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Abstract
Due to the growing emergence of vehicle electrification, agricultural tractor developers
are launching hybrid powertrains in which energy management strategy (EMS) assumes a
prominent role. This work mainly aims at developing an EMS for a plug‐in hybrid electric
tractor (PHET) to minimise fuel consumption and increase the operating range. The
developed off‐road PHET power sources are composed of a biogas‐fuelled Internal
Combustion Engine Generator (Bio‐Gen), a photovoltaic system, and a battery pack. To
control the power flow among different sources, a two‐layer EMS is formulated. In this
regard, initially, the farm operating mode is recognised by means of classification of a
working cycle's features. Then, a control strategy based on a multi‐mode fuzzy logic
controller (MFLC) is employed to manage the power flow. At each sequence, the classifier
identifies the farm operation condition and accordingly activates the relative mode of the
MFLC to meet the requested power from the Bio‐Gen. The performance of the pro-
posed EMS has been evaluated based on three real‐world typical agricultural working
cycles. The results demonstrate the successful performance of the proposed intelligent
EMS under farm conditions by maintaining the energy sources' operation in a high‐
efficiency zone which can lead to the extension of the working range and decrease
fuel consumption.

1 | INTRODUCTION

Reducing environmental impacts and dependency on fossil
fuels are considered important issues by energy policies
around the world [1, 2]. Stricter environmental protection
regulations, such as the European Stage V non‐road emission
standards [3], tighten the emission level in off‐road vehicles,
such as agricultural tractors and mining vehicles, which use
internal combustion engines (ICEs) and have a significant
share in the pollution [4]. Regarding the literature, powertrain
electrification helps to increase overall vehicle efficiency and
reduce exhausting emissions. Moreover, it can increase the
controllability, reliability, and comfort in agricultural tractors
[5]. In this regard, powertrain electrification seems to be a
potential solution for the progress of the agriculture fourth
revolution [5, 6]. One of the common technological solutions
is to use pure electric vehicles. However, they suffer from long

recharging time and low driving range limits. These limitations
would be more drastic in off‐road vehicles, which require
more energy for travelling and doing some tasks in a short
time [7]. In order to mitigate these shortcomings, several
hybrid powertrains have been developed in the automotive
industry [8]. Moreover, some research studies have been
conducted in construction equipment and mining trucks’
powertrain hybridisation. However, other kinds of off‐road
vehicles have not received enough attention [9, 10]. Among
various hybrid electric configurations, a plug‐in hybrid electric
vehicle (PHEV) can be a suitable configuration for reducing
fuel consumption because it can be charged by external elec-
tric power sources like renewable power plants [11]. Also, for a
working range longer than the pure‐electric working range, it
is more economical to use a blended mode (ICE and battery
together) than operating the vehicle as a battery electric vehicle
[12, 13].
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Regardless of the PHEVs flexible architecture, a proper
energy management system (EMS) is necessary for online
coordination between multiple energy sources. The EMSs of
the HEVs are broadly classified into rule‐based and
optimisation‐based methods [13, 14]. Rule‐based methods,
such as thermostatic control strategy (TCS) and fuzzy logic
control (FLC), are easier to implement in online applications;
however, they are less capable of finding optimal power
management solutions [15]. Optimisation‐based methods
provide near‐optimal solutions and can be combined with
rule‐based methods to revise the set of rules and inferential
knowledge. They are subdivided into two categories: global,
optimising the objective function over a known driving
profile; and real‐time, using an instantaneous objective
function based on the variables of the system [16].
Optimisation‐based EMSs in urban HEVs are mostly
focussed on ensuring the optimal power split between
different sources to meet different goals. These objectives can
be the minimisation of fuel consumption [17], emissions [18],
range extension [19], and drivability [20]. Literature consid-
eration shows that, among variant EMSs, FLC is one of the
most commonly used methods due to its flexibility, robust-
ness, and convenient implementation [21]. [22]. FLC’s per-
formance could be improved by optimising its parameters for
a specific driving cycle using an optimisation algorithm such
as particle swarm optimisation (PSO) [23], model predictive
control (MPC) [24], and genetic algorithm (GA) [25, 26].
Moreover, the use of the traffic condition and driving in-
formation in the design of an EMS, known as intelligent
EMSs, can enhance the performance of an FLC‐based
strategy as discussed in [21, 27, 28]. However, in off‐road
applications, due to fluctuations in working conditions in
terms of task variation and soil deflection etc., the use of
speed profiles cannot solely be adequate. Additionally, these
vehicles are usually used for doing some tasks, such as ma-
terial handling, trailer pulling, lifting, which are completely
different from what urban cars are made for. According to
the reviewed literature, there were no specific standard
working cycle or available model for the design and evalua-
tion of electric off‐road vehicles until now. Based on this
knowledge, the fundamental problem for the powertrain
electrification of an off‐road vehicle is to study how work
cycles affect the energy requirement which can help in the
design of an EMS.
In this regard, the use of driving pattern recognition and

prediction approaches for EMSs are introduced as efficient
methods in [29, 30] for HEVs. Literature consideration shows
that there are three main driving pattern prediction techniques
including GPS‐based technique, statistics and clustering anal-
ysis based methods, and the Markov chain‐based technique.
Among these methods, the statistics and clustering analysis
based methods are preferable for taking full advantage of the
on‐board available data. The basic idea is to collect the his-
torical and current driving cycle parameters to analyse the
previous driving pattern and predict the driving conditions in
the near future, typically 1∼2 min [31]. To recognise the cur-
rent driving condition with the historical parameters, the

characteristic parameters should be extracted from known
driving cycles and be used in the classification tools or
methods. The classification algorithms mainly include the
Bayesian classifying algorithm, decision tree, rough set theory,
fuzzy clustering analysis, neutral network, and the support
vector machine [31]. For instance, methods based on fuzzy
logic [32], neural networks [33], and other machine learning‐
based techniques [34] have been investigated to recognise
current driving conditions and predict future driving condi-
tions. For driving cycle recognition, the fuzzy clustering anal-
ysis and neutral network approaches are the most popular in
on‐road HEVs [35]. However, based on the author’s knowl-
edge, the working cycle pattern recognition problem in off‐
road HEVs’ applications, such as agricultural tractors, have
not been investigated in the literature.
Regarding the agricultural tractors’ powertrain hybrid-

isation as an off‐road vehicle, different types of hybrid electric
architectures including hybrid diesel electric and fuel cell
electric tractors have been conceptually introduced by manu-
facturers and researchers [5]. For instance, a hybrid electric
tractor is investigated in [36], but the EMS’s design details are
missing. Moreover, in terms of EMS for hybrid electric trac-
tors, two simple EMSs, thermostat control strategy (TCS) and
the power follower rule‐based EMS, are utilised for a hybrid
electric tractor through a simplified model in [37]. An
extended‐range solar assist plug‐in hybrid electric tractor
(ERSAPHT) is developed by employing a heuristic rule‐based
EMS by our team in [38]. The differences in agricultural
vehicle applications, such as the working environment and
expected duties, make the development of an off‐road HEV
powertrain more challenging compared to urban vehicles. For
instance, tractors are usually designed in a way to pull diverse
agricultural implements for repetitive off‐road operations, such
as transportation and fieldwork. An agricultural tractor needs a
different range of torque and speed. For example, a high tor-
que is required at a low speed for heavy tasks like ploughing,
while partly high speed is desired for road transportation. In
addition, the power take‐off (PTO) system is typically used to
transfer the power for driving the implemented machines by an
agricultural tractor. In fact, tractor performance varies with
respect to the implementation of different agricultural ma-
chinery with different levels of power requirements. Therefore,
it could be beneficial to consider the different working patterns
of the agricultural operation while designing a hybrid electric
agricultural tractor.
To sum up, because of the lack of a systemic approach for

designing off‐road hybrid electric vehicles and their working
conditions, it seems that there is a need to establish a holistic
method. In this regard, the EMS problem in an off‐road
agricultural vehicle is investigated by using a simulation tool
and some typical working cycles obtained from field experi-
ments in this work. This work introduces an intelligent EMS
for an agricultural hybrid electric tractor application. To do so,
the working conditions of the off‐road vehicle are recognised
using the fuzzy C‐means (FCM). Moreover, an optimised
multi‐model FLC is developed to perform energy manage-
ment. The performance of the developed multi‐mode FLC is
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compared with that of DP, which is an offline optimal strategy.
In light of the discussed matters, the contributions of this work
are as follows:

� Developing a working condition recognition tool for an off‐
road vehicle using some features, such as speed, accelera-
tion, required power, and so on.

� Incorporating the working condition recognition into the
design of an intelligent EMS based on the genetic fuzzy for
an off‐road vehicle.

� Employing measured experimental data from an ERSAPHT
for validation purposes despite the existing studies in the
literature on agricultural hybrid electric vehicles, which are
solely based on simulation.

The rest of this work proceeds as follows: The project’s
background and modelling are described in Section 2. In
Section 3, an intelligent EMS is introduced for the ERSAPHT
which includes a farm operation recognition algorithm
(FORA) and multi‐mode FLC. Simulations and experimental
test results are described in Section 4. Finally, conclusions are
drawn in Section 5.

2 | MATERIALS AND METHODS

2.1 | Experimental setup and tests’ overview

This work is based on an extended‐range solar assist plug‐in
hybrid electric tractor (ERSAPHT) as a renewable energy‐
based off‐road vehicle that has been developed for agricul-
tural light applications. In fact, this off‐road vehicle is being
used as a test bench for different projects related to agricultural
applications [38]. According to Figure 1, the driving system of
the ERSAPHT set‐up consists of three electric motors (two for
each driving wheel and one for the PTO and lifting system).
The main characteristics of the vehicle are listed in Table 1.
The power supply system involves a lead‐acid battery pack,

biogas‐fuelled engine generator (Bio‐Gen), and on‐board
photovoltaic (PV) array to meet the energy demand from the
electric motors. The battery pack, as the primary energy source,
is directly connected to the DC bus. The Bio‐Gen and the PV
systems, as auxiliary power sources, are linked to the DC bus
via AC‐DC and DC‐DC converters, respectively. It should be
noted that the PV system helps the battery pack with energy
supply. The total amount of energy that can be received from
the installed PV system is 4.17 kWh per day [4]. Nonetheless,
this free renewable energy source is insufficient for responding
to all the power requirements because of its low power density.
Therefore, the Bio‐Gen system has been added to prevent
energy shortage in the hybrid powertrain. Due to the existence
of multiple power sources with different energetic character-
istics, an EMS needs to be developed to split the power among
the energy sources. The ERSAPHT’s velocity and global po-
sition are measured by using encoders and GNSS modules.
The data measured by different sensors along with driver
commands could be recorded into an SD card by the data

acquisition system. Furthermore, this vehicle is equipped with
a portable computer which makes the design and imple-
mentation of an EMS possible, while having access to different
measured data.
The inputs of the EMS module should be based on some

initial data; the units such as current sensors, voltage‐
measuring modules, and user comments. These inputs are
processed in the EMS in such a way, the measured current and
voltage can be used to estimate the SOC of the battery pack
and the required power. Furthermore, the outputs are trans-
ferred to the engine control module to control the Bio‐Gen.
As mentioned before, a tractor is usually designed for

towing different implements for transportation and farm field
working. In transportation applications, the tractor is normally
used to haul a trailer on rural roads or fields. On the other
hand, in fieldwork, such as in sprayers and seed spreaders, the
PTO systems might be used simultaneously to drive the
implement. In this regard, several real‐world experiments that
include the trailer (drawbar load), seed spreader, and the boom‐
type sprayer are conducted to derive some typical working
cycles for farm hybrid electric tractor applications. In fact,
these real‐world working cycles contain different contributions
of light, medium, and high‐power demand working conditions

F I G U R E 1 Simplified model architecture block diagram of the
extended‐range solar assist plug‐in hybrid electric tractor

T A B L E 1 The extended‐range solar assist plug‐in hybrid electric
tractor’s main characteristics [38]

Battery type Lead acid

Battery specifications (Lead Acid) 80 V, 210 Ah

Fuel type Biogas

Electric drives’ maximum output power 21 kW (+15 kW for PTO)

Bio‐gen rated power 8.8 kW

Bio‐gen fuel consumption (at Rated Power) 0.35 m3/kWh @ STP

PV system’s output pick power 660 W

Total mass 2100 kg

Maximum speed 25 km/h

GHOBADPOUR ET AL. - 3



based on measured data from the authors’ previous research
works [4, 38]. Figure 2 demonstrates the ERSAPHT in real‐
world field experiments with typical implements: Seed
spreader and pulling a trailer. Consequently, the measured data
are employed to design and evaluate the proposed EMS in this
work.
Considering the literature, it is obvious that the model‐

based design is used as a powerful engineering aid tool to
simulate vehicles in a computer before construction [1].
Therefore, a MATLAB Simulink model is used for designing
and testing the EMS before its implementation on the exper-
imental system to make sure that it does not cause damages
during the experimental tests. The basic system components
are modelled and evaluated in [38]; however, some funda-
mental aspects are summarised in the following section:

2.2 | The ERSAPHT powertrain modelling

In order to model the ERSAPHT powertrain, specific com-
ponents, such as the battery pack, Bio‐Gen, and electric
machines, are considered with different levels of modelling
complications, such as physical models, lookup table data, and
efficiency maps provided by the manufacturers and the
experimental test results. This approach is the most widely
used methodology in the powertrain modelling of HEVs
[4, 37, 38]. Figure 3 shows the longitudinal forces that affect a
tractor during operation. In this regard, considering the speed
(V) and mass (m) of the ERSAPHT, the traction force (Ftr)
can be calculated to overcome the resistive force (Fres) as
follows:

m
d
dt

V ¼ Ftr − Fres ð1Þ

Fres ¼ F roll þ F air þ Fhill þ Fwork ð2Þ

Fres¼Croll : m : g þ
1
2

ρACd ðV þ VwÞ
2

þm : g :sin α þ Fwork
ð3Þ

where Froll, Fair, and Fhill, denote the rolling resistance, aero-
dynamic drag, and hill climbing, respectively. Fwork consists of
the implement draft (FDrawbar) and PTO forces (FPTO) for
doing a specific task on the farm. Croll is the tyre rolling

F I G U R E 2 The extended‐range solar assist plug‐in hybrid electric tractor (ERSAPHT) in field experiments with typical implements working cycle:
(a) Comparison of velocity profiles, (b) The ERSAPHT with the seed spreader, and (c) The ERSAPHT by pulling a trailer

F I G U R E 3 Tractor’s longitudinal forces
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resistance coefficient; g is the gravity acceleration; ρ, Cd, A, and
Vw are the air density, drag coefficient, frontal area, and wind
velocity, respectively. α is the road or field slope.
The electric motors’ power is given by a steady‐state map

as a function of the outputs’ torque Tm and speed ne of the
motor. The vehicle requested power (Pm) from the electric
motor side can be then expressed as

Pm ¼ f ðTm:nmÞ ¼ Ftr V=ηmηt ð4Þ

where ηm and ηt denote the motor and transmission average
efficiency, respectively. Regarding the battery model, the
equivalent circuit approach is used with a coulomb count-
ing approach for the battery pack SOC (SOCBatt) estimation
as [39]

SoCBatt: ¼ SoCInit: −
100

3600 QBatt:
∫
t

0
IBatt: dt ð5Þ

where SOCInit., QBatt., and IBatt. are the initial SOC, capacity,
and output current of the battery pack, respectively. Since the
purpose of this work is not to study the battery, the
simplified relationship in [40] is used to determine the total
battery power (PBatt.).

PBatt: ¼ VOC :IBatt: − I2Batt: : RBatt: ð6Þ

where VOC, and RBatt. denote the open‐circuit voltage and
resistance of the battery pack, respectively.
Establishing an analytical Bio‐Gen model is difficult to

obtain. Therefore, it is common to use the fuel consumption
map to describe a specific range extender as a fuel converter.
This map can be determined by empirical procedures on a
range extender test or can be computed by some software
packages [41]. Therefore, the parameters suggested by the
manufacturers are applied to the model as a lookup table. The
engine fuel consumption rate ( _mfuel) is given by a steady‐state
map as a function of the Bio‐Gen output power (PGenset) at the
operating point of the ICE outputs’ torque Te and speed ne

_mfuel ¼ f ðPBio‐GenÞ ¼ f ðTe:neÞ ð7Þ

The power produced by the Bio‐Gen can be computed
from the fuel lower heating value (LHVfuel) as follows:

PBio‐Gen ¼ LHV fuel : _mfuel : ηBio‐Gen ð8Þ

The output and input power from the battery pack are
considered with negative and positive signs, individually.
Therefore, the power delivered by the Bio‐Gen and the PV
systems are regarded as positive while the power captured by
the traction and PTO systems are regarded as negative.
Consequently, the total energy of the battery pack (EBatt.) can
be evaluated in terms of a time integral function of battery
power (PBatt), as denoted by the following equation:

EBatt: ¼ ηBatt:

�

∫
t1

0
ηPV :PPV dt þ ∫

t2

0
ηBio‐Gen :PBio‐Gendt

− ∫
t3

0
2Pmdt − ∫

t4

0

PPTO
ηPTO

dt
� ð9Þ

where ηBatt, ηPV, ηBio‐Gen, and ηPTO denote the battery pack,
PV system, Bio‐Gen, and the PTO motor efficiency; t1, t2, t3,
and t4 are the charging‐discharging time intervals for the PV
system, Bio‐Gen, propulsion motors, and the PTO motor,
respectively.
Moreover, the electric energy discharged from the battery

needs to be recharged back in the future. This is equivalent to a
certain amount of fuel consumption by the Bio‐Gen set. In
order to calculate the battery equivalent fuel consumption
( _mf :Batt:), the average values (battery charge efficiency (ηcharge)
and average efficiency of Bio‐Gen set) are used in the
following expression:

_mf :Batt: ¼
EBatt:

LHV fuel :ηBio‐Gen: ηcharge
ð10Þ

Eventually, the total equivalent fuel consumption at a given
time can be expressed as the sum of the Bio‐Gen set fuel
consumption and the battery pack equivalent fuel consump-
tion. In fact, this provides a unified representation of the en-
ergy used by both the fuel and the battery.
Due to multiple power sources of the plug‐in hybrid series

architecture of the ERSAPHT, it offers the opportunity for
multiple operating modes by a downsized Bio‐Gen. This al-
lows the biogas fuelled Bio‐Gen to operate in its high‐
efficiency region (recommended by the manufacturer) with a
constant fuel consumption rate. Therefore, the battery is
charged mainly when the vehicle is plugged into the electricity
supply network, which reduces fuel cost if the electricity is
supplied from a renewable source and potentially improves the
overall energy efficiency. However, these multi‐power source
systems require an appropriate EMS to satisfy vehicle perfor-
mance in the accepted working range that is described in the
following section:

2.3 | Energy management system overview

In general, the proposed EMS in this work aims at operating
the Bio‐Gen and battery together throughout the work to keep
the Bio‐Gen in its most economical fuel consumption zone
while reaching a reasonable range extension. The general ar-
chitecture of the proposed EMS is shown in Figure 4. It
comprises two main layers, namely FORA and multi‐mode
fuzzy logic controller (MFLC). The FORA is employed to
determine the working condition mode at each classification
interval, and consequently, activates the most appropriate
mode of the MFLC (light, moderate, and heavy) to satisfy the
demanded power. Each layer of the proposed EMS is
described in detail in the following sections:
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2.3.1 | Farm operation conditions’ recogniser

In agricultural tractors, energy consumption in different tasks
depends on various factors, such as machine types, farm
environment, and operating conditions. These conditions can
be repeatable duties during a working day that includes
transportation and farm tasks. For instance, during a spraying
operation as a farm task, the machine usually utilises both the
auxiliary power take off (PTO) and the traction system power
while a trailer pulling operation uses the traction system solely.
Therefore, it seems that there is a classification potential due to
differences in the working cycle’s features. Parameters such as
required power, speed range, operations’ idle time, and PTO
usage can be selected as clustering features.
Literature consideration shows that the FCM approach is

one of the most famous unsupervised classifiers which has
reasonable accuracy and computational time for a real‐time
pattern recognition [42]. The FCM allows the classification
of one set of data into several clusters in the pattern recog-
nition methods. Therefore, the FCM as a reliable method is
applied to classify each working segment into the three
considered working modes (light, moderate, and heavy) by
extracting the statistical features from the measured data. In
addition, Table 2 lists the velocity and required power mean
values for the clustered data. It can be found that the differ-
ence between various clusters is clear and the FCM can get
satisfactory precision in current condition recognition as a part
of the FORA. In addition, on conditions like a short working
path or at the beginning of work, there is not enough data to
determine the appropriate working mode. Therefore, to fail-
over that problem, the moderate mode is defined as the default
mode by the EMS to put vehicle performance as a priority on
an unrecognised condition. Moreover, when a new working
mode is identified three times, consecutively, the same recog-
nition is perceived as correct.
In this work, to select the number of clusters for the

extracted features from the measured farm driving cycles, the
silhouette criterion is employed. Silhouette value interprets and
validates the consistency within clusters of data. It measures

how close each point in one cluster is to points in the neigh-
bouring clusters. A larger silhouette value shows better clus-
tering. The silhouette value (S) is between −1 and +1 and can
be defined for each datum (i) as follows [43]:

sðiÞ ¼
bðiÞ − a ðiÞ

maxfbðiÞ: a ðiÞg
ð11Þ

where a(i) denotes the average distance from the ith point to
other points in its cluster, b(i) is the average distance from the
ith point to the points in the other closest clusters. The
silhouette value has been calculated for a different number of
clusters, employing mean power and mean velocity working
features, as shown in Figure 5. This figure illustrates that the
maximum amount of silhouette value is reached by choosing
three clusters of the working mode.
After having the number of clusters from the silhouette

value, each of them is composed of the working segments
nearest to the centre of the cluster. The distance between each
cluster centre and each working segment is calculated based on
the Euclidean distance (ed(x,y)) as an operation condition
recogniser by the following equation [28]:

edðx:yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

 
xi − yi

�2

s

ð12Þ

where x is the cluster centre vector, which is three in this work,
y is the working‐segment vector, and n is the number of
working features. The distance between each cluster centre and
all the working segments are calculated and then the working
segments nearest to the centre are combined to reach an
almost 1800‐s representative measured working cycle for every
cluster. Every working segment has a degree of belongingness
to each farm operation condition cluster, specified by a degree
of membership between 0 and 1. Thus, each working segment
that has a greater membership degree is more meritorious to
be chosen by the FORA as a working mode. In this regard, a
sampling window of measured data between 50 and 150 s is

F I G U R E 4 The overall view of the energy
management strategy’ layouts

T A B L E 2 Mean of parameters for three
specific modes by the designed farm operation
recognition algorithm

Farm operation condition Mean velocity (km/h) Mean power (W)

Light 5.57 4240.35

Moderate 8.55 6379.63

Heavy 14.82 10,893.25
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employed, and it is updated every 50 s to extract the statistical
driving features while avoiding frequent mode switches [44].
Therefore, the FORA decomposes the working cycles into a
working segment on the condition that an idle time is detected
after 50 s while elsewhere the working segment goes up to
150 s.
Figures 6 and 7 and show the principle of separating

experimental data into working segments for two typical
working cycles measured by the trailer and the seed spreader.
By comparing the working cycle in these figures, it is obvious
that the tractor speed and the required power in the trailer
cycle (Figure 6) are usually higher along with more continu-
ously travelling time depending on road conditions. However,
in the seed spreader’s working cycle (Figure 7), it turns out that
the operations are almost repetitive while the average required
power is lower in each working segment compared to the
trailer’s working cycle. Moreover, it should be considered that

the PTO does not work at the end of the roundabout.
Consequently, the operating condition mode determined by the
FORA can be used by the MFLC’s energy management
strategy (EMS) which is explained in detail in the next section.

2.3.2 | MFLC EMS

Many factors, such as non‐linear behaviour of vehicle com-
ponents and unidentified behaviour of exogenous variables
(farm condition, weather, driver behaviour), can lead to the
complexity of an EMS design for an agricultural hybrid
electric tractor. Also, the FLC provides strategic rules by
using linguistic labels to integrate the knowledge of an expert
into the design procedure and does not require a precise
model of the system. Therefore, FLC is one of the best
options to deal with these uncertainties while designing an
EMS for the ERSPHAT. In this regard, a multi‐mode fuzzy
logic controller (MFLC), composed of three modes, is
designed to embrace the requirements of each farm operating
condition in the second stage. Each FLC mode considers the
requested power and battery SOC level as inputs to deter-
mine the power required by the Bio‐Gen in the output.
Figure 8 presents the rule base of the proposed MFLC with
respect to the two inputs (required power and battery SOC)
and one output (power demanded by the Bio‐Gen). For the
SOC and the requested power, five membership functions
(MFs) are considered, namely very low, low, medium, high,
and very high ranges. Furthermore, the OFF, maximum ef-
ficiency (ME), and maximum power (MP) are represented by
blue, green, and yellow colours, respectively, for the Bio‐Gen
modes as the output MFs. The FLC inputs go under the
fuzzification process to be mapped between 0 and 1. Then
the decision‐making unit by means of fuzzy reasoning rules
determines the FLC output values between 0 and 1.

F I G U R E 5 Silhouette value for each number of clusters

F I G U R E 6 Typical measured working cycle and working‐segment
samples in the trailer’s working cycle, (a) required power, (b) velocity

F I G U R E 7 Typical measured working cycle and working‐segment
samples in the seed spreader’s working cycle, (a) required power (total and
PTO), (b) velocity
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Ultimately, this data goes under a de‐fuzzification process to
be converted into real value for the Bio‐Gen control unit to
control the ICE's throttle position. The specifications of the
defined MFLC are as follows: the fuzzy system type is
Mamdani, the inference engine is AND (minimum operator)
and de‐fuzzification is the centroid.
Figure 8 represents the control rules, which are based on

the expert experience. The objective of the rules is to employ
the Bio‐Gen in its maximum efficiency or maximum power to
help the battery depending on the requested power and SOC
level; otherwise, the battery will provide the power solely. For
example, the MFLC decides the power split between the bat-
tery and the Bio‐Gen based on the vehicle's power demand
and SOC as follows: (1) when a working mode is recognised as
heavy and the battery SOC is high while the operation power
requirement is low, only the battery is used to supply power. (2)
When the working mode is recognised as moderate and both
SOC and requested power are high, the battery will help the
Bio‐Gen provide the power until the SOC falls to its lowest
limit. (3) When the working mode is recognised as light and the
SOC is more than the low level, whereas the operation power
requirement is low, the Bio‐Gen will remain off. Therefore, in
these modes, the Bio‐Gen will provide the power demand as a
range extender and emergency power provider.
Indeed, at the beginning of the light working mode, the

EMS uses the charge depleting (CD) control strategy when the
battery SOC is at high levels. In this mode, the motor propels
the vehicle using the electricity from the battery pack without
the assistance of Bio‐Gen until the battery SOC reaches the
minimum level. However, during the heavy working mode, the
charge sustaining (CS) control strategy is hired by the EMS so
that the Bio‐Gen assists the battery pack in propelling the

vehicle motors and charging the batteries. Meanwhile, during
the moderate working mode, the charge blending (CB) control
strategy is utilised by the EMS to propel the ERSAPHT.
The proposed supervisory MFLC that is applied to the

EMS of the ERSAPHT can achieve effective control. How-
ever, due to the characteristics of the fuzzy control, the
membership function of the FLC, which is based on experts'
experience cannot achieve optimal control. As mentioned
before, the FLC's performance could be improved by opti-
mising its parameters for specific driving conditions using an
optimisation algorithm. In this regard, genetic algorithms
(GAs) are adaptive heuristic search algorithms based on the
evolutionary ideas of natural selection and genetics in order to
provide solutions to real‐world problems. Specifically, the GA
is applied in order to solve several optimisation problems, such
as problems where the objective function is discontinuous,
non‐differentiable, stochastic, or highly non‐linear [45]. In this
regard, GA has become one of the most important algorithms
among modern optimisation algorithms because of its good
global search performance and low algorithm complexity [46].
Since the comparative analysis of this work is mainly based on
specific real working cycles, the proposed fuzzy controller's
parameters are optimised by means of the genetic algorithm
(GA) to achieve online near‐optimal EMS for the known
working cycles of the developed ERSAPHT.

2.3.3 | Genetic‐fuzzy EMS

The optimisation of fuzzy MFs by GA is explained in other
works [26, 46, 47] for on‐road hybrid vehicle EMS problem. In
this respect, for an optimisation problem's definition of some

VL
L
M 
H
VH
ME
MP 

= Very Low
= Low
= Medium
= High
= Very High
= Max. Eff.
= Max. Pow.

Moderate mode output
SOC

VH H M L VL

Req. Power

VH ME ME MP MP MP

H OFF ME ME MP MP

M OFF ME ME ME MP

L OFF OFF ME ME ME

VL OFF OFF OFF ME ME

F I G U R E 8 Fuzzy logic controller rules and
table description for moderate mode as an example
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fundamental aspects such as objective function and constraints
are necessary. However, it should be noted that each turn on of
the Bio‐Gen causes additional losses in terms of a higher
quantity of injected gas to guarantee a stable engine burn
process for the starting revolutions, larger applied electric
torque to overcome static friction, compression work, and cold
start effects. Therefore, the suggested GA‐FLC is aimed at
minimising the fuel consumption (mfuel) and the number of
engines ON/OFF (N) to provide the most efficient work and
avoid frequent engine cold start. The input and output MFs'
designing parameters, which equal to 26 in total, are used as
decision variables for FLC optimisation. The GA uses certain
natural procedures, such as crossover and mutation, to leave
out the unfavourable populations and retain the most meri-
torious ones to generate new generations in order to perform
the optimisation process [25]. In this regard, the process of
survival of the fittest refers to the minimisation pattern of the
given cost function. Consequently, the cost function and
constraints in performing the MFs adjustment over each
working mode are integrated as follows:

min JGA ¼
1

w1 þ w2

�

w1 ∫
t

0
mfuel dt þ w2 ∫

t

0
N dt

�

ð13Þ

DMFk:min ≤ DMFk ≤ DMFk:max ðk¼ 1⋯26Þ

MT ≤ PBio‐Gen ≤ MP

0:2 ≤ SOC ≤ 1

where JGA is the performance index for GA, w1 and w2 are
the weighting variables that have been added to enforce the
importance of the fuel economy and the number of engines
ON/OFF that could be defined based on the design objec-
tives. For instance, when the main objective is the mini-
misation of the vehicle’s fuel consumption, its weight is set to
1 and the engine's ON/OFF weights are set to less than 1.
However, both the objectives are equally important in this
work. Therefore, the values of w1 and w2 have been defined as
2.35 USD/kg and 0.035 USD, respectively. These values are
based on the 2020 Alternative Fuel Price Report by the U.S.
Department of Energy [48]. DMF denotes the degree of the
parameter for defining the MFs for the FLC. In this case, the
main GA parameters and constraints such as the iterative
generations, the elite count, and the crossover probability are
set to 100, 10, and 0.8, respectively. As the objective function
includes two variables, in order to boost the algorithm's per-
formance, the population size is defined as 150. Consequently,
according to the main parameters of the GA, the rule base of
the fuzzy controller can be optimised. Ultimately, the working
cycle from the data experimentally measured by the
ERSAPHT platform is used as input for the GA‐fuzzy algo-
rithm and the optimisation process has been carried out in the
simulation model.

Accordingly, the optimised fuzzy MFs compared to the
initial ones are shown in Figure 9. In addition, Figure 10 shows
the inference for the optimised FLC during the moderate
working mode, which is obtained based on the battery's SOC
and the required power. Moreover, for the ERSAPHT as a
PHET, it is expected that the SOC reaches the lower limit
(20%) at the end of the day as a constraint, so that the battery
can be recharged by the power grid rather than by the ICE.

2.3.4 | Dynamic programing EMS

A global optimal solution can be achieved using DP for multi‐
constraints and non‐linear dynamic systems. While this

F I G U R E 9 Optimised membership functions (MFs) (solid line)
compared to the initial MFs (dash line) for the state of charge and requested
power

F I G U R E 1 0 Control surface for moderate mode
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approach cannot be applied in real‐time EMS applications, it
can provide an ideal baseline for assessing different EMSs [49].
Therefore, DP is used to obtain the optimal results in this
study and its results are compared with the developed GA‐FLC
EMS. Since DP is a classic method in HEVs and is available in
other similar works, this section follows the developed DP in
[26, 50]. By doing the calculation backwards over the time
horizon on the basis of Bellman’s principle of optimality [51],
DP seeks for the optimal control action trajectory among all
the possible offline actions by assuming that the driving cycle
information is available [50]. The breakdown of the entire
trajectory into multiple homogenous sub‐trajectories is the key
condition to apply DP. In this regard, the working cycle is
broken down into N stages, and each stage corresponds to an
individual state. Each stage needs to be attached to a state
variable. In the discrete‐time format, the PHET system can be
formulated as follows:

xðkþ 1Þ ¼ f ðxðkÞ:uðkÞÞ: k¼ 0:1:… : N − 1 ð14Þ

where x(k) is the state variable vector (SOC of battery SOC
(k)), and u(k) is the control variable (Bio‐Gen requested power
PBio‐Gen(k)). Then, the optimal control problem is to obtain
the control sequences to minimise the following cost
function:

JDP ¼
XN

k¼0

L ðxðkÞ:uðkÞÞ ð15Þ

where L(k) is the instantaneous cost. In fact, the optimal fuel
consumption of the whole drive cycle can be determined by
calculating the optimal fuel consumption of each state utilising
(15). Accordingly, the objective function can be simplified to a
single state variable SOC and a single control variable PBio‐Gen.
In summary, the energy management problem of the
ERSAPHT is to seek a trajectory for PBio‐Gen(k) to make the
objective function value minimum, while satisfying the
requested power and other constraints. Therefore, the state
variable can be expressed as follows:

SOCðkþ 1Þ ¼ SOCðkÞ þ Δ SOCðkÞ
¼ SOCðkÞ þ g ðSOCðkÞ: PBio‐GenðkÞÞ

ð16Þ

In the optimisation process, some restrictions should be
considered to ensure the safe operation of the components
such as the battery, electric motor, and Bio‐Gen. In the
following equation, min represents the minimum value and
max represents the maximum value of the variables:

8
>>><

>>>:

SOCmin ≤ SOC ðkÞ ≤ SOCmax
Tm−min ≤ Tm ðkÞ ≤ Tm−min
nm−min ≤ nm ðkÞ ≤ nm−min
TBio−Gen−min ≤ TBio−Gen ðkÞ ≤ TBio−Gen−max
nBio−Gen−min ≤ nBio−Gen ðkÞ ≤ nBio−Gen−max

ð17Þ

where Tm(K), nm(K), T Bio‐Gen (K), and nBio‐Gen (K) are the
speed and output torque of the electric motor and Bio‐Gen
units at the kth step from the related efficiency maps,
respectively. In this study, the initial SOC is considered equal to
0.7. However, compared with HEVs, PHEVs have a larger
battery and the battery acts as a power equaliser to improve the
ICE's operating efficiency with the expectation of the same
SOC at the start and end of a trip and can replace a certain
amount of fossil energy with grid electricity [52]. Therefore,
the minimum and maximum allowed SOC, defined as 0.2 and
1, respectively. Consequently, using the Bellman optimal the-
ory, the objective function for the (N− 1)th step can be
expressed as follows:

J�GAN−1
ðxðN − 1ÞÞ

¼ minuðN−1Þ½L ðxðN − 1Þ: uðN − 1Þ� ð18Þ

For the kth state (0 ≤ k < N − 1), the objective function is

J�GAk
ðxðkÞÞ ¼ minuðkÞ L ðxðkÞ: uðkÞÞ þ J�GAkþ1

ðxðkþ 1ÞÞ

ð19Þ

where J�GAk
ðxðkÞÞ is the optimal cost‐to‐go function at state

x(k) from the kth simulation stage to the end of the driving
cycle and x(k + 1) is the state in the (k + 1)th step when the
control variable u(k) is applied to state x(k) at the kth step. The
errors that occur during the implementation of the DP pro-
cedure are closely related to the discretisation resolution of
relevant continuous variables. Therefore, it is necessary for the
variables to be discretised into finite points [52]. In this regard,
the state variables have the same discretisation resolution
which is chosen to be equal to the sampling period of
measured working cycles (a time step of 10 ms). And the
control variable is discretised to the number of possible values
for the digitalised control variable [50]. Ultimately, the mini-
mum value of the objective function can be determined based
on the defined constraints to achieve optimum fuel con-
sumption by using the simulation tool.

3 | RESULTS AND DISCUSSIONS

For farm tractor applications, the proposed EMS is supposed
to work online without any prior knowledge about farm
operation conditions. Therefore, a mixed working cycle is
made up based on the conducted experimental test for three
typical farm operations comprising trailer, seed spreader, and
boom‐type sprayer (each for 1800 s). The mixed working cycle
consists of the tractor's speed profile, required traction power,
and PTO power for the implements operation. Consequently,
the ERSAPHT's performance has been analysed by employing
the proposed FORA along with three energy management
methods comprising the pre‐defined MFLC, the optimised
MFLC, and the thermostatic control strategy (TCS). The
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results from each layout of the proposed EMSs are discussed
in the following sections:

3.1 | Operation condition recognition
algorithm (FORA) results analysis

First, the mixed working cycle is used to assess the perfor-
mance of the FORA. The results obtained in Figure 11 show
that the FORA is capable of recognising new working condi-
tions based on calculated features without switching or
confusing between the conditions. As mentioned before, on
conditions such as a short working path the required power
swiftly changes from one mode to another, the recognition
method might make a wrong decision that may affect the fuel
economy. To avoid that problem, the moderate mode is
defined by the EMS as the default mode (as shown in
Figure 11) to put the vehicle performance as a priority on
unrecognised conditions. For instance, at the beginning of
running the operation, the moderate mode is selected by the
FORA by default. Then the FORA continuously analyses the
previous working section up to 150 s depending on
the measured features. In other words, the working features are
calculated for the past driving working segment, and then the
calculated working features are compared with the pre‐defined
reference points, by using the Euclidean distance concept
(Equation 11). The reference point nearest to the extracted
working features is the most probable mode. After that, the
FORA applies the most appropriate mode to the MFLC for a
50 s interval and the same process is continuously repeated for
future sections. The recognition of a new working mode is
perceived as correct when the mode is identified as same, three
times consecutively.

Because of the principal target of this work, which is a
reliable FORA for the EMS of the ERSAPHT, the percentage
of correct recognition (C%) has been investigated simply by
the following formula:

C%¼
nc
Nt

� 100 ð20Þ

where, nc and Nt are the number of correctly recognised sec-
tions and the number of all sections, respectively. Given that
the working features are calculated for the past working section
(working segment), the results of the investigated farm oper-
ation show that the condition's recognition of the designed
FORA is correct by 81%, as shown in Figure 11. Obviously, it
should be mentioned that in the actual farm working condi-
tions, the equipment is not usually changed in the short term
and it is typically constant for a working shift. Therefore, the
FORA could recognise the appropriate mode with more ac-
curacy in the actual farm working conditions (as an example,
over 91% at the seed‐spreader working cycle).

3.2 | Performance evaluation of the
intelligent EMS based on experimental
working cycles

The performance of the proposed MFLC is validated based on
the experimental working cycles. In this regard, measured data
from the three typical farm operations that were introduced in
Section 3 is imposed on the designed EMS as input. The results
in Figure 12 demonstrate the obtained traction power and the
power provided by each energy source during the working cy-
cles. This result shows the power provided by the battery pack,

F I G U R E 1 1 The farm operation recognition algorithm results for the typical measured data and mode recognition (1: light, 2: moderate, and 3: heavy)
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PV, and Bio‐Gen systems employing the MFLC as the EMS. In
practice, the Bio‐Gen systems either assist the battery pack to
power the traction motors when the load power request is high
or charges the battery pack when the load request is low. The
results in Figure 12a show that the trailer's work cycle requests
the highest power due to its higher speed and load compared to
the other two cycles. Therefore, the EMS has used the Bio‐Gen
for a longer period in high‐power mode (MP mode). Fig-
ures 12b and 12c illustrate that the Bio‐Gen system has been
employed by the EMS for a shorter time in a more efficient
range (ME mode). From this figure, it is clear that the EMS
avoids the unnecessary on‐off cycles of the Bio‐Gen.
The performance of the proposed intelligent EMS is

compared with DP and a basic charge depleting rule‐based EMS
to evaluate its functionality before implementing it in a real
vehicle. Figure 13 compares the battery SOC level obtained
based on the pre‐defined MFLC, the optimised GA‐FLC, the
DP and the thermostatic control strategy (TCS) during each
working cycle. It is evident that the off‐line optimal strategies
(DP and optimised GA‐FLC) are close and try to keep the SOC
at a higher level than the two other rule‐based methods because
of their prior knowledge about the particular input working
cycles. Also, the use of the Bio‐Gen and battery pack together
throughout the work helps the ERSAPHT operate in its more
optimal region to avoid range anxiety and component fast
degradation. Accordingly, the figures demonstrate almost similar
results for both the optimisation‐based EMSs. Moreover, it is

obvious that the SOC of the pre‐definedMFLC strategy is much
closer to the optimal one compared to the TCS. As can be seen,
initially only the battery pack provides the power to the traction
subsystem until the battery SOC is higher than the threshold
defined by the controllers (see Figure 12 also). Therefore, the
battery SOC rate decreases during this period. However, when
the Bio‐Gen starts working, the slope of the SOC diagram de-
creases or increases depending on the EMS commands.
Regarding Figure 13a, it is obvious that the SOC usually de-
creases during the trailer's working cycle while the Bio‐Gen is
still on. This is due to the fact that the Bio‐Gen is a downsized
range extender. Moreover, as can be seen in Figures 13b and 13c,
the average power output of the Bio‐Gen is closer to the power
consumption of the sprayer and seed‐spreader work cycles.
Moreover, the slope of the SOC diagram in these operating
modes increases when the Bio‐Gen is turned on.

3.3 | The ERSAPHT's performance
evaluation

Since the real‐world tests have many limitations and the 1800 s
test is too brief to provide an appropriate measure of the fuel
economy in each mode, a longer test has been performed in
the developed Simulink model. In this regard, the performance
of the four EMS including the pre‐defined MFLC, the opti-
mised FLC, the optimal DP, and the TCS are compared by
considering 10 h of daily working period with the fully charged
battery pack. Consequently, each working cycle has been
separately imposed on the simulation model.
Table 3 shows the performance of the ERSAPHT under

three typical working cycles by employing design strategies
based on the previously described real‐world test data. Ac-
cording to these results, the power requirement for the seed

F I G U R E 1 2 The obtained traction power and the power provided by
each energy source during the working cycles, (a) Trailer puling, (b) Boom‐
type sprayer, and (c) Seed spreader

F I G U R E 1 3 The obtained battery state of charge during the working
cycles, (a) Trailer puling, (b) Boom‐type sprayer, and (c) Seed spreader
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spreader is lower than the sprayer and the trailer; therefore,
minimum fuel consumption is obtained due to less Bio‐Gen
working time, compared to the other working conditions. In
this regard, the obtained results show that the TCS achieves
less fuel efficiency because more fuel is consumed by the ICE
during the employment of the Bio‐Gen in the maximum power
mode, compared to the other EMSs. Furthermore, the fuel
consumption rate of the pre‐defined MFLC strategy is ob-
tained as 0.955, 0.579, and 0.470 m3 in the operations of the
trailer, boom‐type sprayer, and the seed spreader, respectively.
It illustrates almost 12% to 13% of fuel economy improve-
ment. Moreover, the information on the table demonstrates an
average difference of 5.5% in fuel consumption for the MFLC
compared to the optimal strategies. According to these results,
the pre‐defined MFLC controller's performance is very close
to the optimal strategy. However, it proves the proposed
optimal GA‐fuzzy strategy is capable of running the Bio‐Gen
system in the most efficient operation zone during the working
time to achieve less fuel consumption.
Furthermore, the time required for performing the GA‐

fuzzy EMS optimisation process to tune the MFs is around
50 min, using a desktop running with an Intel (R) Core i7‐5500
CPU and 16 GB memory. However, this process is performed
once to calculate the optimised membership function param-
eters. The computation time of using this optimised strategy in
real time is less than one second. Accordingly, the computation
time for the off‐line DP optimisation is around 45 s, while
these numbers for the single FLC and TCS are less than one
second. Consequently, based on the achieved results, the pro-
posed GA‐fuzzy EMS is suitable for the purpose of real‐time

implementation to reach a near‐optimal EMS for the devel-
oped ERSAPHT.
In order to evaluate the reliability of the proposed intelli-

gence GA‐fuzzy multi‐mode EMS, the combined working
cycle presented in Section 5.1 is imposed on the ERSAPHT
model as input. Consequently, the performance of the EMS is
assessed in terms of energy usage from each source. The re-
sults obtained in Figure 14 show the power required by the
ERSAPHT and the energy provided by each energy source
during the mixed working cycles. These results illustrate that
the proposed EMS behaves in an adapted way to minimise fuel
consumption depending on the working conditions. Conse-
quently, the developed algorithm in this work could be applied
in a designed EMS to control the operation of the range
extender on the safe operating condition to increase the
components' lifetime and the fuel economy of the system.

4 | CONCLUSION

Literature consideration shows that there has been a trend
towards the electrification of off‐road vehicles such as agri-
cultural tractors and mining vehicles by transferring key tech-
nologies from on‐road HEVs. In this regard, the use of an
advanced EMS has been a key factor for designing a hybrid
electric powertrain for a PHET. This work proposes an intel-
ligent EMS through the simulation of a farm energy inde-
pendent off‐road hybrid electric tractor using renewable
energy sources (battery, PV, and biogas‐fuelled Bio‐Gen). The
proposed EMS consists of two layers including a FORA based
on the FCM classifier and an optimised MFLC based on the
GA. Consequently, the FORA recognises the operation modes,
namely light, moderate, and heavy. Then the most proper
mode of multi‐mode GA‐Fuzzy EMS is activated to efficiently
supply the power requested for the ERSAPHT based on the
battery SOC and the required power. By employing this EMS,
the Bio‐Gen assists the battery pack at the lower SOC levels in
supplying energy. This helps the Bio‐Gen work in its efficient
region to decrease fuel consumption and to increase the
components' lifetime.
To evaluate the performance of the proposed EMS, three

typical field experiments (trailer, boom‐type sprayer, and seed
spreader) were imposed in the ERSAPHTmodel. The achieved
results verify that the proposed EMS can be used online effi-
ciently in the studied off‐road hybrid electric vehicle. To be
more precise about the significance and applicability of the

T A B L E 3 The comparative performance of the extended‐range solar assist plug‐in hybrid electric tractor under three typical working cycles

Working cycle Recognised mode Ave. power (kW)

Fuel cons. (m3) (performance improvement [%])

TCS MFLC Optimal FLC DP

Trailer High 11.85 1.083 0.955 (12) 0.903 (17) 0.898 (18)

Sprayer Moderate 8.91 0.661 0.579 (12) 0.548 (17) 0.547 (17)

Seed Spreader Low 6.96 0.540 0.470 (13) 0.442 (18) 0.441 (18)

Abbreviations: FLC, fuzzy logic control; MFLC, multimode fuzzy logic controller; TCS, Thermostat Control Strategy.

F I G U R E 1 4 The obtained traction power and the energy provided by
each energy source during the mixed working cycles
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proposed pre‐defined MFLC strategy, DP optimisation and
rule‐based TCS methods were used for comparison. It can be
claimed that the fuel consumption in the GA‐fuzzy EMS
compared to the rule‐based TCS declined around 17%, 17%,
and 18% with the trailer, the boom‐type sprayer, and the seed‐
spreader working cycles, respectively. Moreover, the reliability
of the proposed EMS is tested when mixed power demand is
subjected to the ERSAPHTmodel on the mixed working cycle.
In this situation, the proposed intelligent EMS adapts to the
current working mode and decreases fuel consumption
compared to the rule‐based TCS method.
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