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RESUME

La prise de décision (DM), un processus de détermination et de sélection de décisions
alternatives en fonction des informations et des préférences des décideurs (DM), apparait
largement dans notre vie personnelle et professionnelle quotidienne. Un grand nombre de
méthodes DM ont ét¢ développées pour aider les DM dans leur type unique de processus
de décision. Dans cette thése, les méthodes DM associées a deux types de processus DM
sont étudiées : la prise de décision sous incertitude (DMUU) et la prise de décision

multicritére (MCDM).

La DMUU doit prendre la décision lorsqu'il existe de nombreuses inconnues ou
incertitudes sur le type d'états de la nature (une description compléte des facteurs externes)
qui pourraient se produire a l'avenir pour modifier le résultat d'une décision. La DMUU
comprend deux sous-catégories : la prise de décision sous incertitude stricte (DMUSU) et
la prise de décision sous risque (DMUR). Cinq méthodes classiques de DM pour DMUSU
sont le principe de raison insuffisante de Laplace, le Waldimin Maximin, le regret Savage
Minimayx, le critére d'index pessimisme-optimisme de Hurwitz et le critére de domaine de
Starr. En outre, 'examen de la relation entre un jeu a deux joueurs dans la théorie des jeux
et I'équilibre DMUSU et Nash Equilibrium est également considéré comme l'une des
méthodes pour résoudre le DMUSU. Les méthodes DM bien connues de DMUR sont la
valeur monétaire attendue, la perte d'opportunité attendue, les états de nature les plus

probables et 1'utilité attendue.

Le MCDM est une sous-discipline de la recherche opérationnelle, ou les DM évaluent
plusieurs critéres conflictuels afin de trouver la solution compromise soumise a tous les
criteres. Un certain nombre de méthodes DM pour MCDM sont présentes de nos jours.
Le processus de hiérarchie analytique (AHP), I'élimination et le choix traduisant la réalité
(ELECTRE), les méthodes d'organisation du classement des préférences pour les
évaluations d'enrichissement (PROMETHEE) et la technique de préférence par ordre de
similitude et de solution idéale (TOPSIS) sont les plus choisies et utilisées des méthodes

parmi toutes les différentes méthodes MCDM.
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Ce travail de theése se concentre sur la présentation théorique d'une étude comparative des
méthodes DM et I'évaluation des performances de différentes méthodes avec un probléme
de décision particulier. Cette contribution peut guider les DM a rassembler les
informations relatives objectives et subjectives, a structurer le probléme de décision et a
sélectionner la bonne méthode de DM pour prendre la décision qui convient non

seulement a leurs préférences subjectives, mais aussi aux faits objectifs.

L'étude de cas utilisée ici est la sélection du plan de construction du réseau d'égouts. Il
s'agit d'un probléme de décision pratique représentatif et complexe qui nécessite la qualité,
I'entretien du cycle de vie et les performances du réseau d'égouts sélectionné pour
répondre a la planification a long terme des futurs changements climatiques et du

développement urbain.



vii
ABSTRACT

Decision making (DM), the process of determining and selecting alternative decisions
based on information and the preferences of decision makers (DMs), plays a significant
role in our daily personal and professional lives. Many DM methods have been developed
to assist DMs in their unique type of decision process. In this thesis, DM methods
associated with two types of DM processes are studied: Decision-making under

uncertainty (DMUU) and Multi-criteria decision making (MCDM).

DMUU is making a decision when there are many unknowns or uncertainties about the
kinds of states of nature (a complete description of the external factors) that could occur
in the future to alter the outcome of a decision. DMUU has two subcategories: decision-
making under strict uncertainty (DMUSU) and decision-making under risk (DMUR). Five
classic DMUSU methods are Laplace’s insufficient reason principle, Wald’s Maximin,
Savage’s Minimax regret, Hurwicz’s pessimism-optimism index criterion and Starr’s
domain criterion. Furthermore, based on a review of the relation between a two-player
game in game theory and DMUSU, Nash equilibrium is considered a method for
approaching DMUSU as well. The well-known DMUR DM methods are expected
monetary value, expected opportunity loss, most probable states of nature and expected

utility.

MCDM 1is a sub-discipline of operations research, where DMs evaluate multiple
conflicting criteria in order to find a compromise solution subject to all the criteria.
Numerous MCDM methods exist nowadays. The Analytic Hierarchy Process (AHP), the
ELimination et Choix Traduisant la REalit¢ (ELECTRE), the Preference Ranking
Organization METHod for Enrichment Evaluations (PROMETHEE) and the Technique
for Order Preference by Similarity to Ideal Solution (TOPSIS) are the most employed of
all the various MCDM methods.

This PhD work focuses on presenting a comparative study of DM methods theoretically

and evaluating the performance of different methods on a single decision problem. This
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contribution can guide DMs in gathering the relative objective and subjective information,
structuring the decision problem and selecting the right DM method to make the decision

that suits not only their subjective preferences, but also the objective facts.

The case study used here is the selection of a sewer network construction plan. It is a
representative and complex practical decision problem that requires the quality, life-cycle
maintenance and performance of the selected sewer system to meet long-term planning

for future climate changes and urban development.

Keywords: Decision making under strict uncertainty, Decision making under risk, Multi-
criteria decision making, Sewer network planning, Laplace’s insufficient reason principle,
Wald’s Maximin, Savage’s Minimax regret, Hurwitz’s pessimism-optimism index
criterion, Starr’s domain criterion, Nash equilibrium, AHP, TOPSIS, ELECTRE,
PROMETHEE.
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CHAPTER 1 ~ INTRODUCTION

1.1 Introduction

Decision making (DM), the process of determining and selecting alternative decisions
based on information and the preferences of decision makers (DMs), plays a significant
role in our daily personal and professional lives. Every single day people make decisions.
Most are relatively insignificant; for example, whether or not to add milk to one’s tea.
Others are more important and require a deep analysis before choosing one alternative
from all the possibilities that meets the goal and has a decent probability of success. A few
examples are decision making as part of budget planning in production engineering
(Keefer & Kirkwood, 1978), airport location (Layard, 1972), water resource management
(Liu, Gupta, Springer, & Wagener, 2008) and career choices (Gianakos, 1999).

In general, the DM process contains three basic stages: first, structure the decision problem.
This includes defining the goal or the purpose of making the decision, identifying the
various available alternatives, gathering the relative data and facts about the alternatives
and the decision environment. Second, select one decision-making method that suits the
decision problem. Third, execute the DM method and select the right alternative to make
the decision. Here, DM methods refers to techniques or algorithms that effectively gather
the information, provide a good understanding of the decision problem structure and rank
the alternatives to find the final solution. Many DM methods have been developed to assist

DM s in their unique type of decision process.

In this thesis, DM methods associated with two types of DM processes are studied:

— Decision making under uncertainty (DMUU)
» Decision making under strict uncertainty (DMUSU)
» Decision making under risk (DMUR)

- Multi-criteria decision making (MCDM)



DMUU is making a decision when there are many unknowns or uncertainties about the
kinds of states of nature (a complete description of the external factors) that could occur
in the future to alter the outcome of a decision. In other words, the consequence of the
decision is highly affected by a host of conditions beyond one’s control, e.g., whether a
farmer harvests his crop is highly dependent on weather conditions, or decisions about
launching a new product could be influenced by market forces. Furthermore, based on the
degree of uncertainty, DMUU has two subcategories: decision making under strict
uncertainty (DMUSU) and decision making under risk (DMUR). “Strict uncertainty”
means that the likelihood of various possible future conditions is quantitatively
immeasurable. “Risk” assumes that DMs can assign a probability distribution to each state
of nature based on their own experiences or historical frequencies. Five classic DMUSU
methods are Laplace’s insufficient reason principle (Keynes, 1921), Wald’s Maximin
(Wald, 1950), Savage’s Minimax regret (Savage, 1972), Hurwicz’s pessimism-optimism
index criterion (Hurwicz, 1952) and Starr’s domain criterion (Starr, 1966). They were
actively developed in the early 1950s. Each method proposes different ways of handling
uncertainty. As the probability distribution of states of nature can be assigned in DMUR,
the well-known DM methods of DMUR are the expected monetary value, the expected
opportunity loss, the most probable states of nature and the expected utility (Taghavifard,
Damghani, & Moghaddam, 2009).

MCDM is a sub-discipline of operations research, where DMs evaluate multiple
conflicting criteria in order to find the compromise solution subject to all the criteria. For
example, when purchasing a car, price, comfort, power and fuel economy are the main
criteria to consider. The criteria can be quantitative and objective, such as price, or
qualitative and subjective, such as comfort. Most of the time, there is no perfect option
available to suit all the criteria; for example, it is unlikely that the cheapest car is the most
comfortable one. Hence, MCDM methods mainly focus on helping DMs synthesize the
information to find a trade-off among the conflicting criteria. A number of MCDM
methods currently exist and more are being developed (Wallenius, et al., 2008) (Ishizaka
& Nemery, 2013). The Analytic Hierarchy Process (AHP) (Saaty, 1980), the ELimination
Et Choix Traduisant la REalité (ELECTRE) (Benayoun, Roy, & Sussman, 1966), the



Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE)
(Brans & Vincke, 1985) and the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) (Yoon & Hwang, 1995) are the most-employed MCDM methods
(Kabir, Sadiq, & Tesfamariam, 2014).

1.2 Objectives and Methodologies

Defining the correct type of decision-making process is essential and is a starting point
for making a good decision. Based on the information available to DMs, they first need to
think about how many external factors should be incorporated into their decision-making.
If there is only one external factor, Decision Making Under Uncertainty is the right choice.
Moreover, based on the DMs’ knowledge of this external factor, it will be clear if it is a
DMUSU or DMUR problem. If there are several different external factors, i.e., different
criteria or perspectives, that DMs would like to consider in evaluating each alternative,

then MCDM will be the right type of decision-making process. See Figure 1-1.

Decision
making
process

_———

Multiple
external
factors

"'_"__'l.'__ e l — ,_l " ) ‘._l‘"_“_'.’

One external
factor

DMUSU DMUR MCDM

_J

Figure 1-1: Decision-making process

Facing various DM methods corresponding to different types of DM problems, DMs are
confronted with the difficult task of selecting one appropriate method, as each method has

its own restrictions, particularities, preconditions and perspectives and can lead to



different results when applied to an identical problem (Ishizaka & Nemery, 2013). Hence,

it is worthwhile and important to present a study that can help DMs select the right

decision-making method when dealing with different types of decision processes in order

to find the right solution to the problem. In this way, DMs can be guided in gathering the

relative objective and subjective information to structure the decision process and select

the right DM method to make the decision that suits not only their subjective preferences,

but also the objective facts.

To achieve this objective, the comparative study on different DM methods in this thesis is

carried out via the following methodologies:

1. A full overview of the different types of decision-making processes (DMUSU,
DMUR and MCDM) considered in this research is presented to clarify and

distinguish them.

2. Research on the methodologies for approaching DMUSU:

a)

b)

A full literature review and theoretical comparison of five classic methods for
solving a DMUSU problem 1is provided in order to clearly understand each
method’s character, advantages and disadvantages;

The relation between DMUSU and a two-player game is discussed and Nash
equilibrium from game theory methodology is proposed as another option for
solving DMUSU problems;

All the methodologies for approaching DMUSU (five classic ones and Nash
equilibrium) are applied to one particular sewer network selection problem in

order to compare them during practical implementation.

3. Research on DMUR methodologies:

a)

b)

Four well-known DMUR methodologies are explored and compared in theory.
The examples of sushi restaurant planning and buying a lottery ticket are used
to clearly demonstrate how to implement each method and how they differ;

Expected value of perfect information is discussed in theory and a practical

example of farmer’s payoff is explored to explain whether DMs would be



willing to pay to get the perfect information to help them make decisions in a
DMUR process.

4.  Research on the methodologies for approaching MCDM:

a) The four most commonly used MCDM methods (AHP, TOPSIS, ELECTRE
and PROMETHEE) are reviewed in theory to discover each method’s own
limitations and particularities;

b) AHP, TOPSIS, ELECTRE and PROMETHEE are applied to the same decision
problem to evaluate and analyze the suitability of results in order to highlight
the differences.

¢) During implementation, the Delphi method is used to collect all the
stakeholders’ opinions.

5. To summarize the above, an overall conclusion is provided to present a clear picture
to DMs about how to define the types of decision processes (DMUSU, DMUR or
MCDM) based on the available information. Furthermore, once the type of decision
process is defined, the research can guide them in selecting a single appropriate

methodology for their unique decision problem.

All the results of this research have been published or submitted via four papers listed

below.

Paper 1: Literature Review in Decision Making with Uncertainty. The aim of this
paper is to perform a complete literature review of all DMUU methods in order to fully
understand them from a theoretical perspective, point out their advantages/disadvantages
and state their particularities. Furthermore, based on a literature review of the relationship
between a two-player game in game theory and DMUSU, this work proposes a link
between the basic concepts in game theory and decision making and Nash equilibrium
(Nash, 1950) (Nash, 1951) is considered one of the methods for approaching DMUSU.
(Published in 12° édition du Congres international de Génie industriel, May 2017).

Paper 2: Decision Making Under Strict Uncertainty: Case Study in Sewer Network
Planning. The goal of this research is to implement DMUSU methods and Nash



equilibrium in a real-life project: selecting a suitable sewer network construction plan and
comparing each method in a practical way based on the different results from each method.
(Published in International Journal of Electrical, Computer, Energetic, Electronic and

Communication Engineering, 11(7), 2017).

Paper 3: Selecting Sewer Network Plans Using the Analytic Hierarchy Process. This
work is the first step in the research on the direction of MCDM. In this paper, a single
popular MCDM method is explained and implemented to discover its advantages and
limitations. (Published in the 47th International Conference on Computers & Industrial

Engineering, October 2017).

Paper 4: Comparison of multi-criteria group decision-making methods for urban
sewer network plan selection. The paper is aimed at providing an intuitive explanation
and interpretation of the most-employed MCDM methods (AHP, ELECTRE,
PROMETHEE, TOPSIS). It examines four MCDM methods through a comparative study

of their implementation in an urban sewer network group decision problem (forthcoming).

1.3 Organization of the Thesis

The thesis is organised as follows: Chapter 1 is the introduction, which provides a general
background on DM processes to introduce the motivations, objectives and methodologies
of'this research. Chapter 2 contributes a literature review of the DM methods in DMUSU,
DMUR, game theory and their relation. Classic DMUSU methods and their axiomatic
comparison are described in detail and illustrated with examples. In game theory, the basic
concepts of constituting a game and game types are introduced, followed by the
description of the prisoner’s dilemma, matching pennies and the pirate game. Then Nash
equilibrium, a solution concept in game theory, is illustrated with examples. Using three
basic elements of decision-making problems and the basic concepts of a game, a decision-
making problem can be converted to a two-player game where player 1 is the decision
maker and player 2 is nature. A detailed comparison of DMUR methodologies is also

provided. Chapter 3 compares five classic DMUSU methods in a more practical way than



axiomatic comparison. It applies each DM method to a practical sewer network planning
example; results from different methods are discussed and analyzed. Moreover, NE in
game theory is applied, as it is another candidate for DMUSU based on the link between
DMUSU and a two-player game. Chapter 4 and Chapter 5 start the work on the topic of
MCDM, where Chapter 4 proposes three theoretical categories of MCDM methods and
four popular MCDM methods from each category — AHP, ELECTRE, PROMETHEE and
TOPSIS — are presented. Meanwhile, Chapter 5 presents a comparative study of these
methods in a practical way by applying them to a real sewer network planning case study
and analyzing the suitability of results in order to highlight the differences and lead to
meaningful conclusions. Chapter 6 summarizes this PhD work through concluding

remarks, contributions and ideas for future research.



CHAPTER 2 — LITERATURE REVIEW ON DECISION MAKING UNDER
UNCERTAINTY

2.1 Introduction

In reality, only very few decisions are made with absolute certainty. It is seldom possible
for a decision maker to collect all the information and data surrounding a decision problem,
thus most decisions are made with a certain risk. Based on the decision maker’s knowledge
of the information and data, decision making under uncertainty problems are divided into
two categories: decision making under strict uncertainty (DMUSU) and decision making

under risk (DMUR) (French, 1988).

These categories are limited to a decision maker facing an inert environment. However,
there are situations where the environment can actively work against the decision maker.
These situations belong to the realm of game theory. Game theory is considered the theory
of interdependent decision making, where the outcome is related to the decisions of two

or more players and no single player has full control over the outcome.

While the literature has studied different solution concepts for game theory, such as the
Nash equilibrium, it is surprising that the link between decision making and game theory
remains relatively uncharted. This chapter provides a literature review of these two

domains and proposes a structure to better link them.

The rest of the chapter is as follows. Section 2.2 covers the decision-making literature,
from formalizing a decision-making problem to describing the existing criteria. Section
2.3 covers game theory literature. Section 2.4 links decision making problems with game

theory. Section 2.5 presents the conclusion and potential future work.



2.2 Decision Making Under Uncertainty

2.2.1 Decision Table

Before launching the DM process, DMs need to specify the relevant actions, states and
outcomes (Peterson, 2009). In short, states (also called states of nature) refer to a complete
description of the external factors that may affect the decision maker’s preference for a
certain action. Actions in a DM problem are considered alternative decisions, one of which
is the solution to the initial problem. Outcomes are the consequences of all the possible
actions under a given set of states of nature, which ultimately help decision makers to
figure out which action to choose. The consequence of any decision is determined not just

by the decision itself but also by a number of states of nature.

Let’s assume that d,, d,, ..., d,,, denote the actions or decision alternatives available to the

decision maker, the possible states of nature are denoted by sy,5;,..,8,, and a;;
represents the outcome that is the consequence of selecting decision d; when s; is the state,

it can be a numerical value, e.g., payoff. Thus, the process can be summarized as in

Table 2-1.

Table 2-1: Decision table

States of Nature
Con
onsequences 55 55 s,
d, aq a3 Ain
d, Actions | a,; ary Aoy
dm Am1 Am2 Amn

The decision table clearly presents every possible combination of alternatives and states

of nature. The outcomes form a m X n dimensional matrix A = (a;;)mxn thatis called the
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decision matrix; it helps the decision maker to visualize the decision problem and

facilitates the decision-making process.

Let us consider a classic example from Savage (1972). Person A wants to make an
omelette and has just broken five good eggs into a bowl. Person B would like to break the
sixth egg and finish the omelette. Person B can either add the sixth egg into the bowl or
not add it. With the condition of the sixth egg (good or rotten), they can have a six-egg
omelette or a five-egg omelette, or no omelette. Clearly, in this example, the states of
nature are the condition of the sixth egg, the alternative acts are adding the sixth egg into
the bowl or not adding it, the outcomes are what kind of omelette they can have. Table 2-

2 is the decision table for this example.

Table 2-2: Decision table for Savage omelette decision problem

States of Nature

Good Rotten
Add into bowl Six-egg omelette No omelette
Not add into bowl Five-egg omelette Five-egg omelette

2.2.2 Category

Most problems in DM fall into a specific category according to DMs’ knowledge of the
state of nature (French, 1988): DMUSU and DMUR.

DMUSU means that the decision maker has no information about states of nature. He is
not unaware of the true states, but he cannot quantify his uncertainty in any way. He can
only prepare an exhaustive list of possible states of the world. Let us take the example of
the roll of dice where one must use skewed dice. The probability distribution over these
skewed dice is unknown. In this example, the outcome is much more difficult to predict.
The decision maker has no knowledge about the states of nature and/or cannot quantify

their distribution.
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DMUR is a situation where a decision maker does not know the true state of nature for
certain, but can assign a probability distribution (p(s), p(s;), ..., p(s,)) to each state of
nature, where each state Sj describes a possible state of the world and s, 55, ..., S, 1S an
exhaustive list of the possibilities. Think here of an unbiased dice. The exact result is
unknown, but the probability distribution over the possible outcome is known. As such,
the outcome remains unpredictable but the decision is based on known probabilities. The

problems of decision making under risk first appeared in the analysis of gambling.

2.2.3 DMUSU Methods

Consider the following type of DMUSU problem. Let d4, d5, ..., d,, denote the decision
alternatives available to the decision maker. The possible states of nature are denoted by
S1,52, .-, Sp. Every specific combination of a decision d; and a state of nature s; has a

particular payoff value a;; € R with R denoting the real numbers. The outcomes form a

(m x n) dimensional payoff matrix A = (al-j).

In the early 1950s, there was an active discussion about methods for decision making
under uncertainty. Five classic decision methods have been proposed to solve the problem
of decision making under strict uncertainty, which are Laplace’s insufficient reason
criterion, Wald’s maximin criterion, Hurwicz’s pessimism-optimism index criterion,
Savage’s minimax regret criterion and Starr’s Domain criterion. A brief introduction of

each method follows.
2.2.3.1 Laplace’s principle of insufficient reason
In a situation where the probabilities of the different possible states of nature are unknown,

Laplace’s criterion assumes that they are all equal. Thus if the decision maker chooses

the i*" row, his expectation is given by the average (a; + -+ + a;,)/n, and he should
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choose the row for which this average is maximized. The alternative chosen by using the

Laplace method is
d* _ 1 n h H—
= max {; =1 ai}-} wherei =1,..,m. 2.1

Laplace (1825) argued that “knowing nothing at all about the true state of nature” is
equivalent to “all states having equal probability”. This criterion is also known as the
principle of indifference (Keynes, 1921). With this assumption, the decision maker can
compute the average payoff for each row (the sum of the possible consequences of each
alternative is divided by the number of states of nature) and then select the alternative that

has the highest row average.

When DMs assume that all states of nature are equally likely, the problem shifts from
uncertainty to risk. The advantage of this approach is that it transforms a difficult problem
into a relatively simple one through the use of probability theory. However, with this
assumption, a major drawback of this criterion is that the state space must be constructed

in order to be amenable to a uniform probability distribution (Sniedovich, 2007).
2.2.3.2 Wald’s Maximin

The idea behind this method is to obtain the most robust possible outcome (Wald, 1950).

In short, if the player chooses the i*" row, then his payoff will certainly be at least min aij.
J

The safest possible course of action is therefore to choose a row for which min a;; 1s
J

maximized. Thus, the alternative selected (d*) in Wald’s Maximin criterion is

d* = maxmina;;, wherei =1,..,mandj =1, ..,n. (2.2)
i

Wald’s maximin is the rule of choosing the “best of the worst”. It evaluates each decision
by its associated minimum possible return. Then the decision that yields the maximum

value of minimum returns (maximin) is selected.
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Note that Wald’s maximin model of uncertainty is extremely conservative. It does not
provide a faithful representation of how we operate in reality. It may lead to exceedingly

costly solutions resulting from over-protection against uncertainty.

2.2.3.3 Savage’s Minimax regret criterion

Let us define r;; = max ay; —a;; foralli,j, and a regret matrix R= (7;;) that
k=1,..m

measures the difference between the payoftf that could have been obtained if the true state

of nature had been known and the payoff that is actually obtained. Now apply the Wald

minimax criterion to regret matrix R. That is, choose a row for which maxr;; is
J

minimized. Thus, the decision in terms of Savage Minimax regret is:

d* = min {max{rij]],wherei =1,.,mandj=1,..,n (2.3)
; :
j

Savage (Savage, 1951) argued that by using the values payoff a;; to guide choice, the
decision maker is actually comparing the value of the consequence of an action under one
state of nature with the values of all other consequences, whatever states of nature they
occur under. Nevertheless, the actual state of nature is beyond the control of the decision
maker. The consequence of an action should only be compared with the consequences of
other actions under the same state of nature. A particular consequence a;; may be poor in
the context of the complete decision table, but it may be the best consequence that can
result from any action if s; is the true state. Thus, Savage defined the regret of a

consequence rij = kmax akj - aij.
=1,..m

The regret matrix only reflects the difference between each payoff and the best possible
payoff in a column; hence, the disadvantage of Savage’s minimax regret criterion is that

it does not consider the row differences.
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2.2.3.4 Hurwicz’s pessimism-optimism index criterion

Hurwicz’s criterion (Hurwicz, 1951) (Hurwicz, 1952) is defined as follows. Select a
constant 0 < a < 1, which is a coefficient of the player’s optimism. For each row i, let a;
denote the smallest component and A; the largest, then Hurwicz’s measurement H; is

defined as:
H;= aA; + (1 —a)a; wherei=1,-,m. (2.4)
And the decision is obtained where:

d* = max{ H;) (2.5)

In Hurwicz’s criterion, the decision maker considers both the best and the worst possible
results, weighted according to the decision maker’s attitude (optimistic or pessimistic)
towards the decision. The weighting is made using a constant, named the coefficient of
the optimist (0 < a < 1). When @ =1, then the decision maker is completely
optimistic and Hurwicz’s criterion is reduced to the minimax method; when a = 0, the

decision maker is pessimistic and Hurwicz’s criterion becomes Wald’s maximin.

The formula of Hurwicz’s measurement H; shows that this criterion only considers the
highest and the lowest payoff for each alternative. It does not take other non-extreme
payoffs into account. Therefore, two decisions with the same minimal and maximal profits
always obtain an identical Hurwicz’s measurement, even if one of them contains many

small payoffs and the other one has many high payoffs (Gaspars-Wieloch, 2014).
2.2.3.5 Starr’s Domain
Starr introduced the Domain method for DMUSU in 1963 (Starr, 1963). While its

philosophical foundation and its usefulness are well known (Schneller & Sphicas, 1983),

it remains relatively unpopular compared to the previous methods.
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Define the set D (the domain) of all possible probability distributions associated with the
states of nature s;, j =1,...,n,asD = {p =(p)) € er‘| xp; = 1}. This set is called the
fundamental probability simplex (FPS). For any given distribution p, we may define the

expected monetary value of the i*? decision:
EP(d;) = Xi=1pjay; (2.6)
Then
D; ={p € D|IEP(d;) = EP(dy)Vk # i} (2.7)

is the set of all probability distributions p for which the i** decision is chosen according
to the Bayesian expected value criterion. Let V(D;) denote the volume of the set D;. In
Starr’s criterion, the 7" decision is the one to choose if V(D,) = V(D;) Vi # r.In other
words, Starr’s criterion selects the decision that is most likely to have a higher expected

payoff value than all the others.

When the number of states of nature n < 3, the volume can be computed by graphical
method. For n > 3, alternatively, one can use the Monte-Carlo sampling algorithm to
approximate the volume. Cohen and Hickey (1979) present an algorithm that can find
exact convex polyhedral volumes. Starr (1966) also proposes using simulation with
random sampling of points in the FPS. Although there are algorithms that can rapidly
approximate large-dimension volume, it remains difficult for decision makers to clearly
understand this approach. As such, the main drawback for DMs is the ease of

appropriation.
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2.2.4 Axiomatic Comparison for DMUSU Methods

Consider a decision-making problem in Table 2-3. Laplace’s insufficient reason chooses

d,, Wald’s Maximin chooses d,, Savage’s Minimax chooses d,, Hurwicz’s criterion

. 1 . 1 .
chooses d, if & < Zand dyifa > " and Starr’s Domain chooses d;.

Table 2-3: Milnor's example (Milnor, 1954)

Decision table
51 Sz S3 Sy
d, 2 2 0 1
d, 1 1 1 1
dsz 0 4 0 0
d, 1 3 0 0

These five classic DMUSU methods are quite different in their definition and furthermore
can provide different results for the same decision problem. The differences among them
have been revealed by Milnor’s axioms (Milnor, 1954). He presents 10 axioms, which are
considered requirements for an ideal and reasonable decision-making method. He proves
the compatibility of Laplace, Wald, Hurwicz and Savage with these 10 axioms. The
axiomatic characterization of Starr’s domain criterion with Milnor’s 10 axioms has been

discussed in Schneller and Sphicas (1983).
Milnor’s 10 axioms are defined below:

— AXIOM 1. Ordering. The criterion should impose a complete order > on the rows.

- AXIOM 2. Symmetry. The order is independent of the labelling of the rows and
columns.

- AXIOM 3. Strong Domination. If for every j, a; ; > a;,; then d;, = d;,

— AXIOM 4. Continuity. If the matrices (a; j)" converge componentwise to (a;;) and

if for every k, d{‘l > d{‘z thend; = d,,
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- AXIOM 5. Matrix Linearity. The ordering relation is unchanged if the matrix (a;;)
is transformed to (b;;) by the linear transformation b;; = wa;; +u, w > 0.

- AXIOM 6. Row Adjunction. The order of “old” strategies of (a;;) is not changed
by adjoining a new strategy (row) to (a;;).

- AXIOM 7. Column Additivity. The order is not changed if a constant value is added
to every entry in a column of (a;;).

—  AXIOM 8. Column Duplication. The order is unchanged if a new state of nature
column, identical to an old column, is adjoined to (a;;).

- AXIOM 9. Convexity. If there are three strategies, d;,, d;,and d;,, such that d;
and d;, are equivalent under the order of the criterion, and d;, obeys the property
that d;, = (d;, + d;,)/2 for each j, then d;, is equivalent to d;, and d;,.

— AXIOM 10. Dominated Row Adjunction. The order of the “old” strategies is not

changed by adjoining a new dominated strategy (row), providing that no component

of this new row is greater than the corresponding components of all old rows.

Milnor’s summary of the relation between the ten axioms and five classic criteria is in
Table 2-4. The V symbol indicates that the corresponding axiom and criteria are
compatible. Each criterion is characterized by the axioms marked VY. It is shown that none
of the five classic criteria have all ten axioms. Wald's criterion fails Axiom 7, Hurwicz's
fails Axiom 7 and Axiom 9, Savage's fails Axiom 6, Laplace's fails Axiom 8, Starr’s
domain fails Axiom 6, Axiom 7 and Axiom 8. The axiomatic approach theoretically points

out each classic criterion’s drawbacks.
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Table 2-4: Axioms

Axioms Laplace Wald Hurwicz | Savage Starr
1. Ordering W W W W W
2. Symmetry W W W W W
3. Strong Domination W W W W N
4. Continuity v VW W NN W
5. Linearity N N W N W
6. Row adjunction Y N8 Y

7. Column additivity W W

8. Column duplication W W N

9. Convexity + W N W
10. Dominated row adjunction V V V W W

Definitions of all classic DMUSU methods and their axiomatic characterization have been
introduced. Laplace’s insufficient reason transfers a DMUSU problem into an easy
DMUR problem; however, an obvious drawback to this criterion is that it is very sensitive
to how states are individuated. Wald’s Maximin and Hurwicz’s criterion focus only on
extreme payoffs to the exclusion of others, while Savage’s Minimax considers all payoffs,
but does not have the ability to factor the raw differences. Starr’s Domain runs into

complexity of computation when there are more than three states.

2.2.5 DMUR Methods

When the decision maker has some knowledge about the states of nature, s/he can assign
subjective probability estimates for the occurrence of each state. In such cases, the
problem is classified as decision making with risk (Rowe, 1988). These probabilities may
be subjective or they may reflect historical frequencies. Here, the same notations are used
as in the previous section for decision alternatives d,,d, ...,d,,, states of nature
S1,82, -, Sn, and m X n dimensional decision matrix A = (aij) where a;; 1s the outcome

of decision d; associated with state of nature s; . Furthermore, let us use
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(p(sy), p(sz), ..., p(sy)) to describe the probability distribution of the states of nature.
Decision rules for approaching DMUR have been discussed in the literature (Taghavifard,
Damghani, & Moghaddam, 2009).

2.2.5.1 The Expected Monetary Value rule

We consider decision matrix A = (aij) the monetary payoff matrix. The Expected

Monetary Value (EMV) is computed by multiplying each monetary value (payoff) by the
probability for the relevant state of nature and summing the results. This value is computed

for each alternative, and the one with the highest value is selected as the final decision, i.e.
EMV; = ¥7_,p(s;)a;;, wherei = 1,..., m. (2.8)
Thus, the decision chosen according to the expected monetary value principle is

d* = max{EMV,}. (2.9)
l

The principle of EMV remains the most useful of all the decision rules for DMUR. Here
is an example of a DMUR problem solved by this method. Consider the following DMUR
problem: a sushi restaurant needs to decide how much sushi (quantified by small amount,
medium amount or large amount) it needs to make every day. Its profit depends on demand
that can be low, moderate, or high. The probability of the demand is 0.3, 0.5,0.2. Table
2-5 shows the profit value per day (in $) for the possible situations.

Table 2-5: Sushi Restaurant Payoff Matrix

Low (p=0.3) | Moderate (p=0.5) | High (p =0.2)

Small 5000 5000 5000
Medium 4200 5200 5200
Large 3400 4400 5400

EMV (small) = 0.3 x5000 + 0.5 %5000 + 0.2 * 5000 = 5000;
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EMV (medium) = 0.3 * 4200 + 0.5 %5200 + 0.2 * 5200 = 4900;
EMV (large) = 0.3 x 3400 + 0.5 x 4400 + 0.2 x 5400 = 4300.

Therefore, according to the EMV rule, the small amount of sushi should be chosen.
2.2.5.2 The Expected Opportunity Loss Rule

The principle of Expected Opportunity Loss (EOL) is nearly identical to the EMV
approach, except that instead of payoff matrix A = (ai j), the opportunity loss (or regrets)

matrix R = (r;;) where Tij = MAX ;= a;; foralli,j is used. The expected
=1,..m

opportunity loss is computed for each alternative and the alternative with the smallest
expected loss is selected as the final choice, i.e.
EOL; = X7, p(sj)rijwherei = 1,...,m. (2.10)

Thus, the decision using the expected opportunity loss principle is

* = min{EOL,}. (211)
l

The regret matrix for Table 2-5 is shown in Table 2-6:

Table 2-6: Sushi Restaurant Regret Matrix

Low (p =0.3) | Moderate (p=0.5) | High (p =0.2)

Small 0 200 400
Medium 800 0 200
Large 1600 800 0
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The EOL for each row is:

EOL (small) = 0.3x0 + 0.5%200 + 0.2 400 = 180;
EOL (medium) = 0.3x800 + 0.5%0 + 0.2 x 200 = 280;
EOL (large) = 0.3 1600 + 0.5 %800 + 0.2 *0 = 880.

The smallest EOL is 180. Hence, making the small amount of sushi is the decision to be

taken.

The EOL approach resulted in the same alternative as the EMV approach. The two
methods always result in the same choice, because maximizing the payoffs is equivalent

to minimizing the opportunity loss.
2.2.5.3 The Most Probable States of Nature Rule

In this decision rule, only the state of nature with the highest probability is taken into
account, and in that column, the alternative with the biggest payoff is the final decision,

Le.
d* = max {a;} (2.12)
1=1,-m

where k is the state of nature index, which has the highest probability: p(s,) =

max Si).
j=1,-~-,np( )

According to this decision rule, for the example in Table 2-5, the state of moderate demand
has the highest probability. In that column, the best profit is located in the second row,

thus the alternative selected is to produce the medium amount of sushi.

Since the most probable states of nature rule takes only one uncertain state of nature into

account it may lead to bad decisions.
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2.2.5.4 The Expected Utility Rule
Consider the following DMUR problem: there are two types of lottery, wherein Lottery A
guarantees you receive one million dollars and Lottery B entitles you to a fifty per cent

chance of winning either three million dollars or nothing. See Table 2-7.

Table 2-7: Buying Lottery tickets

50% 50%
Lottery A 1 million dollars 1 million dollars
Lottery B 3 million dollars 0

The expected monetary values for the two lotteries are:

EMV(Lottery A) = 50% -1+ 50% - 1 = 1 million dollars;
EMV(Lottery B) = 50% - 3 + 50% - 0 = 1.5 million dollars.

EMV(Lottery A) < EMV(Lottery B), thus, the EMV principle dictates buying a ticket
for lottery B. However, many of us would prefer lottery A, where we are sure to have one

million dollars.

When dealing with a risky decision problem (e.g., the decision can only be made once or
the amounts of money involved in the problem are big), the expected monetary value
criterion cannot encompass the full range of reasoning behind a decision as a human would.
Thus, the decision dictated by EMV may be different from what the decision maker

himself would choose. In this case, it is helpful to introduce the concept of utility.

Utility is an abstract concept that cannot be directly observed. Utility represents the
subjective attitude of the individual to risk, it implies how valuable the outcome is from

the decision maker’s point of view (Peterson, 2009). We use u(a;;) to present the utility
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value of outcome a;;. The principle of expected utility (EU) is obtained from the principle

of EMV by replacing the monetary value a;; by its utility u(a;;), i.e..
EU; = Y7 p(sj)u(a;;) wherei=1,..,m. (2.13)
Thus, the chosen decision according to the expected utility principle is

d* = max{EU,;}. (2.14)
L

Back to the example in Table 2-7, suppose that the lottery ticket buyer himself expressed

the utilities of the outcomes with the following:

u(1 million dollars) = 0.7;
u(3 million dollars) = 1;

u(0 million dollars) = 0.
Therefore, the expected utility values for the two lotteries are:

EU(Lottery A) = 50% * 0.7 + 50% * 0.7 = 0.7,
EU(Lottery B) = 50% * 1 + 50% = 0 = 0.5.

EU(Lottery A) > EU(Lottery B), therefore, the EU principle dictates that buying a ticket
for lottery A is the better option.

In summary, the computation of the four decision rules for DMUR 1is similar. The
difference is that each decision rule maximizes or minimizes different objects, i.e. the
expected monetary value, the expected opportunity loss, the expected utility. The decision
maker needs to choose which object they want to consider based on the property of each

individual DMUR problem.
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2.2.6 Expected Value of Perfect Information

In DMUR, the probabilities of the states of nature represent the decision maker's degree
of uncertainty and personal judgment on the occurrence of each state, but which state will
actually occur when a decision alternative is applied is still unknown. Knowledge of when
each state will actually happen, known as perfect information for decision making, can
help the decision maker to choose the most profitable alternative every time. In decision
theory, the expected value of perfect information (EVPI) is the amount that the decision

maker would be willing to pay in order to get the perfect information (Hubbard, 2007).

For a DMUR problem, when there is no knowledge of the perfect information, the decision
maker will choose the decision with the largest EMV; hence, the expected value without

perfect information (EV) is:

EV = max{EMVl}, where EMV; = 2;;1 p(sj)au . (2.15)
2

If the decision maker had perfect information, s’/he would choose the decision with the
best payoff for each specific state. Thus, the expected value with perfect information
(EV|PI) is defined by multiplying the best outcome in each column by its probability and

summing the results:

J

The difference between EV|PI and EV is called the expected value of perfect information

(EVPI):EVPI = EV|PI — EV.

Hence, EVPI indicates how much more value the decision maker can get by knowing
perfect information. If the decision maker is offered perfect information for a price higher

than EVPI, it is better for him to refuse it (Riggs, Rentz, Kahl, & West, 1986).
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Let us present one example from Quirk (Quirk, 1976) and compute the expected value of
perfect information. Suppose a farmer can harvest his entire crop today at a cost of
$10,000 or half today, half tomorrow at a cost of $2,500 per day. The harvested crop is
worth $50,000. The payoff decision matrix for this problem is shown in Table 2-8.

Table 2-8: Farmer's payoff

States of Nature Heavy rain tomorrow No heavy rain tomorrow
Decisions p=55% p=45%
Decision A: Harvest all today $40,000 $40,000
Decision B: Harvest over two days $22,500 $45,000

Let’s assume the probability of heavy rain tomorrow is 55%, hence 45% for no heavy rain

tomorrow.

EMV, = 0.55 * ($40000) 4+ 0.45 * ($40,000) = $40,000;
EMVg = 0.55 * ($22500) + 0.45  ($45,000) = $32,625;
EV = max(EMV,, EMVg) = $40,000;

12

EV|PI = 0.55 * $40,000 + 0.45 * $45,000 = $42,250.
Hence, the expected value of perfect information is: EVPI = EV|PI — EV = $2,250.

The conclusion is that if someone provides the accurate weather forecast for tomorrow at

a price of less than $2,250, the farmer will want to purchase this information.
2.3 Game Theory

Game theory is a mathematical study of a strategy-choosing situation (i.e. game), where
each player’s strategy choice interacts with the other’s. Thus, game theory is considered
the theory of interdependent decision making, where the outcome is related to the

decisions of two or more players and no single player has full control over the outcome.
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Considering decision making problems as a game has been explored in the literature (Luce

& Raiffa, 1957) (Kelly, 2003) (Aliprantis & Chakrabarti, 2000).

Game theory has been widely used in economics (Friedman, 1998), psychology (Camerer,
2003) and political science (Morrow, 1994) as well as logistics (Reyes, 2005), computer
science (Shoham, 2008), biology (Durlauf & Blume, 2010) and so on. This subject
originated from zero-sum games, in which the gains of one player are exactly equal to the
losses of the others. John von Neumann first established game theory as a unique field in
his 1928 paper (von Neumann, 1928). Later, his 1944 book Theory of Games and
Economic Behavior (von Neumann & Morgenstern, 1944) came to be considered the
ground-breaking text that created the interdisciplinary research field of game theory
(Mirowski, 1992).

2.3.1 Basic Concepts

The basic concepts are the features that constitute a game. Here we briefly give their

definitions.

— Players: participants who choose a strategy in a game.

- Strategies per player: each player makes his/her choice from a set of possible
actions, known as pure strategies. The set of pure strategies available to each player
is called a strategy set.

- Payoffs: the outcome received by a player after his/her strategy choice or strategy

combination.

2.3.2 Game Types

2.3.2.1 Cooperative/Non-cooperative game

A cooperative game is where the players can form and respect mutually binding

agreements. For example, the legal system requires each player to respect his or her
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agreements. Games that are not cooperative are known as non-cooperative games, 1.€.,

players cannot keep their agreements and act independently.

2.3.2.2 Zero/non-zero sum game

In a zero-sum game, you win exactly as much as your opponent(s) loses. The total benefit
to all players in the game, for every combination of strategies, always adds up to zero.
Typical examples are casino games and classic board games like Go and chess. Non-zero-
sum games are where a gain by one player does not necessarily correspond to a loss by

another; the total benefit to all players is not zero.

2.3.2.3 Simultaneous/Sequential game

In simultaneous games, all players choose their strategy at the same time, or if they do not
choose at the same time, the players who choose later do not know the choices of the
players who chose earlier (making them effectively simultaneous). A typical example of
a simultaneous game is Rock-Paper-Scissors. In sequential games (or dynamic games),
players who choose later have some knowledge of earlier actions. It does not need to be
perfect information about every previous action; it might be very little information. Chess

is a sequential game.

2.3.2.4 Perfect information and imperfect information

Perfect-information games are a subset of sequential games. A perfect-information game
is where all the players have full information about the actions previously chosen by the
other players. Chess is a perfect-information game. Simultaneous games obviously cannot
be games of perfect information. Games that are not perfect-information games are known

as imperfect-information games.
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2.3.2.5 Pure and mixed strategy

A pure strategy provides a complete definition of how a player will play a game. In
particular, it determines the move a player will make in any situation s/he could face. A
player's strategy set is the set of pure strategies available to that player. A mixed
strategy means to play a pure strategy with probability between zero and one. This allows
a player to randomly select a pure strategy. Since probabilities are continuous, there are

infinite mixed strategies available to a player.

2.3.3 Classic Games

2.3.3.1 Prisoner’s dilemma

The Prisoner’s dilemma is one of the games studied in game theory, which was presented

by Poundstone (Poundstone, 1992), as follows.

“Two members of a criminal gang are arrested and imprisoned. Each prisoner
is in solitary confinement with no means of communicating with the other.
The prosecutors lack sufficient evidence to convict the pair on the principal
charge. They hope to get both sentenced to a year in prison on a lesser charge.
Simultaneously, the prosecutors offer each prisoner a bargain. Each prisoner
is given the opportunity either to betray the other by testifying that the other
committed the crime, or to cooperate with the other by remaining silent. The
offer is:

If A and B each betray the other, each of them serves 2 years in prison.

If A betrays B but B remains silent, A will be set free and B will serve 3 years
in prison (and vice versa).

If A and B both remain silent, both of them will only serve 1 year in prison
(on the lesser charge).”

Both prisoners have two options — “cooperate” or “defect.” In this game, each prisoner
gains when both cooperate; however, if only one of them cooperates, the one who defects

will gain more. If both defect, both lose. See Table 2-9.



29

Table 2-9: The prisoner’s dilemma

A . cooperate defect
Cooperate Each serves 1 year Prisoner A: 3 years
Prisoner B: goes free
Defect Prisoner A: goes free Each serves 2 years
Prisoner B: 3 years

Based on the game type definitions, the prisoner’s dilemma is a non-cooperative,

simultaneous and non-zero-sum game.

2.3.3.2 Matching pennies

Matching pennies is a two-player game. Each player has a penny and they are shown
simultaneously. If the pennies match (either heads or tails), player A will get the penny
from B (i.e., A wins one penny [+1], B loses one penny [-1]). If the pennies do not match,
player B receives the penny from A (i.e., B wins one penny [+1], A loses one penny [-1]).
This game is represented in Table 2-10. Obviously, this is a zero-sum game, in which one

player’s gain is exactly equal to the other one’s loss.

Table 2-10: Matching pennies

Player B
Heads Tails
Player A
Heads +1, -1 -1, +1
Tails -1,+1 +1, -1

2.3.3.3 Pirate Game

The pirate game is a simple mathematical multi-player game as follows. Five rational
pirates, A, B, C, D and E have to decide how to distribute 100 gold coins. There is a strict
order of seniority among the pirates: A is senior to B, who is senior to C, who is senior to
D, who is senior to E. The most-senior pirate, A, will propose a coin-distribution method.

Then the pirates, including A, vote on whether to accept this distribution. If the distribution
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is accepted, the coins are disbursed and the game ends. If not, the proposer is thrown
overboard from the pirate ship and dies, and the next most-senior pirate makes a new

proposal to begin the game again (Talbot Coram & Goodin, 1998) (Stewart, 1999).

Each pirate clearly knows the previous pirate’s move and the total benefit of all the players

is not zero; hence, this game is a perfect information and non-zero-sum game.

2.3.4 Nash Equilibrium (NE)

Nash equilibrium (NE) is a solution concept in game theory to solve a game involving two
or more players. If each player has chosen a strategy and no player has anything to gain
by changing strategies while the other players keep theirs unchanged, then the current set
of strategy choices and the corresponding payoffs constitute a Nash equilibrium (Nash,
1950) (Nash, 1951). That means a Nash equilibrium can be seen as a rule that no one
would want to break even in the absence of an effective police force. Take the example of
two cars driving perpendicularly at a traffic light junction. In this situation, Nash
equilibrium would mean one car respects the green light and the other respects the red
light. NE can be divided into two types. Pure-strategy Nash equilibrium is the equilibrium
where all players are playing pure strategies. Mixed-strategy Nash equilibrium is the
equilibrium where at least one player is playing a mixed strategy. The definition of pure
strategy and mixed strategy can be found in the previous section. John Nash stated that
every game in which the set of actions available to each player is finite has at least one
mixed-strategy equilibrium (Nash, 1950). The following are some examples to illustrate

this concept.

2.3.4.1 Example I Pure NE in a Coordination game

Consider the two-player game shown in Table 2-11: each player has two actions. If both
players choose action 1, each of them gains 2, and if they both choose action 2, each gets
1, if the players choose different actions from each other, they gain nothing. In this game,

there are four possible pure strategy sets: action 1, action 1; action 1, action 2); action 2,
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action 1; and action 2, action 2. Therefore action 1, action 1 is a Nash equilibrium since
no one can get a higher payoff by unilaterally changing their strategy. The same applies
to the strategy set action 2, action 2, which is also a Nash equilibrium. This game has two
Nash equilibria and all the players are playing pure strategies in the equilibrium; they are

pure Nash equilibria.

Table 2-11: Coordination Game

Two-player Player 2

game Action 1 Action 2
.S 2,2 0,0
S

- <

5]

>

3]

A o
.S 0,0 1,1
3
<

2.3.4.2 Example Il Mixed-Strategy NE in Matching Pennies

The game matching pennies was described in the previous section. Let us take a look at
all the pure strategy sets in this game. Heads, Heads cannot be a Nash equilibrium, because
if player B knows that player A reveals heads, he will want to switch to tails. Heads, Tails
cannot be a Nash equilibrium either, because player A wants to change to tails if player B
plays tails. The same is true for Tails, Heads and Tails, Tails. Therefore, there is no pure-

strategy Nash equilibrium in this game.

According to John Nash, there must be a mixed-strategy Nash equilibrium in every game.
In Spaniel (2011) and von Ahn (2008), an algorithm for computing mixed-strategy Nash

equilibrium is given. For each individual player:

1. Assign a variable to each strategy that denotes the probability that a player will
choose that strategy.

2. The total sum of the probabilities for each strategy available to a player is 1.
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3. Based on the randomization of the player’s choice, the expected payoff for a player
should be the same.
4.  This creates a group of equations from which the probabilities of choosing each

strategy can be computed.

Now, let us apply the above algorithm in order to find the mixed-strategy NE for the game

matching pennies.
For player A,

. Assign p to be the probability that player A plays Heads; 1 — p is the probability
that he plays Tails;

. If player B chooses Heads, the expected payoff for player A is (+1) * p + (—1) *
1-p)=2p-1;

. If player B chooses Tails, the expected payoff for player A is (—=1) * p + (+1) *
(1-p)=1-2p;

. The above two expected payoffs are equal; we get = % .
The same is true for player B: if we assign g as the probability that player B plays Heads,
1 — q is the probability that he plays Tails, then we arrive at = é .

Note, a robust response strategy is one that achieves maximal expected performance
against a particular set of opponent strategies. Thus, according to the concept of NE, each
strategy in a NE must be the best response to the rest of the strategies in that player’s
strategy set. Therefore, we can evaluate a strategy based on the comparison between this
strategy and the strategy in the NE. In the literature, the two existing methods for
performing this comparison are Exploitability and Distance to Nash (Davis, Burch, &

Bowling, 2014) (Lupien St-Pierre, Hoock, Liu, Teytaud, & Teytaud, 2016).
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2.4 The Relation between Decision Making and Game Theory

The relation between decision-making problems and game theory has been discussed
directly or indirectly in the literature. Milnor (1954) considers DMUSU problems to be a
game against nature. A decision matrix A = (aij) is given, in which the decision maker
as player 1 must choose a row. A column will be chosen by player 2, “Nature”, a fictitious
player having no known objective and no known strategy. Luce and Raiffa (1957) propose
that decision-making problems can be considered a two-person non-zero-sum, non-
cooperative game: player 1 and player 2 can be referred to as the decision maker and
neutral nature separately. Thus, some solution concepts for two-player games can be
applied indirectly to decision-making problems. Aliprantis and Chakrabarti (2000)
mention that game theory is considered the theory of mutual interdependent decision
making, which means that a player’s outcome depends not only on his/her actions but also
on the decisions the other player makes. Kelly (2003) divides games into three categories:
games of skill, games of chance and games of strategy. Games of skill, like decision
making under certainty, are one-player games where the player fully controls all the
outcomes. Games of chance are games played by an individual player against neutral
nature and further categorized as either involving risk or involving uncertainty; thus,
games of chance belong to decision making under risk or strict uncertainty in decision
theory. Games of strategy are defined as games between two or more players, not

including nature, each of whom has partial control over the outcomes.

Now it is time to introduce the connection between game theory and decision making. As
explained in the previous sections, the basic concepts for a decision-making problem are:
(1) alternative decisions, (2) states of nature, (3) consequences of each decision for each
state of nature. These correspond, respectively, to the basic concepts of a two-player
strategic game: (1) strategies (alternatives) for player 1, (2) strategies (alternatives) for

player 2 and (3) payoffs for each player from possible strategy combinations. See Figure
2-1.
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Figure 2-1 . Relationship between Decision Making and Game Theory

From this perspective, DM can be converted to a two-player game where player 1 is the
decision maker and player 2 is nature. Furthermore, it is a non-cooperative, non-zero-sum

game since one of the players in this game is neutral nature.

2.5 Conclusion

This chapter is divided into three parts: decision-making problems, game theory and their
relation. Decision-making problems are categorized as decision making under strict
uncertainty and decision making under risk. Classic decision rules for decision-making
problems are introduced and compared with examples. In game theory, the basic concepts
of constituting a game and game types are introduced, followed by a description of the
prisoner’s dilemma, matching pennies and the pirate game. Then Nash equilibrium, a
solution concept in game theory, is illustrated with examples. With three basic elements
of decision-making problems and the basic concepts of a game, decision-making problems
can be converted to a two-player game where player 1 is the decision maker and player 2

1s nature.
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CHAPTER 3 - COMPARATIVE STUDY OF DMUSU METHODS: A CASE STUDY
IN SEWER NETWORK PLANNING

3.1 Introduction

After the review and introduction in chapters 1 and 2, this chapter focuses on the
comparison of five classic methods for DMUSU and NE in a more practical way than

axiomatic comparison.

Different methods may arrive at different decisions for the same DM problem. Hence, a
good understanding of what the decision-making process involves and how to choose
effective decision rules can be helpful in order to make better decisions and have a higher

probability of success.

At this point, practical DMs need to think about which method to use. They could choose
their preferred method based on the axiomatic characterization; however, axiomatic
comparisons are very theoretical and mathematical for practical DMs. In order to find an
easy way to help them to choose one suitable DM method for a single DMUSU problem,

our work is carried out in the following steps:

—  Apply all the DM methods to one DMUSU problem and analyze their results;

- Based on the connection between DM and game theory, consider a DMUSU
problem a two-player game and apply NE to find the decision;

- According to the concept of NE, the choice made by NE is the best response;

— Compare the decision indicated by classic DM methods with the decision indicated

by NE.

The practical decision problem of selecting a sewer network plan is used here to illustrate
how each decision method is implemented in a real-life project. The city’s civil engineer
proposed four sewer network construction alternatives in order to direct more rainfall

water in one particular area to the river. The city needs to make a decision to choose one
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alternative and construct it in this area. Because the city has no information about weather
conditions, this DM problem is structured into DMUSU. With the existing data and
analysis, a decision matrix is generated to which five classic DM methods and NE are

applied.

The remaining parts of this chapter are organized as follows: Section 3.2 briefly recalls
the definition of five classic DMUSU methods and Nash equilibrium; Section 3.3 gives a
full description of the case study: sewer network planning; Section 3.4 shows how to
structure this real project into a DMUSU problem; Section 3.5 applies each DMUSU
method and NE to the problem and selects the final plan; Section 3.6 discusses and

analyzes results from the various methods.

3.2 Five classic methods for DMUSU and Nash equilibrium

Five classic methods for solving DMUSU problems and Nash equilibrium are the

following:

1.  Laplace’s Principle of Insufficient Reason: It assumes that the probabilities of the
different possible states of nature are all equal. The selected decision is the one that
has the maximum of the average.

2. Wald’s Maximin: It evaluates each decision by the minimum possible return
associated with the decision. Then, the decision that yields the maximum value of
the minimum returns (maximin) is selected.

3.  Savage’s Minimax Regret: It defines a regret matrix that measures the difference
between the payoff that could have been obtained if the true state of nature had been
known and the payoff that is actually obtained. Then the minimax criterion is
applied to the regret matrix.

4. The Hurwicz’s Pessimism-Optimism Index Criterion: It selects a coefficient of the
player’s optimism. Then, it computes Hurwicz’s measurement for each decision and

selects the one for which Hurwicz’s measurement is maximized.
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5. Starr’s Domain: It selects the decision that is most likely to have a higher expected
payoft value than all the others.

6.  Nash equilibrium: If each player has chosen a strategy and no player has anything
to gain by changing strategies while the other players keep theirs unchanged, then

the current strategy set choices and the corresponding payoffs constitute a NE.

3.3 Problem Statement: Sewer Network Planning

A pumping station is located next to the river and northwest of Highway 40. This pumping

station receives combined sewer water (rainfall and sanitary flow) from one particular

area. See Figure 3-1.

P ;. .‘f. - Yy
g % (OB W
& £ "’ 43 Daveloppamant )

__s-!_m- artin Léo“Ayaite H
. -y |
e
AN
"

N\ €, _‘_‘\

-y
Camping Grand R
\, :

T L pémaine Lachapalie L &7 e
/! : " 7
“'—‘\igz:?: acus ¥ ,/'r A
Sy & /,
N =N pumping :

. l station V.
. '
—

Figure 3-1 © Pumping station and its area

The local city would like to reduce the rainfall flow channelled to the pumping station in
order to improve its sanitary flow capacity. To meet this goal, the city wants to gather the

rainfall water for the area and direct it to the river. Thus, there will be less rainfall water



38

taking space in the pumping station and more space for the sanitary flow. The city’s civil

engineering department has proposed four construction plans for building this new rainfall

pipe:

1. Plan 1 is to build a new rainfall water pipe along Barkoff Street from Boulevard des
Ormeaux going directly to the river. With this plan, rainfall water flows from this
segment will be directed to the river. See black solid line in Figure 3-2;

2. Plan 2 is to extend the existing rainfall water pipe along rue Vachon to the river,
such that rainfall water for this segment is directed to the river. See grey solid line
in Figure 3-2;

3. Plan 3 includes the construction of Plan 1. Furthermore, it will extend the rainfall
pipe to the northeast to du Parc Road. Plan 3 is the black solid line and black dashed
line in Figure 3-2;

4.  Plan 4 includes the construction of Plan 2. In addition, it will extend the rainfall pipe
to the northeast along Morin Road and Highway 40. Plan 4 is the grey solid line and
grey dashed line in Figure 3-2.
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Figure 3-2 . Construction Plans

The total cost for each construction plan is listed in Table 3-1.
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Table 3-1: Total Cost of Each Plan

Plan Total cost (CAD)
P1 1,884,753
P2 437,606
P3 4,127,967
P4 2,680,820

In order to evaluate how much rainfall water is relieved from the pumping station in each
plan, civil engineers modelled the current sewer network of the area and the possible
alternatives (Plan 1 to 4) using Sanitary and Combined Sewer Modelling Software
(SewerGEMS), a fully-dynamic, multi-platform (GIS, CAD and Stand-Alone) modelling

solution.

The process is as follows. In SewerGEMS, start by setting up the baseline rain: 9 mm of
rain in a three-hour period. Second, execute the model of the current sewer network and
each alternative respectively with this rainfall. Third, gather the value of the rainfall flow
channelled to the pumping station per second for each model. Last, compare the different

values.

The results are shown in the following figures, where the higher line indicates the rainfall
flow channelled to the pumping station with the current sewer network, the lower line
indicates the same value but for each individual plan, and the grey area is the reduced

rainfall flow from the pumping station.
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These figures directly show the reduction of rainfall flows for each plan at the pumping
station (the order of the reduced rainfall flow is Plan 3 > Plan 1 > Plan 4 > Plan 2), which

also means how much capacity is improved for containing sanitary flow.

In reality, it is not always practical or beneficial to choose the plan with the biggest
reduction because of the cost per volume saved. Moreover, the first unit of volume saved
is clearly of importance, yet the millionth might not be as important. Thus, a weighted
sum of the volume saved is more representative of the city’s needs. In addition, from a

pragmatic point of view, the functional level of the pumping station should be considered.

3.4 Converting the Case Study to a DMUSU Problem

In order to select one of the four plans, the city is actually facing a DMUSU problem,
where weather conditions can be considered states of nature. The decision maker (the city)
has no information about their true states, and the probabilities of the states of nature is

quantitatively immeasurable.

To form the DMUSU problem, three basic concepts (states of nature, decision alternatives
and outcomes) should be specified. As mentioned before, the rainfall is the states of nature,
which cannot be quantified by the decision maker, but a list can be provided. Based on

their preference, states of nature considered in this process are s;= 7.2mm over a period
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of 3 hours; s, = 8.1mm over a period of 3 hours; s3 = 9mm over a period of 3 hours; s, =

9.9mm over a period of 3 hours.

Clearly, the decision alternatives are the four construction plans: d;=Plan 1; d,=Plan 2;

d;=Plan 3; d,=Plan 4.

Outcomes are the consequences of each plan under each rainfall scenario, which is the
value encompassing the cost, the amount of reduced rainfall water and the functional level
of the pumping station. To do this, four steps are used to compute the outcomes of this

DMUSU problem:

Step 1. Set up the rainfall condition s, s,, S3, S4 in SewerGEMS. Then, execute each
decision (d; to d4 ) respectively with each state of nature. Next, gather the maximum
incoming rainfall flow channeled to the pumping station (liters per second) for each

decision under each rainfall condition. See Table 3-2.

Table 3-2: Maximum Incoming Rainfall Flow in Pumping Station

S1 S5 S3 S4

d, 107.2 | 133.11 | 162.23 | 195.01
d, 176.36 | 226.25 283 342.41
ds 92.12 | 116.13 144.3 175.29
dy 152.03 | 198.44 | 252.77 | 307.13

Step 2. Set the incoming rainfall flow of the current sewer network under rainfall scenario
9mm/3hrs: 358.64L/s as the base value. Compute the reduced incoming rainfall flow for
each plan under each rainfall scenario using the difference between the base value and the

value in Table 3-2. Results are presented in Table 3-3.



Table 3-3: Reduced Incoming Rainfall Flow in Pumping Station

S Sy S5 Sy
d; 251.44 225.53 196.41 163.63
d, 182.28 132.39 75.64 16.23
ds 266.52 242.51 214.34 183.35
d, 206.61 160.2 105.87 51.51
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Step 3. Because the first unit of volume saved is clearly of importance, yet the millionth

might not be as important, a weighted sum method is used to modify the data in Table 3-

3 to obtain more representative data that fits the city’s needs. Weighted factors are set up

in Table 3-4.

Table 3-4: Weighted Factors

Reduced rainfall flow Qty (L/s) Weight
Need 80.000 1.000
Possible future use 120.000 0.500
Not necessary 0.100

Thus, from Table 3-3, the first 80 L/s are worth their exact weight. Values between 80L/s

and 120L/s, while nice to save, are not relevant to the current situation. Thus, half weight

is given, i.e., 80+ (value-80) * 0.5. There should never be any need for volumes beyond

120L/s, thus, they become 80 +40*0.5 + (value-120) * 0.1. Table 3-5 presents the

weighted results:

Table 3-5: Weighted Reduced Incoming Rainfall Flow in Pumping Station

L S, S3 S4
d, 113.144 110.553 107.641 104.363
d; 106.228 101.239 75.64 16.23
ds 114.652 112.251 109.434 206.335
d, 108.661 104.02 92.93 51.51
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Step 4. Generate Table 3-6 by dividing the total cost of each plan by the weighted reduced
incoming flow values in Table 3-5. The values in Table 3-6 are the cost per weighted litre
per second for each alternative plan under each state of nature, which is the desired

outcome of the DMUSU.

Table 3-6: DMUSU's Decision Matrix for Sewer Network Planning

$/(L/s) 51 Sy S3 Sy
d, 16658.00 | 17048.41 17509.62 18059.59
d, 4119.50 4322.50 5785.38 26962.79
dsy 36004.32 36774.44 37721.07 38820.40
d, 24671.41 25772.17 | 28846.19 | 52044.66

3.5 Plan Selection Using Five DMUSU and NE Criteria

In this section, five DMUSU and NE criteria are applied to the decision matrix formalized

in Table 3-6 in order to make decision on which plan to choose.

1. Laplace’s Principle of Insufficient Reason

As a reminder, according to Laplace’s criterion, when the probabilities of conditions are
not known, the probabilities of states of nature are accepted as equal. Thus, the expectation
of each decision is computed through the average (a;; + a;; + a;3 + a;,) /4. The decision
chosen is the smallest average. Hence, Plan 2 should be chosen for the city based on

Laplace’s Principle. See Table 3-7.

Table 3-7: Selected Plan (**) according to Laplace

Laplace
$/(L/s) sl s2 s3 s4
average
d, 16658.00 | 1704841 | 17509.62 | 18059.59 17318.91
d, 4119.50 4322.50 5785.38 26962.79 10297.54%**
ds 36004.32 | 36774.44 | 37721.07 | 38820.40 37330.06
d, 2467141 | 2577217 | 28846.19 | 52044.66 32833.61
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2. Wald’s Maximin
Wald’s criterion is an approach best summarized as a pessimistic decision maker. Instead
of maximin, minimax is applied since the idea is to minimize the cost. Hence, Plan 1 is

the selected plan for the city based on Wald’s maximin. See Table 3-8.

Table 3-8: Selected Plan (**) according to Wald's Maximin

Maximum cost
$/(L/s) sl s2 s3 s4

for each row
dy 16658.00 | 17048.41 | 17509.62 | 18059.59 18059.59%*
d, 4119.50 432250 5785.38 | 26962.79 26962.79
ds 36004.32 | 36774.44 | 37721.07 | 38820.40 38820.40
dy 24671.41 25772.17 | 28846.19 | 52044.66 52044.66

3. Savage’s Minimax Regret

Savage’s regret criterion minimizes the probable regrets for the decision maker. For the

cost matrix, regret is calculated by r;; = a;; — . rr11in ay; foralli,j. The regret matrix
=1,.,m

of this problem is presented in Table 3-9. The selected plan is Plan 2 according to this rule.

Table 3-9: Selected Plan (**) according to Savage's Minimax Regret

Maximum regret
$/(L/s) 51 S, Sq S4
for each row
d, 12538.50 | 1272591 | 11724.24 0 12725.91
d, 0 0 0 8903.20 8903.20**
ds 31884.82 | 32451.93 | 31935.69 | 20760.81 32451.93
dy 20551.92 | 21449.66 | 23060.81 | 33985.15 33985.15

4. Hurwicz's Pessimism-Optimism Index Criterion

With Hurwicz’s rule, the decision maker’s attitude is between pessimistic and optimistic

and measured by one optimistic coefficient 0 < a < 1. For the cost matrix, in each row,
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a; denotes the smallest component and A; the largest, then Hurwicz’s measurement H; is

defined as: H; = aa; + (1 — a)A; wherei =1,---,m.

The selected plan is min H;. Hence, Plan 1 is the one to be chosen if & < 0.4152 and Plan
L

2 is the one to be chosen if @ > 0.4152. See Table 3-10.

Table 3-10: Selected Plan (**) according to Hurwicz's Criterion

$/(L/s) 5 Sy S3 S Hurwicz’s measurement H;
18059.59 — 1401.59a** if a <
d, 16658.00 | 17048.41 | 17509.62 | 18059.59
0.4152
26962.79 — 22843.29a** if a >
d, 4119.50 | 4322.50 5785.38 | 26962.79
0.4152
dy 36004.32 | 36774.44 | 37721.07 | 38820.40 38820.4 — 2816.08«x
d, 24671.41 | 25772.17 | 28846.19 | 52044.66 52044.67 — 27373.25«
5. Starr’s Domain

Starr’s domain criterion computes the volume of the set D; for each decision and chooses
the decision with the highest volume; in this way, it actually selects the decision that is
most likely to have a higher expected payoff value than all the others. In this example,
Starr’s criterion is applied to a modified matrix, which is the cost matrix times minus one.
The dimension of the decision matrix is 4 X 4; the simulation with random sampling of
points in the FPS is implemented to approximate the volume. The selected plan according

to this criterion is Plan 2. See Table 3-11.

Table 3-11: Selected Plan (**) according to Starr's Domain

$/(L/s) 51 S5 S3 S4 Domain
d, -16658.00( -17048.41| -17509.62| -18059.59 0.0368
d, -4119.50 -4322.50 -5785.38| -26962.79 0.4632%*
dy -36004.32| -36774.44| -37721.07| -38820.40 0.0000
d, -24671.41| -25772.17| -28846.19| -52044.66 0.0000
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6.  Nash equilibrium

Consider the city to be player 1 and nature to be player 2 and the DMUSU problem
becomes a two-player game. The representation of the game is a matrix, which shows
players, strategies and payoffs, while in this example only the cost matrix is given. Hence,
when applying NE in this example, consider a new matrix which is the cost matrix times
minus one. This new matrix indicates how much player 1 loses using each strategy. NE

chooses Plan 1 with 100% probability. See Table 3-12.

Table 3-12: Selected plan (**) according to NE

$/(L/s) 5 S5 Sy S4 NE
d, -16658.00| -17048.41| -17509.62| -18059.59| 100%**
d, -4119.50 -4322.50 -5785.38| -26962.79 0
dy -36004.32| -36774.44| -37721.07| -38820.40 0
dy -24671.41 -25772.17| -28846.19| -52044.66 0

3.6 Analysis and Conclusion

This section summarizes all the results according to the different decision rules and NE.

Table 3-13: Summary

Criterion The selected plan
Laplace’s principle of
P P2
insufficient reason
Wald’s criterion P1
Savage’s Minimax regret
g gr P2

criterion

P1,if a < 0.4152
P2, ifa > 0.4152

Hurwicz’s criterion

Starr’s Domain criterion P2

Nash equilibrium Pl
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Table 3-13 shows that P2 is an selected choice according to the criteria of Laplace, Savage,
Hurwicz if a > 0.4152 and Starr, while the criteria of Wald, NE and Hurwicz if a <
0.4152 find the selected choice to be P1. It is worth noting that P2 is selected most often,

but most civil engineers intuitively rooted for P3 from a purely city planning perspective.

On the other hand, the fact that NE points toward P1 is a compelling argument for this
alternative. As a reminder, NE is a strategy where regardless of the choice of one’s
opponent, there is no incentive to change one’s strategy. In other words, regardless of the
state of nature, NE says that P1 is the best choice. This is a strong recommendation. The
main drawback of NE is that it can recommend a mixed strategy (several alternatives with
different probabilities). Such a recommendation is hardly helpful to decision makers.
However, in this specific case, the fact that NE is 100% behind Plan 1 (i.e. a pure strategy)

is reassuring for the decision maker.

From the theoretical definition and practical implementation of each method, the
following conclusions will aid DMs in their DMUSU decision process. First, DMs need
to list and organize all the information they have in order to define the decision goal and
decision alternatives. Furthermore, they need to think about what kind of external factors
are considered states of nature, plus their degree of knowledge thereof. Thus, they can
clearly determine whether it is a DMUSU or DMUR problem. Second, DMs need to
clanify their preferences and decide which method to choose. For DMs who are very
conservative and don’t want the chance of a loss, Wald’s maximin is the right decision
method; for DMs who prefer to quantify their attitude, Hurwicz introduces the coefficient
of decision maker’s optimism; for DMs who want to evaluate how much they would regret
choosing an alternative and want to minimize that regret, Savage should be considered;
for DMs who think the likelihood of each state of nature is equal, Laplace is the simplest
criterion to implement; for DMs who are more convinced by the method with strong
quantitative proof, Starr’s Domain should be selected; lastly, a choice made by NE is
supposed to be robust according to its definition, so it can be used as a reference or a

recommendation to support other methods.
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CHAPTER 4 — MULTI-CRITERIA DECISION-MAKING METHODS

4.1 Introduction

Multi-criteria decision making (MCDM) is the most well-known branch of operations
research (OR), which deals with decision problems in the presence of a number of decision
criteria (Belton & Stewart, 2002) (Keeney & Raiffa, 1976). It is a procedure that structures
and solves decision problems by combining the performance of each decision alternative
under multiple conflicting, qualitative and/or quantitative decision criteria and outcomes
into a compromise choice. In MCDM, DMs’ behaviour is more active; they understand
and decide which dimensions or perspectives (criteria) they want to consider for
evaluating decision alternatives. Conversely, in DMUU, DMs believe that a series of
external factors (states of nature) significantly impact the outcomes of decisions; they are

more passive and more focused on future uncertainties.

The relevant MCDM methods aim to help DMs solve MCDM problems; they are widely
applied in different types of real-life problems, where groups of decision alternatives are
considered against conflicting criteria (Triantaphyllou & Mann, 1995). A good number of
MCDM methods have been developed to provide techniques for DMs during the decision
process. They incorporate all the objective and subjective information in order to find a
compromise selected solution. According to the literature, the available methods can be

grouped into three categories (Ishizaka & Nemery, 2013) (Belton & Stewart, 2002):

—  Full aggregation methods: each criterion is assigned a weight, which indicates the
importance of the criterion, then a numerical score for each alternative is calculated
and the one with the highest score prevails [e.g., the analytic hierarchy process (AHP)
(Saaty, 1980)].

—  Outranking methods: each pair of alternatives is compared for each criterion to rank
the alternatives [e.g., the ELimination Et Choix Traduisant la REalité (ELECTRE)
(Benayoun, Roy, & Sussman, 1966), the Preference Ranking Organization Method
for Enrichment Evaluations (PROMETHEE) (Brans & Vincke, 1985).
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—  Goal, aspiration or reference level methods: these methods identify how far each
alternative is from the ideal goal or aspiration [e.g., the Technique for Order

Preference by Similarity to Ideal Solution (TOPSIS) (Yoon & Hwang, 1995)].

The purpose of this chapter is to review four MCDM methods in reality: AHP, TOPSIS,
ELECTRE and PROMETHEE. Sections 4.2 to 4.5 respectively describe each of the above
MCDM methods with an intuitive explanation and interpretation. They also discuss each

method’s advantages and limitations. Section 4.6 is the conclusion for this chapter.

4.2 AHP

The Analytic hierarchy process (AHP), developed by Thomas L. Saaty in “A scaling
method for priorities in hierarchical structures” (Saaty, 1977) (Saaty, 1980), is one of the
most extensively used MCDM methods. It helps DMs understand the problem and choose
one decision to suit their goal. Its strength lies in its simplicity and ease to understand. In
general, AHP first deconstructs the original decision problem into a hierarchical structure
containing the decision goal, the alternatives and the criteria; then it uses pairwise
comparison techniques to obtain the priorities of all the elements in the decision problem,;
finally, it synthesizes all the judgments and summarizes a set of overall priorities in order
to make the final decision. This method is widely used around the world in a broad range
of applications (Vaidyaa & Kumar, 2006), such as selection (Lai, Wong, & Cheung, 2002),
evaluation (Akarte, Surendra, & Ravi, 2001), cost/benefit analysis (Wedley, Choo, &
Schoner, 2001), allocations (Saaty, Vargas, & Dellmann, 2003), forecasting (Rossetti &
Selandari, 2001), etc.

AHP is completed in four steps to obtain the ranking of all the decision alternatives. This
method first structures the decision problem into a hierarchy of all the elements of the
problem, which are: the overall goal of the problem, a group of decision alternatives for
achieving the goal and a group of criteria that connects the alternatives to the goal; second,
it calculates priorities among the elements of this hierarchy by making a series of

judgments based on pairwise comparisons of the elements; third, the judgments in step
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two are checked for consistency; fourth and finally, it synthesizes these judgments to
obtain the ranking of all the alternatives with regard to the goal and makes the final

decision. The following subsections give a brief introduction to each step.

Step 1. Structure the Problem into a Hierarchy. In AHP, DMs first specify the overall
goal of the problem, the list of criteria they want to consider and the available decision
alternatives. They then structure the complex decision problem into a hierarchy where the
top level is the overall goal, the second level is the criteria and the lowest level represents
the alternatives; see Figure 4-1. In a more complex hierarchy, criteria can be further
divided into sub-criteria, sub-sub-criteria and so on; hence, more additional levels can be

added. Nevertheless, the hierarchy must be at least three levels (Saaty & Vargas, 2001).

GOAL

N

Criterion 1 Criterion 2 Crlterion 3 Criterion 4

Alternative 1| |Alternative 2| |Alternative 3

Figure 4-1: AHP hierarchy structure

Step 2. Perform the Priority Calculation. A priority is represented by an absolute
number between zero and one that indicates the importance of each alternative with regard
to one specific criterion and the importance of each criterion with regard to the top goal
in the decision problem. The technique used in the priority calculation is called pairwise
comparison. This technique generally consists in comparing all the alternatives in pairs to
judge which alternative is preferable. It is often used in psychology (Yokoyama, 1921)
(Thurstone, 1927). It is believed that pairwise comparison is a more efficient and accurate
way to evaluate the preference between two alternatives than simultaneously comparing

all the alternatives (Ishizaka & Labib, 2011). The fundamental scale of pairwise
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comparison used in AHP is a 1-9 fundamental scale (Saaty & Vargas, 2001), see Table 4-

1.

Table 4-1: The Fundamental Scale for Pairwise Comparison in AHP

Degree of Importance Definition

1

Equal importance

Moderate importance

Strong importance

Very strong importance

O| 3| wn| W

Extreme importance

Degrees of 2, 4, 6 and 8 can be used to express intermediate values. Degrees of 1.1, 1.2, 1.3, etc.

can be used for alternatives that are very close in importance.

The priority calculation in AHP involves the following tasks:

Starting from the second level of the hierarchical structure, comparing the nodes at
each level two by two with respect to their contribution to the nodes above them and
collecting the results into a positive square n X n matrix § = (s;;), where n is the
number of alternatives when computing the alternative priority and the number of

criteria when computing the criteria priority. The diagonal elements of the matrix

. . . 1
are 1 and sj; is the reciprocal of s;;, i.e. 5;; = —.
Sij

Computing the priority vector of each pairwise comparison matrix. Saaty (Saaty,
2003) explains that a priority vector must remain invariant under multiplication by
a positive constant and it should be unchanging under the hierarchical structure for
its own judgment matrix so that one does not keep getting new priority vectors from
that matrix. In the same paper, Saaty also proves that the principal right eigenvector
(also known as right Perron vector) is a necessary representation of the priority
vector derived from a positive reciprocal pairwise matrix S when S is a small
perturbation of a consistent matrix. Teknomo (2006) introduces a way to compute
this eigenvector by hand and Seshadri (2009) provides a function to compute this
eigenvector through the Matlab software.
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Step 3. Check the Consistency of the Pairwise Comparison Matrix. The pairwise
comparison matrix may be inconsistent because in making a pairwise comparison
judgment, a human is more likely to be cardinally inconsistent because s/he cannot give
precise estimations. Furthermore, several successive pairwise comparisons may contradict
each other; for example, A is preferred to B twice and B to C four times, but A is preferred
to C only six times when compared pairwise; another example could be a situation where
A is preferred to B and B to C but C is preferred to A. Be aware that AHP doesn’t insist
on 100% consistency because people are not robots unable to change their minds with
new evidence and unable to look within for judgments that represent their thoughts,
feelings and preferences. AHP allows inconsistency; however, the consistency level of the
pairwise comparison matrix needs to meet a certain level. This is because the principal
eigenvector can represent the priority vector when the matrix is a small perturbation of a

consistent matrix (Saaty, 2003).

The consistency check consists in:

/Lmax

1.  Computing the consistency index (CI) by: = Tl_n , where A,,,, is the largest

eigenvalue of the matrix and n is the number of independent rows in the matrix. If
the matrix is perfectly consistent then CI = 0.
2. The more pairwise comparison judgments, the greater the chance that the

consistency error is increasing. Thus, Saaty (1980) proposes using consistency ratio
(CR).CR = %, where R is the average CI values from a random simulation of

pairwise comparison matrices. Table 4-2 shows RI values derived from simulations
(Alonso & Lamata, 2006). In AHP, if CR is smaller than or equal to 0.1, the
inconsistency is acceptable; if CR is greater than 0.1, the subjective pairwise

comparison judgment must be revised.
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Table 4-2: RI values derived from simulations

n 500 100,000 500,000
3 0.58 | 0.525 0.525
4 0.90 | 0.880 0.880
5 1.12 | 1.109 1.109
6 1.24 | 1.248 1.248
7 1.32 | 1.342 1.342

Step 4. Synthesize the Final Priorities. After the previous steps, the priorities of the
criteria with respect to the goal and the priorities of the alternatives with respect to the
criteria are known; the next step is to calculate the priorities of the alternatives with respect
to the goal that represent the alternatives' relative ability to achieve the decision goal. The
calculation is a straightforward matter of multiplying and adding: (1) for each criterion C;,
multiply the priority of C; with respect to the goal by the priority vector of all the
alternatives with respect to C;; (2) for each alternative A;, add all the i" elements from
the results of (1), the sum is the priority of A; with respect to the global goal; (3) the
alternative with the highest priority with respect to the goal is considered the final decision

choice.

The AHP method is a well-structured technique to help DMs understand and analyze
complex decision problems. It selects the best decision from a number of alternatives
evaluated with several criteria. In this process, DMs use simple pairwise comparison
judgments to develop overall priorities for ranking the alternatives. It has received the
most academic attention and been frequently used around the world in a large variety of
applications due to its simplicity, ease to understand and the quality assurance provided
by the consistency check. The disadvantages of AHP are that the potential compensation
between good scores on some criteria and bad scores on others cause the loss of
information (Machairs, Witte, & Ampe, 2008) and the complexity and time of
computation depends on the number of criteria and alternatives (Chou, Chang, & Shen,

2008).
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4.3 TOPSIS

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), from
the group of goal, aspiration or reference level methods, was first presented by Hwang
and Yoon in 1981 (Hwang & Yoon, 1981). The basic principle of this method is that the
best alternative is the one that is the shortest distance to the ideal solution and the furthest
distance from the anti-ideal solution (Ishizaka & Nemery, 2013) (Kabir, Sadiq, &
Tesfamariam, 2014). The ideal solution maximizes the benefit criteria and minimizes the
cost criteria, whereas the anti-ideal solution maximizes the cost criteria and minimizes the
benefit criteria (Kabir, Sadiq, & Tesfamariam, 2014) (Kabir & Sumi, 2012). It is applied
across many fields such as supply chain management and logistics (Chen, Lin, & Huang,
2006), (Dalalah, Hayajneh, & Baticha, 2011); design, engineering and manufacturing
systems (Lin, Wang, Chen, & Chang, 2008); business and marketing management (Peng,
Wang, Kou, & Shi, 2011); energy management (Kaya & Kahraman, 2011), etc.

The TOPSIS process is built with five computation steps (Ishizaka & Nemery, 2013). It
first generates the decision matrix that contains the performances of the alternatives for
the different criteria. Then the decision matrix is normalized and weighted. The distances
to the ideal and anti-ideal solution are calculated. Finally, the relative closeness is

computed by the ratio of these distances. The details of each step are:

Step 1. The decision matrix is generated as A = (a;;)mxn Which contains m alternatives,

denoted as dq, d>, ..., d,,, and n criteria, denoted as ¢y, ¢, ..., €5, With the performance of

each alternative on a criterion given as a;;.

Step 2. The decision matrix needs to be normalized in order to be able to compare the

measure on different units (e.g., dollars, days and km). Distributive normalization is one
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of the normalization methods; it calculates the normalized matrix R = (7j;)mxn using the

following equation:

aijj R ,
rj=F———=,l=12,-mj=12,,n (4.1
f 71?:1‘11%1'

Step 3. The weights are taken into account. The weighted normalized matrix is T =

(tij) mxn by
ti,-=rij-wj,i=1,2,---,m,j=1,2,---,n (42)
where w,, w,, -+, W, 1s a set of weights associated with the criteria and Zjnzl w; = 1.

Step 4. The ideal solution S§* and the anti-ideal solution S~ are defined as follows:
st={t[i =12 ,n) = {(miin t | E]‘),(miax tiliest)) @3

s—={¢i=12n}= {(miax t; |j E]"),(miin tj |j €M), @9
where J* and ]~ are related to the benefit and cost criteria respectively.
Step 5. Finally, the n-dimensional Euclidean distance from the alternative i to the ideal

solution S*and the anti-ideal solution ™, denoted as D;” and D/ in the following

equations is calculated:

D} = \/Z}‘zl(ti [~ )2 (4.5)

D; = J27=1(tij ~t7)? (4.6)
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Step 6. The relative closeness of each alternative to the ideal solution is obtained by

o (4.7)

(o +07)

if C; = 1, alternative i is the ideal solution, if C; = 0, alternative i is the anti-ideal
solution. Then, rank the alternatives based on the values of C;; the maximum value refers

to the best solution to the problem.

The advantage of this method is that it requires minimal input from DMs and its output is
easy to understand; the drawback is that vector normalization is needed to solve multi-

dimensional problems (Kabir, Sadiq, & Tesfamariam, 2014).

4.4 ELECTRE

One of the famous outranking methods is ELimination Et Choix Traduisant la REalité
(ELECTRE). The ELECTRE is a family of MCDM methods containing ELECTRE 1,
ELECTRE II, ELECTRE III, ELECTRE IV, ELECTRE IS and ELECTRE TRI. The two
main procedures in ELECTRE methods are: a multiple criteria aggregation procedure that
builds one or several outranking relation(s) in order to compare each pair of alternatives
in a comprehensive way; an exploitation procedure that can provide results based on how
the problem is being addressed: choosing, ranking or sorting (Figueira, Mousseau, & Roy,
2005). ELECTRE I was first presented by B. Roy in 1968 (Roy, 1968), which triggered
the development of other ELECTRE methods in order to deal with different types of
decision problems: ELECTRE I is made for selection problems; ELECTRE TRI for
assignment problems; ELECTRE II, III and IV for ranking problems. ELECTRE III is the
most popular of the ELECTRE methods and a well-established partial ranking method, as
it considers imprecise data and uncertainties (Kabir, Sadiq, & Tesfamariam, 2014)
(Salminen, Hokkanen, & Lahdelma, 1998) and has many successful real-world
applications such as environmental and energy management (Figueira, Mousseau, & Roy,

2005) (Karagiannidis & Papadopoulos, 2008), strategic planning (Kangas & Pykildinen,
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2001), water and wastewater management (Carrigo, Covas, Almeida, Leitdo, & Alegre,

2012).

4.4.1 ELECTRE III Procedure in Theory

ELECTRE III constructs and exploits outranking relations between alternatives based on
the weights of the criteria, the indifference, the preference and the veto thresholds
provided by DMs. An outranking relation, where a outranks b (denoted by aSb), indicates
that there are sufficient reasons to prove that a is at least as good as b and there are no
important arguments disproving this (Roy, 1974). An outranking degree S(a, b) between
a and b measures the power of the statement “a outranks b”. It is a grade between 0 and
1, where the closer S(a,b) is to 1, the more a outranks b. This outranking degree S(a, b)
is computed with two perspectives: the concordance and the discordance of the statement
that a outranks b. The concordance and discordance are evaluated separately while
incorporating the decision maker’s preference on various (often conflicting) criteria. DMs
need to provide the indifference and preference thresholds for calculating the concordance
index and the veto threshold for the discordance index (Ishizaka & Nemery, 2013) (Tzeng
& Huang, 2011).

All the criteria have to be maximized without loss of generality. Let’s define A =
(a,b,c,...,n) to be a set of alternatives and n criteria, denoted as (g4, 8>, ..., 8,) for a
MCDM problem; g;(a) represents the performance or the outcome of the alternative a €
A for the criterion gj; thus, the multi-criteria evaluation of alternative a is represented by
the vector g(a) = (g,(a),g.(a), ..., gn(a)). Let q(g) and p(g) be the indifference and

preference thresholds, respectively. For one pair of alternatives if g(a) = g(b), then

g(a) > g(b) +p(g(b)) < aPb
g(@) +q(gb) < gla) < gb) +p(g(h)) = aQb
g(b) < g(a) < g(b) + q(g(b)) < alb
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where P represents a strong preference, @ represents a weak preference, I represents

indifference.

With all the denotations introduced so far, the ELECTRE III procedure is presented below
(Ishizaka & Nemery, 2013), (Roy & Bouyssou, 1993).

Step 1. The partial concordance index C;(a, b) measures the statement “a outranks b” or

“a is at least as good as b” on the specific criterion g; and is calculated by

0 if gj(b)—g;(a) >p,
C,(a,b) = 1if gj(b) —g;(a) <gq; (4.8)
pj—(gj(b)-gjla)
pi—4q;

otherwise

where pj, q; (p; > q;) denote respectively the preference and indifference thresholds for
criterion g;. The higher Cj(a, b), the more a outranks b on criterion g;. It is a value
between 0 and 1. When C;(a, b) = 0, this means that the performance of alternative b on
gj 1s higher than the performance of a augmented with preference threshold p; and there
is a strict preference for b over a, i.e., a does not outrank b; when it equals 1, the
performance of b on g; is less than the performance of a augmented with indifference
threshold g; and a and b are indifferent, i.¢., a is at least as good as b; when it is between
0 and 1, the performance of b on g; is between the performance of a augmented with
indifference threshold g; and the performance of a augmented with preference threshold

p; and b is slightly preferred to a.

Step 2. The global concordance index C(a,b) combines all the partial concordance

indices on the different criteria together with their corresponding criteria weights. Hence,
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it is the weighted sum of all the partial concordance indices and measures the concordance

of the statement “a is at least as good as b’ with all the criteria:

Ca,b) = EJ:JM (4.9)

j=1Wj

Step 3. The partial discordance index d;(a, b) measures the discordance with the

statement “a is at least as good as b” for criterion g; and is computed as follows:

1if gj(b) - g;(a) > v

di(a,b) = 0if g;(b)—g;(a) <p, 10
9@-9 O} therwise
Vi—pj

where v; (satisfying v; > p;) is the veto threshold for criterion g;. The higher the
discordance index, the more discordant this statement. Its value is between 0 and 1. When
d;(a,b) = 1, it means that g;(b) is higher than g;(a) + v;, the difference between b and
a exceeds the veto threshold and the statement “a is at least as good as b is completely
discordant. When d;(a, b) = 0, the statement “a is at least as good as b” is correct and
there is no discordance. When d;(a, b) is between 0 and 1, the performance of b is

between g;(a) + p; and g;(a) + v;; therefore, b is slightly preferred to a.

Step 4. The outranking degree S(a, b) is ready to be computed. It summarizes the
concordance and discordance index into one measurement of the statement “a outranks b”

as below:

C(a,b) if C(a,b) =d;(a,b)

1-d(a,b) i
Clab) M| 2| ifclab) <dab)

S(a, b) (4.11)
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Step 5. To obtain the ranking order of the alternatives, descending distillation and
ascending distillation must first be determined, then the final ranking is obtained by

combining both orders.

Descending distillation

. Determine the maximum value of the credibility index: 4,,,, = maxS(a, b);

. Calculate A = A, — (0.3 — 0.15A,,,4x ). Where -0.15 and 0.3 are the preset up

values of distillation coefficients, @ and £;

. For each alternative a, determine its A-strength, i.e. the value of alternative b with
S(a,b) > A
. For each alternative a, determine its A-weakness, i.e. the value of alternative b with

(1-(0.3—-0.151)) = S(a,b) > S(b, a);

. For each alternative, determine its qualification, i.e. the difference between A-
strength and A-weakness;

. The set of alternatives with the largest qualification is called the first distillate (D,);

. If D; has more than one alternative, repeat the process on the set D; until all
alternatives have been classified. If there is a single alternative, then this is the most
preferred one. Then continue with the original set of alternatives minus the set Dy,

repeating until all alternatives have been classified;
Ascending distillation

. This is computed in the same way as descending distillation but the lowest

qualification is used to form the first distillate.

ELECTRE III has many advantages for decision-making problems. Compared to
ELECTRE II, the ELECTRE III implements a structured procedure to extract the
relationship between decision alternatives. Its main advantage is that ELECTRE III is an
interactive method, which means DMs directly participate in the decision process.

Another advantage is that ELECTRE III avoids compensation between criteria and any
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normalization process, which distorts the original data; the drawback is that it requires
various technical parameters such that it is not always easy to fully understand them

(Ishizaka & Nemery, 2013).

4.5 PROMETHEE

The PROMETHEE, another family of outranking methods, ranks alternatives by
computing a positive outranking flow and a negative outranking flow for each alternative.
Seven different methods in the PROMETHEE group have been developed and used by
decision makers. PROMETHEE 1 (partial ranking) and PROMETHEE II (complete
ranking) were first published in 1982 by Brans (Brans J. , 1982), then in 1985, Brans and
Mareschal developed PROMETHEE III (ranking based on intervals) and PROMETHEE
IV (continuous case) (Brans & Vincke, 1985). They subsequently suggested
PROMETHEE GAIA, which provides geometrical representation in support of the
PROMETHEE methodology in 1988 (Mareschal & Brans, 1988). In 1992 and 1995, the
same authors proposed another two versions: PROMETHEE V (including segmentation
constraints) (Brans & Mareschal, 1992) and PROMETHEE VI (representation of the
human brain) (Brans & Mareschal, 1995). In this section, PROMETHEE I and
PROMETHEE II are fully described below.

4.5.1 PROMETHEE I & II Procedure in Theory

4.5.1.1 Essential concepts of the PROMETHEE method

According to the literature (Ishizaka & Nemery, 2013) (Brans J. , 1982), PROMETHEE
methods follow three main steps: (1) computing the preference degrees for every ordered
pair of alternatives on each criterion, (2) computing the unicriterion flows, (3) computing
the global flows. The global flows give DMs a ranking order of the alternatives and a
graphical representation of the decision problem. The three steps are explained in greater

detail below.
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Step 1. Unicriterion preference degrees. The unicriterion preference degree is a grade
(between 0 and 1) that shows that an alternative is preferred over another on a certain
criterion from the decision maker’s own point of view. A preference degree of 1 denotes
a strong preference for one of the alternatives for this criterion. If there is no preference at
all, then the preference degree is 0. On the other hand, if there is some preference but not

a strong preference, then the preference degree lies somewhere between 0 and 1.

DM s evaluate each alternative on every specific criterion with numerical values or scaled
values (e.g., good, average, poor, etc.), then PROMETHEE uses pairwise comparisons to
identify the differences between evaluations of each alternative on one specific criterion
and preference function to explore the relation between the difference and the preference.
There are a few different types of preference functions; of them, the linear function is the
most common. The linear preference function requires two parameters: an indifference
threshold g and a preference threshold p. If the difference between the evaluations of a
criterion is smaller than the indifference threshold, then the decision maker sees no
difference between these two alternatives (i.e. the preference degree is 0). If the difference
is higher than the preference threshold, then the preference is strong (i.e. the preference
degree is 1). The preference function gives the value of the preference degree for

differences that fall between the indifference and preference threshold. See Figure 4-2.
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Figure 4-2: Linear Preference Function
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Step 2. Unicriterion positive, negative and net flows. With the unicriterion pairwise
preference degree, it is hard to determine the ranking of all the alternatives, especially
when there are many. Therefore, it is necessary to summarize all the unicriterion pairwise
preference degrees into unicriterion positive, negative and net flows, which present that

an alternative is preferred over all other alternatives.

A unicriterion positive flow of an alternative is a score between 0 and 1, which shows that
an alternative is preferred (based on the decision maker’s preference) over all other
alternatives on that particular criterion. The higher the positive flow, the better the action
compared to the others. It is an average combination of all the preferences of an alternative
compared to the others (excluding the preference degree compared with itself). Hence, it

is the normalized sum of all the row elements and always lies between 0 and 1.

A unicriterion negative flow expresses that the other actions are preferred to this one. The
negative flow is thus computed by taking an average combination of all the preference
degrees of the actions compared to that particular action (excluding the preference degree
compared with itself). It corresponds to the average of the entire column except for the
diagonal element. This score thus always lies between O and 1. Note that the unicriterion
negative flow needs to be minimized; the lower the negative flow, the more preferred the

alternative.

Unicriterion net flow considers both the positive and the negative flows. The net flow of
an alternative is calculated by the positive flow minus the negative flow. It represents the
balance between an alternative’s global strength and its global weakness; hence it should

be maximized. It always lies between —1 and 1 according to the method of computation.

Step 3. Global flows. In the previous steps, only one criterion is considered. In order to
include all the criteria, DMs need to specify a weight for each criterion so that a weighted
sum of all the unicriterion positive, negative and net flows can be calculated into global

positive flows, global negative flows and global net flows respectively.
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A global positive score indicates that an alternative is globally preferred to all the other
alternatives when considering several criteria. Since the weights are normalized, the

global positive score always lies between 0 and 1.

Similarly, a global negative score indicates that other alternatives are preferred over a

given alternative. The negative score always lies between 0 and 1 and must be minimized.

The global net flow of an alternative, obtained by subtracting the negative flows from the
positive flows, includes both perspectives (preferred over other alternatives and other

alternatives preferred).

4.5.1.2 The PROMETHEE [ Ranking

The PROMETHEE I ranking depends on the global positive and negative flows. It follows
four different rules to analyze the flows of two alternatives and conclude their ranking

order:

- An alternative has a better rank than the other one if its global positive flow score
is higher and its global negative flow score is lower simultaneously than the scores
of the other alternative.

- An alternative has a worse rank than the other one if both the global positive and
negative flow are worse.

- Two alternatives are considered to be incomparable if one alternative has a higher
global positive score but a lower global negative score (or vice versa).

- Two alternatives are considered indifferent if they have identical global positive

and negative flows.
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4.5.1.3 The PROMETHEE II Ranking

The PROMETHEE II ranking is based on the global net flows only and leads to a complete
ranking of the actions (i.e., the incomparable status does not exist). Hence, the alternatives

can be ordered from best to worst.

4.5.1.4 Summary

The decision process of PROMETHEE I and II is the following: first, DMs define which
criteria they want to consider in their decision making; second, all the alternatives are
evaluated according to those criteria. Third, by specifying the preference function and
associated parameters, the pairwise criterion preference degrees can be computed; fourth,
unicriterion flows are calculated from the pairwise criterion preference degrees; last, the
unicriterion flows are summarized into global flows. Then the ranking order is obtained

based on whether PROMETHEE 1 or PROMETHEE 11 is chosen.

The PROMETHEE method allows direct operation on the variables included in the
decision matrix without requiring any normalization and is applicable even when there is
insufficient information. However, its main drawback is that it is time consuming and
difficult for DMs to have a clear view of the problem, especially when there are many

criteria involved (Kabir, Sadiq, & Tesfamariam, 2014) (Brans & De Smet, 2005).

4.6 Conclusion

This chapter explains AHP, TOPSIS, ELECTRE I1I and PROMETHEE I&II in theory. It
gives a clear description of their mathematical algorithms. Furthermore, each method’s
advantages and limitations are underlined in order to provide a high-level overview of
what kind of decision environment each method is suited for. In general, computation is
difficult for AHP when there are quite a number of criteria and alternatives; TOPSIS
involves fewer inputs, but it requires vector normalization for multi-dimension criteria.

ELECTRE III uses original data without any normalization requirements, but it has
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various technical parameters such that it is not always easy to fully understand;
PROMETHEE &Il are applicable even when there is insufficient information, but can be
time consuming as well when many criteria are involved. In the next chapter, these

MCDM methods will be implemented in order to perform a deep comparative analysis.
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CHAPTER 5 — A COMPARATIVE STUDY OF MCDM METHODS

5.1 Introduction

Due to the number of MCDM methods available, DMs are confronted with the difficult
task of selecting the appropriate MCDM method, as each method has its own limitations,
particularities, hypotheses, premises and perspectives and can lead to different results
when applied to an identical problem (Ishizaka & Nemery, 2013). Hence, it is worth
evaluating the performance of different methods using a single decision problem. The aim
of this chapter is to present a comparative study of four MCDM methods (AHP, TOPSIS,
ELECTRE, PROMETHEE) by applying them to one real-world sewer network planning
case study and analyzing the suitability of results in order to highlight the differences and
reach meaningful conclusions. The purpose of this chapter is to help DMs fully understand
each MCDM method’s particularities, strengths and weaknesses in a practical way and

choose the suitable MCDM method for their unique decision problem.

A sewer network system is the infrastructure that transports sewage, rainwater or
stormwater. The main part of this system encompasses components such as manholes,
pumping stations and large pipes in a combined sewer (sewage and rainwater) or sanitary
sewer (sewage only) system. Sewer water infrastructure asset management has major
impacts on protecting public health and sustaining our environments (Cardoso, Silva,
Coelho, Almeida, & Covas, 2012) (Ugarelli, Venkatesh, Brattebg, Di Federico, & Saegrov,
2010) (Grigg, 2012). Deciding on the right sewer network plan is challenging, especially
when considering the following requirements (Zheng, Egger, & Lienert, 2016): first, the
selected sewer system plan’s quality, life-cycle maintenance and performance need to
meet the sustainability requirements for society, the economy, and the environment
(Ashley, Blackwood, Butler, & Jowitt, 2008); second, the decision should involve all the
stakeholders’ preferences (Reed, 2008); third, the decision making must incorporate
uncertainty, i.e., information is imperfect or unknown (Gregory, et al., 2012); fourth, long-
term planning for future climate changes, urban development in the context of population

increase or decrease, numerous environmental pollutants, etc., must be a factor.
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Multi-criteria decision making (MCDM) is able to meet all the above challenges (Keeney
& Raiffa, 1976) (Belton & Stewart, 2002) for a sewer network plan decision problem. It
is a procedure that structures and solves decision problems by combining the performance
of each decision alternative for multiple conflicting, qualitative and/or quantitative
decision criteria and outcomes into a compromise choice. The relevant MCDM methods
have been developed to help DMs solve MCDM problems. They are widely applied in
different types of real-life problems where groups of decision alternatives are considered
against conflicting criteria (Triantaphyllou & Mann, 1995). The application of MCDM
methods in water and wastewater infrastructure management has steadily increased in the
literature since 1990, where the analytic hierarchy process (AHP) (Saaty, The Analytic
Hierarchy Process, 1980), the elimination et choix traduisant la realit¢ (ELECTRE)
(Benayoun, Roy, & Sussman, 1966), the preference ranking organization methods for
enrichment evaluations (PROMETHEE) (Brans & Vincke, 1985) and the technique for
order preference by similarity to Ideal Solution (TOPSIS) (Yoon & Hwang, 1995) are the
most employed of all the various MCDM methods (Kabir, Sadiq, & Tesfamariam, 2014).

The remaining parts of this chapter are organized as follows: section 5.2 gives a brief
description of AHP, TOPSIS, ELECTRE III and PROMETHEE II; section 5.3 provides
the details of constructing the sewer network decision problem (introduced in Section 2.3)
into a MCDM problem and using four MCDM methods for this case study to compare

and analyze their results.
5.2 MCDM Methods
The following methods have been selected for the purposes of this chapter, as they are

widely used MCDM methods in decision problems for water and wastewater

infrastructure management: AHP, TOPSIS, ELECTRE and PROMETHEE.
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. AHP

AHP contains four steps as shown in Figure 5-1. In its first step, it structures the original
decision problem into a hierarchical structure. The overall goal of the problem is at the
top level of the hierarchy; the next level contains the criteria representing the different
dimensions from which the alternatives can be considered; while the bottom level is filled
with decision alternatives, which are the different choices available to the decision maker.
The second step is to calculate the priority of each criterion with respect to the goal and
the priority of each alternative with respect to one specific criterion. The technique of
pairwise comparison with a 1 — 9 fundamental scale (Saaty & Vargas, 2001) is used to
obtain pairwise comparison matrix S = (s;;), which is a positive reciprocal matrix, i.e.

85 = Si Saaty proves that the principal right eigenvector of S sufficiently represents the
ij

priority vector when S is a small perturbation of a consistent matrix (Saaty, 2003). Hence,

the third step is to perform a consistency check of pairwise comparison matrices. This

ax

: : : : Amax— :
requires computing the consistency index (CI) by: CI = %1“ , where A, i the largest
eigenvalue of the matrix and n is the number of independent rows in the matrix. Then the

random index RI (see Table 3-2), which is the average CI values from a random simulation

of pairwise comparison matrices (Alonso & Lamata, 2006), is introduced. If % < 0.1, the

. . . o CI o o : :
inconsistency is acceptable; if = 0.1, the subjective pairwise comparison judgment
needs to be revised. The last step is to summarize a set of overall priorities in order to

make the final decision. The alternative with the highest priority with respect to the goal

is considered the final decision choice.

AHP has received the most academic attention and been frequently used around the world
in a large variety of applications due to its simplicity, ease to understand and the quality
assurance provided by the consistency check. AHP is used in 28.3% of publications
regarding water and wastewater (Kabir, Sadiq, & Tesfamariam, 2014) (Huang, Keisler, &
Linkov, 2011). The disadvantages of AHP are: the potential compensation between good

scores on some criteria and bad scores on others causes the loss of information (Machairs,
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Witte, & Ampe, 2008); and the complexity and time of computation depends on the
number of criteria and alternatives (Chou, Chang, & Shen, 2008).

Synthesize
the final
priorities

Check the

consistency
Calculate of the

priorities pairwise
comparison
matrix

Structure the
problem into
a hierarchy

Figure 5-1: AHP

. TOPSIS

The TOPSIS process as shown in Figure 5-2 first generates the decision matrix A =
(@ij)mxn- Then, it calculates the normalized matrix R = (7j;)mxn and the weighted
normalized matrix T = (t;;)mxn. The ideal solution S* and the anti-ideal solution $~ are
defined based on the weighted normalized matrix. Subsequently, it computes the n-
dimensional Euclidean distance from the alternative i to the ideal solution S*and the anti-
ideal solution S~ in order to obtain each alternative’s relative closeness to the ideal

solution. The rank of the alternatives is based on the relative closeness value.

The application of this method in water and wastewater management can be found in
Afshar, Marino, & Saadatpour (2011) for ranking projects in the Karun river basin;
Coutinho-Rodrigues, Simdo, & Antunes (2011) for selecting the water supply system
investment option for an urban development/expansion project; and in Srdjevic, Mederios,

& Faria (2004) for ranking water management scenarios.
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Figure 5-2: TOPSIS Process

. ELECTRE III

To use ELECTRE 1I1II as shown in Figure 5-3, DMs need to define criteria indifference
(q), preference (p) and veto (v) thresholds where (v = g = p) and the weight (w;) for
each criterion j. The main ELECTRE III steps are shown in Figure 5-3. The concordance
index, denoted as C(a, b), is evaluated by an overall comparison of the performances of
each pair of a and b alternatives for all criteria. It varies from O to 1; a value of 0 means
that alternative a is worse than alternative b for all criteria. The concordance index is
computed by a weighted comparison of the performances for each criterion ¢;(a, b)
individually; the discordance index for one criterion j, denoted as D;(a, b), describes the
situation where alternative a is better than b generally, but for criterion j, alternative a is
worse than b. The estimation of credibility scores is based on the concordance and
discordance indices in one of the following two scenarios: first, the degree of outranking
is equal to the concordance index if there is no criterion that is discordant or where no
veto threshold is used; second, the degree of outranking is equal to the concordance with
a reduction as the level of discordance increases above a threshold value. The distillation
procedure comprises two parts: Descending Distillation, where the alternatives are
ordered from the best rankings to the worst, and Ascending Distillation, which is to order
the alternatives from the worst rankings to the best. The final complete ranking result

comes from the combination of Descending Distillation and Ascending Distillation.
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ELECTRE methods have been applied in approximately 15.1% of publications regarding
water and wastewater: Carrigo, et al. (2012) used ELECTRE TRI and ELECTRE III to
prioritize rehabilitation interventions on the sanitary sewer system in Lisbon; Trojan and
Morais (2012) applied ELECTRE 1l to prioritize alternatives for maintenance of water
distribution networks; ELECTRE 1 is implemented in Morais, & Almeida (2006) for the

decision on a city water supply system.
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Figure 5-3: ELECTRE III Process

. PROMETHEE

The PROMETHEE 1 or II process as shown in Figure 5-4 first looks into each pair of
alternatives for one criterion and computes the unicriterion pairwise preference degree,
which is a score (between 0 and 1) showing that the decision maker prefers one alternative
over the other one for the considered criterion. Then, it summarizes all the unicriterion
pairwise preference degrees into unicriterion positive, negative and net flows, which
demonstrate that an alternative is preferred over all other alternatives. In the previous steps,
only one criterion is considered at a time. Now, all the criteria are taken into account at
the same time in order to compute the global flow. To do so, DMs first need to define the
relative importance or weight of each criterion w;, where Z}‘zle = 1. Then, DMs
calculate the weighted sum of all the unicriterion positive, negative and net flows into
global positive, negative and net flows. The PROMETHEE 1 ranking is dependent on the
global positive flows and the global negative flows. The PROMETHEE Il ranking is
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dependent on global net flows only. In this chapter, PROMETHEE Il is used, since
alternatives can be ranked from the best to the worst, resulting in a complete ranking of

the alternatives.

PROMETHEE has been applied in 13.2% of publications regarding water and wastewater:
Morais, & de Almeida (2007) used PROMETHEE V to rank alternative strategies for
municipal water distribution systems to reduce leakage; PROMETHEE II was applied in
Khelifi, et al. (2006) to select groundwater remediation technologies; implemented
PROMETHEE and GAIA for the selection of a wastewater treatment plant.

A I
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pair of
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Figure 5-4: PROMETHEE Process

5.3 MCDM Problem Case Study

This case study was provided by the civil engineering team from the city of Trois-Rivieres
(introduced in Section 3.3). The decision problem is to select one construction plan to
reduce the rainfall flow channeled to the pumping station so that it can accommodate a
greater sanitary flow. In order to define this project as a MCDM problem, eight
professionals participated in structuring and analyzing the decision alternatives and
criteria: one project manager, two civil engineers, two sanitary engineers, two road

operators and one environment/weather expert.
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5.3.1 Structuring the MCDM Problem

To meet the goal, a rainfall water pipe needs to be designed to guide rainfall water to the
local river instead of the pumping station. Civil engineers and sanitary engineers propose
four designs; they are referred to as alternatives 1, 2, 3 and 4. Alternatives 1 and 2 are the
short-term plans, while alternatives 3 and 4 are their respective long-term extensions.
Briefly, Alternative 1 is to build a new rainfall water pipe along Barkoff street from
Boulevard des Ormeaux flowing directly to the river (see solid black line in Figure 3-2);
Alternative 2 is to extend the existing rainfall water pipe along Vachon street to the river
(see grey solid line in Figure 3-2); Alternative 3 includes the construction of Alternative
1, but will further extend the rainfall pipe to the northeast to du Parc road (see solid and
dashed black lines in Figure 3-2); Alternative 4 includes the construction of Alternative 2,
while extending the rainfall pipe to the northeast along Morin road and Highway 40 (see
solid and dashed grey line in Figure 3-2).

In order to identify evaluative criteria, the group of experts held a meeting to brainstorm
the values and objectives of the problem in order to come up with a list of criteria, and
descriptions of why each of them has been chosen as a criterion. In addition, they
identified whether they are quantitative or qualitative (criteria source) and whether they
are to be minimizing or maximizing (aim). In this way, five criteria were identified on

which to base their decision, see Table 5-1.

Table 5-1: Criteria for Case Study

_'i- | Source | Status Aim
C1 ‘ Dynamic performance ‘ Quantitative i Positive Maximize
C2 | Cost of construction | Quantitative R ‘ N%zﬂ'ﬁ/e_ | Minimize
c3 | Cost of maintenance 1 Qu?alitative _"I\Qati\-/e | Minimize |
C4 | Environmental impact i Qualitative | Negative | Minimize
|

cs | Potential future profit ‘ Qualitative | Positive | Maximize
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Dynamic performance is a positive quantitative variable, and it represents by how much
rainfall flow volume can be reduced in the pumping station. This criterion is evaluated
based on the amount of rainfall water relieved from the pumping station under 9mm/3h

rainfall conditions (refer to Figure 3-3 to 3-6).

The cost of construction is a negative quantitative variable defining how much it costs to
implement a plan. It covers the cost of the duration of work, manpower, materials, and

machines, etc. Note that the cost of construction for each alternative is listed in Table 3-1.

The cost of maintenance is a negative qualitative variable defining the cost of possible
maintenance. For example, regular inspections or repairing damage due to human fault or
extreme weather issues. It is not limited to a monetary valuation, as it also includes societal

and environmental considerations.

Environmental impact is a negative qualitative variable that includes the disruption to
current inhabitants and existing industries, for example, noise, traffic, air or water

pollution, water supply disruptions, etc.

Potential future profit is a positive qualitative variable indicating the possible benefit a
plan could provide after its implementation. For example, more population, or capacity
during extreme weather (heavy rain), etc. It is not limited to a monetary valuation as it

also includes societal and environmental considerations.

Before going through any MCDM method, the overall opinions of the expert team are as
follows: of the four construction plans, Plan 3 is most expensive in terms of cost of
construction. However, this plan has the best potential future profit and leads to the
maximum pumping station capacity. Plan 2 has the lowest construction costs but it would
become more expensive if expansion is required. The costs of Plan 1 and Plan 4 fall in the

middle but their maintenance costs and environmental impact are not low.
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5.3.2 Implementation of the MCDM Methods

The entire AHP and TOPSIS processes are implemented manually since neither method
is based on complex algorithms. ELECTRE and PROMETHEE can be implemented by
performing all the computation steps in a spreadsheet, but it is not easy work. A number
of user-friendly software packages are available that successfully apply the ELECTRE
and PROMETHEE methods. In this paper, the Chemdecide decision framework (Hodgett,
2016) for the ELECTRE III method and the Smart-picker decision software (Brussels,
2011) for PROMETHEE II are used.

During the implementation process, in order to take into account all of the eight
professionals’ opinions, the Delphi technique is applied. The Delphi method, originally
developed by Dalkey in 1969 (Dalkey, 1969), is a structured communication technique to
extract and refine group judgments. The Delphi method uses three essential elements:
anonymous response, iteration and controlled feedback, and statistical group responses.
Each member of the group answers the questionnaire in two or more rounds. After each
round, each participant revises his/her previous answers based on the anonymized
summary of the previous round until a stable result is achieved, i.e., the results from the
last two rounds are the same. This technique is built to minimize the biasing effects of

irrelevant communications, dominant individuals and group pressure towards conformity.

The next section contains a detailed description of implementing each MCDM method.

This leads to a comparative analysis of MCDM methods

5.3.2.1 AHP

As there are five criteria, AHP requires 10 pairwise comparisons to calculate criteria
weights. Furthermore, with four alternatives, six pairwise comparisons for each of the five
criteria are needed. Each professional provides her/his pairwise comparison results, then

the Delphi method is used to collect all the results to form the final six pairwise
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comparison matrices. Although this required a significant number of inputs, the

consistency is checked and the resulting pairwise comparisons are consistent.

Figure 5-5 shows the criteria weight resulting from using pairwise comparison. Dynamic
performance has the highest weight, followed by potential future profit and cost of
construction. Environmental impact and cost of maintenance have the lowest weights. All
the professionals are comfortable with the weight distribution among the criteria. Figure
5-6 displays the alternatives’ performance for each criterion. P3 and P1 are the top two in
terms of dynamic performance, followed by P4, which is less than half of P3, and P2 is
the lowest of all. Regarding the cost of construction, cost of maintenance and
environmental impact criteria, the alternatives have relatively similar normalized score
behaviour, where the least expensive project (P2) clearly outperforms the other
alternatives, while P3, the most expensive project, has the lowest score, and P1 and P4 are
in the middle. For potential future profit, P3 has the highest score—almost three times
more than the runner up, P1. P4 is in third position, which is less than half of P1 and two

times higher than the last one, P2.

AHP Criteria Weights
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Figure 5-5: AHP: Criteria weights using pairwise comparison
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The results from Figures 5-5 and 5-6 summarize the final score and derive the rank of the

alternatives, shown in Figure 5-7, where P2 is the selected alternative according to the

AHP methodology, followed by P3 and P1. P4 receives the lowest score.

AHP: Final Score

0,3630

| 00000 0,0500 0,1000 0,1500 0,2000 0,2500 0,3000 0,3500 0,4000

Figure 5-7: AHP: Results for sewer network planning case study

5.3.2.2 TOPSIS

When implementing the TOPSIS process, each professional can assign criteria weighting

based on his/her own knowledge. Professionals choose a value between 0% and 100%;
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the higher the percentage, the greater the criterion’s weighting. For simplicity, the total
sum of the assigned weighting of the five criteria must equal 100%. With three rounds of
the Delphi technique, each professional finalized his/her assignment, and the final criteria
weighting is calculated by taking the average from all professionals; the result is shown
in Figure 5-8. The weighting is almost equally distributed among dynamic performance,
cost of construction, cost of maintenance and potential future profit, while environmental

impact received a lower weighting.

After deciding the criteria weighting, the TOPSIS process also requires all professionals
to provide their opinions on the alternatives’ performance for each criterion in order to
form the decision matrix. Furthermore, due to the normalization in TOPSIS, the
alternatives’ performance for different criteria must be expressed in the same
measurement unit. Hence, in order to formalize their opinion, all professionals are asked
to rate the alternative between 1 and 10 for each criterion, where 1 denotes extremely poor
performance and 10 denotes excellent performance. For example, Alternative P1 is rated
by each expert (columns in Table 5-2) for each criterion (rows in Table 5-2), and P1’s
final rating for one criterion is the average of all the professionals’ scores. The final
column “Average” in Table 5-3 is the final score for P1 for different criteria. Note that the

scores in Table 5-2 are from each expert and are also derived through the Delphi technique.

Criteria Weighting from group discussion used in TOPSIS

0,2500

0,2000

0,1500

0,1000

0,0500

0,0000
dynamic cost of cost of environmental potential future
performance  construction  maintenance impact profit

Figure 5-8: TOPSIS: Criteria weighting from the group discussion
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P1 Project Civil Civil Road Road Weather and | Sanitary Sanitary Average

manager | engineer | | engineer2 | operator | | operator2 | environment | engineer | | engineer 2

expert

Dynamic 8 8 8 7 7 7 7 7 7.375
performance
Cost of 6 6 6 7 6 6 6 6 6.125
construction
Cost of 7 7 6 6 6 6 6 6 6.25
maintenance
Environmen | 7 7 7 7 7 6 7 7 6.875
tal impact
Potential 7 7 8 8 8 7 7 7 7.375
future profit

This process is repeated for all the other alternatives, and the decision matrix is formed by

the average rate of each alternative for each criterion; see Table 5-3. Figure 5-9 illustrates

the decision matrix for Table 5-3 for a better overview. P1 received above 6 for all the

criteria. P2 has a very good rate (over 8) in terms of cost of construction, which is

reasonable since its construction cost is significantly lower than the others. P3 has very

good rates for the dynamic performance and potential future profit criteria (both are over

8), while it does not have any advantages for cost of construction and environmental

impact. P4 receives relatively similar rates for all criteria and the average is 4.5.

Table 5-3: TOPSIS decision matrix

Alternatives

o P1 P2 P3 P4
Criteria
Dynamic performance 7.375 4.875 8.375 5
Cost of construction 6.125 8.5 3 4.5
Cost of maintenance 6.25 7.75 5.125 5.125
Environmental impact 6.875 7.375 3.25 3.875
Potential future profit 7.375 2.875 8.375 5.125
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TOPSIS decision matrix

10
8
6
4
0
P1 P2 P3 P4
M Dynamic performance W Cost of construction
® Cost of maintenance B Environmental impact

® Potential future profit

Figure 5-9: TOPSIS decision matrix

After the decision matrix is built, the next steps in TOPSIS are: deriving the standardized
matrix; next, considering the weights of the criteria to get the weighted standardized
matrix; followed by finding the ideal solution S* and anti-ideal solution $~ in order to
calculate the Euclidean distance from each alternative to the ideal solution $* and the anti-
ideal solution ™, i.e. D;" and D;; finally, obtaining the relative closeness. The selected
choice is the one with the highest relative closeness value. Table 5-4 shows the result from
TOPSIS, where P1 receives the highest relative closeness value, i.e., it is the alternative

that is the farthest from the anti-ideal solution and nearest to the ideal solution.

Table 5-4: TOPSIS results for sewer network planning case study

TOPSIS Results P1 P2 P3 P4
Rank 1% 2nd 3rd 4t
Relative closeness 0.6663 0.5538 0.4462 0.2672

5.3.2.3 ELECTRE III

The Chemdecide decision framework is introduced and developed in Hodgett (2016),
where Hodgett explained the workflow for ELECTRE III and illustrated how to use the

software by applying it to an equipment selection decision problem. The Chemdecide
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framework contains four different tools, one related to structuring the decision-making
problem and the other three associated with the analysis provided by three different
MCDM methodologies; one of the methodologies is ELECTRE III. The problem-
structuring tool requires the user to designate a goal, a set of alternatives and a defined set
of criteria (including whether the criterion is qualitative or quantitative and minimizing or
maximizing). The analysis tool requires the decision maker to input the criteria weights

and the alternatives’ performances.

It is time consuming and unrealistic to ask each expert to use the software. Since all experts
have attended several group meetings to structure the decision problem and to decide the
criteria weights for AHP and TOPSIS, the project manager is aware of each professional’s
perspective; he represents the group as the user to provide the inputs to the software. His
inputs are concluded and gathered to include the perspectives of all the professionals. The
complete description of this software framework can be found in Hodgett (2016). The
following is a brief list of the steps in using this software to implement the sewer network

planning case study.

Step 1. Choose the decision setup tool to enter the goal of the sewer network planning, all
the available alternatives, plus five criteria and indicate whether each criterion is

qualitative or quantitative and minimizing or maximizing,.

Step 2. Choose the ELECTRE III analysis tool. Open the structured problem from Step 1.
Then make selections using the slider bars to indicate which criterion is more important,
i.e. higher weighting. Here, the project manager decided to use the weighting (in Figure
5-8) derived from the group discussion during the TOPSIS process to define the criteria
weights. See Figure 5-10. The weights are not exactly the same because they are entered

using a slider bar.
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Criteria Selection

Please now make selections using the slider bars to indicate which criterion is more important.
Ensure you also provide notes beiow each slider bar to explain your selections.

BN Dynamic performance
Cost of construction

B Cost of maintenance

M Environmental impact
Potential future profit

Figure 5-10: Chemdecide software framework ELECTRE III: criteria weights

Step 3. For each quantitative criterion, enter its true quantitative data source (numerical
value and unit) as well as the indifference, preference and veto thresholds. Two
alternatives are considered indifferent if their difference is smaller than or equal to the
indifference threshold; Alternative A is preferred to Alternative B if their difference is
larger than the indifference threshold and smaller than or equal to the preference threshold;
Alternative A is vetoed in favour of Alternative B if their difference is larger than the
preference threshold and smaller than or equal to the veto threshold. In this case, the user
does not know the meaning thresholds; the tool has already provided the explanation to
make sure the user entered reasonable inputs. For each qualitative criterion, the user
indicates his/her preference for each alternative using the slider bar. The slider bar assigns
an evaluation of extremely poor, very poor, average, good, very good, and excellent.

Figures 5-11 and 5-12 provide some insight into the above description.

The user has entered all the information in the above steps. The software generates a report
showing the results as in Table 5-5. It shows that ELECTRE III assigns both P1 and P2
first rank: the descending order proposes P1 as the best alternative, while the ascending

order proposes P2 as the best alternative.



Table 5-5: ELECTRE III: results of sewer network planning case study

Descending Order Ascending Order Final Order
1# P1 p2 P1 P2
2nd p2 P1 P3
3rd P3 P4 P3 P4
4'h P4

Dynamic performance Selection

Please provide your quantitative data source, the values for each alternative and the values’ units.

What units are used to measure these alternatives?

—— :

Alternative 1 value: Source;

196.41 |

Alternative 2 value: Source:

75.64 | | |

Alternative 3 value: Source:

21434 ] |
————

Alternative 4 value: Source:

105.87 - o -

| L

Thresholds:

Indifference (at which you have 'no preference’ over the difference in value between one alternative and anather):

o

Preference (at which you have a ‘preference’ over the difference in value between one alternative and another).

[0

Veto (where the difference in value between alternatives would lead you to veto an alternative)

80 '

Figure 5-11: Chemdecide ELECTRE III quantitative criterion
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Potential future profit Selection

Please indicate your preference for each alternative in terms of Potential future profit.
Ensure you also provide notes below each slider bar to explain your selections.

Alternative 1:

- 1

Alternative 2:

L L . - |

Aiternative 3-

l I RO—— —— - l | Excellent

Alternative 4

—— . 1 ]

For criterion 'Potential future profit' please also select appropriate threshold values.

. Indifferent D Weak Preference i Strong Preference - Veto Threshold

Figure 5-12: Chemdecide ELECTRE III qualitative criterion

5.3.2.4 PROMETHEE 1l

Although all the PROMETHEE 11 computations can be performed manually, for
simplicity’s sake, and because DMs can have a different experience using a manual
decision-making process, a software tool is chosen to aid professionals in implementing
this MCDM method. The current available software for PROMETHEE are Decision Lab,
D-Sight, Smart Picker Pro and Visual Promethee (Ishizaka & Nemery, 2013). From these,
Smart Picker Pro (Brussels, 2011), developed by a team from the engineering department
at the Free University of Brussels, is chosen. Its user-friendly interface allows DMs to

model the decision problem step by step and enter their preferences, e.g., the criteria
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weighting and other preference parameters. It reflects the user preferences entered into the
software. Also, unlike other software, it is available as a free trial version (www.smart-
picker.com) with time-unlimited use. However, its trial version is limited to a maximum
of five alternatives and four criteria, but this is sufficient to comprehend its application.
Smart Picker Pro does not require much understanding of the PROMETHEE II method
itself, which makes it very easy to use. The algorithm behind this tool is PROMETHEE I
(partial ranking) and PROMETHEE II (complete ranking). As previously mentioned,
PROMETHEE 1II is the method used from the PROMETHEE family in this case study.
Full instructions for this software can be found in Ishizaka and Nemery (2013) or the

HELP menu in the tool.

As was the case for ELECTRE 111, the project manager represents the whole project group
in using the software. The essential operating steps for the tool in solving the sewer

network planning decision problem are listed below.

Step 1. Enter the performance of alternatives for different criteria. See Figure 5-13. The
performance of alternatives for qualitative criteria (dynamic performance and cost of
construction) are based on the true experiment value, while the performances for
quantitative criteria are evaluated on a scale of Very Good, Good, Average, Bad or Very
Bad; the corresponding scores for this scale are 4, 3, 2, 1, 0 respectively. Ultimately, both
quantitative and qualitative criteria are quantified. It is worth mentioning that in the
PROMETHEE method, there is no need to restrict all the performances measured to the

same unit.

r-;/ All Data A Parameters :E_ Weights

Performances of the actions

Name | Cl &7 c3 C4 c5 |
{duaniic performance  cost of construction  cost of maintanence Wavironmental impagl | potential future profit
Al pl 196.41 1884753.0 good average average
A2 p2 75.64 437606.0 good good bad
| A3 p3 214.34 4127967.2 bad bad very good
| A4 |pd 105.87 2680820.57 bad bad average

Figure 5-13: Smart picker pro PROMETHEE II: performance of alternatives
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Step 2. Set up the preference parameters, such as: maximize or minimize, to indicate
whether it is a positive or negative criterion; preference function: linear function is
selected for all criteria; indifference and preference threshold; see Figure 5-14 for the setup
of one criterion.

i

['/' MiData A Parameters TT0 weights

Criterion :: dynamic performance SetScle Hel
p _
dynamic perfor_man_ce v I Flow Viewer | l'i
Linear Preference v | @ Maximize O Minimize [ absolute [Relatif]
Indifference Threshold (q) : L - :I-: | Preference Threshold (p) : |_30 . _ :‘J
q: ' p: '

Figure 5-14: Smart Picker Pro PROMETHEE II: preference parameter setup for

dynamic performance

Step 3. Set the criterion weight values. In this case, the project manager decided to use
the weights derived from the group discussion during the TOPSIS process to define the
criteria weights. In Smart Picker Pro, users set the weights using a slider bar. See Figure
5-15. Note that the weights are not exactly the same values as shown in TOPSIS, because

the slider bar cannot provide the exact value and causes bias.



[/ Aipeta /A Parameters J,L Weights

Criterion Weight: o 2 100

dynamic performance | v

¢ performance
construction
maintanence

| future profit

onmental impact
a

B4g0°
5.12% -h’ 0%
[ %

Figure 5-15: Smart Picker Pro PROMETHEE II: criteria weights

With the above steps, all the decision problem inputs are ready for Smart Picker Pro to
analyze and show the final ranking result. The result is shown in Figure 5-16. P1, ranked
in first position, has the highest net flow, which is much higher than the runner up, P2;
this ensures its first position over all other alternatives. P3 and P4 received negative net

flows far behind the first two.

Results Processed Data

Actions Net Flows Position
~ JAl -pl 0.30621 1.0
_ |A2 -p2 0.07286 2.0
__|A3-p3 -0.07731 30
__|Ad-p4 -0.30175 4.0

Figure 5-16: PROMETHEE I1I: final results for sewer network planning case study
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5.3.3 Results Summary and Post-Analysis Interview

Figure 5-7, Table 5-4, Table 5-5 and Figure 5-16 show the results of AHP, TOPSIS,
ELECTRE 1II and PROMETHEE II respectively. All of them recommend alternatives P1
and P2 over P3 and P4. Table 5-6 groups all the results together. It shows that AHP chose
P2 over P1 as the best option; TOPSIS and PROMETHEE 11 prefer P1 over P2; ELECTRE
II could not provide a conclusive decision between P1 and P2, where both are given first

ranking,.

Table 5-6: Comparison of results from four MCDM methods

1 20d 3rd 4t
AHP P2 Pl P3 P4
TOPSIS Pl P2 P3 P4 o
ELECTRE III Pl P2 o P23 P4

PROMETHEE I Pl P2 P3 P4

The whole project team is interviewed to review their experiences and discuss the results.
On reflection, for AHP, they agreed that pairwise comparison is indeed an efficient and
accurate way to evaluate the preference between two alternatives rather than
simultaneously evaluating all alternatives. However, numerous pairwise comparisons are
required. Even though there is a consistency check to guarantee the subjective judgments
from pairwise comparison, professionals still feel somewhat less confident with their
inputs during the long pairwise comparison process. They stated that AHP is a good option
for a decision involving only a few criteria and alternatives. During the process of TOPSIS,
experts also needed to have team meetings to decide criteria weighting and use a 1-10
scale to score the performance of each alternative for different criteria. They felt more
comfortable and confident in evaluating their preference since it is less complex than
pairwise comparison in terms of the number of inputs and measurement scale. This is also
why the project manager used the criteria weights from TOPSIS for the other two MCDM
methods instead of the weights from the pairwise comparison. They also wanted to
mention that TOPSIS requires all performances for different criteria to be in the same

measurement unit, even the quantitative criteria, which means their true experimental
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values cannot be input into the decision matrix, but are instead transferred to a 1-10 scale.
This also causes bias for the final score. The two software tools for ELECTRE III and
PROMETHEE 1II are easy to operate and understand, which is the opposite of their
complex underlying algorithms. The project manager found that the whole experience
with software tools for the decision-making process was positive in terms of organization.
It helped him to have a clear structure of the decision problem and give all necessary and
correct inputs. Moreover, he had a clear view of the relations between the input values and
the outcomes so he is aware of which factors had more impact during the process.
Therefore, using software tools definitely reduced the disadvantages of these two methods.
The result from PROMETHEE Il is clearly indicated via each alternative’s net flow value,
while ELECTRE III does not give a specific score to each alternative. Besides, ELECTRE
III could not make a definite decision between P1 and P2, which made it more clear from

the decision maker’s point of view.

5.3.4 Comparative Analysis and Discussion

In order to fully understand the decision reached by different MCDM methods, a deep
comparative analysis is carried out on two factors: criteria weights obtained during the
different MCDM processes and alternatives’ scores for each criterion assigned by

different methods.

5.3.4.1 Comparison of criteria weights

In Figure 5-17, each criterion’s weight derived from AHP, TOPSIS, ELECTRE III and
PROMETHEE II are displayed together for a clear picture for comparison.

In general, the weight allocations for different criteria are consistent in TOPSIS,
ELECTRE III and PROMETHEE II. Inconsistency occurs during AHP, which places
considerable attention on the maximizing criteria (dynamic performance, potential future
profit) compared to the other three minimizing criteria. As mentioned before, the user

input the criteria weights derived from TOPSIS for ELECTRE IIl and PROMETHEE I1.
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In Figure 5-17, there are still slight differences among them that could be caused by

manual operation errors.

criteria weights from different MCDM

methods
0,25
0,2 f
0,15
0,1 i
0,05
0 .
dynamic cost of cost of environmental  potential
performance construction maintenance impact future profit
EAHP ®TOPSIS m ELECTRE Il PROMETHEE I

Figure 5-17: Comparison of criteria weights

5.3.4.2 Comparison of alternative scores

Figure 5-18 provides an overview of the differences for each alternative evaluated via
different MCDM processes. Note that all scores have been normalized in order to make

the comparison more persuasive.

For the two quantitative criteria (dynamic performance and cost of construction), the
alternative scores in AHP, ELECTRE IIl and PROMETHEE II are consistent because the
true experimental numerical values are used as input. However, in the TOPSIS process,
since the decision matrix needs to be measured in the same unit, the inability to use true

values for quantitative criteria causes inaccuracy.

For the other three qualitative criteria (cost of maintenance, environmental impact and
potential future profit), alternative scores show a number of inconsistencies in the four
MCDM methods. One explanation is that it is difficult to stay consistent when making
subjective judgments on alternatives for qualitative criteria in different processes. The

difficulty can be the result of decision-maker fatigue after prolonged attention and mental
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effort. Vohs, et al. (2005) argue that making decisions from different alternatives for
various criteria requires energy, tires out decision makers and thereby impairs self-
regulation. Vohs, et al. (2005) refer to this situation as decision fatigue and conclude that
“self-regulation was poorer among those who had made choices than among those who
had not”. Another explanation for the inconsistency is that decision makers might feel that
the impact of scores for qualitative criteria are minor. However, to have a sound, reliable
decision result from a structured decision analysis requires decision makers to express

their preferences more carefully.

Nevertheless, it is worth mentioning that AHP has the most inconsistencies for qualitative
criteria, with the majority of scores showing higher or lower criteria weights than the other
three MCDM methods. This happened even though all of the decision makers’ pairwise
comparisons are theoretically consistent, i.e. the consistency ratio is less than 0.1.
Therefore, either the decision makers placed emphasis on their preferences on purpose or
there are inaccuracies in the 1-9 fundamental scale proposed by Saaty and Vargas (2001).
In fact, Salo, & Hamalainen (1997) point out that there is an uneven dispersion of values
in Saaty’s AHP selection scale. They conclude that the difference in selecting between the
scale of 1 and 2 is 15 times greater than the difference in selecting between the scale of 8
and 9. This indicates that Saaty’s AHP selection scale is responsible for the

overemphasized criteria weights and alternative scores in the case study.
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Figure 5-18: Comparison of alternative scores from the four MCDM methods
5.4 Conclusion

Making a decision on a sewer network construction project is important for urban
development, public health and environmental sustainability. It has been suggested that a
group of decision makers should apply an effective and efficient MCDM method for the
sewer network decision problem. However, different methods have their own limitations,
hypotheses, premises and perspectives, which leads to different decision results when
applied to an identical problem. This chapter provides a Compar;ative study on four
different MCDM methods (AHP, TOPSIS, ELECTRE III and PROMETHEE II) from
their distinctive theoretical algorithms and from their implementation on one sewer
network planning group decision problem. AHP and TOPSIS were implemented via
spreadsheets, while ELECTRE III and PROMETHEE II were applied via available

software tools due to their complex algorithms. A number of conclusions can be drawn:

- Five criteria require 10 pairwise comparisons to determine the criteria weights in
AHP, which is more time consuming. The other three methods only need 10 inputs.
By increasing the number of criteria and alternatives, AHP is not a practical method

to implement.
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—  The criteria weights and scores of the four methods are inconsistent, with AHP
showing the greatest variation (Figure 3-14 and Figure 3-15). This is most likely
because of inaccuracies in AHP’s 1-9 fundamental scale, decision fatigue and
decision makers’ perception that qualitative criteria with low weights have minor
impact on the decision results.

—  There are visible differences in the results of the four methods (Table 4-6). It needs
to address out that ELECTRE III was unable to provide a conclusive result,
identifying both P1 and P2 as the best alternatives. PROMETHEE II and TOPSIS
prefer P1, while AHP selects P2 as the best option. In general, P2 receives extremely
high scores on three criteria and extremely low scores on the other two criteria, while
P1 has a more or less average evaluation on different criteria. When considering this,
decision makers all prefer P1 over P2.

—  TOPSIS requires all the performances for different criteria to be expressed in the
same measurement unit. This makes decision makers feel TOPSIS is limited when
the true numerical experimental values cannot be used as input directly.

- PROMETHEE is the favoured method for decision makers in terms of the decisive
result identifying P1 as the best option and decision makers’ satisfaction with the

implementation process.

The comparison of the different MCDM methods directly helped the whole project team
to make an informed decision. By going through this process, all the experts became more
knowledgeable about their decision and the uncertainty associated with each sewer
network plan. The results clearly show that there is a risk in following the results of just
one MCDM method; therefore, if time permits, it is advisable to approach a sewer network
group decision problem using different decision-making methods. However, if time is a
limitation then the results indicate that PROMETHEE II is the method that most
effectively provided an accurate representation of the decision makers’ preferences. The
conclusion of this comparative study should also encourage industry professionals to
cooperate with academic researchers in order to examine the compatibility of a wider

range of MCDM methods with sewer water infrastructure management. More case studies
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are required to test and validate the theories, since the recommendations presented in this

paper are based on only one sewer network decision problem.



97

CHAPTER 6 — CONCLUSION AND FUTURE RESEARCH

This work first discussed in detail the definitions, differences and perspectives of three
different types of decision-making processes (DMUSU, DMUR and MCDM), in order to
guide DMs in structuring their decision problems into the right type, which is essential for
making a good decision. Once DMs formulate their decision problems into the right type,
it is time for them to think about which DM methods associated with this type of decision-
making process to implement. Hence, this work provides a study of the comparative
research on various DM methods within each type of decision process from detailed
theoretical algorithm to practical implementation. Note that this work does not compare
the methodologies from different types of DM processes, simply because this work has
focused on the discussion of differences among types of DM processes from the beginning.
The outline of this research work can be seen in Figure 6-1. How the results of this research

help DMs in their decision problems is summarized in the following subsections.

6.1 Decide the Type of Decision Process

The two main types of decision process considered here are DMUU and MCDM. Three
basic elements for DMUU are states of nature, alternatives and outcomes. Based on DMs’
knowledge of states of nature, DMUU contains two sub types: DMUSU, where DMs need
to make a decision without any information about the probabilities of the various states of
nature, and DMUR, where DMs can subjectively assign the probabilities of the states of
nature. MCDM is a sub-discipline of operations research, where DMs evaluate multiple
conflicting criteria in order to find a compromise solution subject to all the criteria.
MCDM mainly focuses on helping DMs synthesize information to find a trade-off among

the conflicting criteria.

In order to decide which type of decision process, this study advises DMs to consider first,
what kind of external criteria they want to involve to evaluate the options; second, how
much they know about those criteria; third, how actively they want to be involved in the

whole process, i.e., inputting their own opinions during the process. One example is a
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farmer’s decision problem of whether or not to harvest tomorrow. If only weather matters
for the farmer, then, he needs to consider how much he knows about the weather tomorrow.
If he does not know or is not willing to research weather conditions, then he would
structure his decision problem according to DMUSU. However, if he can subjectively
estimate the weather conditions (the percentage of likelihood of rain), he could consider
DMUR. If there are other perspectives or criteria that the farmer needs to consider (e.g.,
cost, profit, etc.), then he can structure the decision into MCDM to list the cost of
harvesting tomorrow, and the cost of not harvesting, as well as the profits for both

scenarios.

Outline

!- I

Figure 6-1: Outline of the research work

6.2 Decide Which Methodology to Use

Once the type of decision process is selected, it is time to choose which methodology

under this type to employ.
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For DMUSU, Laplace’s principle of insufficient reason, Wald’s Maximin, Savage’s
Minimax regret, Hurwicz’s method and Starr’s Domain are introduced and compared.
Furthermore, a DMUSU problem is considered a two-player game, and NE is considered
a method as well. The theoretical comparison of each method is summarized as follows:
Laplace’s principle of insufficient reason transforms a difficult problem into a simple one
by assuming that all states of nature are equally alike. The need to construct the state space
to be amenable to a uniform probability distribution is a major drawback of this method.
Wald’s Maximin is extremely conservative and does not provide a faithful representation
of how people operate in reality. It could lead to exceedingly costly results from over-
protection against uncertainty. Savage’s Minimax regret method suggests the
consequences of one action should be compared with the consequences of other actions
under the same state of nature. Accordingly, it only reflects the difference between each
payoff and the best possible payoff in a column. Hurwicz’ method takes into account both
the best and the worst possible results, weighted according to the decision maker’s attitude
(optimistic or pessimistic) towards the decision. This method only considers the highest
and the lowest payoft for each alternative. It does not take other non-extreme payoffs into
account. Therefore, two decisions with the same minimal and maximal profits always
obtain an identical Hurwicz’s measurement, even if one of them results in many small
payoffs and the other one has many high payoffs. Starr’s Domain has the disadvantage of
complexity of computation when there are more than three states. Since a DMUSU
problem can be considered a two-player non-cooperative and non-zero-sum game, NE
becomes one of the solution options for solving a DMUSU problem. Pure-strategy NE is
where all players are playing pure strategies, and mixed-strategy NE is where at least one
player is playing a mixed strategy. All that said, if the DM’s attitude is more conservative,
Wald’s and Savage’s methods are correct. Wald’s method uses the payoff matrix. If DMs
would like to have a picture of their level of regret after making such a choice, they can
use Savage’s Minimax. If DMs would like to use a numerical value to represent their
attitude, they can choose Hurwicz’s method. Starr’s Domain method is suitable where
there are few states of nature. Laplace’s method is quite intuitive and simple to use. NE is

an algorithm from game theory.
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For DMUR, the principle of the EMV rule is nearly identical to the EOL rule, except that
one is using a payoff matrix, the other is using an opportunity-loss matrix. The most
probable state of nature rule takes only one uncertain state of nature into account; it may
lead to bad decisions. The expected utility rule is a better choice when dealing with a risky
decision problem (e.g., the decision can only be made once or significant amounts of
money are involved in the problem), as the expected monetary value criterion cannot
encompass the full range of reasoning behind a decision as a human would. Thus, the
decision chosen by EMV can be different from the one the decision maker himself would
choose. In short, the computation of four decision rules for DMUR is similar. The
difference is that each decision rule maximizes or minimizes different objects, i.e., the
expected monetary value, the expected opportunity loss, the expected utility. The decision
maker needs to choose which object s/he wants to consider based on the property of each

individual DMUR problem.

For MCDM, AHP requires many inputs for pairwise comparisons, which is a time-
consuming process. Therefore, this method should be chosen only for a small number of
criteria and alternatives. Furthermore, the potential compensation between good scores on
some criteria and bad scores on others causes the loss of information. The advantage of
TOPSIS is that it requires only a few inputs from the decision maker and its output is easy
to understand. The drawback is that vector normalization is needed for solving multi-
dimensional problems. The main advantage of ELECTRE is that it avoids compensation
between criteria and any normalization process, which distorts the original data. The
drawback is that it requires various technical parameters such that it is not always easy to
fully understand it. The PROMETHEE method allows direct operation on the variables
included in the decision matrix without requiring any normalization and is applicable even
when there is insufficient information. However, its main drawback is that it is time
consuming and difficult for decision makers to have a clear view of the problem,

especially when there are many criteria involved.
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6.3 Further Comments on the Case Study: Sewer Network Selection

Making a decision on a sewer network construction project is important for urban
development, public health and environmental sustainability. In this work, the same sewer
network plan selection problem is structured into two different types of DM processes:
DMUSU and MCDM. It is worth mentioning that if the probability of the different rainfall
weather conditions can be assigned by the DMs, this practical problem can also be
structured as DMUR. This shows that the same specific decision-making problem can be
structured into different types of decision processes based on available information and

on DMSs’ subjective preferences.

The practical comparison within each type of decision process is carried out using the
same project; this can effectively show each method’s limitations, hypotheses and

differences.

Three basic elements for DMUSU are states of nature, alternatives and outcomes, where
DMs need to make decisions without any information about the probabilities of the
various states of nature. Laplace’s principle of insufficient reason, Wald’s criterion,
Savage’s Minimax regret criterion, Hurwicz’s criterion and Starr’s Domain criterion are
introduced and compared. Furthermore, DMUSU problems are considered two-player
games, and NE is used as well to find the selected decision. While different methods
recommend different alternatives, the fact that the NE is 100% behind Alternative 1 is a
compelling argument for choosing it. While Alternative 2 is the most-recommended
alternative, it is interesting to note that Alternative 3 is not selected for any of the criteria.
However, most civil engineers intuitively rooted for Alternative 3 from a purely city
planning point of view. Further studies should compare this approach on more projects to
evaluate if a trend is emerging. Also, from a pragmatic point of view, it is advisable to
adapt the current decision process to include the comparison of these five DMUSU
methods (and NE) to give a better depth to the decision. The next step is clearly to form a
portfolio of decision policies and evaluate the robustness of such an approach compared

to the individual criterion or the city’s current decision process.
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Since a sewer network plan selection problem is a complex decision problem that needs
to be considered from different perspectives by different professionals, it is also
restructured into a MCDM group decision problem. The Delphi technique is introduced
in order to reach an opinion from a team. Of all the various MCDM methods, AHP,
TOPSIS, ELECTRE III and PROMETHEE II are selected to implement, as they are the
most-used MCDM methods in sewer network infrastructure asset management. The
purpose is to conduct a comparative study of these methods on a single decision problem
in order to address their limitations, hypotheses, premises and perspectives and help DMs
to select the proper decision-making method for their decision problem. AHP requires
many inputs because of pairwise comparisons, which is time-consuming. This method
should be selected only when there are few criteria and alternatives. The AHP method also
shows more inconsistency in the decision process than other methods. This could be the
inaccuracy of the 1-9 scale. Inconsistency in TOPSIS, PROMETHEE II and ELECTRE
[II could be caused by decision maker fatigue in a long decision process or decision
makers’ perception that qualitative criteria with low weights have minimal impact on the
decision result. ELECTRE III is not considered a favourable method, as it cannot provide
a conclusive result for this particular decision problem. The limitation of TOPSIS is that
it requires all the performances under different dimension criteria to be evaluated by the
same measurement unit. By doing this, it loses information from the true value.
PROMETHEE is considered the favoured method for decision makers for its conclusive
decision result and the reflection of the decision makers’ preferences. Furthermore, as it
does not require all the performances to be expressed in the same unit, it is more in line

with the true facts than others.

6.4 Future Research

The following future research related to this PhD study can be considered:
e Nash equilibrium implemented in DMUSU problem brings another perspective for
solving DM problems. It is interesting to provide a mathematic proof in theory to

see further, how decision-making and game theory are related with each other;
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e Applying the considered DM methods in this thesis into more real life projects
from different industry area can solidify the comparative conclusion;

e More focus can be given to DMUSU in order to make the system more resilient to
cope with sudden changes or any type of crisis, because the effect of perturbation
in these scenarios is exponential.

e Other different MCDM methods are also worth to study and implement.

6.5 Final Remarks

The results clearly show that there is a risk in following the results of one particular
DMUSU method or one particular MCDM method. Therefore, if time allows, it is
advisable to structure the decision problem into different types of DM problems and use
different decision-making methods. However, if time is a limitation, through this research,
decision makers have obtained sufficient knowledge about various DM methods to make
their own choice of which method to use. The results of this PhD work should encourage
industry professionals to work together with academic researchers in order to explore and
compare other available DM methods for various practical decision problems to validate

the theories and recommendations.

The whole PhD work can be illustrated by the diagram in Figure 6-1. The initial
motivation and objective of this research is to help DMs choose the right decision-making
methodology that suits the subjective preferences and the objective information, so that
an selected decision can be made to balance the whole situation. This work suggests DMs
first define the goal of the decision problem and check what kind of information is
available to use, in order to clarify if they want to use the decision-making process with
uncertainty, i.e., DMUU, or if they know a list of criteria from which the alternatives
should be evaluated, i.e., MCDM. Second, they have a list of DM methodologies to choose
from, depending on the type of decision-making process. Based on the comparative results
of this work, DMs can confidently choose the appropriate method based on each

methodology’s characteristics and the decision maker’s own preference.
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APPENDIX I

Matlab codes for DMUSU Methods



%% Laplace's insufficient reason criterion

%M is decision matrix, indexX indicates the index of the selected decision.

function indexX = laplace_insufficient_reason(M)

v=sum(M,2); %v is a column vector containing the sum of each row.
[a,indexX]=max(v);

end

%

%% Wald Maximin function

%M is decision matrix, indexX indicates the index of the selected decision.

function [v,indexX,indexY] = maximin(M)
[s,idy]l=min(M,[],2);

[v,indexX]=max(s);

indexY=idy(indexX);

end

%

%% Savage function payoff

function [v,indexX,indexY]=savageMinimax(M)
tmpM=ones(size(M,1),1)*max(M)-M;
[v,indexX,indexY]=minimax(tmpM);

end

%

Y%hurwicz on positive flow matrix M e.g. payoff

%alpha is the degree of optimism, 1-alpha is the degree of pessimism

%for each row i, determine a P_i = alpha * best payoff + (1-alpha)*worst payoff

function row_number = hurwiczpositiveflow(M,alpha)
[nr, nc] = size(M);

h=ones(pnr,1);

fori=1:1:nr
h(i)=max(M(i,:))*alpha + min(M(i,:))*(1-alpha);
end

[v,row_number] =max(h);
%
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%% Starr function
% A is the decision matrix
function [v,idx,count] = starr(A)

[r,c]=size(A);

count=zeros(1,r);
total = 1000000;

for i=1:total
%Monte-Carlo

mc = sort(rand(1,c-1));
mc1=[0,mc];
mc2=[mc,1];

mcs=mc2-mc1;

score=sum(A*mcs’,2);
idx=find(score==max(score));
count(idx)=count(idx)+1;

end

count
idx=find(count==max(count));

v=count(idx)/total;

end
%

%computes the mixed nash equilibrium for two players zero-sum games
function [v,p,q] = mixedNE4(A)

[r,c]=size(A);%r:row ; c:coloumn

AA =[-A’, ones(c,1)];



Aeq = [ones(1,r),0];

AA_octave = [AA;Aeq];

b = zeros(c,1);

beq =1;

b_octave=[b;beq];

Ib = [zeros(r,1);-inf];

f = [ zeros(r,1);-1];

options = optimset('Display’, 'off');
s=1;

p = linprog(f,AA,b,Aeq,beq,Ib,[1,[],options); % for matlab
v=p(r+1);

p=p(1r);

if nargout > 2
[w,q] = mixedNE4(-A'");

end

end
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APPENDIX II

Excel file for data collection during MCDM Implementation
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7RI G S [N SR SIS VST ey Py ¢ P o e e ) e Y R
Gl 2 c3 ca cs total priority  :sum of each row

2_;P1 0.07790929 0.03281252 0.04305546 0.036620284 0.06465168 0.255049234

3 P2 0.02996511 0.14143328 0.10066487 0.076553183 0.01436001 0.362976456 X%

4 P3 0.08510092 0.01499193 0.01479652 0.009252518  0.11558568 0.239727565

5 P4 0.04195116 0.02306777 0.02292248 0.021639629  0.03266571 0.142246745

6 0.23492648 1

7

8 this 15 the matnx to compare with topsis normalsed decision matrx this is not multiphied with the weight of critena
15

16

17|

18 0.33163265 0.28626302 0.23729947 0.2541917 0.228923914

19 0.12755102 0.47093393 0.55481283 0.5313772 0.061910123

20 0.3622449 0.0587186 0.0815508 0.06422433 0.556468712

[ !
21 0.17857143 0.18408446 0.1263369 0.15020676 0.152(:}97255J ~ (f
22 AHP Final Score |
il |
23
24
25
26 Alternatives |Final Score
27 P1 0.2550
28 P2 0.3630
29 P3 0.2397
30 P4 0.1422
3
32
33
34
ar
o
%0
- :.“::N‘:: n " v re
.D‘mank
92 performance 0.000276125 0.00338253 0 0.00314523
Cast of
93 construction 0.002054133 0 0.01101607 0.00582668
Coxt of
94 raintenance 0.000631423 0 000193373 0.00193373
Enwirnnmental
95 impiect 4,80014€-05 0 0.00326709 0.00235207 pt p2 p3 p4
Puotential
96 foture pret 0.000236124 0,00714274 0 0.00249406 s_tdeal 0.056971982 0.10250275 0.12734559 0.12550608
97 5_nonideat 0.11376229 012734559 0.10259275 0.04576102
98 S jdeal 0.056971982 0.10259275 0.12734559 0.12550608 relative close  0.66A311976 0.55382494 0.44617506 0.26719094
99
100 best Is 0.666311976
distanca
with non 23 P i
"
ideal
101 solution
Oynamic
102 performance 0.00172578 0 0.00338253 4.3144€-06
Cost of
103 construction 0.003556325 0.01101607 0 0.00081938
Costof
!MImamunlncc 0.000355176 0.00193373 0 0 P‘ 2 p3 P4
feoriraruant Relative ) ceea 05538 04262 02672
105 Impact 0.002523071 0.00326708 0 7.5002E-05 cloteness - - :
Potertial
106 future profin 0.004781507 0 0.00714274 0.00119538
107
108 $_nonidest 0.11376229 012734559 0.10259275 0.04576102
109

110



120

4 A | 8 G | F G Ho | | | | L M N
1 |electre il criteria
zhdvnamlcpuDZISO
3 |costofcons 0.2280
4 |cost of main 0.2020
5 |environment 0.1600
6 |patential fut 0.1960
7
8 dynamic perfomance
9 p1 196.4100
10 |p2 75.6400
11 p3 214.3400
12 pa 105.8700
13
il
15 cost of construction cost of maintance environment future
16 p1 023 62 59 75 al — O — 5
17 p2 1 68 68 10 T E:ECTRE Hi I
1€ |p3 0.106 a7 50 90 e
01631 a6 49 40 Loa |
i as
as |
196.4100 023 62 59 75 'Lq.
75.6400 1 68 68 10 s ¢
24| 214.3400 0.106 47 50 90 [-H
25 1058700 0.1631 45 a9 a0 = N E l i Il I ll a
26 592.2600 14991 223 226 215 I L} E -
va a I R e e, T e
2B 0331628 0153425389 0.2780269 0.2610619 03488372 p1
29 01277142 0667066907 0.3049327 0.300885 0.0465116 p2 SELERLAM oh
30 03619019 0070709092 02107623 0.2212389 0.4186047 p3 o ) 9
31 0.178756 0.108798613 0.206278 0.2168142 0.1860465 pa
Enironmant  Potential
22
33
24
35
36_
37
38
4 L L | e g E r G 5 ([ M A 8 L M
Dynamic Cost of Cost of Emvironmental Potential
1 | performance  construction  maintenance  impact future profit
2 pl 196.41 0.23 3 2 2
3 p2 75.64 1 3 3 1
4 p3 214.34 0.106 1 1 4
5 p4 105.87 0.1631 1 1 2
6 sum 59226  1.4991 8 7 9
7
| Dynamic Costof Cost of Environmental Potential
8 | performance  construction  maintenance  impact future profit
9 pt 0.331628 0.15342539 0.375 0.28571429 0.22222222
10 p2 0.12771418 0.66706691 0375 0.42857143 0.11111111
11 p3 0.36190187 0.07070905 0.125 0.132B5714 0.44444344 PROMETHEE Il
12 p4 0.17875595 0.10879861 0.125 0.14285714 0.22222222 s
13 07
14 o6
15| 05
16 04
17 03
18 02 I I I |
19 a1 "
i * lall mlex Me M Ll
21 Dyramic o of Cow of frwronmental  Potertial future
= petor mance coNErUCHon  mairmenance Imgact proft
;; spl sp2 mpd mpd
2
25

L3




P TOPSIS
0.33165265 0.28780488
012755102 0.1902433
0.0622449 0.32682527
0.17857143 019617195
AHF oIS
ﬂ.w.ﬂ]?&l!ﬁm
6617814 038418079
0.07061488 0.13559322
010865365 0.20338583
e TOPSIS
025729947 0.35773196
0-55481283 0.31958763
00815508  0.21134021
01263368 0.21134021
AHP ToPss
0.2541917  0.32163743
05313772 034502924
00623433 015104678
015070676 0.18128655
AHP TOPSS
022891951 031052632
0.06191012 £.12105263
0.55646871 035263158
015269725 021578947

ELECTRE  PROMETHEE
0331628 0.331628
012771418 0.12771218
0.36190187 0.36190187
017875595 0.17875585
_El.{l'._TRE PROMETHEE
0.15342539 0.15342539
0.66706691 0.66706691
007070909 0.0707090%
C.10879851 0.10879861
ELECTRE  PROMETHEE
0.27802691 0.375
0.30493274 0375

0.30088496 0.42857141
Q21298 014285718
6.11681416 014285714
ELECTRE  PROMETHEE
0.34B83721 0.22222221
0.04651163 0.11111111
0.41860465 0 a4addaas
018604651 022222227

a

ar

as

L

]

@

arrarrc perfarrance

cost af construction

Normalized Scares

cost of maintenance

BAP WA s ECTH

PR T

ariratmant impect
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