals with 
identical Power Spectrum. To do this, surrogate signals 
respecting the null hypothesis with the same power spectrum 
as the originals signals must be generated. The most common 
approach, which is considered here, is the phase 
randomization in the frequency domain. First, the Fast 
Fourier Transform (FFT) is applied. The phase is set to a 
uniform distribution between 0 and 2π, with conjugate 
symmetry in order to preserve real values. Then, the signal is 
set back in the time domain by inverse Fourier transform 
(IFFT). 

For a unilateral test with an aimed 5% FRR, 19 such 
surrogate series are generated. The FD is calculated for every 
surrogate series.  The final stage is a comparison between the 
FD of the original series to those of the surrogate. A positive 
result to the test is given if the original series FD is higher 
than the surrogate series FD when the test is right sided and 
lower when the test is left sided. For a bilateral test, the 
number of surrogate series must be increased at 39 and the 
test will be positive if the original FD is higher of lower than 
all the surrogate series FD. 

The null hypothesis is that the signal can be produced by 
a stationary linearly filtered white Gaussian noise. If the data 
processing produces some artifacts that are not of an ARMA 
type, these may influence the results. 

When windowing is applied on a signal, two effects must 
be considered: 

1) The spreading of the power spectrum (explained by the
convolution theorem)

2) A non-stationarity in the variance of the signal.
These two effects can affect the nonlinear feature of the

signal. It is important to note that non-stationarity is removed 
by phase randomization. If some windowing artifact are 
present in the original signal but not in the surrogate (or the 
reverse), a bias is created. 

The four systems presented in Fig. 2 show different 
approaches for applying windowing in SA. The systems are 
shown for right-sided tests with FRR set at 0.05 (if the test 
was unbiased). The rest of the present sections describes the 
first three systems used as a basis of comparison and the 
proposed system. 

3.1. System 1: Windowless Surrogate Analysis 

The basic SA without windowing is presented in 
Fig. 2 (a). It is the system mostly used throughout the 
literature proposed in [1]. It can be interpreted as using a 
rectangular window. Here, the main differences between the 
original signal and its surrogate are the sampling gap and 
correlation between the frequency bins phases [1]. Although 
there is a very high spreading of the Power Spectrum, it is 
identical between the original and the surrogate signals. 

3.2. System 2: Method of Suzuki [12] 

In Fig. 2 (b), the windowing in applied before the FFT. 
However, the FD of the original series is calculated on the 
unwindowed version. Although the sampling gap effect is 
strongly reduced, the Power Spectrum differs between the 
original and surrogate series. Moreover, this difference is 
identical throughout the surrogate series. On the other hand, 
all the signals are stationary. The method was possibly first 
briefly mentioned in the original SA paper [1] but was really 
analyzed in [12]. 

3.3. System 3: Same spectrum 

A final reference method is given in Fig. 2 (c). The system 
is similar to the method in (b), but the FD of the original series 
is calculated on the windowed version. Therefore, the original 
and surrogate series have the same Power Spectrum. 

System 1: No Windowing 
(a) 

System 2: Windowing Applied as in [12] 
(b) 

System 3: Same Spectrum 
(c) 

System 4: Proposed System 
(d) 

Fig. 2.  Windowing in the surrogate analysis system for right-sided 
tests. The system with no windowing is presented in (a). The method 
used in [12] is shown in (b), with the only difference being that the FD 
is used instead of Local Linear Prediction. The system in (c) is a 
variation of the previous one in which the FD of the original series is 
obtained from the windowed original series. 



However, while the surrogate series are stationary, the 
windowed original signal is not. This method has not been 
found clearly explained in the literature. In [1], the idea of 
using a windowing method was proposed. The exact 
application was, however, not concretely described, but it 
could be assumed that it was that of System 2 or System 3. 
Although System 3 is an obvious variant with the System 2, 
it is included in the numerical tests for the sake of completion, 
because it shows a situation where the only artifact is the 
non-stationarity.  

3.4. System 4: Proposed Windowing Method for 
Surrogate Analysis 

The proposed system is reported in Fig. 2 (d). The 
difference with (c) is that a second windowing stage is added 
to the surrogate series before calculating the FD. The two 
main relations between the original and surrogate series are: 

1) The non-stationarities are similar 
2) The Power Spectrums are different between the 

surrogates. 

The first aspect ensures that the bias in the nonlinear 
method caused by the window are similar. The second aspect 
adds variability in the surrogate series. The Power Spectrums 
of the surrogate will be approximately centered to the 
windowed original signal’s Power Spectrum. For this reason, 
it is expected that the test will be more conservative. 
Examples of the different signals obtained in the System 4 are 
shown in Fig. 1 (a) (c-e) along with the window used (b). The 
windowed signal is non-stationary. 

4. RESULTS 

A bias in the FD of the surrogate will reduce the FRR of 
one of the one-sided tests while increasing the FRR of the 
other. For example, the System 3 shows a very low FRR for 
the right-sided test in Fig. 3 (a) but very high for the left-sided 
test. The effect of the bias for bilateral test is harder to predict. 
When a normal distribution is considered, the bias simply 
increases the FRR. However, when the distribution is skewed, 
the FRR can be either lowered or raised (or in some particular 

 
(a) (b) 

 
 

 
(c) (d) 

 
Fig. 3.  False Rejection Rates vs the number of data points (window size) of all systems for an AR(1) process with α1 = 0.995 for (a-c). Right-
sided (a), left-sided (b) and bilateral (c) tests are shown. In (d), the process has α1 = 0.9 and the test is bilateral. The number of tests was 
20 000 per points. 

R
ig

ht
 S

id
e 

F
al

se
 R

ej
ec

tio
n 

R
at

e

L
ef

t S
id

e 
Fa

ls
e 

R
ej

ec
ti

on
 R

at
e

B
ila

te
ra

l F
al

se
 R

ej
ec

tio
n 

R
at

e

B
ila

te
ra

l F
al

se
 R

ej
ec

tio
n 

R
at

e



case stayed unaffected.) Adding some Kurtosis effects, it 
becomes necessary to simply rely on simulations to assess the 
impact of the different biases. In Fig. 3 (a-c), the System 2 
bilateral test has some FRRs higher than for both one-sided 
tests while the system 3 does not. The relation between the 
standard deviation of the offsets and standard deviation of the 
surrogates FDs will impact both one-sided tests, as well as the 
bilateral test. 

The results show that the proposed system is generally very 
conservative. Since the right-sided tests FRR is higher than 
for the left-sided tests, there is still a weak bias. The bilateral 
test FRR is almost always at 1%. The proposed system is the 
only one which can give conservative results in bilateral tests.  

When α1 = 0.9 (d), the impact of not using windowing 
(System 1) is much weaker, as expected. Also, as the number 
of data points increase, the windowing problem disappear. 
The number of data points necessary to remove the need of 
windowing depends on the bandpass of the signal, controlled 
by α1 in this case. The System 2 has the same kind of 
behaviour with FD that it had with Local Linear Prediction as 
used in [12]. It has better performances than System 1 (no 
window) when the number of data points is small, but worse 
when the number is higher. Although the System 3 performs 
better than System 2 when the number of data points is high, 
it almost never performs better than the System 1 and 2 
simultaneously. 

5. DISCUSSION 

The results shown in this paper were based on a certain 
nonlinear method (FD), a particular window (Welch) and a 
specific type of signal, the AR(1) process with very low pass 
characteristics. It must be emphasized that every time the SA 
is used, a careful examination of the null hypothesis should 
be carried out with the selected nonlinear method and window 
on signals with similar power spectrum as the data. In other 
words, the analysis carried out in this paper should be done 
for any new combination of nonlinear function, window and 
signal. The SA should never be used blindly [8]. As it should 
be reminded in every paper about the SA, the interpretation 
of the results must be limited to rejecting or not that “a linear, 
Gaussian, stationary, stochastic dynamical process underlies 
the data” [18]. 

In this paper, we used the Welch’s window because it was 
the recommended window in [12]. However, this choice may 
be improved for the proposed system. Obviously, the optimal 
window depends strongly on the nonlinear method used and 
the type of signal analysed. 

Finally, the SA has variants in which the null hypothesis 
includes a static (memoryless) monotonic nonlinear 
transform such as Amplitude Adjusted Fourier Transform 
(AAFT) [1] or Iterated AAFT (IAAFT) [19]. The proposition 
of this paper can be extended to this variant with the same 
expected benefits. 

6. CONCLUSION 

The aim of this paper was not to show a ready-to-use 
method to detect nonlinearity. Rather, it proposed a system 
that must be adapted and tested every time nonlinear analysis 
is used when the number of data points is limited. The method 
proposed, although very conservative, allows to rule out the 
effect of windowing of the already complicated interpretation 
of the surrogate analysis. 
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