
 

Abstract—In this paper, we discuss the implementation 
strategies of an explicit matrix inversion technique based on the 
recursive Gram matrix inversion update (RGMIU) algorithm. 
These strategies are explicitly chosen to optimise the design for 
high throughput dictated by the enhanced mobile broad band 
(eMBB) use case and by the low latency imposed by the ultra-
reliable low-latency communications (URLLCs) use case. The 
RGMIU algorithm is recently proposed to implement the zero 
forcing (ZF) problem encountered in massive multiple-input 
multiple-output (MIMO) detection task. We therefore compare 
and analyse the performance in terms of symbol error rate (SER) 
against popular implicit and explicit methods such as optimised 
coordinate descent (OCD), Gauss-Seidel (GS) and Neumann 
series expansion (NSE) algorithms. To determine the optimal 
word length, a fixed-point analysis shows that 16 bits are enough 
to reach a floating-point precision. We, thereafter, use Vivado 
High-Level Synthesis tools and optimization directives to 
implement the RGMIU algorithm based on three strategies to 
infer key insights and design trade-offs from the resource’s 
utilization, latency, throughput and energy efficiency. 

Index Terms— Massive MIMO, Recursive Gram Matrix 
Inversion Update (RGMIU), MIMO detection, Zero Forcing (ZF), 
Fixed-point analysis, high-level synthesis, Vivado HLS, 
throughput, latency. 

I. INTRODUCTION

Being a promising concept for future cellular networks, 
massive multiple-input multiple-output (MIMO) has now 
made its way to 5G as one of the means to substantially 
improve both spectral and energy efficiencies [1]. As a matter 
of fact, base stations (BSs) with 64 fully digital transceiver 
chains are commercially deployed and the key component of 
massive MIMO has made its way into the 5G standard [2], [3]. 
Nevertheless, the authors in [4] have pointed out that massive 
MIMO implementation continues to be at least as exciting as 
massive MIMO theory. Massive MIMO is a form of multiuser 
MIMO where the number of serving antennas at the BS is an 
order of magnitude larger than the number of user terminals 
(UTs) served within each radio resource element. Given the 
large number of antennas, reliance on time division duplex 
(TDD) channel reciprocity is essential [1].  

Under favorable channel conditions and/or as the number of 
antennas increase, the UTs’ channels are mutually orthogonal 
which makes linear processing (detection and precoding), such 
as maximum ratio combining (MRC), zero forcing (ZF) and 

minimum mean square error (MMSE) detection techniques, 
optimal [5]. The detection/precoding problem based on ZF or 
MMSE technique is an arithmetic operation with cubic 
computational complexity in the order of the matrix dimension. 
To reduce the implementation complexity, matrix inversion 
approximations such as Neumann series expansion (NSE) is 
proposed in [6]. Recently, a technique based on Gauss-Seidel 
(GS) was shown to outperform NSE due to its fast convergence 
at considerably low computational complexity [7]. However, 
this comes at the expense of higher latency and lower 
throughput [7]. It has actually been shown that the NSE 
performance degrades as the number of UTs increases [8]. To 
counter the load increase effect, GS can still afford using more 
iterations while maintaining lower computational complexity, 
albeit at the expense of reduced throughput [7]. It has therefore 
been argued to resort to exact matrix inversion [8].  

High throughput application-specific integrated circuit 
(ASIC) is designed for the NSE based detector in [9]. The 
ASIC achieves 3.8 Gbps for 128 antenna BS and 8 users for 
single carrier frequency division multiple access (SCFDMA). 
The NSE based detector is also implemented on a Xilinx 
Virtex-7 FPGA in [6]. The FPGA design achieves 600 Mbps 
for 128 antenna BS serving 8 UTs (i.e. 128×8 system). A 
detector based on the conjugate gradient (CG) algorithm has 
been proposed in [10] and achieved a significant complexity 
reduction. However, to speed up the convergence rate and 
improved performance, a hybrid detector based on the CG 
algorithm and the Jacobi method has been proposed in [11]. 
The CG-based detector is also implemented in Xilinx Virtex-7 
FPGA for a 128×8 system [12]. On the other hand, the GS-
based method has been proposed wherein the initial solution is 
based on the NSE of two terms [7] whereas, its parallel 
architecture is implemented in [13]. Even though the GS 
method can reduce the complexity to be O(K2) [14], however, 
due to the GS internal sequential iteration dependencies, it is 
not well suited for parallel implementation [7], [15]. 

On the other hand, it has also been argued that these 
centralized processing techniques still impose stringent 
constraints on the interconnects bandwidth between the 
massive MIMO radio heads (RHs) and the central processing 
unit (CPU). Distributed, or decentralized, massive MIMO 
processing has been introduced to overcome such limitations 
[16] and [17]. Unfortunately, the decentralized processing
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computational complexity, and hence the energy efficiency, are 
also of concern [18]. On the other hand, to support ultra-
reliable low-latency communications (URLLCs), low latency 
and high-throughput processing is required. As such, we focus 
on implementing the core matrix inversion technique based on 
recursive Gram matrix inversion update (RGMIU) method 
[19].The inversion of the Gram matrix is performed by 
exploiting matrix inversion update of a matrix in the form of 

HH H  when a new column is added/updated to a complex-
valued matrix H  [19]. Even though the implementation of the 
RGMIU technique has been presented in [19], the contribution 
of this paper is the way the algorithm is implemented. In fact, 
the RGMIU method is completely unrolled to leverage a 
maximum throughput performance. We can add that the 
implementation in [19] was designed for low resources 
consumption. Also, the order of magnitude of the obtained 
results can justify the importance of this paper as it will be 
shown in the next sections. Herein, direct matrix inversion 
based on Cholesky decomposition is considered as a reference 
to the performance and computational complexity standpoint.  

A comprehensive review, comparison and discussion of the 
existing linear precoding mechanisms for massive MIMO 
according to different cell scenarios have been presented in [8]. 
It also discussed some standing challenges which related to the 
design of precoding mechanisms and practical 
implementations. Low complexity precoders suffered from a 
considerable performance loss, while a complicated precoder 
design is more difficult to implement practically. On the other 
hand, an extensive survey on detection algorithms related to 
massive MIMO systems is presented in [20]. The particular 
focus is on performance and complexity trade-off as well as the 
practical implementation of detection algorithms. 

In this paper, 

 We simulate and compare performances in terms of
symbol error rate (SER) for four popular algorithms,
namely the Gauss-Seidel (GS) implicit method, the
optimized coordinate descent (OCD) implicit method with
BOX equalization, the Neumann series expansion (NSE)
of order 3 explicit approximation method and the RGMIU
explicit method. The goal is to introduce the reader to other
state-of-the-art algorithms and to show how the RGMIU
performs relatively to these algorithms. This is an
extension to [19] by adding the OCD method to make the
paper self-contained including fixed point simulations.

 The main focus of this work will be on the RGMIU
algorithm implementation which is not considered in [19].
We use Vivado High-Level Synthesis tools and
optimization directives to implement the RGMIU
algorithm based on three strategies to infer key insights
and design trade-offs from the resource’s utilization,
latency, throughput and energy efficiency.

The paper is organized as follows: Section II summarizes the 
detection problem. Section III presents the simulation results 
and discusses the performances of the four methods. 
Section IV shows the implementation results on Vivado HLS 
in terms of design strategies, fixed-point analysis, resources 

consumption, latency/throughput and energy efficiency for the 
RGMIU algorithm. Finally, a conclusion is drawn. 

II. SIGNAL MODEL

Considering a massive MIMO system with K  UTs and M  BS 
antennas, the received signals at the BS can be modeled as 

 y Hs n ,  (1) 

where 1M y   is a vector containing the signals received by

each BS antenna,  1 2 KH h h h is the matrix 

channel for a given sub-carrier with every column representing 
the channel between every antenna and one particular UT so 

that M KH  ,  1 2

T

Ks s ss   is the vector containing

the K  symbols sent by the K UTs and 1Mn   is a complex
gaussian white noise with zero mean and variance 2 . The 
Gram matrix and the matched filter vector resulting from the 
projection of the vector y  onto the column space of H are 

computed as follows 

HG H H ,  (2.a) 
H

MF y H y ,  (2.b) 

where G  is the Gram matrix and MFy  is the matched filter 

vector. Therefore, the new square system of equations can be 
written as  

H
MF  y Gs H n .  (3) 

It is possible to explicitly solve equation (3) as follows 

  1ˆ
MF

s G y  (4) 

where ŝ  is the vector containing the estimated value of the 
symbols sent by the UTs. In fact, hard or soft data output 
decision needs to be done on ŝ  depending on if forward error 
correction process is used or not to ensure that the estimated 
symbols are contained within the same set (constellation) as the 
one of  s . For simplicity, our analysis will be restricted to ŝ  
by computing the symbol error rate (SER) on hard output 
decision which consists of making a decision based on the 
symbol in the constellation set that is the closest to its estimated 
value ŝ in terms of Euclidian distances.  

 It is also possible to implicitly solve it by using iterative 
methods as discussed in the first section. Nevertheless, the 
procedure that consists of solving equation (3) is known as a 
zero forcing (ZF) solution. By adding the variance 2  to every 
diagonal entry of the Gram matrix and solving the same 
system, we could have derived a more robust technique called 
minimum mean square error (MMSE) problem but since it is 
often hard to get the value of 2  in practice, we chose the 
simplicity and use ZF algorithm. Finally, hard output decision 
can be written as 

ˆ ˆarg min 1, ,hard
i i

z

s s z i K


     (5) 

where   is the constellation set. With this metric in hand, it is 
possible to process the SER by computing the ratio of the 
wrong decisions over the total number of symbols sent. As the 



 

main focus is to implement the RGMIU algorithm, Table 1 
outline such technique for the sake of safe contained reference 
where the details are found in [19]. To give the reader a better 
intuition behind this method, the RGMIU algorithm is said to 
be recursive in the sense that the inverse of the Gram Matrix is 
recursively built from a smaller Gram matrix inverse that is 
growing every iteration. This growing matrix corresponds to 
B  in table 1. Each iteration of the RGMIU algorithm adds a 
row and a column to B  up until the full inverse of the Gram 
matrix is obtained. That way, the starting point of the algorithm 
could be an already known inverse of a one dimension smaller 
Gram matrix and only one iteration would be required to find 
the new inverse. This is typically the case when the channel 
matrix does not change and a new UT is added to the group. 
This behavior is opposite to most classical iterative algorithms 
that need to redo a set of iterations all over again when a new 
UT is considered. 

 

III. SIMULATION RESULT 

Our simulations were done with 128 BS antennas and 8 or 25 
UTs. The channel matrix is modeled with independent and 
identically distributed (i.i.d.) random variable with zero mean 
and unit variance and we used a 64 QAM constellation for the 
symbols with an average transmitted power of 1.  

Before, looking at the simulation results, we can predict 
some behaviors of these algorithms. Firstly, since the GS and 
the RGMIU are both solving the ZF problem, we can guess that 
with enough iterations, the GS algorithm will reach the same 
performances as the RGMIU method. Also, as mentioned in 
[19], the OCD algorithm has near MMSE performances 
without having access to the value of 2 . That being said, we 
should expect the OCD to have the smallest SER after a certain 
number of iterations.  

Fig. 1 shows the SER for the four algorithms with the GS and 
OCD having 2 and 3 iterations respectively for 8 and 25 UTs. 
As expected, for 8 UTs, it takes at least two iterations for the 
GS algorithm to reach the same performances as the RGMIU 
algorithm. It also takes three iterations for the OCD method to 
get the same results as RGMIU and GS. The reason why OCD 
does not outperform the other algorithms is because the 
channel matrix H is not correlated. That way, the diversity at 
the BS is maximized and the system of equations is easy to 
solve with a good accuracy. Our goal was simply to get a good 
idea on how these algorithms perform relatively to one another. 
On the other hand, the order 3 NSE algorithm never reaches the 
performances of the exact matrix inversion and has a 
catastrophic SER with 25 UTs. 

Of particular interest is the fact that for 25 UTs, OCD and GS 
need more iterations to reach the performances of the RGMIU. 
In Fig. 1b, OCD and GS do not reach the SER of RGMIU with 
three iterations. In general, the number of iterations for implicit 
methods will depend on the ratio of the number of BS antennas 
over the number of UTs which is a disadvantage because the 
complexity of the algorithm is hard to predict. In contrast, the 

TABLE 1. THE RECURSIVE GRAM MATRIX INVERSION UPDATE 

(RGMIU) ALGORITHM 

   INPUT:  HG H H  

   Precompute the scalar inverse as a starting point: 

    1

1 1,1B G


                         // 
1B is an 1 1 matrix (scalar) 

FOR 1m  to 1K  DO: 

1. 1, 1m mz G                   // 
1, 1m mG  

 is the element at row and  

                                           column 1m                           

2. 
1 1: , 1m my G                  // 

1: , 1m mG 
 corresponds to rows 1 to m in  

                                                   column 1m  
3. 

2 1my B y  

4.  1 21 Hc  z y y  

5. 
23 yy c  

6. 2 2
H

m cΓ B y y   

7. 3
1

3
m H c

Γ y
B

y

     
   // B is a growing matrix 

END DO 

OUTPUT:   1H
KB H H


   

a)  

b) 
Fig. 1 SER versus SNR of the GS, NSE, OCD and RGMIU with 
a) two iterations and b) three iterations for GS and OCD. 
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complexity of the RGMIU can be known in advance because it 
takes as many iterations as the number of UTs minus one to 
inverse the Gram matrix. Also, the results of the RGMIU will 
always be accurate because its output is the exact Gram matrix 
inverse. On the other hand, the order 3 NSE will be accurate 
only when the ratio of the number BS antennas over the number 
UTs is high. 

In the end, all the presented techniques solve for the ZF 
detector. Some methods approximate the Gram matrix inverse 
and others implicitly solve the system of equations. The results 
tend to show that approximation methods may not solve the ZF 
problem with good accuracy and that implicit iterative methods 
performances can vary depending on the number of iterations 
applied in the process. The over all goal here is to show that 
direct matrix inversion should be chosen to obtain the best 
trade-off in terms of performances, complexity and reliability. 

From another point of view, the implementation trade-off 
between algorithms is mainly about the results in terms of 
throughput versus resource consumption. A computational 
intensive algorithm can be implemented with low resources 
consumption but the throughput results will generally be very 
low. The opposite can also be true. In fact, it is shown in [19] 
that the RGMIU method is in the midfield in terms of 
computational complexity, being below the NSE technique and 
above the GS algorithm. 

In this sense, RGMIU is partly chosen for its low inter-
iteration dependencies which generally reduce resource 
consumption regarding the algorithm complexity. In [8], 
implementations of the CG and the GS can only achieve the 
throughput of 20 Mb/s and 48 Mb/s respectively as opposed to 
the Neumann series expansion technique that can reach a 
theoretical throughput of 621 Mb/s. In all these three 
algorithms, the preprocessing steps corresponding to compute 
the Gram matrix is part of the implementation. This shows that 
the bottleneck of the design in terms of throughput is the core 
algorithm itself and not the preprocessing steps. On the other 
hand, the resource consumption on the chosen FPGA for the 
NSE implementation uses 34% of LUTs, 19% of FFs and 28% 
of DSP48Es as opposed to the two other methods that barely 
use above 5% of each of these hardware components. 

On the other hand, as it is shown in [7], another GS 
implementation could reach the throughput of 732 Mb/s but at 
the expense of higher and similar resources consumption as the 
NSE algorithm whereas, by fully optimizing the RGMIU 
algorithm to reach excellent throughput performances, the 
resources consumption for 8 mobile users are more than 
acceptable (will be shown Section IV, Table 2) with potential 
throughput results above what is normally expected. The only 
problem that remains is the implementation of a preprocessing 
and a post-processing unit that will not act as the bottleneck to 
the design. 

IV. IMPLEMENTATION 

 We used Vivado HLS 2019.1 to implement our designs [21]. 
All solutions were validated with RTL Cosimulation and we 
used the xc7vx690t from the Virtex 7 family as the reference 
FPGA. 

A. Implementation strategies  

Before directly talking about design strategies, it is important 
to mention here that we have only implemented the core of the 
RGMIU algorithm. In other words, the Gram matrix and 
matched filter vector preprocessing phase is not implemented 
as well as the post-processing multiplication of the matrix 
inverse with the matched filter vector. We only wanted to 
optimize the core algorithm because as we will see later, it has 
the capabilities to reach huge throughput data detection, but the 
preprocessing and the post-processing units cannot keep up 
with the data rate at which the core can operate without a big 
increase in resources utilization on FPGA. Our goal is to show 
the potential of the core algorithm. On the other hand, the 
complete implementation of the RGMIU algorithm on an 
ASIC, which can reach higher clock frequencies than FPGA, 
could be realistic in the sense that the preprocessing and post-
processing phases could operate at a higher clock frequency 
than the core algorithm in order to use it at its full capacity. 

Three implementation strategies were used [22]. The first 
one, which we refer as S1, uses a different hardware for every 
iteration. It is important to note here that the RGMIU algorithm 
has a growing vector and matrix sizes every iteration so that 
loops boundaries in the code are variable depending on the 
current iteration. With that in mind, we found out that the best 
way to translate this to Vivado HLS was to create template 
functions in C++ with the template parameter being the loop 
boundaries so that every time a template  function is called with 
a new template parameter, Vivado HLS understands that it 
needs to create new hardware for this function call. Every 
function was written in such a way that it could be pipelined 
with an initiation interval of one. Without the function 
template, we would have needed to declare as many functions 
as there are iterations times the number of steps in one iteration 
with the only difference being the loop boundaries parameter 
values. Some may argue that we could have used the 
FUNCTION_INSTANTIATE pragma instead which is 
equivalent in some way to the template functions, but we found 
out that in our design, this directive was interfering with the 
PIPELINE pragma. We then created a top function which 
called all the template functions one after the other [22]. This 
top function was pipelined, and the template functions were 
inlined to increase the flow of data and to maximize the 
performances. In total, there were five template functions 
corresponding to equations (3) to (7) in Table 1 and the value 
of the template parameter went from 1 to 1K  . Also, since 
the loop boundaries are different for every iteration in Table 1, 
the hardware resources used are also different for every 
iteration because most of the loops are unrolled by the pipeline 
directive in the top function. Fig. 2 shows the architecture of 
the first implementation strategy. 

The second strategy (S2) is basically the same as the first 
strategy except that the design is heavily pipelined with more 
registers so that the clock signal can reach higher frequencies 
which in turn enables a higher potential throughput. The 
downsides of this are the increases in resources consumption 
and a higher latency. To translate this to Vivado HLS, we just 
reused the first strategy solution and we set a clock constrain 
with a smaller period. Even if it is straightforward to pass from 



 

S1 to S2, the authors judge that the results are still worth 
mentioning since the maximum clock frequency can be 
significantly increased. Otherwise, the general architecture of 
S2 is the same as the one of S1 depicted in Fig. 2. 

The third strategy (S3) is designed in such a way that 
resources consumption is similar in terms of percentage for the 
DSP48E, the flip-flops (FF) and the look-up tables (LUT). The 
downside of this method, as we will see in the Section IV.D, is 
that the throughput is generally cut in half. To deploy this 
strategy, we used the ALLOCATION pragma to limit the 
number of DSP48E in the top function, so that FFs and LUTs 
are needed to compensate this limitation. The fact that S3 uses 
less DSP48E can give more room to other implementations that 
need explicitly this type of resources to reach good 
performances in terms of throughput on the same FPGA. That 
is not the case with S1 and S2. Also, S3 is the only possible 
implementation with 12 users. Once again, the general 
architecture of S3 is the same as the one of S1 depicted in 
Fig. 2. 

To sum up in more details, the power of the RGMIU 
algorithm resides in the fact that it does not contain major 
sequential inter-iteration dependencies, as opposed, for 
example, to the GS method [7]. This allows implementing this 
method with a small pipeline initiation interval without 
excessive usage of hardware resources. The smaller the 
initiation interval, the higher the throughput is, since an 
initiation interval of one means a new valid input can be 
processed every new clock cycle. Also, as stated before, the 
number of iterations that the algorithm needs to go through to 
obtain the exact inverse of the Gram matrix is equal to the 
number of mobile users minus one. These simple facts greatly 
simplify the complexity of the hardware implementation under 
Vivado HLS. 

Each equation from equations (3) to (7) corresponding to one 
iteration in table 1 can be described as a simple function in C++ 
with a template parameter used to indicate the current iteration. 
Once this is done, each array that is contained in these functions 
are partitioned with the ARRAY_PARTITION pragma. Then, 
the whole function is pipelined with the PIPELINE pragma and 
inlined with the INLINE pragma. The combination of 
partitioning and pipelining allows Vivado HLS to effectively 
pipeline every loop inside a given function to maximize its 
throughput while inlining prevents the creation of bottle necks 

between each function call. Then, a main top function is created 
to call all functions corresponding to one iteration of the 
RGMIU algorithm a number of times equal to the number of 
mobile users minus one. This main function is also pipelined 
to ensure smooth data transfers between function calls. In other 
words, the main idea of the RGMIU method implementation 
on Vivado HLS was to first subdivide the algorithm in simple 
elements and optimized them as much as possible to then glue 
them together in an efficient way to avoid bottle necks. At this 
stage the only thing missing is the input/output management. 
Basically, the input of the design is a FIFO corresponding to 
every element of the Gram matrix in parallel and the output is 
corresponding, in a similar manner, to every element of the 
inverse of the GRAM matrix in parallel. The INTERFACE 
pragma was used to achieve this. 

The key idea behind an efficient implementation of RGMIU 
is to correctly subdivide the algorithm and add simple 
optimization pragmas from the bottom-up. This is where the 
power of Vivado HLS resides. It is therefore worth reminding 
that the implementation results are the main contribution of this 
paper, even if the path to obtain them remains quite intuitive 
but not trivial. 

The optimization strategies were also quite intuitive to 
implement once the algorithm is well subdivided into small 
function. The first strategy was simply obtained by letting 
Vivado HLS freely set the clock constrains and the resources 
allocation. Then, from this first baseline strategy, the second 
strategy design was obtained by specifying a smaller target 
clock in the project solution settings. Finally, the third strategy 
was derived from the first strategy by using the 
ALLOCATION pragma in the main top function to limit the 
number of DSP48Es to a maximum value. 

That being said, we also tried to implement a fourth strategy 
which consisted of reusing the same hardware for the last two 
iterations. The goal was to dramatically reduce the resources 
consumption since the DSP48E utilization is a cubic function 
with respect to the number of iterations as we will see in the 
Section IV.E. When we implemented it, there was indeed a big 
improvement in the resources consumption, but the throughput 
was getting too slow so that we have decided to abandon the 
idea.  

 

Fig. 2 RGMIU implementation flat architecture 
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Before continuing to the next subsection, one thing we did 
not try but that could have been interesting is a pipeline 
interleaving strategy as they did in [8]. Indeed, since the 
algorithm loop depicted in Table 1 has inter-iteration 
dependencies, this prevents traditional pipelining except if we 
completely unroll it (different hardware for every iteration) as 
we did in S1, S2 and S3. To overcome this problem without a 
complete unroll, it would have been possible to always reuse 
the same hardware that represents one iteration and to create 
several pipeline stages inside it so that the core can accept a 
new Gram matrix input every clock cycle up until all the 
pipeline stages are filled. Thereafter, the algorithm would need 
to finish its 1K   iterations before being able to accept a new 
batch of inputs. Also, it would have been possible to create a 
hardware that computes more than one iteration to be able to 
have more pipeline stages in the design and a higher global 
throughput at the expense of higher resources utilization. This 
pipeline interleaving strategy is reserved for future work.  

B. Fixed-point analysis 

 The fixed-point analysis was done with 16 bits word 
lengths. Most of the internal variables used an integer part of 
one signed bit and 15 fractional bits. Fortunately, no shifts were 
needed to reduce the dynamic range and the common operators 
in Vivado HLS were able to automatically align the binary 
point of two variables having different fractional bit width. 
That being said, since DSP48Es in FPGAs can accept a 
maximum bit width of 18, our design was not panelized in 
terms of resources consumption. For all complex value 
multiplications, the complex multiplier is composed of 4 real 
multipliers and 2 real adders.  

We have been able to reach a good precision such that the 
difference between the SER curve of floating and fixed-point 
never exceed 0.5 dB. Indeed, Fig. 3 shows the comparison in 
terms of SER for floating and fixed-point variables with a bit 
width of 15 and 16. Clearly, 16 bits is the minimum required 
bit width to obtain results below 0.5 dB. 

C. Resources utilization estimates 

   The resources utilization for all strategies in terms of 
DSP48Es, FFs and LUTs is depicted in Table 2 for different 
numbers of UTs. Looking only at S1 and S2, the number of 
DSP48Es used is independent of the employed strategy. This 
is totally normal because these are used for multiplication and 
multiplier-accumulate (MAC) operations which are 
independent of the level of pipelining. The DSP48Es are only 
dependent on the number of UTs. This being said, we can 
derive a formula that connects these two parameters together. 
By looking at the scheduler of Vivado HLS, we have 
determined that the required number of DSP48Es, namely ( )d l

, for the thl  iteration is defined as follow 

2( ) 8 4 2d l l l                               (6) 

With that in mind, the total number of DSP48Es, namely D, 
is defined by 

 
3 2

1

16 36 8
(l)

6

L

l

L L L
D d



 
                   (7) 

where L is the total number of iterations, which corresponds to 
the number of UTs minus one. Equation (7) shows that the 
number DSP48Es follows a cubic order which can be a limiting 
factor for bigger designs with more than 8 UTs. This is why we 
have implemented S3 to repartition the resources in such a way 
that we are not limited by the number of DSP48Es for 12 UTs. 
The resources consumption of S3 in terms of LUTs and FFs is 
way higher than S1, but it is much less in terms of DSP48Es. 
This comes from the fact that Vivado HLS used LUTs and FFs 
to create the same logic response as DSP48Es. As it will be 
seen in the next subsection, the throughput in S3 is smaller 
because DSP48Es are designed and optimized to accept a high 
clock frequency. When the algorithm can use all the DSP48E 
it needs, the overall throughput can be maximized in contrast 
as when it cannot. The obtained results of S3 are worth 
mentioning to show the flexibility of the implementation. On 
the other hand, as we could expect, S2 utilizes more FFs and 
LUTs than S1 because it has more pipeline stages. Finally, as 
mentioned in the implementation strategies Section IV.E, S3 
uses resources in a balanced way. In addition to allowing us to 
implement a design with 12 UTs, it significantly reduces the 
number of DSP48Es for 8 UTs by a factor of 13%. 

D.  Latency and throughput estimates 

Referring to the results obtained from Vivado HLS post 
synthesis estimations in Table 2, the latency between S1 and 
S2 are similar but the highest throughputs are achieved by S2. 
Fig. 4 compares the latency and throughput for S1, S2 and S3 
in a 64 QAM modulation. For 8 UTs, we are talking about a 
potential latency of 0.966 μs and a potential throughput of 
18.18 Gb/s with S1. These numbers are conditional to the fact 
that the preprocessing and the post-processing units can keep 
up with this data rate. In a similar fashion, for 8 UTs with S2, 
it is theoretically possible to reach the latency of 1.04 μs and 
the throughput of 24.82 Gb/s. It is interesting to note that since 
the implementations of all strategies are pipelined with a 
unitary input interval, the minimum clock period estimated by 
Vivado HLS in Table 2 also corresponds to the Gram matrix 
inversion throughput period. That way, the estimated 

 
Fig. 3 SER of the RGMIU algorithm for 8 UTs with floating 
and fixed-point precision. 
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throughput in Gb/s can be calculated by multiplying the 
number of UTs with the number of bits in the constellation (6 
bits for 64 QAM) and by dividing the result with the estimated 
clock period. To continue, both throughput and latency are 
linear with the number of UTs. This is totally normal for the 
throughput because the number of UTs is the only variable 
multiplicative factor. Since the algorithm is completely 
unrolled (All loops flatten), the limiting factor for the clock 
frequency is the level of pipelining which is independent of the 
number of users. The only thing that changes is the resources 
consumption and the over all latency since 7 iterations are 
flatten with 8 UTs in contrast of only 3 with 4 UTs.  On the 
other hand, by looking at the design scheduler in Vivado HLS 
with S1 for example, we concluded that the latency was 
approximately linear. Indeed, since there is one division of 26 
cycles for the initialization of B and that every new iteration 
there is a new division of 26 cycles (equation (4) in Table 1) 
and parallel operations that take the latency of approximately 
20 cycles for the first few iterations and that grows very slowly, 
the sum of all these terms gives a rough linear function. Fig. 4 
also shows the latency for S3. The resources trade-off had the 
downside effect of approximately cutting in half the throughput 
if we compare it with S1. In terms of latency, S1, S2 and S3 are 
similar with S3 taking a little less clock cycles. Of particular 

interest is the case when a new UT is added or when an existing 
UT has a new channel. Indeed, if a new UT is included, the 
starting point of the algorithm is the K K already computed 
matrix inverse. In other words, every time a new UT is added, 
the algorithm only needs to do one iteration before finding the 
new inverse. Also, as shown in [19], when the channel changes 
for one UT, only a partial computation equivalent in terms of 
latency of twice (removing the UT and then adding it with its 
new CSI) the last iteration of the algorithm needs to be done. 
Other algorithms need to redo all the calculations to get to the 
new inverse. Table 3 shows the approximative latency for 
different configurations for updating the matrix inverse when 
one UT has a new channel. This approximation is computed by 
multiplying by 2 the result obtained by the difference between 
the total latency of two designs with 1n   and n  UTs, where 
n  is arbitrary. The obtained latency gains are not neglectable 
and can represent a big advantage for time-critical applications.    

E. Energy efficiency estimates 

We have been able to compute an estimate of the power 
consumption of our designs with the help of the Xilinx Power 
Estimator spreadsheet. Post place and route timing simulations 
to estimate energy efficiency would be worth in a complete end 
to end implementation case. The goal here is just to give a 
rough idea of the power estimates of our design. The main 
contribution of the paper is still the throughput results obtained 
with the RGMIU algorithm. Table 4 presents the energy 
efficiency for our three strategies and for different numbers of 
UTs. This efficiency is shown in terms of watts (W) and 
Gigabits per Joule (Gb/J). The first thing to notice is that the 
energy efficiency is decreasing with the number of UTs no 

TABLE 2. ESTIMATED RESOURCES, LATENCY AND THROUGHPUT 

Strategy Minimum clock 
period (ns) 

Number of 
UTs 

Estimated 
latency (μs) 

Estimated 
Throughput (Gb/s) 

DSP48Es 
 

LUTs 
 

FFs 
 

S1 2.64 ± 0.38  
 
 
 

4 0.428 9.09 130  
(3%) 

12192 
(2%) 

18065 
(2%) 

8 0.966 18.18 1218 
(33%) 

60216 
(13%) 

95177 
(10%) 

S2 1.934 ± 0.13  4 0.404 12.41 130 
(3%) 

14726 
(3%) 

32829 
(3%) 

8 1.039 24.82 1218 
(33%) 

84282 
(19%) 

210569 
(24%) 

S3 2.577 ± 0.38  8 0.905 9.31 750 
(20%) 

84098 
(19%) 

161753 
(18%) 

12 1.495 13.97 2400 
(66%) 

289930 
(66%) 

534689 
(61%) 

 

 
Fig. 4 Latency versus the number of UTs for 
implementation strategies S1, S2 and S3. 
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TABLE 3. ESTIMATED LATENCY TO UPDATE ONE UT 

Strategy Number 
of UTs 

Estimated latency to 
replace one UT 

(μs) 
 

S1 
4 0.243 
6 0.264 
8 0.285 

 
S2 

4 0.259 
6 0.306 
8 0.352 

S3 8 0.201 
12 0.236 

 



 

matter which strategy is used. Clearly, since S2 is heavily 
pipelined, the design clock can reach a higher frequency so that 
the power consumption is heavily increased. From S1 to S2, 
for 8 UTs in a 64 QAM modulation, we pass from 
approximately 3.615 Gb/J to 2.189 Gb/J so that the trade-off 
for S2 is a higher throughput for a lower energy efficiency and 
a higher resources consumption. On the other hand, since S3 
needs to compensate the fixed limit of DSP48Es with a lot of 
LUTs and FFs, the power consumption is higher compared to 
S1. Indeed, we get a 1.480 Gb/J efficiency for 8 UTs in a 
64 QAM modulation. The trade-off then becomes a sacrifice of 
throughput and energy consumption for a more balanced 
resources utilization. It is important to note here that the 
efficiency is computed for the core algorithm only. By adding 
the preprocessing and the post-processing units, the energy 
efficiency would be a little bit less than previously computed.  

V. CONCLUSION 

To conclude, we have compared in simulations the 
performances of four different types of algorithm detection in 
terms of error symbol rate (SER). We have shown that the 
performances of iterative algorithms are sensitive to the 
number of iterations chosen but when it is carefully chosen, the 
GS algorithm has the same SER performances as the RGMIU 
method and the OCD algorithm has the potential to get better 
results due to the fact that it can reach near MMSE 
performances. On the other hand, NSE algorithm has very poor 
results when the number of UTs increase. Nevertheless, we 
have done these simulations to support the point that direct 
matrix inversion always leads to predictable and accurate 
results. 

  Also, we have implemented the RGMIU algorithm on 
Vivado HLS and have shown the great potential of this method 
to reach high throughput data detection in a massive MIMO 
system. The design was done on 16 bits words and 
performances for three different designs in terms of resources 
consumption, latency/throughput and energy efficiency were 
compared to bring out the possible trade-offs. 

Since our proposed implementations concern the core of the 
RGMIU algorithm, it would not be fair to directly compare 
their performances with others known techniques in the 
literature simply because we assume a preprocessing and a 
post-processing unit that can keep up with the core algorithm 
data rate. Just by looking at the results, throughputs in the order 
of magnitudes of Gb/s are obtained as opposed to Mb/s in the 

literature. Resources consumption is also difficult to directly 
compare since preprocessing and post processing are not 
considered in our design. 

A more in-depth study needs to be done to accelerate the pre 
and post-processing steps by either approximating the Gram 
matrix, increasing their clock rate or completely getting around 
these units. 

Our future work will also consist of implementing the 
pipeline interleaving strategy for RGMIU as well as the GS, 
OCD and NSE algorithms to present a full comparison between 
all these methods. 
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