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Abstract 
Topology optimization (TO) has become an integral part of the structural design process in 

recent years. However, automatically deriving parametrized Computer-Aided Design (CAD) 
models from TO results still represents a great challenge. In this paper, we present a new fully 
automatic process aimed at converting 3D TO results that tend towards beam-like structures into 
solid CAD models. Our reconstruction process starts with curve-skeletonization of the optimized 
shape. The curve-skeleton obtained is used alongside with a boundary triangulation of the 
optimized shape to compute closed cross-sections along the skeleton branches and junctions at the 
intersection between branches. These cross-sections are interpolated with cubic B-spline fitting 
curves, which are used as a basis for lofting operations to generate CAD surface representations 
of branches and junctions of the optimized shape. Remaining openings in the optimized shape 
boundary are closed with filling surfaces. A solid CAD model can be built by sewing together all 
created surfaces and filling, by the way, the closed boundary that comes out of this process. Finite 
Element Analysis (FEA) is carried out on both the 3D optimal shape and the CAD solid model 
derived in order to validate this CAD model. Several case studies are presented to demonstrate 
effectiveness and usefulness of this new approach. 
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1. Introduction
With recent advances in computer science and additive manufacturing technologies, structural

TO is becoming a very powerful tool to improve and accelerate product design process by 
automatically generating lightweight, high-performance and innovative structures. Topology 
optimization (TO) is an autonomous iterative process used to predict the optimal material 
distribution within a defined design space under specific loads and constraints, in order to 

Amroune, A., Cuillière, J.-C. et François, V. (2022). Automated Lofting-Based Reconstruction of CAD Models from 3D Topology Optimization Results. Computer-Aided Design (Vol. 145, p. 103183). 
doi: https://doi.org/10.1016/j.cad.2021.103183. CC BY-NC-ND



2 
 

optimally meet a set of performance criteria. TO differs from shape optimization, which only 
modifies the boundaries of an initial design without changing its topology. Using TO, both shape 
and topology are modified along the optimization process iterations. 

TO has evolved rapidly in the past three decades and has attracted attention of both academia 
and industry. In fact, it has been successfully applied in a wide range of industries including 
aerospace, biomedical, automotive etc. The most popular TO methods that have been proposed in 
the literature can be broadly classified into 4 categories: homogenization methods based on 
microperforated composite materials [1], material density distribution methods including the well-
known SIMP method [2], evolutionary methods such as ESO [3] and BESO [4] methods and 
boundary variation methods, which involve level set based methods [5] and phase field methods 
[6]. More details of these approaches can be found in [7]. Among these methods, material density 
distribution methods, which use elementary density distributions to describe and update the 
optimal shape along iterations, is the most mature technology due to its computational efficiency 
and numerical stability. This is the reason why the great majority of TO commercial software are 
based on implementations of the SIMP method (e.g. Altair OptiStruct, MSC Nastran, TOSCA, 
SolidWorks etc.). 

Regardless of the TO method used, raw TO results cannot be directly used in a product design 
process. Indeed, TO do not produce CAD models while most engineering applications require 
CAD models, especially during the various stages of product development and manufacturing. 
Manually reconstructing CAD models from raw TO results is the common present practice, which 
is very time-consuming, and which penalizes the design process efficiency. The automatic 
conversion of TO results into practical CAD models remains a great challenge and represents a 
broad field of research. A CAD model constructed from TO results must represent an easily 
editable geometry that faithfully fits the optimal shape as derived from TO. Moreover, the 
generation of CAD models from TO results should ideally consider manufacturing constraints, so 
that parts and structures derived from TO can be produced at a reasonable cost. Since 
manufacturability can be taken into account during the optimization process itself, several 
“manufacturing oriented” TO methods have been proposed in literature. A very interesting survey 
and classification of this type of methods can be found in [8]. Achieving this objective allows 
automatically generating reliable CAD models from TO results and contributes to a better 
integration of TO along the product design process [9]. The aim of this paper is to present a new 
and fully automated process for transforming 3D TO raw results that tend towards beam-like 
structures into 3D CAD solid models. In this work, we use the SIMP method for TO, but our 
reconstruction process could successfully be adapted for other TO methods. 

This paper is organized as follows: section 2 will review and discuss previous work related to 
the automatic interpretation of TO results. After showing how beam-like TO results can be 
generated and briefly presenting curve-skeletonization techniques in section 3, a detailed 
description of the proposed approach is given in section 4. Section 5 presents how finite element 
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analysis (FEA) is carried out on optimized shapes obtained for validation purposes. Several case 
studies are presented in section 6 to demonstrate the effectiveness of our method. The last section 
concludes this paper and introduces perspectives of future work on the method proposed. 

 

2. Review of related work 
Different approaches have been proposed in the literature aimed at transforming raw TO results 

into CAD models. These approaches can be grouped into three main categories according to the 
strategy used for this transformation. The first category includes methods that are mainly based on 
lofting CAD operations to generate CAD models from TO results. These methods are thus based 
on generating and interpolating several cross-sections in 3D. Methods classified in the second 
category try to derive CAD models by applying Boolean subtractions to an initial volume. These 
Boolean subtractions try to replicate the voids produced by the TO process via sets of pre-
established templates. The third category of methods try to replicate the closed boundary of TO 
results using sets of free-form surface patches. 

Consistently with the first category of methods introduced just above, Marsan and Dutta [10] 
propose a 3D extension of a 2D method developed by Chirehdast [11]. In their work, cross-sections 
are first computed as iso-density contours from TO raw results and then interpolated by 3D cubic 
B-Splines curves. CAD lofting through these cross-section curves allows to generate smoothed 
CAD models. Based on the same principles, Tang and Chang [12, 13] and Hsu et al. [14, 15] 
present a process that combines topology and shape optimization in order to generate 3D 
parametric CAD models with the objective of fulfilling volume fraction and allowable stress 
objectives. However, these methods require significant user interaction, particularly during the 
computation of cross-sections. Indeed, location and/or orientation of representative cross-sections 
is not automatically defined. Moreover, modelling transitions between different branches requires 
extensive user intervention. 

Among methods of the second category, Lin and Chao [16] propose an approach for 2D 
problems which is later improved by Lin and Chou [17, 18]. This strategy is based on fitting a set 
of predefined hole templates, with various shapes and sizes, to replicate voids induced by the TO 
process. Each of these voids is well-positioned and scaled through a shape optimization process 
that is applied to a hole template. A CAD model of the optimized shape is finally obtained through 
the Boolean subtraction of these optimized hole templates from the initial design space. An 
extension of this approach to 3D problems is proposed by Larsen and Jensen [19]. Their process 
uses the polar map of 2D predefined parametric shapes and selects the best fitted shapes for lofting 
operation to produce a 3D CAD model for each hole. A CAD model of the optimized shape is 
finally obtained by applying the Boolean subtraction of all these hole CAD models from the initial 
design space. One of the major drawbacks of this strategy is that a large set of primitives is needed 
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to generate accurate CAD models from geometrically complex results. In addition, these methods 
are semi-automatic and only limited to predefined convex templates. In the same direction, Yi and 
Kim [20] present a semi-automatic process dedicated to the interpretation of 2D TO results. Using 
the active contour method and some optimization techniques, their process allows to represent the 
optimized shape boundary with basic geometric features (lines, circles, arcs and fillets). A 
parameterized 2D CAD model is derived from these features and used for a subsequent 
optimization. 

The third strategy towards transforming raw TO results into CAD geometry is mainly based on 
reverse engineering (RE) techniques. These RE techniques allow generating CAD models from 
point clouds that are typically obtained by 3D scanning. In this context, automatic surface 
generation tools are used to derive CAD models from TO results. Preprocessing operations are 
usually needed in this case to reduce the noise level that generally characterizes TO raw results. 
With respect to this strategy, a three-step reconstruction process has been proposed by Koguchi 
and Kikuchi [21]. During the first step of this process, a triangulated enclosed iso-density surface 
model is extracted from TO results by relative density thresholding. In the next step, geometric 
features such as creases and corners are detected. In the last step of this process, after having 
converted the triangulated surface mesh extracted in the first step into a quadrangular surface mesh, 
a CAD model is generated from TO results as biquartic surface splines where features are retained. 
Similarly, Park et al. [22] present a semi-automatic process that allows extracting free-form B-
spline surfaces and characteristic curves from surface mesh models. At first, using the k-means 
classification method, this process segments the mesh into regions, based on main curvature 
information. Then, according to several criteria, growth and merging operations are applied to 
these regions. After straightening its boundaries, each region is converted into a free-form B-spline 
surface. In the last step, with significant user interaction, characteristic curves (sections and guides) 
are determined for appropriate regions in order to generate fitted surfaces by lofting. The main 
drawback of this strategy is that CAD models generated with it are not easily editable and cannot 
be used as is for further optimization. Moreover, the large number of free-form surfaces generated 
during reconstruction makes that subsequent FEA is generally complex and costly. 

Tubular shapes presented by some TO results have attracted the attention of scientists from the 
early attempts to automatically interpret TO results [23]. This type of results are typically obtained 
when low volume fractions are used. Volume fraction refers to the percentage of design material 
that must be kept at the end of the optimization process, with respect to the initial volume of design 
material. For such tubular TO result, interpretation usually involves two main phases. At first, a 
curve-skeleton is extracted from the optimized shape generated by TO. Then this skeleton is 
converted into a structure, which is made up of bars and/or beams. Interpretation of beam-like TO 
results is studied as special case in some research work [20, 24], while some other research work 
is specifically oriented towards dealing with this beam-like TO results [25-28]. 
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Nana et al. [27] propose an automatic process that allows 3D idealized beam structures to be 
generated from TO tubular results. This process is made up of two modules: a reconstruction 
module and validation module. In the first module, a skeletonization operation is performed on 
smoothed optimized shapes in order to extract curve-skeletons. Different branches of these 
skeletons are then straightened by a normalization operation and the average radius of cross-
sections is calculated for each branch. In the second module, a multidimensional FEA model is 
automatically generated using mini-beams to rigidly connect beam elements to 3D solid elements. 
Validation of beam structures derived from TO results is performed by comparing FEA results 
obtained from this multidimensional FEA model with FEA results obtained from the raw 
optimized shape before smoothing. Although this approach was further improved by Cuillière et 
al. [25], this process still presents numerous limitations. For example the beam reconstruction 
process only supports circular sections, which is an important limitation. Additionally, the 
skeletonization method used in this work [29, 30] generates unsatisfactory results in terms of 
centeredness for branches and junctions, as well as in preserving topology of the original form. 

Kresslein et al. [31] propose an automatic method of recovering cross-sections, as planar point 
clouds, from beam-like surface mesh models. The starting point of this method is a triangular 
surface mesh, which can be obtained from a point cloud. A skeletonization process is performed 
on this triangular mesh in order to extract a well-centered curve-skeleton. Then, after segmentation 
of this skeleton into unbranched skeletal segments, sets of orthogonal planes are located along 
each skeletal segment at predefined or adaptive distances. These planes are used to compute 
intersection points with edges of the surface triangular mesh. These points are filtered and grouped 
together, resulting in a 2D point cloud for each cross-section. Depending on the application 
targeted, subsequent post-processing operations can be carried out after obtaining these cross-
sections as 2D point clouds. Pattern recognition and digital reconstruction of CAD models are 
good examples of practical applications of this method. 

Despite all methods developed towards automatic reconstruction of CAD models from TO 
results, research in this area is not mature enough for a full integration of TO in the design process 
and significant efforts are still needed in this direction. In this paper, we specifically focus on TO 
results that tend towards beam-like structures and we introduce a new method aimed at 
automatically deriving CAD models from beam-like TO results. The next section presents how 
beam-like TO results are generated and how curve-skeletonization is performed on these results, 
which is a basis for the method presented in this paper. 

3. Generation of beam-like TO results and skeletonization 
3.1. The SIMP method 
As mentioned earlier, in this paper, TO results are obtained with the SIMP (Solid Isotropic 

Material with Penalization) method. This TO method is based on an iterative process aimed at 
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determining an optimal distribution of the relative density of a virtual material within a given 
design space. In the SIMP process itself, the material is considered as virtual since it is affected by 
this relative density field, which can be seen as virtual distribution of porosity. This iterative 
process is focused on minimizing the global compliance (which means in other words maximizing 
stiffness) of a given volume of design material. Each iteration in the process involves a FEA (using 
Code_AsterTM [32] in this work) and the results obtained from this analysis is used to update the 
relative density field 𝜌(𝑥, 𝑦, 𝑧). Convergence is reached when the relative difference in global 
compliance between two successive iterations is less than a user defined threshold (∆conv= 0.5% 
in this work). The relative element density 𝜌𝑒 for each finite element 𝑒 of the mesh used in FEA 
takes values between 0 and 1, which stand for empty and full material respectively. The elastic 
modulus of this virtual material (affected by the relative density field) varies continuously and it 
is expressed using a classical penalization law, which is written as follows for a given finite 
element  : 

𝐸̃𝑒 = 𝐸 ∙ (𝜌𝑒)
𝑝 

Where 𝐸̃𝑒 is the virtual elastic modulus (affected by the relative density of element 𝑒) and 𝐸 is 
the actual elastic modulus of the material considered. The penalization coefficient 𝑝 (𝑝 = 3 in this 
work) minimizes the contribution of gray elements (elements with intermediate densities) to the 
total stiffness, which makes that this penalization steers the optimization solution towards elements 
that are mostly either solid or void. 

Compliance can be defined as a measure of the overall flexibility of a given structure. The SIMP 
optimization method seeks to find the optimal relative density field 𝜌(𝑥, 𝑦, 𝑧) through iterations 
that minimize this global compliance. The mathematical formulation of this problem is as follows 
(all quantities affected by the relative density field 𝜌(𝑥, 𝑦, 𝑧) are marked with a tilde ̃ ) : 

min 𝐶̃ =∑(𝜌𝑒)
𝑝 ∙ {𝑈̃}

𝑡
∙ [𝐾𝑒] ∙ {𝑈̃}

𝑁

𝑒=1

 

with 

{
 
 

 
 [𝐾̃] ∙ {𝑈̃} = {𝐹}

𝑉̃

𝑉𝑑
= 𝑓

0 ≤ 𝜌 ≤ 1

 

Where 𝐶̃ is the global compliance for the entire FEA mesh (featuring 𝑁 elements). [𝐾𝑒] is the 
local stiffness matrix associated with element 𝑒 . {𝑈̃}  and {𝐹}  are respectively the global 
displacement vector and the global load vector. For each SIMP iteration, equilibrium of the global 
force-stiffness system and target volume fraction 𝑓 must be satisfied. 𝑓 is computed as the ratio 
between the volume of design material affected by relative density 𝜌(𝑥, 𝑦, 𝑧) referred to as 𝑉̃, and 
the volume of the initial design space 𝑉𝑑. Practically, global compliance 𝐶̃ is calculated, after each 
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SIMP iteration, using the total strain energy 𝑊̃ since 𝐶̃ = 2 ∙ 𝑊̃. Filtering schemes are applied on 
the sensitivity of global compliance (referred to as 𝜕𝐶̃/𝜕𝜌𝑒) and/or on the relative density field 
itself 𝜌(𝑥, 𝑦, 𝑧) in order to avoid classical checkerboard effects [33]. The final relative density 
distribution 𝜌(𝑥, 𝑦, 𝑧)  is obtained and SIMP iterations stop when the evolution of global 
compliance reaches convergence. More details about the SIMP method are available on [34]. As 
mentioned in the introduction, a 3D implementation of the SIMP method is used in this work to 
perform TO. However, it must be reminded here that many other TO methods could also be used 
successfully.  

The TO process described above is applied on a simple cantilever example. Fig. 1 (a) shows the 
input model of this cantilever, with an illustration of design material (in gray), non-design material 
(in red), dimensions (in mm) and boundary conditions (BCs) used in FEA. Non-design material 
classically refers in TO to material that must be kept unaffected during the optimization process. 
The actual material elastic modulus is 69 𝐺𝑃𝑎 and its Poisson’s ratio is 0,33. Fig. 1 (b) shows a 
mesh of the input model with linear tetrahedrons and based on a uniform element size distribution 
𝑑𝑔 = 1.6 𝑚𝑚. Tetrahedral meshes used in this work are automatically generated using a specific 
adaptation (for TO requirements) of the advancing front method [35]. The volume fraction 𝑓 
applied along SIMP iterations for this example is set to 3%. The final distribution of relative 
density material after SIMP convergence is illustrated in Fig. 1 (c). Once reached this convergence, 
the rough optimized shape is generated by keeping only mesh elements for which relative density 
𝜌𝑒 is over a threshold, In this case, 𝜌𝑒 ≥ 𝜌𝑡ℎ = 0.25 is considered (Fig. 1 (d)). The boundary of 
this rough optimized shape is extracted as a very noisy triangulation, as shown in Fig. 1 (e). Note 
that all figures (except Fig. 2) are generated using GmshTM [36] and SolidWorksTM [37]. 

  
(a) (b) 

F = 10 N 
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(c) (d) 

         
(e) (f) 

Fig. 1. Cantilever (a) initial problem with design (in gray), non-design (in red), dimensions (in mm) and 
boundary conditions (b) uniform mesh (𝑑𝑔 = 1.6 𝑚𝑚) (c) relative density distribution after SIMP 

optimization convergence (d) thresholding result (𝜌𝑡ℎ = 0.25) (e) rough and (f) smoothed boundary 
triangulation of optimized shape. 

3.2. Postprocessing TO results 
As illustrated in Fig. 1 (e), the raw boundary triangulation generated from TO results is 

extremely irregular and needs to be smoothed. In this context, the objective of smoothing should 
be to produce smooth, untangled and good quality triangulations that closely meet the initial target 
volume fraction. Many triangulation smoothing techniques available in literature have been 
explored by our team [38-41] but none of these techniques can be used, as is, to efficiently process 
the very noisy rough shapes provided by TO. However, combinations of existing triangulation 
smoothing techniques are likely to produce smooth boundaries while preserving volume and shape. 
For example, Taubin [40] smoothing can be used to prevent shape shrinkage along with Laplacian-
based smoothing [39], which is renowned for its high efficiency for generating very smooth 
shapes. Applying such a combination of smoothing techniques on the raw TO result shown in Fig. 
1 (e) significantly improves the optimized shape, which can be clearly seen in Fig. 1 (f). It is 
important to note that this smoothing process is only applied to the boundaries of design material 
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(colored with gray in Fig. 1 (e)). Volume fraction after smoothing is 𝑓3𝐷 = 3.2% (compared to the 
target volume fraction 𝑓 = 3%). With respect to next steps of the method presented here, this 
smoothing process also makes curve-skeletonization and cross-sections computations more 
accurate, which results in a better quality of CAD models generated at the end. 

3.3. Curve-skeletonization 
The reconstruction process proposed in this paper is mainly based on a skeletonization 

procedure. In fact, a skeleton preserves the optimized shape topology and enables automation of 
cross-sections positioning and computation. The fact that we are specifically interested in beam-
like TO results suggests an attention to curve-skeletonization methods. 

Skeletonization is an automatic process that generates an effective and compact representation 
of an object while preserving its topologic and geometric information [42]. In other words, the 
skeleton of a shape is a powerful tool for describing elements of its topology. A skeleton of a 3D 
shape, also called medial surface or 2D medial axis, is generally composed of surfaces and curves. 
It can be defined as the centers of largest inscribed balls in the considered 3D shape. A curve-
skeleton of a 3D object is a 1D subset of its medial surface. Curve-skeletons are very useful for 
many applications including computer graphics, medical imaging, object recognition, animation, 
virtual navigation and more. Depending on the application targeted, different properties of curve-
skeletons are considered [43]. In the context of this work, a good curve-skeleton ideally should be 
homotopic (preserves the original topology), fully connected, insensitive to noise, smooth, 
included and centered inside the optimal shape. Even though a large variety of skeletonization 
methods have been proposed in the literature, it is very difficult to fulfill all these requirements in 
one type of skeletons. The most common curve-skeletonization methods include topological 
thinning [44, 45], distance field based methods [46], potential field based methods [47, 48], 
Voronoï diagram based methods [49] and contraction based methods [29, 30, 50]. A very 
interesting survey on the generation of 3D skeletons can be found in [51]. 

Among all these methods, contraction-based methods are the most efficient for processing 
triangulated shapes generated from TO. The principle on which these methods are based consists 
in iteratively applying Laplacian smoothing on the mesh, which gradually contracts its geometry 
until a zero-volume skeletal shape is obtained. This contracted mesh is then converted into a curve-
skeleton while preserving the original shape topology. 

The curve-skeletonization method used in this work is a contraction based method developed 
by Tagliasacchi et al. [50]. In fact, this method is a new formulation via mean curvature flow 
(MCF) of the skeletonization method presented in [29]. A given surface is evolving by MCF if 
each point on that surface moves along its anti-normal with a velocity proportional to its local 
average curvature. MCF is characterized by its area-minimizing effect, which is used by 
Tagliasacchi et al. to iteratively contract the input mesh geometry until a full collapsed mesh with 
a skeletal shape is obtained. Post-processing operations are required to convert this collapsed mesh 
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to a curve-skeleton. Curve-skeleton generation is controlled by three main parameters 
{𝑤𝐿 , 𝑤𝐻, 𝑤𝑀} . Ratio 𝑤𝐿/𝑤𝐻  controls contraction velocity, ratio 𝑤𝐿/𝑤𝑀  controls medial 
approximation smoothness and 𝑤𝑀 controls the intensity of surface attraction to the medial axis. 
For more details about this curve skeletonization method and its parameters, see reference [50]. 

This curve-skeletonization method has proven to be very efficient in processing TO results and 
produce homotopic, smooth and well centered skeletons. Applying this skeletonization method on 
the smoothed triangulation shown in Fig. 1 (f), allows to automatically generate a curve-skeleton 
as illustrated in Fig. 2. 

 

 

 

(a) (b) 
Fig. 2. Cantilever curve-skeleton extracted by Tagliasacchi et al. [50] method with 𝑤𝐿 = 1, 𝑤𝐻 = 0.8 and 

𝑤𝑀 = 1. 

4. Automatic reconstruction of CAD models from beam-like TO 
results 

The full integration of TO into the overall design process is a very ambitious goal given the 
complexity and scope of this topic. A significant research effort has been devoted to achieving this 
goal in the last two decades but it still insufficient for such a highly demanding objective. The 
work presented in this paper mainly aims at this integration by proposing a new fully automatic 
process for converting 3D TO results that present tubular geometries to parametrized CAD models. 
An overview of the overall process is given below. 

4.1. Overview 
Fig. 3 presents a flowchart of the overall reconstruction and adaptation process proposed in this 

paper. The first steps of this process, from the initial CAD model to the extraction of a curve-
skeleton have been discussed in the previous section. In the next step, the extracted curve-skeleton 
is imported and processed to get it ready for the following step. Once processed this way, the 
curve-skeleton is gathered with the triangulation of the optimal shape to compute cross-sections 
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projection points. These cross-sections points are interpolated by cubic B-spline fitting curves, 
which are then used in lofting operations to generate CAD faces representing branches and CAD 
faces representing junctions between these branches. A solid model is obtained by assembling all 
these faces together. FEA results obtained with this solid model are validated with FEA results 
obtained from the triangulation of the optimal shape. This solid model can be further adapted 
through iterations on this process to fulfill stress distribution objectives. Indeed, as indicated in 
Fig. 3, the target volume fraction used in TO can be automatically adapted from FEA results to 
satisfy stress distribution objectives.  

 
Fig. 3. Flowchart of the overall reconstruction process  

The main steps of this reconstruction algorithm will be discussed, with more details, throughout 
the following sections. The cantilever beam example introduced in section 3 will be used to 
illustrate the different steps of this approach. 

4.2. Processing curve-skeletons 
The curve-skeleton presented in section 3.3 (Fig. 2) is generated as sets of skeletal nodes 

connected with skeletal segments. Processing operations are then performed on this curve-skeleton 
as a preparation for the following reconstruction steps. At first, skeletal nodes that are contained 
in the non-design subdomain are detected and deleted (Fig. 4 (b)). Reconstruction is indeed only 
required for design material since non-design material remains, by definition, completely 
unchanged along TO. Consequently, non-design skeletal segments are removed since they have 
no use in the rest of the process. This leaves the skeleton unconnected with the non-design 
subdomain. In order to reconnect it, each end node of the curve-skeleton (shown with red points 
in Fig. 4 (b)) is linked to the nearest design/non-design interface center node with a skeletal 
segment as illustrated in Fig. 4 (c). The center node of a given design/non-design interface is 
defined as the centroid of the set of points representing this interface. Finally, all skeleton branches 
connected to design/non-design interfaces are smoothed using a Laplacian-based smoothing 
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technique. Fig. 4 (d) illustrates the resulted curve-skeleton after these processing operations (in 
orange) as well as non-design subdomain (in black) and design/non-design interfaces (in orange). 

  
(a) (b) 

  
(c) (d) 

Fig. 4. Skeleton processing steps : (a) importation, (b) deletion of non-design skeletal segments, (c) 
connecting design skeletal segments with non-design interfaces (d) smoothing connexions with non-

design interfaces 

4.3. Automatic computation of cross-sections 
As mentioned in section 3.3, the curve-skeleton serves as a basis for cross-sections positioning 

and computation. It is important to note that, at this point in the reconstruction process, each cross-
section is defined as a planar point cloud. Each cross-section plane passes through a skeletal node, 
called the positioning node, and its normal coincides with the direction vector associated with this 
node as illustrated in Fig. 5. At each skeletal node (𝑛𝑖), except for junction nodes, a unit tangent 
vector (𝑑𝑖) is defined. This vector, referred to as direction vector, is parallel to segment 𝑛𝑖−1𝑛𝑖+1, 
where 𝑛𝑖−1 and 𝑛𝑖+1 respectively are the previous and following nodes along the branch. The 
direction vector at each connection node with the design/non-design interface Ω (𝑛1 in Fig. 5) is 
normal to Ω as illustrated in Fig. 5. 



13 
 

 
Fig. 5. Direction vectors and cross-section plane 

A user-defined distance is used to define limit nodes at each junction. These nodes allow to 
segment the optimized shape shown in Fig. 1 (f) into junctions and branches as indicated in Fig. 6 
(b). For a given junction, the distance of limit nodes from the junction node is proportional to the 
average of radii calculated in the middle of all branches attached to this junction. Note that for 
some values of this distance parameter, limit cross-sections calculated around the junction may 
intersect (see zoomed junction in Fig. 6 (a)). A good choice of this factor, which is generally 
between 1.2 and 2.0, is necessary to avoid interference and the problems that may result from it. 

  
(a) (b) 

Fig. 6. Different values for distance parameter : (a) 0.9 and (b) 1.3 

As mentioned previously, interpolation points associated with a given cross-section are 
obtained through projecting the positioning node on the smoothed triangulation (see Fig. 8 below) 
according to a set of projection directions. At a given node, all these projection directions are 
normal to the direction vector associated with this node. Then, for each cross section, these 
interpolation points are interpolated by a closed cubic B-spline curve with a G1 continuity 
condition for starting and ending points. The starting point (which is also the ending point) of this 
curve corresponds to the first interpolation point associated with the cross-section. To avoid 
generating twisted surfaces, starting points of B-spline curves along the same branch must be 
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properly aligned. This alignment is achieved through an alignment of first projection directions 
along each branch as shown in Fig. 7 (b). 

The calculation of these first projection directions along a given branch, is carried out 
sequentially and it is based on using intersections between two planes at each step (Fig. 7 (a)). A 
first projection direction 𝑉⃗⃗11  for a given branch is associated with the first node 𝑛1  along this 
branch, which is a limit node as introduced earlier (see Fig. 6). This direction is "transferred" to 
node 𝑛2 as the intersection between plane 𝑄12, formed by 𝑉⃗⃗11 and 𝑛1𝑛2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , and plane 𝑃2, which is 
perpendicular to direction vector 𝑑2 at 𝑛2. The resulting first projection direction 𝑉⃗⃗21 at node 𝑛2 is, 
in turn, “transferred” to node 𝑛3  using the same principle. Repeating this operation for each 
skeletal node along a branch makes that all first projection directions are nearly aligned and 
consistent along this branch as shown in Fig. 7 (b). 

 
 

(a) (b) 
Fig. 7. Computation of the first projection direction  

Thus, the first interpolation point (𝑝1 ) in each cross-section sequence ( 𝑖 ) is obtained by 
projecting its positioning node (𝑛𝑖 ) on the triangular mesh according to the first direction of 
projection 𝑉⃗⃗𝑖1 defined previously. From this first direction and according to 𝑁𝑝, the number of 

interpolation points 𝑝𝑗 , projection directions 𝑉⃗⃗𝑖
𝑗  (Fig. 8) are calculated with the following 

recursive formula: 

𝑉⃗⃗𝑖
𝑗
= 𝑉⃗⃗𝑖

𝑗−1
cos 𝜃 + (𝑑𝑖 × 𝑉⃗⃗𝑖

𝑗−1
) sin 𝜃 with : 𝜃 = 2𝜋/𝑁𝑝   and   𝑗 ∈ { 2, … , 𝑁𝑝} 

For a given cross-section, all interpolation points lie in the same plane, which is normal to 
direction vector 𝑑𝑖. In the case shown in Fig. 8, 𝑁𝑝 = 5, which means that 5 interpolation points 
are calculated for each cross-section. For complex cross-section shapes, more interpolation points 
per cross-section can be user-specified. 
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Fig. 8. Computation of cross-sections  

Also, depending on user input, a number of equally spaced cross-sections are calculated 
between branch limits, as sets of interpolation points and curves (Fig. 9). It must be noted that a 
minimum of two cross-sections per branch are calculated at limit nodes. 

  
(a) (b) 

Fig. 9. Computation of (a) 3 and (d) 6 cross-sections per branch 

4.4. Automatic generation of junction surfaces 
In order to create connecting surfaces between branches, each junction/branch interface is 

divided into section segments according to the number branches that are attached to the considered 
junction. This is done by projecting the center node of each adjacent interface of a given junction 
on associated interface planes (see dotted lines in Fig. 10 (b)), which allows creating vectors 
(identified as 𝑈⃗⃗⃗𝑖1 and  𝑈⃗⃗⃗𝑖2 in Fig. 10 (b)) that indicate the location of every segment section. Then 
each angle between two of these vectors is bisected, which define the projection range of each 
segment section as illustrated in the zoom of Fig. 10. Interpolation points are computed for each 
section segment in a similar way as it is done for branch cross-sections. The only difference here 
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is the range of projections, which depends on the number of section segments in the considered 
interface. In Fig. 10, every segment section is defined with 6 interpolation points. However, the 
user can specify any number of interpolation points, since it is greater or equal to 3. Note that all 
interpolation points of all section segments computed for a given interface are contained in the 
same plane, which is normal to the direction vector (𝑑𝑖 in the example shown in Fig. 10 (b)) of the 
corresponding limit node (𝑛𝑖 in the example shown in Fig. 10 (b)). 

 

 
(a) (b) 

Fig. 10. Calculation of section segments for junction/branch interfaces 

Two section segments are used to connect two branches. Between these two section segments, 
an intermediate section segment is computed in a similar way, with the same number of 
interpolation points used in the junction considered. Section segments and intermediate section 
segments associated with each junction are interpolated by cubic B-spline fitting curves . In this 
case, the number of control points used is 8 and the number of knots is 12. It should be noted here 
that a G1 continuity condition is applied between  B-spline curves interpolating section segments 
of the same junction/branch interface as illustrated in Fig. 11 (a). From these curves, a connecting 
B-spline surface between each pair of section segments is generated through a lofting operation as 
shown in Fig. 11 (b). In this case, three lofting operations are performed for each junction. 
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(a)  (b) 

Fig. 11. Generation of connecting B-spline surfaces 

When generating intermediate section segments, projections of the junction node on the 
boundary triangulation can be made using various angular ranges as illustrated in Fig. 12. As it 
can be clearly seen in Fig. 12, the angular range of projection used for intermediate segment 
sections computation might lead to overlapping surfaces like in case (a) or leave wide openings in 
the junction like in case (d), which makes that a good adjustment of this angular projection range 
may be required. 

    
    

    
(a) (b) (c) (d) 

Fig. 12. Projection range for intermediate section segments : (a) 150°, (b) 120°, (c) 90° and (d) 60° 

As seen in Fig. 11 (b), once all connecting surfaces are generated, openings remain between 
these connecting surfaces. These openings are closed with B-spline filling surfaces as shown in 

150° 120° 90° 60° 
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Fig. 13 (a). Sewing these filling surfaces to connecting surfaces for each junction provides a 
complete surface representation of each junction as illustrated in Fig. 13 (b).  

  
(a) (b) 

Fig. 13. Junction reconstruction (a) generation of filling surfaces and (b) junctions reconstructed surfaces 

4.5. Automatic generation of surfaces for branches 
Cross-sections initially calculated as sets of points in section 4.3 are interpolated by closed 

cubic B-spline curves as shown in Fig. 14 (b). In this case, the number of control points used is 13 
and the number of knots is 19. These cross-section B-spline curves along each branch are selected 
along with corresponding junction interfaces curves to generate, using a loft operation, a bicubic 
B-spline surface for each branch as illustrated in Fig. 14 (c). It is important to note that control 
points and knots for both B-spline curves and surfaces are automatically defined. As it can be seen 
in Fig. 14 (c), the section curves corresponding to design/non-design interfaces are filled with ruled 
surfaces. 

  
(a) 
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(b) 

  
(c) 

Fig. 14. Branches surfaces generation : (a) cross-sections interpolation points, (b) cubic B-spline curves 
interpolation and (c) branches lofting surfaces 

4.6. Automatic construction of a solid model 
The last step in the reconstruction algorithm consists in sewing all surfaces generated for 

junctions and branches to build a closed and watertight surface boundary of the reconstructed 
shape. Although all cross-sections and section segments are G1 continuous, it is important to note 
that only G0 continuity is ensured between surface patches. This closed and watertight surface 
model is then filled and converted into a solid model (see Fig. 15 (a)). This solid model represents 
the optimized design material, which is finally combined with that of the non-design subdomain 
using the union Boolean operator. Union between design and non-design solid models results in a 
reconstructed CAD model of the optimized part as shown in Fig. 15 (b). 
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(a) (b) 
Fig. 15. Reconstructed CAD model (a) without and (b) with non-design geometry 

5. FEA results and validation 
In order to validate this reconstructed CAD model, FEA is carried out on this reconstructed 

model and compared with FEA directly applied on the optimized shape generated by TO as a 
triangulation. Boundary conditions (BCs) applied in these two FEA models (see Fig. 16 (a)) are 
the same as BCs considered along the TO process itself with the SIMP method (see Fig. 1 (a)). 
This also applies for material data. An automatic h-refinement mesh adaptation scheme is used to 
reduce the total strain energy error to less than 3%. von-Mises stress (in Pa) and resultant 
displacement (in mm) distributions issued from both FEA models are respectively displayed in 
Fig. 16 (b) and (c) with the same color scale and with the same deformation factor to facilitate 
comparison between the two sets of FEA results. 

  
(a) 

F = 10 N F = 10 N 
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(b) 

  
(c) 

Fig. 16. For both the reconstructed CAD model (left) and the optimized shape (right) of the cantilever 
case: (a) BCs (b) von-Mises stress distribution (in Pa) and (c) resultant displacement distribution (in mm) 

on the deformed shape (deformation scale factor = 1000) 

A deeper comparison between stress distributions for the two models is made using sets of 
stress probes that are located in the middle of all skeletal junctions. The idea is to measure and 
compare von-Mises stress values between the two FEA models in specific and representative 
locations. An average value of these von-Mises junction stresses is calculated for each model. 
Average junctions stresses for the reconstructed CAD model and the optimized shape are 
respectively 0.31 and 0.28 MPa, which makes a 11% relative difference. The difference between 
these two models for both the global compliance and the maximum resultant displacement is 
around 4%. There is only a 1% difference between design volumes of the two models. Globally, 
these results reveal a great agreement between the reconstructed CAD model and the optimized 
shape from which it is generated for this example (cantilever). 
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6. Case studies 
The reconstruction process described in previous sections is validated through several case 

studies that tend towards beam-like structures. These cases are processed with a research platform 
developed by our team, which is based on the Unified Topological Model [52], on Code_Aster 
[32] for  implementing the SIMP topology optimization method and on OpenCascade [53] as 
geometric modeling kernel. This section presents results obtained on three cases : a bridge, a L-
shaped bracket and a second cantilever beam. It is worth mentioning that for all case studies 
presented in this paper, the same material is used (Young modulus is 69 𝐺𝑃𝑎 and Poisson’s ratio 
is 0,33) and, as mentioned in section 3.1, the same convergence criterion is applied for TO with 
the SIMP method (∆conv= 0.5%). Beam-like TO results are obtained using low volume fractions 
(3% or 4% depending on the case study considered). Like for the cantilever example presented in 
previous sections, FEA is performed on both models (reconstructed CAD and optimized shape) 
for validation. Table 1 lists parameters used for curve-skeletonization and geometry 
reconstruction, while Table 2 provides statistics for curve-skeletons obtained. 

6.1. Bridge 
The first example considered in this section is a bridge. The initial TO problem with initial 

design material (colored in gray), non-design material (colored in red), dimensions (in millimeters) 
and BCs applied are provided in Fig. 17 (a). TO analysis using the SIMP method is carried out. 
The volume fraction is 𝑓 = 4% and the global average element size for mesh generation is 𝑑𝑔 =
275 𝑚𝑚. Convergence of SIMP optimization is reached after 23 iterations. By thresholding the 
final relative density distribution with 𝜌𝑡ℎ = 0.25 and smoothing the resulted rough triangulation 
as explained in section 3.2, we obtain a smooth triangulation that represents the optimized shape 
as shown in Fig. 17 (b). The result of curve-skeletonization applied to this smoothed boundary is 
illustrated by Fig. 17 (c) along with the calculated cross-sections. In this case, 4 cross-sections are 
generated for each branch using 9 interpolation points per section. Lofting operations through sets 
of these cross-sections lead to the final CAD model shown in Fig. 17 (d). 

  
(a) (b) 

P = 10 KPa 



23 
 

             

   

 
(c) (d) 

Fig. 17. Bridge (a) initial problem with dimensions (in mm) and BCs (b) smoothed boundary of the 
optimized shape given by TO (c) processed skeleton with cross-sections and (d) reconstructed CAD 

model 

As presented in the previous section, FEA is carried out on both the reconstructed CAD model 
and the optimized shape for validation purposes. von-Mises stress and resultant displacement 
distributions for both models are respectively displayed in Fig. 18 (b) and (c) with the same color 
scale and the same deformation scale factor. Average junctions stresses computed for the two 
models are very close (3% difference). However, the reconstructed CAD solid model is slightly 
more flexible if compared to the optimized shape since maximum resultant displacements are 0.9 
and 0.7 mm respectively. 

  
(a) 

  
(b) 

  
(e) 

Fig. 18. For both the reconstructed CAD model (left) and the optimized shape (right) of the bridge case: 
(a) BCs (b) von-Mises stress distribution (in Pa) and (c) resultant displacement distribution (in mm) on 

the deformed shape (deformation scale factor = 300) 

P = 10 KPa P = 10 KPa 
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6.2. L-bracket  
The second example in this section is an L-shaped bracket. Starting from the initial CAD model 

presented in Fig. 19 (a) on which design (colored in gray) and non-design (colored in red) 
subdomains are specified as well as BCs and material data, SIMP TO analysis is performed with 
a target volume fraction 𝑓 = 3% and a global average element size for mesh generation 𝑑𝑔 =
40 𝑚𝑚. The final relative density distribution is obtained after 30 SIMP iterations. A rough 
triangulation representing the optimized shape is then extracted with respect to relative density 
threshold 𝜌𝑡ℎ = 0.22. Fig. 19 (b) provides the optimized shape after smoothing operations. The 
curve-skeleton extracted from the optimized shape after smoothing and processed as explained in 
section 3.3 is illustrated in Fig. 19 (c). This same figure also shows computed cross-sections for 
branches and junctions. In this case, 3 cross-sections are calculated for each branch using 8 
interpolation points, while 7 interpolation points are used to compute each junction intermediate 
cross-section. By following all steps described in section 4, a CAD solid model is generated from 
TO results as demonstrated in Fig. 17 (d). 

  

 
  

(a) (b) (c) (d) 
Fig. 19. L-bracket (a) initial problem with dimensions (in mm) and BCs (b) TO processed result (c) 

processed skeleton with computed cross-sections and (d) reconstructed CAD model 

In order to compare the reconstructed CAD model generated by our process (Fig. 19 (d)) to the 
optimized shape obtained by TO (Fig. 19 (b)), FEA is performed on these two models using the 
same material and BCs (Fig. 20 (a)). Results obtained from these FEA are almost the same for 
both models. Differences between results obtained with these two models in terms of global 
compliance, average junctions stress and maximum resultant displacement are 3%, 4% and 1% 
respectively. Fig. 20 (b) and (c) display von-Mises stress and resultant displacement distributions 
respectively using the same color scale and the same deformation scale factor. 

 

P = 10 KPa 
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(a) (b) (c) 

Fig. 20. For both the reconstructed CAD model (above) and the optimized shape (below) of the L-bracket 
case: (a) BCs (b) von-Mises stress distribution (in Pa) and (c) resultant displacement distribution (in mm) 

on the deformed shape (deformation scale factor = 1000) 

6.3. Second cantilever  
The last example considered in this work is a second version of the cantilever introduced in 

section 3. In this new case, the only modification, with respect to first version, is made on the non-
design subdomain (see Fig. 21 (a)). As shown in Fig. 21 (b), a more complex optimized shape is 
derived from TO after 23 SIMP iterations. In this case, the objective volume fraction is 𝑓 = 4% 
and the global average element size for mesh generation is 𝑑𝑔 = 1.6 𝑚𝑚. The relative density 
threshold used to extract a rough triangulation of the optimized shape is 𝜌𝑡ℎ = 0.4. The curve-
skeleton generated from the smooth optimized shape along with computed cross-sections are 
provided in Fig. 21 (c). For this example, 4 cross-sections per branch are calculated using 6 
interpolation points while intermediate cross-sections for junctions are calculated using 7 
interpolation points. Lofting operations through these cross-section curves in addition with filling 
surfaces, lead to the final CAD model demonstrated in Fig. 21 (d). 

P = 10 KPa 

P = 10 KPa 
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(a) (b) 

          
(c) (d) 

Fig. 21. Second cantilever (a) initial problem with dimensions (in mm) and BCs (b) TO processed result 
(c) skeleton with cross-sections and (d) reconstructed CAD model 

Fig. 22 (b) and (c) provide von-Mises stress and resultant displacement distributions for the 
reconstructed CAD model (left) and the optimized shape (right) with the same color scale and the 
same deformation scale factor. Differences between these two models in terms of global 
compliance and maximum resultant displacement are 2% and 3% respectively. The reconstructed 
CAD model shows a higher average stress junctions if compared with average stress junctions 
computed for the optimized shape (0.22 MPa versus 0.19 MPa), but this difference remains 
acceptable. 

  

F = 10 N 

F = 10 N F = 10 N 
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(a) 

  
(b) 

  
(c) 

Fig. 22. For both the reconstructed CAD model (left) and the optimized shape (right) of the 2nd cantilever 
case: (a) BCs (b) von-Mises stress distribution (in Pa) and (c) resultant displacement distribution (in mm) 

on deformed shape (deformation scale factor = 3) 

6.4. Summary of results 
Table 3 presents a synthesis of main results obtained for all examples proposed in this paper. 

This table includes data and results for SIMP optimizations, optimized shape models and 
reconstructed CAD models. It shows a good agreement between results of reconstructed CAD 
models and results of corresponding optimized shapes with negligible differences. This 
consistency in results confirms effectiveness of the method presented in this paper towards 
automatically converting beam-like TO results into CAD models. For all cases presented, the 
optimized shape obtained from TO is closely approximated by the reconstructed CAD model 
generated from it. Indeed, differences between design volumes obtained for the two models are 
very low (2% or less for all cases except for the bridge which reaches 6%). It is worth mentioning 
that all examples presented in this paper, except the second cantilever beam, are taken from 
previous work made and published by our team [25]. 
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Table 1. Skeletonization and reconstruction parameters 
  Bridge Cantilever L Bracket Cantilever 2 

Skeleton 
Parameter 𝜔𝐿 1 1 1 1 
Parameter 𝜔𝐻 0.8 0.8 0.3 0.5 
Parameter 𝜔𝑀 1 1 0.3 0.6 

Branch 
Nb of cross-sections 4 4 3 4 
Nb of interpolation points / section 9 12 8 6 

Junction 

Junction distance factor 1.9 1.3 1.85 1.45 
Nb of interpolation points / section 5 6 7 7 
Projection range for intermediate 
cross-sections 

90° 120° 80° 80° 

 

Table 2. Curve-skeletons characteristics 
 

Bridge Cantilever L Bracket Cantilever 2 
Nb of branches 10 9 24 22 
Nb of junction points 4 5 14 13 
Nb of skeletal nodes 551 558 1401 1415 
Nb of skeletal segments 549 559 1405 1419 

 

Table 3. Summary of results 
 Bridge Cantilever L Bracket Cantilever 2 
 SIMP optimization 

Element size 𝒅𝒈 (mm) 275 1.6 40 1.6 

Nb of tetrahedrons 𝑵 179167 382148 345441 367284 
Objective volume fraction 𝒇 4% 3% 3% 4% 
Nb of iterations for convergence 23 21 30 23 

Final compliance 𝑪 (J) 4.36 102 7.95 10-5 2.07 10-1 1.65 10-4 
 Optimized shape 

Relative density threshold 𝝆
𝒕𝒉

 0.25 0.25 0.22 0.4 

Volume fraction 𝒇
𝟑𝑫

 4.08% 3.16% 2.95% 3.99% 

Compliance 𝑪𝟑𝑫 (J) 3.72 102 3.30 10-5 8.78 10-2 3.32 10-5 
Error Estimate (APE) 3.70% 2.29% 1.93% 2.56% 

Maximum Displacement 𝜹𝟑𝑫 (mm) 6.64 10-1 3.56 10-3 5.36 10-2 3.56 10-3 

Junctions average stress 𝝈𝟑𝑫 (MPa) 3.00 10-1 2.78 10-1 1.01 10-1 1.94 10-1 

Ratio 𝒇
𝟑𝑫
/𝒇 102% 105% 98% 100% 
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 Reconstructed CAD model 

Volume fraction 𝒇
𝑪𝑨𝑫

 3.85% 3.12% 3.01% 3.93% 

Compliance 𝑪𝑪𝑨𝑫 (J) 4.14 102 3.42 10-5 8.49 10-2 3.40 10-5 
Error Estimate (APE) 3.78% 2.13% 2.00% 2.32% 

Maximum Displacement 𝜹𝑪𝑨𝑫 (mm) 8.96 10-1 3.73 10-3 5.30 10-2 3.66 10-3 

Junctions average stress 𝝈𝑪𝑨𝑫 
(MPa) 3.08 10-1 3.11 10-1 1.06 10-1 2.22 10-1 

Ratio 𝒇
𝑪𝑨𝑫

/𝒇 104% 96% 100% 102% 

Ratio 𝒇
𝟑𝑫
/𝒇

𝑪𝑨𝑫
 106% 101% 98% 101% 

Ratio 𝑪𝟑𝑫/𝑪𝑪𝑨𝑫 90% 96% 103% 98% 

Ratio 𝜹𝟑𝑫/𝜹𝑪𝑨𝑫 74% 96% 101% 97% 

Ratio 𝝈𝟑𝑫/𝝈𝑪𝑨𝑫 97% 89% 96% 88% 

7. Conclusions and perspectives 
In this paper, we propose a fully automatic process for converting TO results, that tend towards 

beam-like structures, to CAD solid models. This work represents a significant contribution towards 
completely integrating TO as a common and powerful tool along the design process. Indeed, the 
proposed approach is fully automated without any user intervention, which is not the case, to the 
best of our knowledge, for almost all methods in the literature. Our process is mainly based on 
curve-skeleton extraction, which is used for cross-sections positioning and computation. Closed 
cubic B-spline curves are used to approximate cross-section contours. Lofting operations through 
series of these contours allow to create multi-section surfaces which are assembled to form, with 
the help of filling surfaces, a closed boundary. The conversion of this closed boundary into a solid 
CAD model completes the process. Effectiveness of our reconstruction process is demonstrated 
through four case studies where FEA is used to compare the reconstructed models to the optimized 
shapes from which they are derived. The generated CAD models can be easily edited and/or refined 
by shape optimization to meet further criteria. As can be seen in the flowchart of Fig. 3, volume 
fraction for SIMP TO could be automatically adjusted, according to FEA results, and then re-
applying the whole process in order to satisfy allowable stress criteria. Our team is still working 
on this automatic stress-based optimization. However, the approach presented here shows 
limitations. At the time being, the approach is limited to beam-like TO result. It could successfully 
be applied to simple massive shapes, which represents a first step in the perspective of extending 
this approach to a wider variety of TO results. As mentioned in section 4.6, another limitation of 
the method proposed is that, although all cross-sections and section segments are constrained to 
be G1 continuous, only G0 continuity is ensured across connections between branches and 
junctions surfaces. Ensuring G1 continuity everywhere is definitely feasible and would be a very 
interesting and useful improvement of the approach proposed here but it requires further work at 
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this point of our research. Applying the proposed process to results provided by other TO methods 
is also a forward-looking perspective for our team. 
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