

Abstract—In this paper, we discuss the implementation
strategies of an explicit matrix inversion technique based on the
recursive Gram matrix inversion update (RGMIU) algorithm.
These strategies are explicitly chosen to optimise the design for
high throughput dictated by the enhanced mobile broad band
(eMBB) use case and by the low latency imposed by the ultra-
reliable low-latency communications (URLLCs) use case. The
RGMIU algorithm is recently proposed to implement the zero
forcing (ZF) problem encountered in massive multiple-input
multiple-output (MIMO) detection task. We therefore compare
and analyse the performance in terms of symbol error rate (SER)
against popular implicit and explicit methods such as optimised
coordinate descent (OCD), Gauss-Seidel (GS) and Neumann
series expansion (NSE) algorithms. To determine the optimal
word length, a fixed-point analysis shows that 16 bits are enough
to reach a floating-point precision. We, thereafter, use Vivado
High-Level Synthesis tools and optimization directives to
implement the RGMIU algorithm based on three strategies to
infer key insights and design trade-offs from the resource’s
utilization, latency, throughput and energy efficiency.

Index Terms— Massive MIMO, Recursive Gram Matrix
Inversion Update (RGMIU), MIMO detection, Zero Forcing (ZF),
Fixed-point analysis, high-level synthesis, Vivado HLS,
throughput, latency.

I. INTRODUCTION

Being a promising concept for future cellular networks,
massive multiple-input multiple-output (MIMO) has now
made its way to 5G as one of the means to substantially
improve both spectral and energy efficiencies [1]. As a matter
of fact, base stations (BSs) with 64 fully digital transceiver
chains are commercially deployed and the key component of
massive MIMO has made its way into the 5G standard [2], [3].
Nevertheless, the authors in [4] have pointed out that massive
MIMO implementation continues to be at least as exciting as
massive MIMO theory. Massive MIMO is a form of multiuser
MIMO where the number of serving antennas at the BS is an
order of magnitude larger than the number of user terminals
(UTs) served within each radio resource element. Given the
large number of antennas, reliance on time division duplex
(TDD) channel reciprocity is essential [1].

Under favorable channel conditions and/or as the number of
antennas increase, the UTs’ channels are mutually orthogonal
which makes linear processing (detection and precoding), such
as maximum ratio combining (MRC), zero forcing (ZF) and

minimum mean square error (MMSE) detection techniques,
optimal [5]. The detection/precoding problem based on ZF or
MMSE technique is an arithmetic operation with cubic
computational complexity in the order of the matrix dimension.
To reduce the implementation complexity, matrix inversion
approximations such as Neumann series expansion (NSE) is
proposed in [6]. Recently, a technique based on Gauss-Seidel
(GS) was shown to outperform NSE due to its fast convergence
at considerably low computational complexity [7]. However,
this comes at the expense of higher latency and lower
throughput [7]. It has actually been shown that the NSE
performance degrades as the number of UTs increases [8]. To
counter the load increase effect, GS can still afford using more
iterations while maintaining lower computational complexity,
albeit at the expense of reduced throughput [7]. It has therefore
been argued to resort to exact matrix inversion [8].

High throughput application-specific integrated circuit
(ASIC) is designed for the NSE based detector in [9]. The
ASIC achieves 3.8 Gbps for 128 antenna BS and 8 users for
single carrier frequency division multiple access (SCFDMA).
The NSE based detector is also implemented on a Xilinx
Virtex-7 FPGA in [6]. The FPGA design achieves 600 Mbps
for 128 antenna BS serving 8 UTs (i.e. 128×8 system). A
detector based on the conjugate gradient (CG) algorithm has
been proposed in [10] and achieved a significant complexity
reduction. However, to speed up the convergence rate and
improved performance, a hybrid detector based on the CG
algorithm and the Jacobi method has been proposed in [11].
The CG-based detector is also implemented in Xilinx Virtex-7
FPGA for a 128×8 system [12]. On the other hand, the GS-
based method has been proposed wherein the initial solution is
based on the NSE of two terms [7] whereas, its parallel
architecture is implemented in [13]. Even though the GS
method can reduce the complexity to be O(K2) [14], however,
due to the GS internal sequential iteration dependencies, it is
not well suited for parallel implementation [7], [15].

On the other hand, it has also been argued that these
centralized processing techniques still impose stringent
constraints on the interconnects bandwidth between the
massive MIMO radio heads (RHs) and the central processing
unit (CPU). Distributed, or decentralized, massive MIMO
processing has been introduced to overcome such limitations
[16] and [17]. Unfortunately, the decentralized processing

High Level Synthesis Strategies for Ultra Fast and
Low Latency Matrix Inversion Implementation for

Massive MIMO Processing
Samuel Sirois, Messaoud Ahmed Ouameur and Daniel Massicotte

Université du Québec à Trois-Rivières, Department of Electrical and Computer Engineering,
3351, Boul. des Forges, Trois-Rivières, Québec, Canada

Laboratoire des Signaux et Systèmes Intégrés
Chaire de recherche sur les signaux et l’intelligence des systèmes haute performance

POSTPRINT VERSION. The final version is published here :
Sirois, S., Ahmed Ouameur, M. et Massicotte, D. (2022). High level synthesis strategies for ultra fast and low latency matrix inversion implementation for massive MIMO processing. Integration (Vol. 82, p. 29-36).
doi: https://doi.org/10.1016/j.vlsi.2021.08.011

computational complexity, and hence the energy efficiency, are
also of concern [18]. On the other hand, to support ultra-
reliable low-latency communications (URLLCs), low latency
and high-throughput processing is required. As such, we focus
on implementing the core matrix inversion technique based on
recursive Gram matrix inversion update (RGMIU) method
[19].The inversion of the Gram matrix is performed by
exploiting matrix inversion update of a matrix in the form of

HH H when a new column is added/updated to a complex-
valued matrix H [19]. Even though the implementation of the
RGMIU technique has been presented in [19], the contribution
of this paper is the way the algorithm is implemented. In fact,
the RGMIU method is completely unrolled to leverage a
maximum throughput performance. We can add that the
implementation in [19] was designed for low resources
consumption. Also, the order of magnitude of the obtained
results can justify the importance of this paper as it will be
shown in the next sections. Herein, direct matrix inversion
based on Cholesky decomposition is considered as a reference
to the performance and computational complexity standpoint.

A comprehensive review, comparison and discussion of the
existing linear precoding mechanisms for massive MIMO
according to different cell scenarios have been presented in [8].
It also discussed some standing challenges which related to the
design of precoding mechanisms and practical
implementations. Low complexity precoders suffered from a
considerable performance loss, while a complicated precoder
design is more difficult to implement practically. On the other
hand, an extensive survey on detection algorithms related to
massive MIMO systems is presented in [20]. The particular
focus is on performance and complexity trade-off as well as the
practical implementation of detection algorithms.

In this paper,

 We simulate and compare performances in terms of
symbol error rate (SER) for four popular algorithms,
namely the Gauss-Seidel (GS) implicit method, the
optimized coordinate descent (OCD) implicit method with
BOX equalization, the Neumann series expansion (NSE)
of order 3 explicit approximation method and the RGMIU
explicit method. The goal is to introduce the reader to other
state-of-the-art algorithms and to show how the RGMIU
performs relatively to these algorithms. This is an
extension to [19] by adding the OCD method to make the
paper self-contained including fixed point simulations.

 The main focus of this work will be on the RGMIU
algorithm implementation which is not considered in [19].
We use Vivado High-Level Synthesis tools and
optimization directives to implement the RGMIU
algorithm based on three strategies to infer key insights
and design trade-offs from the resource’s utilization,
latency, throughput and energy efficiency.

The paper is organized as follows: Section II summarizes the
detection problem. Section III presents the simulation results
and discusses the performances of the four methods.
Section IV shows the implementation results on Vivado HLS
in terms of design strategies, fixed-point analysis, resources

consumption, latency/throughput and energy efficiency for the
RGMIU algorithm. Finally, a conclusion is drawn.

II. SIGNAL MODEL

Considering a massive MIMO system with K UTs and M BS
antennas, the received signals at the BS can be modeled as

 y Hs n , (1)

where 1M y is a vector containing the signals received by

each BS antenna, 1 2 KH h h h is the matrix

channel for a given sub-carrier with every column representing
the channel between every antenna and one particular UT so

that M KH , 1 2

T

Ks s ss is the vector containing

the K symbols sent by the K UTs and 1Mn is a complex
gaussian white noise with zero mean and variance 2 . The
Gram matrix and the matched filter vector resulting from the
projection of the vector y onto the column space of H are

computed as follows

HG H H , (2.a)
H

MF y H y , (2.b)

where G is the Gram matrix and MFy is the matched filter

vector. Therefore, the new square system of equations can be
written as

H
MF y Gs H n . (3)

It is possible to explicitly solve equation (3) as follows

 1ˆ
MF

s G y (4)

where ŝ is the vector containing the estimated value of the
symbols sent by the UTs. In fact, hard or soft data output
decision needs to be done on ŝ depending on if forward error
correction process is used or not to ensure that the estimated
symbols are contained within the same set (constellation) as the
one of s . For simplicity, our analysis will be restricted to ŝ
by computing the symbol error rate (SER) on hard output
decision which consists of making a decision based on the
symbol in the constellation set that is the closest to its estimated
value ŝ in terms of Euclidian distances.

 It is also possible to implicitly solve it by using iterative
methods as discussed in the first section. Nevertheless, the
procedure that consists of solving equation (3) is known as a
zero forcing (ZF) solution. By adding the variance 2 to every
diagonal entry of the Gram matrix and solving the same
system, we could have derived a more robust technique called
minimum mean square error (MMSE) problem but since it is
often hard to get the value of 2 in practice, we chose the
simplicity and use ZF algorithm. Finally, hard output decision
can be written as

ˆ ˆarg min 1, ,hard
i i

z

s s z i K

 (5)

where is the constellation set. With this metric in hand, it is
possible to process the SER by computing the ratio of the
wrong decisions over the total number of symbols sent. As the

main focus is to implement the RGMIU algorithm, Table 1
outline such technique for the sake of safe contained reference
where the details are found in [19]. To give the reader a better
intuition behind this method, the RGMIU algorithm is said to
be recursive in the sense that the inverse of the Gram Matrix is
recursively built from a smaller Gram matrix inverse that is
growing every iteration. This growing matrix corresponds to
B in table 1. Each iteration of the RGMIU algorithm adds a
row and a column to B up until the full inverse of the Gram
matrix is obtained. That way, the starting point of the algorithm
could be an already known inverse of a one dimension smaller
Gram matrix and only one iteration would be required to find
the new inverse. This is typically the case when the channel
matrix does not change and a new UT is added to the group.
This behavior is opposite to most classical iterative algorithms
that need to redo a set of iterations all over again when a new
UT is considered.

III. SIMULATION RESULT

Our simulations were done with 128 BS antennas and 8 or 25
UTs. The channel matrix is modeled with independent and
identically distributed (i.i.d.) random variable with zero mean
and unit variance and we used a 64 QAM constellation for the
symbols with an average transmitted power of 1.

Before, looking at the simulation results, we can predict
some behaviors of these algorithms. Firstly, since the GS and
the RGMIU are both solving the ZF problem, we can guess that
with enough iterations, the GS algorithm will reach the same
performances as the RGMIU method. Also, as mentioned in
[19], the OCD algorithm has near MMSE performances
without having access to the value of 2 . That being said, we
should expect the OCD to have the smallest SER after a certain
number of iterations.

Fig. 1 shows the SER for the four algorithms with the GS and
OCD having 2 and 3 iterations respectively for 8 and 25 UTs.
As expected, for 8 UTs, it takes at least two iterations for the
GS algorithm to reach the same performances as the RGMIU
algorithm. It also takes three iterations for the OCD method to
get the same results as RGMIU and GS. The reason why OCD
does not outperform the other algorithms is because the
channel matrix H is not correlated. That way, the diversity at
the BS is maximized and the system of equations is easy to
solve with a good accuracy. Our goal was simply to get a good
idea on how these algorithms perform relatively to one another.
On the other hand, the order 3 NSE algorithm never reaches the
performances of the exact matrix inversion and has a
catastrophic SER with 25 UTs.

Of particular interest is the fact that for 25 UTs, OCD and GS
need more iterations to reach the performances of the RGMIU.
In Fig. 1b, OCD and GS do not reach the SER of RGMIU with
three iterations. In general, the number of iterations for implicit
methods will depend on the ratio of the number of BS antennas
over the number of UTs which is a disadvantage because the
complexity of the algorithm is hard to predict. In contrast, the

TABLE 1. THE RECURSIVE GRAM MATRIX INVERSION UPDATE

(RGMIU) ALGORITHM

 INPUT: HG H H

 Precompute the scalar inverse as a starting point:

 1

1 1,1B G

 //
1B is an 1 1 matrix (scalar)

FOR 1m to 1K DO:

1. 1, 1m mz G //
1, 1m mG

 is the element at row and

 column 1m

2.
1 1: , 1m my G //

1: , 1m mG
 corresponds to rows 1 to m in

 column 1m
3.

2 1my B y

4. 1 21 Hc z y y

5.
23 yy c

6. 2 2
H

m cΓ B y y

7. 3
1

3
m H c

Γ y
B

y

 // B is a growing matrix

END DO

OUTPUT: 1H
KB H H

a)

b)
Fig. 1 SER versus SNR of the GS, NSE, OCD and RGMIU with
a) two iterations and b) three iterations for GS and OCD.

S
E

R
S

E
R

complexity of the RGMIU can be known in advance because it
takes as many iterations as the number of UTs minus one to
inverse the Gram matrix. Also, the results of the RGMIU will
always be accurate because its output is the exact Gram matrix
inverse. On the other hand, the order 3 NSE will be accurate
only when the ratio of the number BS antennas over the number
UTs is high.

In the end, all the presented techniques solve for the ZF
detector. Some methods approximate the Gram matrix inverse
and others implicitly solve the system of equations. The results
tend to show that approximation methods may not solve the ZF
problem with good accuracy and that implicit iterative methods
performances can vary depending on the number of iterations
applied in the process. The over all goal here is to show that
direct matrix inversion should be chosen to obtain the best
trade-off in terms of performances, complexity and reliability.

From another point of view, the implementation trade-off
between algorithms is mainly about the results in terms of
throughput versus resource consumption. A computational
intensive algorithm can be implemented with low resources
consumption but the throughput results will generally be very
low. The opposite can also be true. In fact, it is shown in [19]
that the RGMIU method is in the midfield in terms of
computational complexity, being below the NSE technique and
above the GS algorithm.

In this sense, RGMIU is partly chosen for its low inter-
iteration dependencies which generally reduce resource
consumption regarding the algorithm complexity. In [8],
implementations of the CG and the GS can only achieve the
throughput of 20 Mb/s and 48 Mb/s respectively as opposed to
the Neumann series expansion technique that can reach a
theoretical throughput of 621 Mb/s. In all these three
algorithms, the preprocessing steps corresponding to compute
the Gram matrix is part of the implementation. This shows that
the bottleneck of the design in terms of throughput is the core
algorithm itself and not the preprocessing steps. On the other
hand, the resource consumption on the chosen FPGA for the
NSE implementation uses 34% of LUTs, 19% of FFs and 28%
of DSP48Es as opposed to the two other methods that barely
use above 5% of each of these hardware components.

On the other hand, as it is shown in [7], another GS
implementation could reach the throughput of 732 Mb/s but at
the expense of higher and similar resources consumption as the
NSE algorithm whereas, by fully optimizing the RGMIU
algorithm to reach excellent throughput performances, the
resources consumption for 8 mobile users are more than
acceptable (will be shown Section IV, Table 2) with potential
throughput results above what is normally expected. The only
problem that remains is the implementation of a preprocessing
and a post-processing unit that will not act as the bottleneck to
the design.

IV. IMPLEMENTATION

 We used Vivado HLS 2019.1 to implement our designs [21].
All solutions were validated with RTL Cosimulation and we
used the xc7vx690t from the Virtex 7 family as the reference
FPGA.

A. Implementation strategies

Before directly talking about design strategies, it is important
to mention here that we have only implemented the core of the
RGMIU algorithm. In other words, the Gram matrix and
matched filter vector preprocessing phase is not implemented
as well as the post-processing multiplication of the matrix
inverse with the matched filter vector. We only wanted to
optimize the core algorithm because as we will see later, it has
the capabilities to reach huge throughput data detection, but the
preprocessing and the post-processing units cannot keep up
with the data rate at which the core can operate without a big
increase in resources utilization on FPGA. Our goal is to show
the potential of the core algorithm. On the other hand, the
complete implementation of the RGMIU algorithm on an
ASIC, which can reach higher clock frequencies than FPGA,
could be realistic in the sense that the preprocessing and post-
processing phases could operate at a higher clock frequency
than the core algorithm in order to use it at its full capacity.

Three implementation strategies were used [22]. The first
one, which we refer as S1, uses a different hardware for every
iteration. It is important to note here that the RGMIU algorithm
has a growing vector and matrix sizes every iteration so that
loops boundaries in the code are variable depending on the
current iteration. With that in mind, we found out that the best
way to translate this to Vivado HLS was to create template
functions in C++ with the template parameter being the loop
boundaries so that every time a template function is called with
a new template parameter, Vivado HLS understands that it
needs to create new hardware for this function call. Every
function was written in such a way that it could be pipelined
with an initiation interval of one. Without the function
template, we would have needed to declare as many functions
as there are iterations times the number of steps in one iteration
with the only difference being the loop boundaries parameter
values. Some may argue that we could have used the
FUNCTION_INSTANTIATE pragma instead which is
equivalent in some way to the template functions, but we found
out that in our design, this directive was interfering with the
PIPELINE pragma. We then created a top function which
called all the template functions one after the other [22]. This
top function was pipelined, and the template functions were
inlined to increase the flow of data and to maximize the
performances. In total, there were five template functions
corresponding to equations (3) to (7) in Table 1 and the value
of the template parameter went from 1 to 1K . Also, since
the loop boundaries are different for every iteration in Table 1,
the hardware resources used are also different for every
iteration because most of the loops are unrolled by the pipeline
directive in the top function. Fig. 2 shows the architecture of
the first implementation strategy.

The second strategy (S2) is basically the same as the first
strategy except that the design is heavily pipelined with more
registers so that the clock signal can reach higher frequencies
which in turn enables a higher potential throughput. The
downsides of this are the increases in resources consumption
and a higher latency. To translate this to Vivado HLS, we just
reused the first strategy solution and we set a clock constrain
with a smaller period. Even if it is straightforward to pass from

S1 to S2, the authors judge that the results are still worth
mentioning since the maximum clock frequency can be
significantly increased. Otherwise, the general architecture of
S2 is the same as the one of S1 depicted in Fig. 2.

The third strategy (S3) is designed in such a way that
resources consumption is similar in terms of percentage for the
DSP48E, the flip-flops (FF) and the look-up tables (LUT). The
downside of this method, as we will see in the Section IV.D, is
that the throughput is generally cut in half. To deploy this
strategy, we used the ALLOCATION pragma to limit the
number of DSP48E in the top function, so that FFs and LUTs
are needed to compensate this limitation. The fact that S3 uses
less DSP48E can give more room to other implementations that
need explicitly this type of resources to reach good
performances in terms of throughput on the same FPGA. That
is not the case with S1 and S2. Also, S3 is the only possible
implementation with 12 users. Once again, the general
architecture of S3 is the same as the one of S1 depicted in
Fig. 2.

To sum up in more details, the power of the RGMIU
algorithm resides in the fact that it does not contain major
sequential inter-iteration dependencies, as opposed, for
example, to the GS method [7]. This allows implementing this
method with a small pipeline initiation interval without
excessive usage of hardware resources. The smaller the
initiation interval, the higher the throughput is, since an
initiation interval of one means a new valid input can be
processed every new clock cycle. Also, as stated before, the
number of iterations that the algorithm needs to go through to
obtain the exact inverse of the Gram matrix is equal to the
number of mobile users minus one. These simple facts greatly
simplify the complexity of the hardware implementation under
Vivado HLS.

Each equation from equations (3) to (7) corresponding to one
iteration in table 1 can be described as a simple function in C++
with a template parameter used to indicate the current iteration.
Once this is done, each array that is contained in these functions
are partitioned with the ARRAY_PARTITION pragma. Then,
the whole function is pipelined with the PIPELINE pragma and
inlined with the INLINE pragma. The combination of
partitioning and pipelining allows Vivado HLS to effectively
pipeline every loop inside a given function to maximize its
throughput while inlining prevents the creation of bottle necks

between each function call. Then, a main top function is created
to call all functions corresponding to one iteration of the
RGMIU algorithm a number of times equal to the number of
mobile users minus one. This main function is also pipelined
to ensure smooth data transfers between function calls. In other
words, the main idea of the RGMIU method implementation
on Vivado HLS was to first subdivide the algorithm in simple
elements and optimized them as much as possible to then glue
them together in an efficient way to avoid bottle necks. At this
stage the only thing missing is the input/output management.
Basically, the input of the design is a FIFO corresponding to
every element of the Gram matrix in parallel and the output is
corresponding, in a similar manner, to every element of the
inverse of the GRAM matrix in parallel. The INTERFACE
pragma was used to achieve this.

The key idea behind an efficient implementation of RGMIU
is to correctly subdivide the algorithm and add simple
optimization pragmas from the bottom-up. This is where the
power of Vivado HLS resides. It is therefore worth reminding
that the implementation results are the main contribution of this
paper, even if the path to obtain them remains quite intuitive
but not trivial.

The optimization strategies were also quite intuitive to
implement once the algorithm is well subdivided into small
function. The first strategy was simply obtained by letting
Vivado HLS freely set the clock constrains and the resources
allocation. Then, from this first baseline strategy, the second
strategy design was obtained by specifying a smaller target
clock in the project solution settings. Finally, the third strategy
was derived from the first strategy by using the
ALLOCATION pragma in the main top function to limit the
number of DSP48Es to a maximum value.

That being said, we also tried to implement a fourth strategy
which consisted of reusing the same hardware for the last two
iterations. The goal was to dramatically reduce the resources
consumption since the DSP48E utilization is a cubic function
with respect to the number of iterations as we will see in the
Section IV.E. When we implemented it, there was indeed a big
improvement in the resources consumption, but the throughput
was getting too slow so that we have decided to abandon the
idea.

Fig. 2 RGMIU implementation flat architecture

Step 3.-7.

Iteration: m=2

Step 3.-7.

Iteration: m=3

Step 3.-7.

Iteration: m=K
HH H 1H

H H

Step 4.

Template
parameter: 2

Step 3.

Template
parameter: 2

Step 6.

Template
parameter: 2

Step 5.

Template
parameter: 2

Step 7.

Template
parameter: 2

Before continuing to the next subsection, one thing we did
not try but that could have been interesting is a pipeline
interleaving strategy as they did in [8]. Indeed, since the
algorithm loop depicted in Table 1 has inter-iteration
dependencies, this prevents traditional pipelining except if we
completely unroll it (different hardware for every iteration) as
we did in S1, S2 and S3. To overcome this problem without a
complete unroll, it would have been possible to always reuse
the same hardware that represents one iteration and to create
several pipeline stages inside it so that the core can accept a
new Gram matrix input every clock cycle up until all the
pipeline stages are filled. Thereafter, the algorithm would need
to finish its 1K iterations before being able to accept a new
batch of inputs. Also, it would have been possible to create a
hardware that computes more than one iteration to be able to
have more pipeline stages in the design and a higher global
throughput at the expense of higher resources utilization. This
pipeline interleaving strategy is reserved for future work.

B. Fixed-point analysis

 The fixed-point analysis was done with 16 bits word
lengths. Most of the internal variables used an integer part of
one signed bit and 15 fractional bits. Fortunately, no shifts were
needed to reduce the dynamic range and the common operators
in Vivado HLS were able to automatically align the binary
point of two variables having different fractional bit width.
That being said, since DSP48Es in FPGAs can accept a
maximum bit width of 18, our design was not panelized in
terms of resources consumption. For all complex value
multiplications, the complex multiplier is composed of 4 real
multipliers and 2 real adders.

We have been able to reach a good precision such that the
difference between the SER curve of floating and fixed-point
never exceed 0.5 dB. Indeed, Fig. 3 shows the comparison in
terms of SER for floating and fixed-point variables with a bit
width of 15 and 16. Clearly, 16 bits is the minimum required
bit width to obtain results below 0.5 dB.

C. Resources utilization estimates

 The resources utilization for all strategies in terms of
DSP48Es, FFs and LUTs is depicted in Table 2 for different
numbers of UTs. Looking only at S1 and S2, the number of
DSP48Es used is independent of the employed strategy. This
is totally normal because these are used for multiplication and
multiplier-accumulate (MAC) operations which are
independent of the level of pipelining. The DSP48Es are only
dependent on the number of UTs. This being said, we can
derive a formula that connects these two parameters together.
By looking at the scheduler of Vivado HLS, we have
determined that the required number of DSP48Es, namely ()d l

, for the thl iteration is defined as follow

2() 8 4 2d l l l (6)

With that in mind, the total number of DSP48Es, namely D,
is defined by

3 2

1

16 36 8
(l)

6

L

l

L L L
D d

 (7)

where L is the total number of iterations, which corresponds to
the number of UTs minus one. Equation (7) shows that the
number DSP48Es follows a cubic order which can be a limiting
factor for bigger designs with more than 8 UTs. This is why we
have implemented S3 to repartition the resources in such a way
that we are not limited by the number of DSP48Es for 12 UTs.
The resources consumption of S3 in terms of LUTs and FFs is
way higher than S1, but it is much less in terms of DSP48Es.
This comes from the fact that Vivado HLS used LUTs and FFs
to create the same logic response as DSP48Es. As it will be
seen in the next subsection, the throughput in S3 is smaller
because DSP48Es are designed and optimized to accept a high
clock frequency. When the algorithm can use all the DSP48E
it needs, the overall throughput can be maximized in contrast
as when it cannot. The obtained results of S3 are worth
mentioning to show the flexibility of the implementation. On
the other hand, as we could expect, S2 utilizes more FFs and
LUTs than S1 because it has more pipeline stages. Finally, as
mentioned in the implementation strategies Section IV.E, S3
uses resources in a balanced way. In addition to allowing us to
implement a design with 12 UTs, it significantly reduces the
number of DSP48Es for 8 UTs by a factor of 13%.

D. Latency and throughput estimates

Referring to the results obtained from Vivado HLS post
synthesis estimations in Table 2, the latency between S1 and
S2 are similar but the highest throughputs are achieved by S2.
Fig. 4 compares the latency and throughput for S1, S2 and S3
in a 64 QAM modulation. For 8 UTs, we are talking about a
potential latency of 0.966 μs and a potential throughput of
18.18 Gb/s with S1. These numbers are conditional to the fact
that the preprocessing and the post-processing units can keep
up with this data rate. In a similar fashion, for 8 UTs with S2,
it is theoretically possible to reach the latency of 1.04 μs and
the throughput of 24.82 Gb/s. It is interesting to note that since
the implementations of all strategies are pipelined with a
unitary input interval, the minimum clock period estimated by
Vivado HLS in Table 2 also corresponds to the Gram matrix
inversion throughput period. That way, the estimated

Fig. 3 SER of the RGMIU algorithm for 8 UTs with floating
and fixed-point precision.

S
E

R

throughput in Gb/s can be calculated by multiplying the
number of UTs with the number of bits in the constellation (6
bits for 64 QAM) and by dividing the result with the estimated
clock period. To continue, both throughput and latency are
linear with the number of UTs. This is totally normal for the
throughput because the number of UTs is the only variable
multiplicative factor. Since the algorithm is completely
unrolled (All loops flatten), the limiting factor for the clock
frequency is the level of pipelining which is independent of the
number of users. The only thing that changes is the resources
consumption and the over all latency since 7 iterations are
flatten with 8 UTs in contrast of only 3 with 4 UTs. On the
other hand, by looking at the design scheduler in Vivado HLS
with S1 for example, we concluded that the latency was
approximately linear. Indeed, since there is one division of 26
cycles for the initialization of B and that every new iteration
there is a new division of 26 cycles (equation (4) in Table 1)
and parallel operations that take the latency of approximately
20 cycles for the first few iterations and that grows very slowly,
the sum of all these terms gives a rough linear function. Fig. 4
also shows the latency for S3. The resources trade-off had the
downside effect of approximately cutting in half the throughput
if we compare it with S1. In terms of latency, S1, S2 and S3 are
similar with S3 taking a little less clock cycles. Of particular

interest is the case when a new UT is added or when an existing
UT has a new channel. Indeed, if a new UT is included, the
starting point of the algorithm is the K K already computed
matrix inverse. In other words, every time a new UT is added,
the algorithm only needs to do one iteration before finding the
new inverse. Also, as shown in [19], when the channel changes
for one UT, only a partial computation equivalent in terms of
latency of twice (removing the UT and then adding it with its
new CSI) the last iteration of the algorithm needs to be done.
Other algorithms need to redo all the calculations to get to the
new inverse. Table 3 shows the approximative latency for
different configurations for updating the matrix inverse when
one UT has a new channel. This approximation is computed by
multiplying by 2 the result obtained by the difference between
the total latency of two designs with 1n and n UTs, where
n is arbitrary. The obtained latency gains are not neglectable
and can represent a big advantage for time-critical applications.

E. Energy efficiency estimates

We have been able to compute an estimate of the power
consumption of our designs with the help of the Xilinx Power
Estimator spreadsheet. Post place and route timing simulations
to estimate energy efficiency would be worth in a complete end
to end implementation case. The goal here is just to give a
rough idea of the power estimates of our design. The main
contribution of the paper is still the throughput results obtained
with the RGMIU algorithm. Table 4 presents the energy
efficiency for our three strategies and for different numbers of
UTs. This efficiency is shown in terms of watts (W) and
Gigabits per Joule (Gb/J). The first thing to notice is that the
energy efficiency is decreasing with the number of UTs no

TABLE 2. ESTIMATED RESOURCES, LATENCY AND THROUGHPUT

Strategy Minimum clock
period (ns)

Number of
UTs

Estimated
latency (μs)

Estimated
Throughput (Gb/s)

DSP48Es

LUTs

FFs

S1 2.64 ± 0.38

4 0.428 9.09 130
(3%)

12192
(2%)

18065
(2%)

8 0.966 18.18 1218
(33%)

60216
(13%)

95177
(10%)

S2 1.934 ± 0.13 4 0.404 12.41 130
(3%)

14726
(3%)

32829
(3%)

8 1.039 24.82 1218
(33%)

84282
(19%)

210569
(24%)

S3 2.577 ± 0.38 8 0.905 9.31 750
(20%)

84098
(19%)

161753
(18%)

12 1.495 13.97 2400
(66%)

289930
(66%)

534689
(61%)

Fig. 4 Latency versus the number of UTs for
implementation strategies S1, S2 and S3.

2 4 6 8 10 12

Number of UTs

0

0.5

1

1.5

S1
S2
S3

TABLE 3. ESTIMATED LATENCY TO UPDATE ONE UT

Strategy Number
of UTs

Estimated latency to
replace one UT

(μs)

S1
4 0.243
6 0.264
8 0.285

S2

4 0.259
6 0.306
8 0.352

S3 8 0.201
12 0.236

matter which strategy is used. Clearly, since S2 is heavily
pipelined, the design clock can reach a higher frequency so that
the power consumption is heavily increased. From S1 to S2,
for 8 UTs in a 64 QAM modulation, we pass from
approximately 3.615 Gb/J to 2.189 Gb/J so that the trade-off
for S2 is a higher throughput for a lower energy efficiency and
a higher resources consumption. On the other hand, since S3
needs to compensate the fixed limit of DSP48Es with a lot of
LUTs and FFs, the power consumption is higher compared to
S1. Indeed, we get a 1.480 Gb/J efficiency for 8 UTs in a
64 QAM modulation. The trade-off then becomes a sacrifice of
throughput and energy consumption for a more balanced
resources utilization. It is important to note here that the
efficiency is computed for the core algorithm only. By adding
the preprocessing and the post-processing units, the energy
efficiency would be a little bit less than previously computed.

V. CONCLUSION

To conclude, we have compared in simulations the
performances of four different types of algorithm detection in
terms of error symbol rate (SER). We have shown that the
performances of iterative algorithms are sensitive to the
number of iterations chosen but when it is carefully chosen, the
GS algorithm has the same SER performances as the RGMIU
method and the OCD algorithm has the potential to get better
results due to the fact that it can reach near MMSE
performances. On the other hand, NSE algorithm has very poor
results when the number of UTs increase. Nevertheless, we
have done these simulations to support the point that direct
matrix inversion always leads to predictable and accurate
results.

 Also, we have implemented the RGMIU algorithm on
Vivado HLS and have shown the great potential of this method
to reach high throughput data detection in a massive MIMO
system. The design was done on 16 bits words and
performances for three different designs in terms of resources
consumption, latency/throughput and energy efficiency were
compared to bring out the possible trade-offs.

Since our proposed implementations concern the core of the
RGMIU algorithm, it would not be fair to directly compare
their performances with others known techniques in the
literature simply because we assume a preprocessing and a
post-processing unit that can keep up with the core algorithm
data rate. Just by looking at the results, throughputs in the order
of magnitudes of Gb/s are obtained as opposed to Mb/s in the

literature. Resources consumption is also difficult to directly
compare since preprocessing and post processing are not
considered in our design.

A more in-depth study needs to be done to accelerate the pre
and post-processing steps by either approximating the Gram
matrix, increasing their clock rate or completely getting around
these units.

Our future work will also consist of implementing the
pipeline interleaving strategy for RGMIU as well as the GS,
OCD and NSE algorithms to present a full comparison between
all these methods.

ACKNOWLEDGMENTS

This work has been funded by the Natural Sciences and
Engineering Research Council of Canada, Prompt, Canadian
Foundation for Innovation, the CMC Microsystems and
NUTAQ innovation.

REFERENCES

[1] E. Björnson, L. Sanguinetti, H. Wymeersch, J. Hoydis, and T.L.
Marzetta, "Massive MIMO is a Reality – What is Next?: Five
Promising Research Directions for Antenna Arrays," Digital
Signal Processing, vol. 94, 2019, pp. 3–20.

[2] E. Björnson, "A look at an LTE-TDD Massive MIMO product,"
http://ma-mimo.ellintech.se/2018/08/27/
Accessed 7 July 2020.

[3] P. von Butovitsch, D. Astely, C. Friberg, A. Furuskär, B.
Göransson, B. Hogan, J. Karlsson, and E. Larsson, "Advanced
antenna systems for 5G networks. Ericsson white paper,"
https://www.ericsson.com/4a8a87/assets/local/publications/whit
e-papers/10201407_wp_advanced_antenna_system_nov18_181
115.pdf (Accessed 7 July 2020

[4] Y. Qu, A. Lozano, and A. Gatherer, "Nine Communications
Technology Trends for 2019," Communication society
technology news, 2019.
https://www.comsoc.org/publications/ctn/nine-communications
-technology-trends-2019 (Accessed 7 July 2020)

[5] H.Q. Ngo, "Massive MIMO: fundamentals and system designs,"
Ph.D. Thesis. Linköping University Electronic Press, 2015.

[6] M. Wu, B. Yin, G. Wang, C. Dick, J.R. Cavallaro, and C. Studer,
"Large-scale MIMO detection for 3GPP LTE: algorithms and
FPGA implementations," IEEE Journal of Selected Topics in
Signal Processing, vol. 8, no. 5, 2014, pp. 916–929.

[7] Z. Wu, C. Zhang, Y. Xue, S. Xu, and X. You, "Efficient
architecture for soft-output massive MIMO detection with
Gauss-Seidel method," IEEE Int. Symp. on Circuits and Systems,
May 2016, pp. 1886–1889.

[8] M. Wu, C. Dick, J.R. Cavallaro, and C. Studer, "High-throughput
data detection for massive MU-MIMO-OFDM using coordinate
descent," IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 63, no. 12, 2016, pp. 2357–2367.

[9] B. Yin, M. Wu, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer,
"A 3.8Gb/s large-scale MIMO detector for 3GPP LTE-
advanced," Proc. IEEE Int. Conf. Acoust., Speech, Signal Proc.,
May 2014, pp. 3879–3883.

[10] J. Zhou, Y. Ye, and J. Hu, "Biased MMSE soft-output detection
based on Jacobi method in massive MIMO," Proc. IEEE Int.
Conference on communication problem-solving, Dec 2014, pp.
442–445.

[11] W. Song, X. Chen, L. Wang, and X. Lu, "Joint conjugate gradient
and Jacobi iteration based low complexity precoding for massive
MIMO systems," IEEE International Conference on
Communication, July 2016, pp. 1–5.

TABLE 4. ENERGY EFFICIENCY VS OPTIMIZATION STRATEGY

Strategy Number
of UTs

Power
consumption

estimates
(W)

Energy
efficiency
estimates

(Gb/J)

S1
4 1.16 7.837
6 2.541 5.367
8 5.03 3.615

S2

4 2.068 6.001
6 5.306 3.508
8 11.34 2.189

S3 8 6.291 1.480
12 16.809 0.831

[12] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, "VLSI design of
largescale soft-output MIMO detection using conjugate
gradients," IEEE International Symposium on Circuits and
Systems, May 2015, pp. 1498–1501.

[13] Z. Wu, Y. Xue, X. You, and C. Zhang, "Hardware efficient
detection for massive MIMO uplink with parallel Gauss-Seidel
method," International Conference on Digital Signal Processing,
August 2017, pp. 1–5.

[14] Z. Zhang, J. Wu, X. Ma, Y. Dong, Y. Wang, S. Chen, and X. Dai,
"Reviews of recent progress on low-complexity linear detection
via iterative algorithms for massive MIMO systems," IEEE
International Conference on Communication, July 2016, pp. 1–
6.

[15] X. Qin, Z. Yan, and G. He, "A near-optimal detection scheme
based on joint steepest descent and Jacobi method for uplink
massive MIMO systems," IEEE Communication Letter, vol. 20,
no. 2, Feb. 2016, pp. 276–279.

[16] C. Jeon, K. Li, J.R Cavallaro and C. Studer, "Decentralized
Equalization with Feedforward Architectures for Massive MU-
MIMO," IEEE Transactions on Signal Processing, vol. 67,
no. 17, 2019, pp. 4418–4432.

[17] M. Ahmed Ouameur, and D. Massicotte, "Efficient Distributed
Processing for Large Scale MIMO Detection," European Signal
Processing Conference (Eusipco), A Coruna, Spain, 2-6 Sept.
2019, pp. 1–4.

[18] M. Ahmed Ouameur and D. Massicotte, "Deep Autoencoder for
Interconnect’s Bandwidth Relaxation in Large Scale MIMO-
OFDM Processing", 2019, https://arxiv.org/abs/1907.12613.
(Accessed 7 July 2020)

[19] M. Ahmed Ouameur, D. Massicotte, A. M. Akhtar and R. Girald,
"Performance Evaluation and Implementation Complexity
Analysis Framework for ZF Based Linear Massive MIMO
Detection," Wireless Networks Journals, Springer, pp. 1–15,
April 2020.

[20] M. A. Albreem, M. Juntti and S. Shahabuddin, "Massive MIMO
Detection Techniques: A Survey," IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, 2019, pp. 3109-3132.

[21] Xilinx, Vivado Design Suite User Guide, High-Level Synthesis
UG902 (v2019.1) July 12, 2019.

[22] Xilinx, SDx Pragma Reference Guide UG1253 (v2019.1) June
5, 2019.

