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RÉSUMÉ 

La prise de décision (DM), un processus de détermination et de sélection de décisions 

alternatives en fonction des informations et des préférences des décideurs (DM), apparaît 

largement dans notre vie personnelle et professionnelle quotidienne. Un grand nombre de 

méthodes DM ont été développées pour aider les DM dans leur type unique de processus 

de décision. Dans cette thèse, les méthodes DM associées à deux types de processus DM 

sont étudiées: la prise de décision sous incertitude (DMUU) et la prise de décision 

multicritère (MCDM). 

La DMUU doit prendre la décision lorsqu'il existe de nombreuses inconnues ou 

incertitudes sur le type d'états de la nature (une description complète des facteurs externes) 

qui pourraient se produire à l'avenir pour modifier le résultat d'une décision. La DMUU 

comprend deux sous-catégories: la prise de décision sous incertitude stricte (DMUSU) et 

la prise de décision sous risque (DMUR). Cinq méthodes classiques de DM pour DMUSU 

sont le principe de raison insuffisante de Laplace, le Waldimin Maximin, le regret Savage 

Minimax, le critère d'index pessimisme-optimisme de Hurwitz et le critère de domaine de 

Starr. En outre, l'examen de la relation entre un jeu à deux joueurs dans la théorie des jeux 

et l'équilibre DMUSU et Nash Equilibrium est également considéré comme l'une des 

méthodes pour résoudre le DMUSU. Les méthodes DM bien connues de DMUR sont la 

valeur monétaire attendue, la perte d'opportunité attendue, les états de nature les plus 

probables et l'utilité attendue. 

Le MCDM est une sous-discipline de la recherche opérationnelle, où les DM évaluent 

plusieurs critères conflictuels afm de trouver la solution compromise soumise à tous les 

critères. Un certain nombre de méthodes DM pour MCDM sont présentes de nos jours. 

Le processus de hiérarchie analytique (AHP), l'élimination et le choix traduisant la réalité 

(ELECTRE), les méthodes d'organisation du classement des préférences pour les 

évaluations d'enrichissement (PROMETHEE) et la technique de préférence par ordre de 

similitude et de solution idéale (TOP SIS) sont les plus choisies et utilisées des méthodes 

parmi toutes les différentes méthodes MCDM. 
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Ce travail de thèse se concentre sur la présentation théorique d'une étude comparative des 

méthodes DM et l'évaluation des performances de différentes méthodes avec un problème 

de décision particulier. Cette contribution peut guider les DM à rassembler les 

informations relatives objectives et subjectives, à structurer le problème de décision et à 

sélectionner la bonne méthode de DM pour prendre la décision qui convient non 

seulement à leurs préférences subjectives, mais aussi aux faits objectifs. 

L'étude de cas utilisée ici est la sélection du plan de construction du réseau d'égouts. Il 

s'agit d'un problème de décision pratique représentatif et complexe qui nécessite la qualité, 

l'entretien du cycle de vie et les performances du réseau d'égouts sélectionné pour 

répondre à la planification à long terme des futurs changements climatiques et du 

développement urbain. 
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ABSTRACT 

Decision making (DM), the process of determining and selecting alternative decisions 

based on information and the preferences of decision makers (DMs), plays a significant 

role in our daily personal and professionallives. Many DM methods have been developed 

to assist DMs in their unique type of decision process. In this thesis, DM methods 

associated with two types of DM processes are studied: Decision-making under 

uncertainty (DMUU) and Multi-criteria decision making (MCDM). 

DMUU is making a decision when there are many unknowns or uncertainties about the 

kinds of states of nature (a complete description of the external factors) that could occur 

in the future to alter the outcome of a decision. DMUU has two subcategories: decision­

making under strict uncertainty (DMUSU) and decision-making under risk (DMUR). Five 

classic DMUSU methods are Laplace 's insufficient reason principle, Wald' s Maximin, 

Savage's Minimax regret, Hurwicz' s pessimism-optimism index criterion and Starr' s 

domain criterion. Furthermore, based on a review of the relation between a two-player 

game in game theory and DMUSU, Nash equilibrium is considered a method for 

approaching DMUSU as weU. The weU-known DMUR DM methods are expected 

monetary value, expected opportunity loss, most probable states of nature and expected 

utility. 

MCDM is a sub-discipline of operations research, where DMs evaluate multiple 

conflicting criteria in order to find a compromise solution subject to aU the criteria. 

Numerous MCDM methods exist nowadays. The Analytic Hierarchy Process (AHP), the 

ELimination et Choix Traduisant la REalité (ELECTRE), the Preference Ranking 

Organization METHod for Enrichment Evaluations (PROMETHEE) and the Technique 

for Order Preference by Similarity to Ideal Solution (TOPSIS) are the most employed of 

aU the various MCDM methods. 

This PhD work focuses on presenting a comparative study of DM methods theoreticaUy 

and evaluating the performance of different methods on a single decision problem. This 
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contribution can guide DMs in gathering the relative objective and subjective infonnation, 

structuring the decision problem and selecting the right DM method to make the decision 

that suits not only their subjective preferences, but also the objective facts. 

The case study used here is the selection of a sewer network construction plan. It is a 

representative and complex practical decision problem that requires the quality, life-cycle 

maintenance and perfonnance of the selected sewer system to meet long-tenn planning 

for future climate changes and urban development. 

Keywords: Decision making under strict uncertainty, Decision making under risk, Multi­

criteria decision making, Sewer network planning, Laplace ' s insufficient reason principle, 

Wald 's Maximin, Savage' s Minimax regret, Hurwitz' s pessimism-optimism index 

criterion, Starr' s do main criterion, Nash equilibrium, AHP, TOPSIS, ELECTRE, 

PROMETHEE. 
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CHAPTER 1 - INTRODUCTION 

1.1 Introduction 

Decision making (DM), the process of determining and selecting alternative decisions 

based on information and the preferences of decision makers (DMs), plays a significant 

role in our daily personal and professionallives. Every single day people make decisions. 

Most are relatively insignificant; for example, whether or not to add milk to one' s tea. 

Others are more important and require a deep analysis before choosing one alternative 

from aIl the possibilities that meets the goal and has a decent probability of success. A few 

examples are decision making as part of budget planning in production engineering 

(Keefer & Kirkwood, 1978), airport location (Layard, 1972), water resource management 

(Liu, Gupta, Springer, & Wagener, 2008) and career choices (Gianakos, 1999). 

In general, the DM process contains three basic stages: first, structure the decision problem. 

This includes defining the goal or the purpose of making the decision, identifying the 

various available alternatives, gathering the relative data and facts about the alternatives 

and the decision environment. Second, select one decision-making method that suits the 

decision problem. Third, execute the DM method and select the right alternative to make 

the decision. Here, DM methods refers to techniques or algorithms that effectively gather 

the information, provide a good understanding of the decision problem structure and rank 

the alternatives to find the final solution. Many DM methods have been developed to assist 

DMs in their unique type of decision process. 

In this thesis, DM methods associated with two types of DM processes are studied: 

Decision making under uncertainty (DMUU) 

• Decision making under strict uncertainty (DMUSU) 

• Decision making under risk (DMUR) 

Multi-criteria decision making (MCDM) 
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DMUU is making a decision when there are many unknowns or uncertainties about the 

kinds of states of nature (a complete description of the external factors) that could occur 

in the future to alter the outcome of a decision. In other words, the consequence of the 

decision is highly affected by a host of conditions beyond one 's control, e.g. , wh ether a 

farmer harvests his crop is highly dependent on weather conditions, or decisions about 

launching a new product could be influenced by market forces. Furthermore, based on the 

degree of uncertainty, DMUU has two subcategories: decision making under strict 

uncertainty (DMUSU) and decision making under risk (DMUR). "Strict uncertainty" 

means that the likelihood of various possible future conditions is quantitatively 

immeasurable. "Risk" assumes that DMs can assign a probability distribution to each state 

of nature based on their own experiences or historical frequencies. Five c1assic DMUSU 

methods are Laplace' s insufficient reason principle (Keynes, 1921), Wald's Maximin 

(Wald, 1950), Savage's Minimax regret (Savage, 1972), Hurwicz' s pessimism-optimism 

index criterion (Hurwicz, 1952) and Starr' s domain criterion (Starr, 1966). They were 

actively developed in the early 1950s. Each method proposes different ways of handling 

uncertainty. As the probability distribution of states of nature can be assigned in DMUR, 

the well-known DM methods of DMUR are the expected monetary value, the expected 

opportunity loss, the most probable states of nature and the expected utility (Taghavifard, 

Damghani, & Moghaddam, 2009). 

MCDM is a sub-discipline of operations research, where DMs evaluate multiple 

conflicting criteria in order to find the compromise solution subject to all the criteria. For 

example, when purchasing a car, price, comfort, power and fuel economy are the main 

criteria to consider. The criteria can be quantitative and objective, such as price, or 

qualitative and subjective, such as comfort. Most of the time, there is no perfect option 

available to suit all the criteria; for example, it is unlikely that the cheapest car is the most 

comfortable one. Hence, MCDM methods mainly focus on helping DMs synthesize the 

information to find a trade-off among the conflicting criteria. A number of MCDM 

methods currently exist and more are being developed (Wallenius, et al. , 2008) (Ishizaka 

& Nemery, 2013). The Analytic Hierarchy Process (AHP) (Saaty, 1980), the ELimination 

Et Choix Traduisant la REalité (ELECTRE) (Benayoun, Roy, & Sussman, 1966), the 
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Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE) 

(Brans & Vincke, 1985) and the Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS) (Yoon & Hwang, 1995) are the most-employed MCDM methods 

(Kabir, Sadiq, & Tesfamariam, 2014). 

1.2 Objectives and Methodologies 

Defining the correct type of decision-making pro cess is essential and is a starting point 

for making a good decision. Based on the information available to DMs, they first need to 

think about how many external factors should be incorporated into their decision-making. 

Ifthere is only one external factor, Decision Making Under Uncertainty is the right choice. 

Moreover, based on the DMs' knowledge of this external factor, it will be clear if it is a 

DMUSU or DMUR problem. If there are several different external factors, i.e. , different 

criteria or perspectives, that DMs would like to consider in evaluating each alternative, 

then MCDM will be the right type of decision-making process. See Figure 1-1 . 

Decision 
making 
process 

1 

J 1 
~ 

One extemal Multiple 

factor 
external 
factors 

1 1 J 
\ -, 

11 

·1 

~ 
DMUSU 1 DMUR , MCDM 

\, ;'; 

Figure 1-1: Decision-making pro cess 

Facing various DM methods corresponding to different types of DM problems, DMs are 

confronted with the difficult task of selecting one appropriate method, as each method has 

its own restrictions, particularities, preconditions and perspectives and can lead to 
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different results when applied to an identical problem (lshizaka & Nemery, 2013). Hence, 

it is worthwhile and important to present a study that can help DMs select the right 

decision-making method when dealing with different types of decision processes in order 

to find the right solution to the problem. In this way, DMs can be guided in gathering the 

relative objective and subjective information to structure the decision process and select 

the right DM method to make the decision that suits not orny their subjective preferences, 

but also the objective facts. 

To achieve this objective, the comparative study on different DM methods in this thesis is 

carried out via the following methodologies: 

1. A full overview of the different types of decision-making processes (DMUSU, 

DMUR and MCDM) considered in this research is presented to c1arify and 

distinguish them. 

2. Research on the methodologies for approaching DMUSU: 

a) A fullliterature review and theoretical comparison of five c1assic methods for 

solving a DMUSU problem is provided in order to c1early understand each 

method's character, advantages and disadvantages; 

b) The relation between DMUSU and a two-player game is discussed and Nash 

equilibrium from game theory methodology is proposed as another option for 

solving DMUSU problems; 

c) AlI the methodologies for approaching DMUSU (five c1assic ones and Nash 

equilibrium) are applied to one particular sewer network selection problem in 

order to compare them during practical implementation. 

3. Research on DMUR methodologies: 

a) Four well-known DMUR methodologies are explored and compared in theory. 

The examples of sushi restaurant planning and buying a lottery ticket are used 

to c1early demonstrate how to implement each method and how they differ; 

b) Expected value of perfect information is discussed in theory and a practical 

example of farmer's payoff is explored to explain wh ether DMs would be 
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willing to pay to get the perfect information to help them make decisions in a 

DMUR process. 

4. Research on the methodologies for approaching MCDM: 

a) The four most commonly used MCDM methods (AHP, TOPSIS, ELECTRE 

and PROMETHEE) are reviewed in theory to discover each method' s own 

limitations and particularities; 

b) AHP, TOPSIS, ELECTRE and PROMETHEE are applied to the same decision 

problem to evaluate and analyze the suitability of results in order to highlight 

the differences. 

c) During implementation, the Delphi method 1S used to collect all the 

stakeholders' opinions. 

5. To summarize the ab ove, an overall conclusion is provided to present a clear picture 

to DMs about how to define the types of decision processes (DMUSU, DMUR or 

MCDM) based on the available information. Furthermore, once the type of decision 

process is defined, the research can guide them in selecting a single appropriate 

methodology for their unique decision problem. 

AlI the results of this research have been published or submitted via four papers listed 

below. 

Paper 1: Literature Review in Decision Making with Uncertainty. The aim of this 

paper is to perform a complete literature review of all DMUU methods in order to fully 

understand them from a theoretical perspective, point out their advantages/disadvantages 

and state their particularities. Furthermore, based on a literature review of the relationship 

between a two-player game in game theory and DMUSU, this work proposes a link 

between the basic concepts in game theory and decision making and Nash equilibrium 

(Nash, 1950) (Nash, 1951) is considered one of the methods for approaching DMUSU. 

(Published in 12e édition du Congrès international de Génie industriel, May 2017). 

Paper 2: Decision Making Under Strict Uncertainty: Case Study in Sewer Network 

Planning. The goal of this research is to implement DMUSU methods and Nash 
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equilibrium in a real-life project: selecting a suitable sewer network construction plan and 

comparing each method in a practical way based on the different results from each method. 

(Published in International Journal of Electrical, Computer, Energetic, Electronic and 

Communication Engineering, 11(7), 2017). 

Paper 3: Selecting Sewer Network Plans Using the Analytic Hierarchy Process. This 

work is the first step in the research on the direction of MCDM. In this paper, a single 

popular MCDM method is explained and implemented to discover its advantages and 

limitations. (Published in the 47th International Conference on Computers & Industrial 

Engineering, October 2017). 

Paper 4: Comparison of multi-criteria group decision-making methods for urban 

sewer network plan selection. The paper is aimed at providing an intuitive explanation 

and interpretation of the most-employed MCDM methods (AHP, ELECTRE, 

PROMETHEE, TOPSIS). It examines four MCDM methods through a comparative study 

oftheir implementation in an urban sewer network group decision problem (forthcoming). 

1.3 Organization of the Thesis 

The thesis is organised as follows: Chapter 1 is the introduction, which provides a general 

background on DM processes to introduce the motivations, objectives and methodologies 

ofthis research. Chapter 2 contributes a literature review ofthe DM methods in DMUSU, 

DMUR, game theory and their relation. Classic DMUSU methods and their axiomatic 

comparison are described in detail and illustrated with examples. In game theory, the basic 

concepts of constituting a game and game types are introduced, followed by the 

description of the prisoner' s dilemma, matching pennies and the pirate game. Then Nash 

equilibrium, a solution concept in game theory, is illustrated with examples. Using three 

basic elements of decision-making problems and the basic concepts of a game, a decision­

making problem can be converted to a two-player game where player 1 is the decision 

maker and player 2 is nature. A detailed comparison of DMUR methodologies is also 

provided. Chapter 3 compares five c1assic DMUSU methods in a more practical way than 
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axiomatic comparison. It applies each DM method to a practical sewer network planning 

example; results from different methods are discussed and analyzed. Moreover, NE in 

game theory is applied, as it is another candidate for DMUSU based on the link between 

DMUSU and a two-player game. Chapter 4 and Chapter 5 start the work on the topic of 

MCDM, where Chapter 4 proposes three theoretical categories of MCDM methods and 

four popular MCDM methods from each category - ARP, ELECTRE, PROMETREE and 

TOPSIS - are presented. Meanwhile, Chapter 5 presents a comparative study of these 

methods in a practical way by applying them to a real sewer network planning case study 

and analyzing the suitability of results in order to highlight the differences and lead to 

meaningful conclusions. Chapter 6 summarizes this PhD work through concluding 

remarks, contributions and ideas for future research. 



CHAPTER 2 - LITERA TURE REVIEW ON DECISION MAKING UND ER 

UNCERTAINTY 

2.1 Introduction 
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In reality, only very few decisions are made with absolute certainty. It is sel dom possible 

for a decision maker to collect all the information and data surrounding a decision problem, 

thus most decisions are made with a certain risk. Based on the decision maker' s knowledge 

of the information and data, decision making under uncertainty problems are divided into 

two categories: decision making under strict uncertainty (DMUSU) and decision making 

under risk (DMUR) (French, 1988). 

These categories are limited to a decision maker facing an inert environment. However, 

there are situations where the environment can actively work against the decision maker. 

These situations belong to the realm of game theory. Game theory is considered the theory 

of interdependent decision making, where the outcome is related to the decisions of two 

or more players and no single player has full control over the outcome. 

While the literature has studied different solution concepts for game theory, such as the 

Nash equilibrium, it is surprising that the link between decision making and game theory 

remains relatively uncharted. This chapter provides a literature review of these two 

domains and proposes a structure to better link them. 

The rest of the chapter is as follows. Section 2.2 covers the decision-making literature, 

from formalizing a decision-making problem to describing the existing criteria. Section 

2.3 covers game theory literature. Section 2.4 links decision making problems with game 

theory. Section 2.5 presents the conclusion and potential future work. 
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2.2 Decision Making Under Uncertainty 

2.2.1 Decision Table 

Before launching the DM process, DMs need to specify the relevant actions, states and 

outcomes (Peterson, 2009). In short, states (also called states ofnature) refer to a complete 

description of the external factors that may affect the decision maker' s preference for a 

certain action. Actions in a DM problem are considered alternative decisions, one ofwhich 

is the solution to the initial problem. Outcomes are the consequences of aIl the possible 

actions under a given set of states of nature, which ultimately help decision makers to 

figure out which action to choose. The consequence of any decision is determined not just 

by the decision itselfbut also by a number of states of nature. 

Let's assume that dv d 2, .. . , dm denote the actions or decision alternatives available to the 

decision maker, the possible states of nature are denoted by Sv S2' ... , Sn ' and aij 

represents the outcome that is the consequence of selecting decision di when Sj is the state, 

it can be a numerical value, e.g. , payoff. Thus, the process can be summarized as in 

Table 2-1 . 

Table 2-1: Decision table 

States of Nature 

Consequences Sl Sz ... sn 

dl au a 12 ... a 1n 

dz Actions a 2l a 22 ... a 2n 

... 

... 

... 

dm a m1 ~2 ... ~n 

The decision table c1early presents every possible combination of alternatives and states 

of nature. The outcomes form a m x n dimensional matrix A = (aij )mxn that is caIled the 
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decision matrix; it helps the decision maker to visualize the decision problem and 

facilitates the decision-making process. 

Let us consider a classic example from Savage (1972). Person A wants to make an 

omelette and has just broken five good eggs into a bowl. Person B would like to break the 

sixth egg and finish the omelette. Person B can either add the sixth egg into the bowl or 

not add it. With the condition of the sixth egg (good or rotten), they can have a six-egg 

omelette or a five-egg omelette, or no omelette. Clearly, in this example, the states of 

nature are the condition of the sixth egg, the alternative acts are adding the sixth egg into 

the bowl or not adding it, the outcomes are what kind of omelette they can have. Table 2-

2 is the decision table for this example. 

Table 2-2: Decision table for Savage omelette decision problem 

States of Nature 

Good Rotten 

Add into bowl Six-egg omelette No omelette 

Not add into bowl Five-egg omelette Five-egg omelette 

2.2.2 Category 

Most problems in DM fall into a specific category according to DMs' knowledge of the 

state of nature (French, 1988): DMUSU and DMUR. 

DMUSU me ans that the decision maker has no information about states of nature. He is 

not unaware of the true states, but he cannot quantify his uncertainty in any way. He can 

only prepare an exhaustive list of possible states of the world. Let us take the example of 

the roll of dice where one must use skewed dice. The probability distribution over these 

skewed dice is unknown. In this example, the outcome is much more difficult to predict. 

The decision maker has no knowledge about the states of nature and/or cannot quantify 

their distribution. 
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DMUR is a situation where a decision maker does not know the true state of nature for 

certain, but can assign a probability distribution (P(Sl)' P(S2)' ... , p(sn)) to each state of 

nature, where each state Sj describes a possible state of the world and Sv S2, ... , Sn is an 

exhaustive list of the possibilities. Think here of an unbiased dice. The exact result is 

unknown, but the probability distribution over the possible outcome is known. As such, 

the outcome remains unpredictable but the decision is based on known probabilities. The 

problems of decision making under risk first appeared in the analysis of gambling. 

2.2.3 DMUSU Methods 

Consider the following type of DMUSU problem. Let dv d 2, ... , dm denote the decision 

alternatives available to the decision maker. The possible states of nature are denoted by 

Sv S2, ... , Sn- Every specific combination of a decision di and a state of nature Sj has a 

particular payoff value aij E IR\ with IR\ denoting the real nurnbers. The outcomes forrn a 

(m x n) dimensional payoffmatrix A = (aij)' 

In the early 1950s, there was an active discussion about methods for decision making 

under uncertainty. Five classic decision methods have been proposed to solve the problem 

of decision making under strict uncertainty, which are Laplace' s insufficient reason 

criterion, Wald's maximin criterion, Hurwicz' s pessimism-optimism index criterion, 

Savage' s minimax regret criterion and Starr' s Domain criterion. A brief introduction of 

each method follows. 

2.2.3.1 Laplace' s principle ofinsufficient reason 

In a situation where the probabilities of the different possible states of nature are unknown, 

Laplace' s criterion assumes that they are all equal. Thus if the decision maker chooses 

the ith row, his expectation is given by the average (ail + ... + ain)/n, and he should 
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choose the row for which this average is maximized. The alternative chosen by using the 

Laplace method is 

d* = mfx {~ Ll=l aij} where i = l, ... , m. (2.1) 

Laplace (1825) argued that "knowing nothing at aIl about the true state of nature" is 

equivalent to "all states having equal probability". This criterion is also known as the 

principle of indifference (Keynes, 1921). With this assumption, the decision maker can 

compute the average payoff for each row (the sum of the possible consequences of each 

alternative is divided by the number of states of nature) and then select the alternative that 

has the highest row average. 

When DMs assume that aIl states of nature are equally likely, the problem shifts from 

uncertainty to risk. The advantage of this approach is that it transforms a difficult problem 

into a relatively simple one through the use of probability theory. However, with this 

assumption, a major drawback of this criterion is that the state space must be constructed 

in order to be amenable to a uniform probability distribution (Sniedovich, 2007). 

2.2.3.2 Wald's Maximin 

The idea behind this method is to obtain the most robust possible outcome (Wald, 1950). 

In short, ifthe player chooses the ith row, then his payoffwill certainly be at least m~n aij' 
} 

The safest possible course of action is therefore to choose a row for which m~n aij is 
} 

maximized. Thus, the alternative selected (d*) in Wald ' s Maximin criterion is 

d* = mÇlx m~n aij' where i = l, ... , m and j = l, ... , n. 
L } 

(2.2) 

Wald's maximin is the rule of choosing the "best ofthe worst". It evaluates each decision 

by its associated minimum possible return. Then the decision that yields the maximum 

value of minimum returns (maximin) is selected. 
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Note that Wald ' s maximin model of uncertainty is extremely conservative. It does not 

provide a faithful representation ofhow we operate in reality. It may lead to exceedingly 

costly solutions resulting from over-protection against uncertainty. 

2.2.3.3 Savage' s Minimax regret criterion 

Let us define rij = max akj - aij for aIl i,j, and a regret matrix R= (rij) that 
k=l, ... ,m 

measures the difference between the payoffthat could have been obtained if the true state 

of nature had been known and the payoffthat is actually obtained. Now apply the Wald 

minimax criterion to regret matrix R. That is, choose a row for which mÇlx rij is 
} 

minimized. Thus, the decision in terms of Savage Minimax regret is: 

d* = m.in {max{rij}} ,where i = l, ... ,mandj = 1, ... ,n. 
l j 

(2.3) 

Savage (Savage, 1951) argued that by using the values payoff aij to guide choice, the 

decision maker is actually comparing the value of the consequence of an action under one 

state of nature with the values of aIl other consequences, whatever states of nature they 

occur under. N evertheless, the actual state of nature is beyond the control of the decision 

maker. The consequence of an action should only be compared with the consequences of 

other actions under the same state of nature. A particular consequence aij may be po or in 

the context of the complete decision table, but it may be the best consequence that can 

result from any action if Sj is the true state. Thus, Savage defined the regret of a 

consequence rij = max akj - aij' 
k=l, ... ,m 

The regret matrix only reflects the difference between each payoff and the best possible 

payoff in a column; hence, the disadvantage of Savage' s minimax regret criterion is that 

it does not consider the row differences. 
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2.2.3.4 Hurwicz' s pessimism-optimism index criterion 

Hurwicz' s criterion (Hurwicz, 1951) (Hurwicz, 1952) is defined as follows. Select a 

constant 0 :::; a :::; l, which is a coefficient ofthe player' s optimism. For each row i, let ai 

denote the smallest component and Ai the largest, then Hurwicz' s measurement Hi is 

defined as: 

H· = ak + (1 - a)a · where i = 1 ... m !! ! J J • 

And the decision is obtained where: 

d* = max{Hd 
i 

(2.4) 

(2.5) 

In Hurwicz' s criterion, the decision maker considers both the best and the worst possible 

results, weighted according to the decision maker' s attitude (optimistic or pessimistic) 

towards the decision. The weighting is made using a constant, named the coefficient of 

the optimist (0 :::; a :::; 1). When a = 1 , then the decision maker is completely 

optimistic and Hurwicz's criterion is reduced to the minimax method; when a = 0, the 

decision maker is pessimistic and Hurwicz' s criterion becomes Wald's maximin. 

The formula of Hurwicz' s measurement Hi shows that this criterion only considers the 

highest and the lowest payoff for each alternative. It does not take other non-extreme 

payoffs into account. Therefore, two decisions with the same minimal and maximal profits 

always obtain an identical Hurwicz' s measurement, even if one of them contains many 

small payoffs and the other one has many high payoffs (Gaspars-Wieloch, 2014). 

2.2.3.5 Starr' s Domain 

Starr introduced the Domain method for DMUSU in 1963 (Starr, 1963). While its 

philosophical foundation and its usefulness are well known (Schneller & Sphicas, 1983), 

it remains relatively unpopular compared to the previous methods. 
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Define the set D (the domain) of all possible probability distributions associated with the 

states of nature Sj ' j = 1, ... , n, as D = {p = (Pj) E R~I L Pj = 1}. This set is called the 

fundamental prob abi lit y simplex (FPS). For any given distribution p, we may define the 

expected monetary value of the ith decision: 

(2.6) 

Then 

(2.7) 

is the set of aU probability distributions P for which the ith decision is chosen according 

to the Bayesian expected value criterion. Let V(Di) denote the volume of the set Di' In 

Starr' s criterion, the r th decision is the one to choose ifV(Dr ) ~ VeDa 'Vi *- r. In other 

words, Starr' s criterion selects the decision that is most likely to have a higher expected 

payoff value than all the others. 

When the number of states of nature n :::; 3, the volume can be computed by graphical 

method. For n > 3, altematively, one can use the Monte-Carlo sampling algorithm to 

approximate the volume. Cohen and Hickey (1979) present an algorithm that can find 

exact convex polyhedral volumes. Starr (1966) also proposes using simulation with 

random sampling of points in the FPS. Although there are algorithms that can rapidly 

approximate large-dimension volume, it remains difficult for decision makers to clearly 

understand this approach. As such, the main drawback for DMs is the ease of 

appropriation. 
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2.2.4 Axiomatic Comparison for DMUSU Methods 

Consider a decision-making problem in Table 2-3 . Laplace ' s insufficient reason chooses 

dl' Wald' s Maximin chooses d2 , Savage ' s Minimax chooses d4 , Hurwicz' s criterion 

chooses d2 if a < ~ and d3 if a > ~ and Starr' s Domain chooses dl. 
4 4 

Table 2-3: Milnor's example (Mi Inor, 1954) 

Decision table 

Sl S2 S3 S4 

dl 2 2 0 1 

d 2 1 1 1 1 

d 3 0 4 0 0 

d 4 1 3 0 0 

These five c1assic DMUSU methods are quite different in their definition and furthermore 

can provide different results for the same decision problem. The differences among them 

have been revealed by Milnor' s axioms (Mi Inor, 1954). He presents 10 axioms, which are 

considered requirements for an ideal and reasonable decision-making method. He proves 

the compatibility of Laplace, Wald, Hurwicz and Savage with these 10 axioms. The 

axiomatic characterization of Starr' s domain criterion with Milnor' s 10 axioms has been 

discussed in Schneller and Sphicas (1983). 

Milnor' s 10 axioms are defined below: 

AXIOM 1. Ordering. The criterion should impose a complete order ;::: on the rows. 

AXIOM 2. Symmetry. The order is independent of the labelling of the rows and 

columns. 

AXIOM 3. Strong Domination. If for every j, ai1j > aizj then di1 ;::: d iz 

AXIOM 4. Continuity. If the matrices (aij)k converge componentwise to (aij) and 

if for every k , d~l > d~ then di1 ;::: diz 
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AXIOM 5. Matrix Linearity. The ordering relation is unchanged if the matrix (aij) 

is transformed to (b ij ) by the linear transformation bij = Waij + U, W > o. 
AXIOM 6. Row Adjunction. The order of "old" strategies of (aij) is not changed 

by adjoining a new strategy (row) to (aij) . 

AXIOM 7. Colurnn Additivity. The order is not changed if a constant value is added 

to every entry in a colurnn of (aij ) . 

AXIOM 8. Column Duplication. The order is unchanged if a new state of nature 

colurnn, identical to an old colurnn, is adjoined to (aij). 

AXIOM 9. Convexity. If there are three strategies, di1, dizand d i3, such that di1 

and diz are equivalent under the order of the criterion, and di3 obeys the property 

that di3 = (d i1 + diz)/2 for each j , then d i3 is equivalent to d i1 and diz. 

AXIOM 10. Dominated Row Adjunction. The order of the "old" strategies is not 

changed by adjoining a new dorninated strategy (row), providing that no component 

of this new row is greater than the corresponding components of all old rows. 

Milnor' s summary of the relation between the ten axioms and five c1assic criteria is in 

Table 2-4. The --J symbol indicates that the corresponding axiom and criteria are 

compatible. Each criterion is characterized by the axioms marked --J--J. It is shown that none 

of the five c1assic criteria have all ten axioms. Wald's criterion fails Axiom 7, Hurwicz's 

fails Axiom 7 and Axiom 9, Savage's fails Axiom 6, Laplace's fails Axiom 8, Starr' s 

domain fails Axiom 6, Axiom 7 and Axiom 8. The axiomatic approach theoreticallypoints 

out each c1assic criterion' s drawbacks. 
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Table 2-4: Axioms 

Axioms Laplace Wald Hurwicz Savage Starr 

1. Ordering .,j.,j .,j.,j .,j.,j .,j.,j .,j.,j 

2. Symmetry .,j.,j .,j.,j .,j.,j .,j.,j .,j.,j 

3. Strong Domination .,j.,j .,j.,j .,j.,j .,j.,j .,j.,j 

4. Continuity .,j .,j.,j .,j.,j .,j.,j .,j.,j 

5. Linearity .,j .,j .,j.,j .,j .,j.,j 

6. Rowadjunction .,j.,j .,j.,j .,j.,j 

7. Column additivity .,j.,j .,j.,j 

8. Column duplication .,j.,j .,j.,j .,j.,j 

9. Convexity .,j .,j.,j .,j.,j .,j.,j 

10. Dominated row adjunction .,j .,j .,j .,j.,j .,j.,j 

Definitions of aIl classic DMUSU methods and their axiomatic characterization have been 

introduced. Laplace' s insufficient reason transfers a DMUSU problem into an easy 

DMUR problem; however, an obvious drawback to this criterion is that it is very sensitive 

to how states are individuated. Wald ' s Maximin and Hurwicz' s criterion focus only on 

extreme payoffs to the exclusion of others, while Savage' s Minimax considers aIl payoffs, 

but does not have the ability to factor the raw differences. Starr' s Domain runs into 

complexity of computation when there are more than three states. 

2.2.5 DMUR Methods 

When the decision maker has sorne knowledge about the states of nature, slhe can assign 

subjective probability estimates for the occurrence of each state. In such cases, the 

problem is classified as decision making with risk (Rowe, 1988). These probabilities may 

be subjective or they may reflect historical frequencies. Here, the same notations are used 

as in the previous section for decision alternatives dv d 2, ... , dm , states of nature 

Sv S2, ... , Sn , and m x n dimensional decision matrix A = (aij) where aij is the outcome 

of decision di associated with state of nature Sj . Furthermore, let us use 
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(P(Sl)' p(Sz), ... , P(Sn)) to describe the probability distribution of the states of nature. 

Decision mIes for approaching DMUR have been discussed in the literature (Taghavifard, 

Damghani, & Moghaddam, 2009). 

2.2.5.1 The Expected Monetary Value mIe 

We consider decision matrix A = (aij) the monetary payoff matrix. The Expected 

Monetary Value (EMY) is computed by multiplying each monetary value (payoff) by the 

probability for the relevant state of nature and summing the results. This value is computed 

for each alternative, and the one with the highest value is selected as the final decision, i.e. 

EMVi = LJ=l p(Sj)aij' where i = l, ... , m. (2.8) 

Thus, the decision chosen according to the expected monetary value princip le is 

d* = mçzx{EMVa, (2.9) 
L 

The principle of EMV remains the most useful of aIl the decision mIes for DMUR. Here 

is an example of a DMUR problem solved by this method. Consider the following DMUR 

problem: a sushi restaurant needs to decide how much sushi (quantified by small amount, 

medium amount or large amount) it needs to make every day. Its profit depends on demand 

that can be low, moderate, or high. The probability of the demand is 0.3,0.5,0.2 . Table 

2-5 shows the profit value per day (in $) for the possible situations. 

Table 2-5: Sushi Restaurant PayoffMatrix 

Low (p = 0.3) Moderate (p = 0.5) High (p = 0.2) 

SmaU 5000 5000 5000 

Medium 4200 5200 5200 

Large 3400 4400 5400 

EMV (small) 0.3 * 5000 + 0.5 * 5000 + 0.2 * 5000 5000; 



EMV (medium) = 0.3 * 4200 + 0.5 * 5200 + 0.2 * 5200 = 4900; 

EMV (large) = 0.3 * 3400 + 0.5 * 4400 + 0.2 * 5400 = 4300. 

Therefore, according to the EMV mIe, the small amount of sushi should be chosen. 

2.2.5.2 The Expected Opportunity Loss Rule 
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The principle of Expected Opportunity Loss (EOL) is nearly identical to the EMV 

approach, except that instead of payoff matrix A = (aij) ' the opportunity loss (or regrets) 

matrix R = (rij) where rij = ~ax akj - aij for aIl i,j is used. The expected 
k-l, ... ,m 

opportunity loss is computed for each alternative and the alternative with the smallest 

expected loss is selected as the final choice, i.e. 

(2.10) 

Thus, the decision using the expected opportunity loss principle is 

d* = m.in{EOLd. (2.11) 
t 

The regret matrix for Table 2-5 is shown in Table 2-6: 

Table 2-6: Sushi Restaurant Regret Matrix 

Low (p = 0.3) Moderate (p = 0.5) High (p = 0.2) 

Small 0 200 400 

Medium 800 0 200 

Large 1600 800 0 



The EOL for each row is: 

EOL (small) = 0.3 * a + 0.5 * 200 + 0.2 * 400 = 180; 

EOL (medium) = 0.3 * 800 + 0.5 * a + 0.2 * 200 = 280; 

EOL (large) = 0.3 * 1600 + 0.5 * 800 + 0.2 * a = 880. 
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The smallest EOL is 180. Hence, making the small amount of sushi is the decision to be 

taken. 

The EOL approach resulted in the same alternative as the EMV approach. The two 

methods always result in the same choice, because maximizing the payoffs is equivalent 

to minimizing the opportunity loss. 

2.2.5 .3 The Most Probable States of Nature Rule 

In this decision rule, only the state of nature with the highest probability is taken into 

account, and in that column, the alternative with the biggest payoff is the final decision, 

1.e. 

d* = , max {aik} 
t=l,"',m 

(2.12) 

where k is the state of nature index, which has the highest probability: P(Sk) = 

,max p(Sj )' 
J= l ,"',n 

According to this decision rule, for the example in Table 2-5, the state of moderate demand 

has the highest probability. In that column, the best profit is located in the second row, 

thus the alternative selected is to produce the medium amount of sushi. 

Since the most probable states of nature rule takes only one uncertain state of nature into 

account it may lead to bad decisions. 



22 

2.2.5.4 The Expected Utility Rule 

Consider the following DMUR problem: there are two types oflottery, wherein Lottery A 

guarantees you receive one million dollars and Lottery B entitles you to a fi ft y per cent 

chance of winning either three million dollars or nothing. See Table 2-7. 

Table 2-7: Buying Lottery tickets 

50% 50% 

Lottery A 1 million dollars 1 million dollars 

Lottery B 3 million dollars 0 

The expected monetary values for the two lotteries are: 

EMV(Lottery A) = 50% . 1 + 50% . 1 = 1 million dollars; 

EMV(Lottery B) = 50% . 3 + 50% . 0 = 1.5 million dollars. 

EMV(Lottery A) < EMV(Lottery B) , thus, the EMV principle dictates buying a ticket 

for lottery B. However, many ofus would prefer lottery A, where we are sure to have one 

million dollars. 

When dealing with a risky decision problem (e.g. , the decision can only be made once or 

the amounts of money involved in the problem are big), the expected monetary value 

criterion cannot encompass the full range of reasoning behind a decision as a human would. 

Thus, the decision dictated by EMV may be different from what the decision maker 

himselfwould choose. In this case, it is helpful to introduce the concept ofutility. 

Utility is an abstract concept that cannot be directly observed. Utility represents the 

subjective attitude of the individual to risk, it implies how valuable the outcome is from 

the decision maker' s point ofview (Peterson, 2009). We use u(aij) to present the utility 
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value of outcome aij' The principle of expected utility (EU) is obtained from the principle 

ofEMV by replacing the monetary value aij by its utility u(aij), i.e.: 

(2.13) 

Thus, the chosen decision according to the expected utility principle is 

d* = mÇlx{EUa. (2.14) 
L 

Back to the example in Table 2-7, suppose that the lottery ticket buyer himself expressed 

the utilities of the outcomes with the following: 

u(1 million dollars) = 0.7; 

u(3 million dollars) = 1; 

u(O million dollars) = O. 

Therefore, the expected utility values for the two lotteries are: 

EU(Lottery A) = 50% * 0.7 + 50% * 0.7 = 0.7; 

EU(Lottery B) = 50% * 1 + 50% * 0 = 0.5. 

EU (Lottery A) > EU(Lottery B), therefore, the EU principle dictates that buying a ticket 

for lottery A is the better option. 

In summary, the computation of the four decision rules for DMUR is similar. The 

difference is that each decision rule maximizes or minimizes different objects, i.e. the 

expected monetary value, the expected opportunity loss, the expected utility. The decision 

maker needs to choose which object they want to consider based on the property of each 

individual DMUR problem. 
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2.2.6 Expeeted Value ofPerfeet Information 

In DMUR, the probabilities of the states of nature represent the deeision maker's degree 

ofuncertainty and personal judgment on the oeeurrence of eaeh state, but whieh state will 

aetually oeeur when a deeision alternative is applied is still unknown. Knowledge ofwhen 

eaeh state will aetually happen, known as perfeet information for deeision making, ean 

help the deeision maker to ehoose the most profitable alternative every time. In deeision 

theory, the expeeted value of perfeet information (EVPI) is the amount that the deeision 

maker would be willing to pay in order to get the perfeet information (Hubbard, 2007). 

For a DMUR problem, when there is no knowledge of the perfeet information, the deeision 

maker will ehoose the deeision with the largest EMY; henee, the expeeted value without 

perfeet information (EV) is: 

(2.15) 

If the deeision maker had perfeet information, s/he would ehoose the deeision with the 

best payoff for eaeh speeifie state. Thus, the expeeted value with perfeet information 

(EVIPI) is defined by multiplying the best outeome in eaeh eolumn by its probability and 

summing the results: 

(2.16) 

The differenee between EVIPI and EV is ealled the expeeted value of perfeet information 

(EVPI):EVPI = EVIPI - EV. 

Henee, EVPI indieates how mueh more value the deeision maker ean get by knowing 

perfeet information. If the deeision maker is offered perfeet information for a price higher 

than EVPI, it is better for him to refuse it (Riggs, Rentz, Kahl, & West, 1986). 
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Let us present one example from Quirk (Quirk, 1976) and compute the expected value of 

perfect information. Suppose a farmer can harvest rus entire crop today at a cost of 

$10,000 or halftoday, halftomorrow at a cost of$2,500 per day. The harvested crop is 

worth $50,000. The payoff decision matrix for this problem is shown in Table 2-8. 

Table 2-8: Farmer's payoff 

~ 
Heavy rain tomorrow No heavy rain tomorrow 

Decisions p = 55% p = 45% 

Decision A: Harvest ail today $40,000 $40,000 

Decision B: Harvest over two days $22,500 $45,000 

Let's assume the probability ofheavy rain tomorrow is 55%, hence 45% for no heavy rain 

tomorrow. 

EMVA = 0.55 * ($40000) + 0.45 * ($40,000) = $40,000; 

EMVs = 0.55 * ($22500) + 0.45 * ($45,000) = $32,625; 

EV = milx(EMVA, EMVs ) = $40,000; 
t 

EVIPI = 0.55 * $40,000 + 0.45 * $45,000 = $42,250. 

Hence, the expected value ofperfect information is: EVPI = EVIPI - EV = $2,250. 

The conclusion is that if someone provides the accurate weather forecast for tomorrow at 

a priee ofless than $2,250, the farmer will want to purchase this information. 

2.3 Game Theory 

Game theory is a mathematical study of a strategy-choosing situation (i.e. game), where 

each player' s strategy choice interacts with the other' s. Thus, game theory is considered 

the theory of interdependent decision making, where the outcome is related to the 

decisions of two or more players and no single player has full control over the outcome. 
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Considering decision making problems as agame has been explored in the literature (Luce 

& Raiffa, 1957) (Kelly, 2003) (Aliprantis & Chakrabarti, 2000). 

Game theory has been widely used in economics (Friedman, 1998), psychology (Camerer, 

2003) and political science (Morrow, 1994) as well as logistics (Reyes, 2005), computer 

science (Shoham, 2008), biology (Durlauf & Blume, 2010) and so on. This subject 

originated from zero-sum games, in which the gains of one player are exactly equal to the 

los ses of the others: John von Neumann [IfSt established game theory as a unique field in 

rus 1928 paper (von Neumann, 1928). Later, his 1944 book Theory of Games and 

Economic Behavior (von Neumann & Morgenstern, 1944) came to be considered the 

ground-breaking text that created the interdisciplinary research field of game theory 

(Mirowski, 1992). 

2.3.1 Basic Concepts 

The basic concepts are the features that constitute agame. Here we briefly give their 

definitions. 

Players: participants who choose a strategy in agame. 

Strategies per player: each player makes hislher choice from a set of possible 

actions, known as pure strategies. The set of pure strategies available to each player 

is called a strategy set. 

Payoffs: the outcome received by a player after hislher strategy choice or strategy 

combination. 

2.3.2 Game Types 

2.3.2.1 Cooperative/Non-cooperative game 

A cooperative game is where the players can form and respect mutually binding 

agreements. For example, the legal system requires each player to respect his or her 
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agreements. Games that are not cooperative are known as non-cooperative games, i.e. , 

players cannot keep their agreements and act independently. 

2.3.2.2 Zero/non-zero sum game 

In a zero-sum game, you win exactly as much as your opponent(s) loses. The total benefit 

to aIl players in the game, for every combination of strategies, always adds up to zero. 

Typical examples are casino games and c1assic board games like Go and chess. Non-zero­

sum games are where a gain by one player does not necessarily correspond to a loss by 

another; the total benefit to aIl players is not zero. 

2.3 .2.3 Simultaneous/Sequential game 

In simultaneous games, aIl players choose their strategy at the same time, or if they do not 

choose at the same time, the players who choose later do not know the choices of the 

players who chose earlier (making them effectively simultaneous). A typical example of 

a simultaneous game is Rock-Paper-Scissors. In sequential games (or dynamic games), 

players who choose later have sorne knowledge of earlier actions. It does not need to be 

perfect information about every previous action; it might be very little information. Chess 

is a sequential game. 

2.3.2.4 Perfect information and imperfect information 

Perfect-information games are a subset of sequential games. A perfect-information game 

is where all the players have full information about the actions previously chosen by the 

other players. Chess is a perfect-information game. Simultaneous games obviously cannot 

be games ofperfect information. Games that are not perfect-information games are known 

as imperfect-information games. 
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2.3.2.5 Pure and mixed strategy 

A pure strategy provides a complete definition of how a player will play a game. In 

particular, it determines the move a player will make in any situation slhe could face. A 

player's strategy set is the set of pure strategies available to that player. A mixed 

strategy means to play a pure strategy with probability between zero and one. This allows 

a player to randomly select a pure strategy. Since probabilities are continuous, there are 

infini te mixed strategies available to a player. 

2.3.3 Classic Games 

2.3.3.1 Prisoner' s dilemma 

The Prisoner' s dilemma is one ofthe games studied in game theory, which was presented 

by Poundstone (Pound stone, 1992), as follows. 

"Two members of a criminal gang are arrested and imprisoned. Each prisoner 
is in solitary confinement with no means of communicating with the other. 
The prosecutors lack sufficient evidence to convict the pair on the principal 
charge. They hope to get both sentenced to a year in prison on a lesser charge. 
Simultaneously, the prosecutors offer each prisoner a bargain. Each prisoner 
is given the opportunity either to betray the other by testifying that the other 
committed the crime, or to cooperate with the other by remaining silent. The 
offer is: 
If A and Beach betray the other, each of them serves 2 years in prison. 
If A betrays B but B remains silent, A will be set free and B will serve 3 years 
in prison (and vice versa). 
If A and B both remain silent, both of them will only serve 1 year in prison 
(on the lesser charge)." 

Both prisoners have two options - "cooperate" or "defect." In this game, each prisoner 

gains when both cooperate; however, if only one ofthem cooperates, the one who defects 

will gain more. Ifboth defect, both lose. See Table 2-9. 
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Table 2-9: The prisoner's dilemma 

~ cooperate defect 

Cooperate Each serves 1 year Prisoner A: 3 years 

Prisoner B: goes free 

Defect Prisoner A: goes free Each serves 2 years 

Prisoner B: 3 years 

Based on the game type definitions, the prisoner' s dilemma 1S a non-cooperative, 

simultaneous and non-zero-sum game. 

2.3.3.2 Matching pennies 

Matching pennies is a two-player game. Each player has a penny and they are shown 

simultaneously. If the pennies match (either heads or tails), player A will get the penny 

from B (i.e., A wins one penny [+ 1 J, B loses one penny [-1 D. If the pennies do not match, 

player B receives the penny from A (i.e. , B wins one penny [+ 1 J, A loses one penny [-1 D. 
This game is represented in Table 2-10. Obviously, this is a zero-sum game, in which one 

player' s gain is exactly equal to the other one ' s loss. 

Table 2-10: Matching pennies 

~ Heads Tails 
Player A 

Heads + 1, -1 -1 , + 1 

Tails -1 , + 1 + 1, -1 

2.3.3 .3 Pirate Game 

The pirate game is a simple mathematical multi-player game as follows. Five rational 

pirates, A, B, C, D and E have to decide how to distribute 100 gold coins. There is a strict 

order of seniority among the pirates: A is senior to B, who is senior to C, who is senior to 

D, who is senior to E. The most-senior pirate, A, will propose a coin-distribution method. 

Then the pirates, inc1uding A, vote on whether to accept this distribution. Ifthe distribution 
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is accepted, the coins are disbursed and the game ends. If not, the proposer is thrown 

overboard from the pirate ship and dies, and the next most-senior pirate makes a new 

proposaI to begin the game again (Talbot Coram & Goodin, 1998) (Stewart, 1999). 

Each pirate clearly knows the previous pirate ' s move and the total bene fit of aH the players 

is not zero; hence, this game is a perfect information and non-zero-sum game. 

2.3.4 Nash Equilibrium (NE) 

Nash equilibrium (NE) is a solution concept in game theory to solve agame involving two 

or more players. If each player has chosen a strategy and no player has anything to gain 

by changing strategies while the other players keep theirs unchanged, then the current set 

of strategy choices and the corresponding payoffs constitute a Nash equilibrium (Nash, 

1950) (Nash, 1951). That means a Nash equilibrium can be seen as a mIe that no one 

would want to break even in the absence of an effective police force. Take the example of 

two cars driving perpendicularly at a traffic light junction. In this situation, Nash 

equilibrium would mean one car respects the green light and the other respects the red 

light. NE can be divided into two types. Pure-strategy Nash equilibrium is the equilibrium 

where aU players are playing pure strategies. Mixed-strategy Nash equilibrium is the 

equilibrium where at least one player is playing a mixed strategy. The definition of pure 

strategy and mixed strategy can be found in the previous section. John Nash stated that 

every game in which the set of actions available to each player is finite has at least one 

mixed-strategy equilibrium (Nash, 1950). The foUowing are sorile examples to illustrate 

this concept. 

2.3.4.1 Example l Pure NE in a Coordination game 

Consider the two-player game shown in Table 2-11: each player has two actions. If both 

players choose action 1, each of them gains 2, and if they both choose action 2, each gets 

1, if the players choose different actions from each other, they gain nothing. In this game, 

there are four possible pure strategy sets: action 1, action 1; action 1, action 2); action 2, 
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action 1; and action 2, action 2. Therefore action 1, action 1 is a Nash equilibrium since 

no one can get a higher payoffby unilaterally changing their strategy. The same applies 

to the strategy set action 2, action 2, which is also a Nash equilibrium. This game has two 

Nash equilibria and all the players are playing pure strategies in the equilibrium; they are 

pure Nash equilibria. 

Table 2-11 : Coordination Game 

Two-player Player 2 

game Action 1 Action 2 

-~ 2,2 0, 0 
0 .... .... 
r.) - ~ ... 

<D » 
c:<l 

~ N 
~ 0, 0 l , 1 .8 .... 
r.) 

~ 

2.3.4.2 Example II Mixed-Strategy NE in Matching Pennies 

The game matching pennies was described in the previous section. Let us take a look at 

all the pure strategy sets in this game. Heads, Heads cannot be aN ash equilibrium, because 

if player B knows that player A reveals heads, he will want to switch to tails. Heads, Tails 

cannot be a Nash equilibrium either, because player A wants to change to tails ifplayer B 

plays tails. The same is true for Tails, Heads and Tails, Tails. Therefore, there is no pure­

strategy Nash equilibrium in this game. 

According to John Nash, there must be a mixed-strategy Nash equilibrium in every game. 

In Spaniel (2011) and von Ahn (2008), an algorithm for computing mixed-strategy Nash 

equilibrium is given. For each individual player: 

1. Assign a variable to each strategy that denotes the probability that a player will 

choose that strategy. 

2. The total sum ofthe probabilities for each strategy available to a player is 1. 
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3. Based on the randomization of the player' s choice, the expected payofffor a player 

should be the same. 

4. This creates a group of equations from which the probabilities of choosing each 

strategy can be computed. 

Now, let us apply the above algorithm in order to find the mixed-strategy NE for the game 

matching pennies. 

For player A, 

• Assign p to be the probability that player A plays Heads; 1 - P is the probability 

that he plays Tails; 

• If player B chooses Heads, the expected payoff for player A is (+1) * p + (-1) * 

(1 - p) = 2p - 1; 

• If player B chooses Tails, the expected payoff for player A is (-1) * P + (+1) * 

(1 - p) = 1 - 2p; 

1 
• The above two expected payoffs are equal; we get = - . 

2 

The same is true for player B: ifwe assign q as the probability that player B plays Heads, 

1 - q is the probability that he plays Tails, then we arrive at = .: . 
2 

Note, a robust response strategy is one that achieves maximal expected performance 

against a particular set of opponent strategies. Thus, according to the concept of NE, each 

strategy in a NE must be the best response to the rest of the strategies in that player' s 

strategy set. Therefore, we can evaluate a strategy based on the comparison between this 

strategy and the strategy in the NE. In the literature, the two existing methods for 

performing this comparison are Exploitability and Distance to Nash (Davis, Burch, & 

Bowling, 2014) (Lupien St-Pierre, Hoock, Liu, Teytaud, & Teytaud, 2016). 
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2.4 The Relation between Decision Making and Game Theory 

The relation between decision-making problems and game theory has been discussed 

directly or indirectly in the literature. Milnor (1954) considers DMUSU problems to be a 

game against nature. A decision matrix A = (aij) is given, in which the decision maker 

as player 1 must choose a row. A column will be chosen by player 2, "Nature", a fictitious 

player having no known objective and no known strategy. Luce and Raiffa (1957) propose 

that decision-making problems can be considered a two-person non-zero-sum, non­

cooperative game: player 1 and player 2 can be referred to as the decision maker and 

neutral nature separately. Thus, sorne solution concepts for two-player games can be 

applied indirectly to decision-making problems. Aliprantis and Chakrabarti (2000) 

mention that game theory is considered the theory of mutual interdependent decision 

making, which means that a player' s outcome depends not only on hislher actions but also 

on the decisions the other player makes. Kelly (2003) divides games into three categories: 

games of skill, games of chance and games of strategy. Games of skill , like decision 

making under certainty, are one-player games where the player fully controls an the 

outcomes. Games of chance are games played by an individual player against neutral 

nature and further categorized as either involving risk or involving uncertainty; thus, 

games of chance belong to decision making under risk or strict uncertainty in decision 

theory. Games of strategy are defined as games between two or more players, not 

inc1uding nature, each of whom has partial control over the outcomes. 

Now it is time to introduce the connection between game theory and decision making. As 

explained in the previous sections, the basic concepts for a decision-making problem are: 

(1) alternative decisions, (2) states of nature, (3) consequences of each decision for each 

state of nature. These correspond, respectively, to the basic concepts of a two-player 

strategic game: (1) strategies (alternatives) for player 1, (2) strategies (alternatives) for 

player 2 and (3) payoffs for each player from possible strategy combinations. See Figure 

2-1. 
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DMUSU Two-Player Game 

Decisions 
~ • 

Strategies for 
player 1 

States of • Strategies for 
Nature player 2 

Conseq uences ~ 
Payoff of 
players 

Figure 2-1 Re1ationship between Decision Making and Game Theory 

From this perspective, DM can be converted to a two-player game where player 1 is the 

decision maker and player 2 is nature. Furthermore, it is a non-cooperative, non-zero-sum 

game since one of the players in this game is neutral nature. 

2.5 Conclusion 

This chapter is divided into three parts: decision-making problems, game theory and their 

relation. Decision-making problems are categorized as decision making under strict 

uncertainty and decision making under risk. Classic decision rules for decision-making 

problems are introduced and compared with examples. In game theory, the basic concepts 

of constituting a game and game types are introduced, followed by a description of the 

prisoner' s dilemma, matching pennies and the pirate game. Then Nash equilibrium, a 

solution concept in game theory, is illustrated with examples. With three basic e1ements 

of decision-making problems and the basic concepts of agame, decision-making problems 

can be converted to a two-player game where player 1 is the decision maker and player 2 

is nature. 
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CHAPTER 3 - COMPARATIVE STUDY OF DMUSU METHODS: A CASE STUDY 

IN SEWER NETWORK PLANNING 

3.1 Introduction 

After the review and introduction in chapters 1 and 2, this chapter focuses on the 

comparison of five c1assic methods for DMUSU and NE in a more practical way than 

axiomatic comparison. 

Different methods may arrive at different decisions for the same DM problem. Hence, a 

good understanding of what the decision-making process involves and how to choose 

effective decision rules can be helpful in order to make better decisions and have a higher 

probability of success. 

At this point, practical DMs need to think about which method to use. They could choose 

their preferred method based on the axiomatic characterization; however, axiomatic 

comparisons are very theoretical and mathematical for practical DMs. In order to find an 

easy way to help them to choose one suitable DM method for a single DMUSU problem, 

our work is carried out in the following steps: 

Apply aIl the DM methods to one DMUSU problem and analyze their results; 

Based on the connection between DM and game theory, consider a DMUSU 

problem a two-player game and apply NE to find the decision; 

According to the concept of NE, the choice made by NE is the best response; 

Compare the decision indicated by c1assic DM methods with the decision indicated 

by NE. 

The practical decision problem of selecting a sewer network plan is used here to illustrate 

how each decision method is implemented in a real-life project. The city' s civil engineer 

proposed four sewer network construction alternatives in order to direct more rainfall 

water in one particular area to the river. The city needs to make a decision to choose one 
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alternative and construct it in this area. Because the city has no infonnation about weather 

conditions, this DM problem is structured into DMUSU. With the existing data and 

analysis, a decision matrix is generated to which five classic DM methods and NE are 

applied. 

The remaining parts of this chapter are organized as follows: Section 3.2 briefly recalls 

the definition offive classic DMUSU methods and Nash equilibrium; Section 3.3 gives a 

full description of the case study: sewer network planning; Section 3.4 shows how to 

structure this real project into a DMUSU problem; Section 3.5 applies each DMUSU 

method and NE to the problem and selects the final plan; Section 3.6 discusses and 

analyzes results from the various methods. 

3.2 Five classic methods for DMUSU and Nash equilibrium 

Five classic methods for solving DMUSU problems and Nash equilibrium are the 

following: 

1. Laplace' s Principle of Insufficient Reason: It assumes that the probabilities of the 

different possible states of nature are aIl equal. The selected decision is the one that 

has the maximum of the average. 

2. Wald' s Maximin: It evaluates each decision by the mInImUm possible return 

associated with the decision. Then, the decision that yields the maximum value of 

the minimum returns (maximin) is selected. 

3. Savage' s Minimax Regret: It defines a regret matrix that measures the difference 

between the payoff that could have been obtained if the true state of nature had been 

known and the payoff that is actually obtained. Then the minimax criterion is 

applied to the regret matrix. 

4. The Hurwicz' s Pessimism-Optimism Index Criterion: It selects a coefficient of the 

player' s optimism. Then, it computes Hurwicz' s measurement for each decision and 

selects the one for which Hurwicz' s measurement is maximized. 
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5. Starr' s Domain: It selects the decision that is most likely to have a higher expected 

payoff value than all the others. 

6. Nash equilibrium: If each player has chosen a strategy and no player has anything 

to gain by changing strategies while the other players keep theirs unchanged, then 

the current strategy set choices and the corresponding payoffs constitute a NE. 

3.3 Problem Statement: Sewer Network Planning 

A pumping station is located next to the river and northwest of Highway 40. This pumping 

station receives combined sewer water (rainfall and sanitary flow) from one particular 

area. See Figure 3-1. 

Figure 3-1 Pumping station and its area 

The local city would like to reduce the rainfall flow channelled to the pumping station in 

order to improve its sanitary flow capacity. To meet this goal, the city wants to gather the 

rainfall water for the area and direct it to the river. Thus, there will be less rainfall water 
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taking space in the pumping station and more space for the sanitary flow. The city's civil 

engineering department has proposed four construction plans for building this new rainfall 

pipe: 

1. Plan 1 is to build a new rainfall water pipe along Barkoff Street from Boulevard des 

Ormeaux going directly to the river. With this plan, rainfall water flows from this 

segment will be directed to the river. See black solid line in Figure 3-2; 

2. Plan 2 is to extend the existing rainfall water pipe along rue Vachon to the river, 

such that rainfall water for this segment is directed to the river. See grey solid line 

in Figure 3-2; 

3. Plan 3 inc1udes the construction of Plan 1. Furthermore, it will extend the rainfall 

pipe to the northeast to du Parc Road. Plan 3 is the black solid line and black dashed 

line in Figure 3-2; 

4. Plan 4 inc1udes the construction of Plan 2. In addition, it will extend the rainfall pipe 

to the northeast along Morin Road and Highway 40. Plan 4 is the grey solid line and 

grey dashed line in Figure 3-2. 
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Figure 3-2: Construction Plans 

The total cost for each construction plan is listed in Table 3-1. 
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Table 3-1: Total Cost of Each Plan 

Plan Total co st (CAD) 

Pl 1,884,753 

P2 437,606 

P3 4,127,967 

P4 2,680,820 

In order to evaluate how much rainfall water is relieved from the pumping station in each 

plan, civil engineers modelled the CUITent sewer network of the area and the possible 

alternatives (Plan 1 to 4) using Sanitary and Combined Sewer Modelling Software 

(SewerGEMS), a fully-dynamic, multi-platform (GIS, CAD and Stand-Alone) modelling 

solution. 

The process is as follows. In SewerGEMS, start by setting up the baseline rain: 9 mm of 

rain in a three-hour period. Second, execute the model of the CUITent sewer network and 

each alternative respectively with this rainfall. Third, gather the value ofthe rainfall flow 

channelled to the pumping station per second for each model. Last, compare the different 

values. 

The results are shown in the following figures, where the higher line indicates the rainfall 

flow channelled to the pumping station with the CUITent sewer network, the lower line 

indicates the same value but for each individual plan, and the grey area is the reduced 

rainfall flow from the pumping station. 
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Figure 3-3 : Plan 1 vs. CUITent sewer network with 9mm/3hrs rainfall 
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Figure 3-4: Plan 2 vs. CUITent sewer network with 9mm/3hrs rainfall 
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These figures directly show the reduction of rainfall flows for each plan at the pumping 

station (the order ofthe reduced rainfall flow is Plan 3 > Plan 1 > Plan 4 > Plan 2), which 

also means how much capacity is improved for containing sanitary flow. 

In reality, it is not always practical or beneficial to choose the plan with the biggest 

reduction because of the cost per volume saved. Moreover, the first unit of volume saved 

is clearly of importance, yet the millionth might not be as important. Thus, a weighted 

sum of the volume saved is more representative of the city' s needs. In addition, from a 

pragmatic point ofview, the functionallevel of the pumping station should be considered. 

3.4 Converting the Case Study to a DMUSU Problem 

In order to select one of the four plans, the city is actually facing a DMUSU problem, 

where weather conditions can be considered states ofnature. The decision maker (the city) 

has no information about their true states, and the probabilities of the states of nature is 

quantitatively immeasurable. 

To form the DMUSU problem, three basic concepts (states ofnature, decision alternatives 

and outcomes) should be specified. As mentioned before, the rainfall is the states of nature, 

which cannot be quantified by the decision maker, but a list can be provided. Based on 

their preference, states of nature considered in this process are Si = 7.2mm over a period 
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of 3 hours; S2 = 8.1mm over a period of 3 hours; S3 = 9mm over a period of 3 hours; S4 = 

9.9mm over a period of 3 hours. 

Clearly, the de ci sion alternatives are the four construction plans: dl =Plan 1; d2=Plan 2; 

d3=Plan 3; d4 =P1an 4. 

Outcomes are the consequences of each plan under each rainfall scenario, which is the 

value encompassing the cost, the amount of reduced rainfall water and the functionallevel 

of the pumping station. To do this, four steps are used to compute the outcomes of this 

DMUSU problem: 

Step 1. Set up the rainfall condition Sl ' S2 ' S3 ' S4 in SewerGEMS. Then, execute each 

decision (dl to d4 ) respectively with each state of nature. Next, gather the maximum 

incoming rainfall flow channeled to the pumping station (liters per second) for each 

decision under each rainfall condition. See Table 3-2. 

Table 3-2: Maximum Incoming Rainfall Flow in Pumping Station 

Sl S2 S3 S4 

dl 107.2 133.11 162.23 195.01 

d2 176.36 226.25 283 342.41 

d3 92. 12 116.13 144.3 175.29 

d4 152.03 198.44 252.77 307.13 

Step 2. Set the incoming rainfall flow ofthe CUITent sewer network under rainfall scenario 

9mmJ3hrs: 358.64L1s as the base value. Compute the reduced incoming rainfall flow for 

each plan under each rainfall scenario using the difference between the base value and the 

value in Table 3-2. Results are presented in Table 3-3. 
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Table 3-3: Reduced Incoming Rainfall Flow in Pumping Station 

Sl S2 S3 S4 

d l 251.44 225.53 196.41 163.63 

d 2 182.28 132.39 75 .64 16.23 

d 3 266.52 242.51 214.34 183.35 

d 4 206.61 160.2 105.87 51 .51 

Step 3. Because the first unit of volume saved is c1early of importance, yet the millionth 

might not be as important, a weighted sum method is used to modify the data in Table 3-

3 to ob tain more representative data that fits the city' s needs. Weighted factors are set up 

in Table 3-4. 

Table 3-4: Weighted Factors 

Reduced rainfall flow Qty (Lis) Weight 

Need 80.000 1.000 

Possible future use 120.000 0.500 

Not necessary 0.100 

Thus, from Table 3-3 , the first 80 Lis are worth their exact weight. Values between 80Lls 

and l20Lls, while nice to save, are not relevant to the CUITent situation. Thus, half weight 

is given, i.e., 80+ (value-80) * 0.5. There should never be any need for volumes beyond 

120Lls, thus, they become 80 +40*0.5 + (value-120) * 0.1. Table 3-5 presents the 

weighted results: 

Table 3-5: Weighted Reduced Incoming Rainfall Flow in Pumping Station 

Sl S2 S3 S4 

d l 1l3.144 110.553 107.641 104.363 

d 2 106.228 101.239 75 .64 16.23 

d 3 114.652 112.251 109.434 206.335 

d 4 108.661 104.02 92.93 51.51 



44 

Step 4. Generate Table 3-6 by dividing the total cost of each plan by the weighted reduced 

incoming flow values in Table 3-5. The values in Table 3-6 are the cost per weighted litre 

per second for each alternative plan under each state of nature, which is the desired 

outcome of the DMUSU. 

Table 3-6: DMUSU's Decision Matrix for Sewer Network Planning 

$/(L/s) Sl S2 S3 S4 

dl 16658.00 17048.41 17509.62 18059.59 

d2 4119.50 4322.50 5785 .38 26962 .79 

d3 36004.32 36774.44 37721.07 38820.40 

d4 24671.41 25772.17 28846.19 52044.66 

3.5 Plan Selection Using Five DMUSU and NE Criteria 

In this section, five DMUSU and NE criteria are applied to the decision matrix formalized 

in Table 3-6 in order to make decision on which plan to choose. 

1. Laplace ' s Principle of Insufficient Reason 

As a reminder, according to Laplace' s criterion, when the probabilities of conditions are 

not known, the probabilities of states of nature are accepted as equal. Thus, the expectation 

of each decision is computed through the average (ail + ai2 + ai3 + ai4) /4. The decision 

chosen is the smallest average. Hence, Plan 2 should be chosen for the city based on 

Laplace' s Principle. See Table 3-7. 

Table 3-7: Selected Plan (**) according to Laplace 

$/(Lls) s I s2 s3 s4 
Laplace 

average 

d l 16658.00 17048.41 17509.62 18059.59 17318.91 

d2 4119.50 4322.50 5785.38 26962.79 10297.54** 

d3 36004.32 36774.44 37721.07 38820.40 37330.06 

d4 24671.41 25772.17 28846.19 52044.66 32833.61 
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2. Wald's Maximin 

Wald's criterion is an approach best summarized as a pessimistic decision maker. Instead 

of maximin, rninimax is applied since the idea is to minimize the cost. Hence, Plan 1 is 

the selected plan for the city based on Wald's maximin. See Table 3-8. 

Table 3-8: Selected Plan (**) according to Wald's Maximin 

Maximum co st 
$/(Lls) sI s2 s3 s4 

for each row 

dl 16658.00 17048.41 17509.62 18059.59 18059.59** 

d2 4119.50 4322.50 5785.38 26962.79 26962.79 

d3 36004.32 36774.44 37721.07 38820.40 38820.40 

d4 24671.41 25772.17 28846.19 52044.66 52044.66 

3. Savage's Minimax Regret 

Savage's regret criterion minimizes the probable regrets for the decision maker. For the 

cost matrix, regret is calculated by rij = aij - Elin akj for aIl i,j. The regret matrix 
k-l •...• m 

ofthis problem is presented in Table 3-9. The selected plan is Plan 2 according to this rule. 

Table 3-9: Selected Plan (**) according to Savage's Minimax Regret 

$/(Lls) 
Maximum regret 

Sl S2 S3 S4 
for each row 

dl 12538.50 12725.91 11724.24 0 12725.91 

d2 0 0 0 8903.20 8903.20** 

d3 31884.82 32451.93 31935.69 20760.81 32451.93 

d4 20551.92 21449.66 23060.81 33985.15 33985.15 

4. Hurwicz's Pessimism-Optimism Index Criterion 

With Hurwicz's ruIe, the decision maker's attitude is between pessimistic and optimistic 

and measured by one optimistic coefficient 0 < a < 1. For the cost matrix, in each row, 
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ai denotes the smaUest component and Ai the largest, then Hurwicz's measurement Hi is 

defined as: Hi = aai + (1 - a)Ai where i = 1,''', m. 

The selected plan is m.in Hi' Hence, Plan 1 is the one to be chosen if a ~ 0.4152 and Plan 
l 

2 is the one to be chosen if a > 0.4152. See Table 3-10. 

Table 3-10: Selected Plan (**) according to Hurwicz's Criterion 

$/(Lls) 51 52 53 54 Hurwicz' s measurement Hi 

18059.59 - 1401.59a** if a ~ 
dl 16658.00 17048.41 17509.62 18059.59 

0.4152 

26962.79 - 22843.29a** if a> 
d2 4119.50 4322.50 5785.38 26962.79 

0.4152 

d3 36004.32 36774.44 3772l.07 38820.40 38820.4 - 2816.08a 

d4 24671.41 25772.17 28846.19 52044.66 52044.67 - 27373.25a 

5. Starr' s Domain 

Starr's domain criterion computes the volume of the set Di for each decision and chooses 

the decision with the highest volume; in this way, it actuaUy selects the decision that is 

most likely to have a higher expected payoff value than aU the others. In this example, 

Starr' s criterion is applied to a modified matrix, which is the cost matrix times minus one. 

The dimension of the decision matrix is 4 x 4; the simulation with random sampling of 

points in the FPS is implemented to approximate the volume. The selected plan according 

to this criterion is Plan 2. See Table 3-11 . 

Table 3-11: Selected Plan (**) according to Starr's Domain 

$/(Lls) 51 52 53 54 Domain 

dl -16658 .00 -17048.41 -17509.62 -18059.59 0.0368 

d2 -4119.50 -4322.50 -5785.38 -26962.79 0.4632** 

d3 -36004.32 -36774.44 -3772l.07 -38820.40 0.0000 

d4 -2467l.41 -25772.17 -28846.19 -52044.66 0.0000 
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6. Nash equilibrium 

Consider the city to be player 1 and nature to be player 2 and the DMUSU problem 

becomes a two-player game. The representation of the game is a matrix, which shows 

players, strategies and payoffs, while in this example only the cost matrix is given. Hence, 

when applying NE in this example, consider a new matrix which is the cost matrix times 

minus one. This new matrix indicates how much player 1 loses using each strategy. NE 

chooses Plan 1 with 100% probability. See Table 3-12. 

Table 3-12: Selected plan (**) according to NE 

$/(Us) Si S2 S3 S4 NE 

dl -16658.00 -17048.41 -17509 .62 -18059.59 100%** 

d2 -4119.50 -4322.50 -5785 .38 -26962.79 0 

d3 -36004.32 -36774.44 -37721.07 -38820.40 0 

d4 -24671.41 -25772.17 -28846.19 -52044.66 0 

3.6 Analysis and Conclusion 

This section summarizes aIl the results according to the different decision roles and NE. 

Table 3-l3 : Summary 

Criterion The selected plan 

Laplace ' s principle of 
P2 

insufficient reason 

Wald ' s criterion Pl 

Savage ' s Minimax regret 
P2 

criterion 

Pl , if a ~ 0.4152 
Hurwicz' s criterion 

P2, ifa > 0.4152 

Starr's Domain criterion P2 

Nash equilibrium Pl 
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Table 3-13 shows that P2 is an selected choice according to the criteria of Laplace, Savage, 

Hurwicz if a > 0.4152 and Starr, while the criteria of Wald, NE and Hurwicz if a:::; 

0.4152 find the selected choice to be Pl. It is worth noting that P2 is selected most often, 

but most civil engineers intuitively rooted for P3 from a purely city planning perspective. 

On the other hand, the fact that NE points toward Plis a compelling argument for this 

alternative. As a reminder, NE is a strategy where regardless of the choice of one 's 

opponent, there is no incentive to change one' s strategy. In other words, regardless of the 

state of nature, NE says that Pl is the best choice. This is a strong recommendation. The 

main drawback of NE is that it can recommend a mixed strategy (several alternatives with 

different probabilities). Such a recommendation is hardly helpful to decision makers. 

However, in this specific case, the fact that NE is 100% behind Plan 1 (i.e. a pure strategy) 

is reassuring for the decision maker. 

From the theoretical definition and practical implementation of each method, the 

following conclusions will aid DMs in their DMUSU decision process. First, DMs need 

to list and organize all the information they have in order to define the decision goal and 

decision alternatives. Furthermore, they need to think about what kind of external factors 

are considered states of nature, plus their degree of knowledge thereof. Thus, they can 

clearly determine whether it is a DMUSU or DMUR problem. Second, DMs need to 

clarify their preferences and decide which method to choose. For DMs who are very 

conservative and don't want the chance of a loss, Wald' s maximin is the right decision 

method; for DMs who prefer to quantify their attitude, Hurwicz introduces the coefficient 

of decision maker' s optimism; for DMs who want to evaluate how much they would regret 

choosing an alternative and want to minimize that regret, Savage should be considered; 

for DMs who think the likelihood of each state of nature is equal, Laplace is the simplest 

criterion to implement; for DMs who are more convinced by the method with strong 

quantitative pro of, Starr' s Domain should be selected; lastly, a choice made by NE is 

supposed to be robust according to its definition, so it can be used as a reference or a 

recommendation to support other methods. 
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CHAPTER 4 - MULTI-CRITERIA DECISION-MAKING METHODS 

4.1 Introduction 

Multi-criteria decision making (MCDM) is the most well-known branch of operations 

research (OR), which deals with decision problems in the presence of a number of decision 

criteria (Belton & Stewart, 2002) (Keeney & Raiffa, 1976). It is a procedure that structures 

and solves decision problems by combining the performance of each decision alternative 

under multiple conflicting, qualitative and/or quantitative decision criteria and outcomes 

into a compromise choice. In MCDM, DMs' behaviour is more active; they understand 

and decide which dimensions or perspectives (criteria) they want to consider for 

evaluating decision alternatives. Converse1y, in DMUU, DMs believe that a series of 

external factors (states of nature) significantly impact the outcomes of decisions; they are 

more passive and more focused on future uncertainties. 

The relevant MCDM methods aim to help DMs solve MCDM problems; they are widely 

applied in different types of real-life problems, where groups of decision alternatives are 

considered against conflicting criteria (Triantaphyllou & Mann, 1995). A good number of 

MCDM methods have been developed to provide techniques for DMs during the decision 

process. They incorporate all the objective and subjective information in order to find a 

compromise selected solution. According to the literature, the available methods can be 

grouped into three categories (Ishizaka & Nemery, 2013) (Belton & Stewart, 2002): 

Full aggregation methods: each criterion is assigned a weight, which indicates the 

importance of the criterion, then a numerical score for each alternative is calculated 

and the one with the highest score prevails [e.g. , the analytic hierarchy process (AHP) 

(Saaty, 1980)]. 

Outranking methods: each pair of alternatives is compared for each criterion to rank 

the alternatives [e.g. , the ELimination Et Choix Traduisant la REalité (ELECTRE) 

(Benayoun, Roy, & Sussman, 1966), the Preference Ranking Organization Method 

for Enrichment Evaluations (PROMETHEE) (Brans & Vincke, 1985). 
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Goal, aspiration or reference level methods: these methods identify how far each 

alternative is from the ideal goal or aspiration [e.g. , the Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) (Yoon & Hwang, 1995)]. 

The purpose of this chapter is to review four MCDM methods in reality: AHP, TOPSIS, 

ELECTRE and PROMETHEE. Sections 4.2 to 4.5 respectively describe each ofthe above 

MCDM methods with an intuitive explanation and interpretation. They also discuss each 

method' s advantages and limitations. Section 4.6 is the conclusion for this chapter. 

4.2 AHP 

The Analytic hierarchy process (AHP), developed by Thomas L. Saaty in "A scaling 

method for priorities in hierarchical structures" (Saaty, 1977) (Saaty, 1980), is one of the 

most extensively used MCDM methods. It helps DMs understand the problem and choose 

one decision to suit their goal. Its strength lies in its simplicity and ease to understand. In 

general, AHP first deconstructs the original decision problem into a hierarchical structure 

containing the decision goal, the alternatives and the criteria; then it uses pairwise 

comparison techniques to obtain the priorities of all the elements in the decision problem; 

finally, it synthesizes all the judgments and summarizes a set of overall priorities in order 

to make the final decision. This method is widely used around the world in a broad range 

of applications (Vaidyaa & Kumar, 2006), such as selection (Lai, Wong, & Cheung, 2002), 

evaluation (Akarte, Surendra, & Ravi, 2001), costlbenefit analysis (Wedley, Choo, & 

Schoner, 2001), allocations (Saaty, Vargas, & Dellmann, 2003), forecasting (Rossetti & 

Selandari, 2001), etc. 

AHP is completed in four steps to obtain the ranking of all the decision alternatives. This 

method first structures the decision problem into a hierarchy of aIl the elements of the 

problem, which are: the overall goal of the problem, a group of decision alternatives for 

achieving the goal and a group of criteria that connects the alternatives to the goal; second, 

it calculates priorities among the elements of this hierarchy by making a series of 

judgments based on pairwise comparisons of the elements; third, the judgments in step 
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two are checked for consistency; fourth and finally, it synthesizes these judgments to 

obtain the ranking of aIl the alternatives with regard to the goal and makes the final 

decision. The following subsections give a brief introduction to each step. 

Step 1. Structure the Problem into a Hierarchy. In ARP, DMs first specify the overall 

goal of the problem, the li st of criteria they want to consider and the available decision 

alternatives. They then structure the complex decision problem into a hierarchy where the 

top level is the overall goal, the second leve1 is the criteria and the lowest level represents 

the alternatives; see Figure 4-1. In a more complex hierarchy, criteria can be further 

divided into sub-criteria, sub-sub-criteria and so on; hence, more additionallevels can be 

added. Nevertheless, the hierarchy must be at least three levels (Saaty & Vargas, 2001). 

Figure 4-1: ARP hierarchy structure 

Step 2. Perform the Priority Calculation. A priority is represented by an absolute 

number between zero and one that indicates the importance of each alternative with regard 

to one specific criterion and the importance of each criterion with regard to the top goal 

in the decision problem. The technique used in the priority calculation is called pairwise 

comparison. This technique generally consists in comparing aIl the alternatives in pairs to 

judge which alternative is preferable. It is often used in psychology (Y okoyama, 1921) 

(Thurstone, 1927). It is believed that pairwise comparison is a more efficient and accurate 

way to evaluate the preference between two alternatives than simultaneously comparing 

aIl the alternatives (Ishizaka & Labib, 2011). The fundamental scale of pairwise 



52 

comparison used in AHP is a 1-9 fundamental scale (Saaty & Vargas, 2001), see Table 4-

1. 

Table 4-1: The Fundamental Scale for Pairwise Comparison in AHP 

Degree of Importance Definition 

1 Equal importance 

3 Moderate importance 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

Degrees of2, 4,6 and 8 can be used to express intermediate values. Degrees of 1.1 , 1.2, 1.3, etc. 

can be used for alternatives that are very close in importance. 

The priority calculation in AHP involves the following tasks: 

1. Starting from the second level of the hierarchical structure, comparing the nodes at 

each level two by two with respect to their contribution to the nodes above them and 

collecting the results into a positive square n x n matrix S = (Sij), where n is the 

number of alternatives when computing the alternative priority and the number of 

criteria when computing the criteria priority. The diagonal elements of the matrix 

are 1 and Sji is the reciprocal of Sij' i.e. Sji = s~: 
IJ 

2. Computing the priority vector of each pairwise comparison matrix. Saaty (Saaty, 

2003) explains that a priority vector must remain invariant under multiplication by 

a positive constant and it should be unchanging under the hierarchical structure for 

its own judgment matrix so that one does not keep getting new priority vectors from 

that matrix. In the same paper, Saaty also proves that the principal right eigenvector 

(also known as right Perron vector) is a necessary representation of the priority 

vector derived from a positive reciprocal pairwise matrix S when S is a small 

perturbation of a consistent matrix. Teknomo (2006) introduces a way to compute 

this eigenvector by hand and Seshadri (2009) provides a function to compute this 

eigenvector through the Matlab software. 
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Step 3. Check the Consistency of the Pairwise Comparison Matrix. The pairwise 

comparison matrix may be inconsistent because in making a pairwise comparison 

judgment, a human is more likely to be cardinally inconsistent because slhe cannot give 

precise estimations. Furthermore, several successive pairwise comparisons may contradict 

each other; for example, A is preferred to B twice and B to C four times, but A is preferred 

to C orny six times when compared pairwise; another example could be a situation where 

Ais preferred to B and B to C but C is preferred to A. Be aware that ARP doesn' t insist 

on 100% consistency because people are not robots unable to change their minds with 

new evidence and unable to look within for judgments that represent their thoughts, 

feelings and preferences. AHP allows inconsistency; however, the consistency level ofthe 

pairwise comparison matrix needs to meet a certain level. This is because the principal 

eigenvector can represent the priority vector when the matrix is a small perturbation of a 

consistent matrix (Saaty, 2003). 

The consistency check consists in: 

1. Computing the consistency index (CI) by: = À-max-
n 

, where Âmax is the largest 
n-l 

eigenvalue of the matrix and n is the number of independent rows in the matrix. If 

the matrix is perfectly consistent then CI = O. 

2. The more pairwise comparison judgments, the greater the chance that the 

consistency error is increasing. Thus, Saaty (1980) proposes using consistency ratio 

(CR):CR = CI , where RI is the average CI values from a random simulation of 
RI 

pairwise comparison matrices. Table 4-2 shows RI values derived from simulations 

(Alonso & Lamata, 2006). In AHP, if CR is smaller than or equal to 0.1 , the 

inconsistency is acceptable; if CR is greater than 0.1, the subjective pairwise 

comparison judgment must be revised. 
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Table 4-2: RI values derived from simulations 

n 500 100,000 500,000 

3 0.58 0.525 0.525 

4 0.90 0.880 0.880 

5 1.12 1.109 1.109 

6 1.24 1.248 1.248 

7 1.32 1.342 1.342 

Step 4. Synthesize the Final Priorities. After the previous steps, the priorities of the 

criteria with respect to the goal and the priorities of the alternatives with respect to the 

criteria are known; the next step is to ca1culate the priorities of the alternatives with respect 

to the goal that represent the alternatives' relative ability to achieve the decision goal. The 

calculation is a straightforward matter ofmultiplying and adding: (1) for each criterion Cj , 

multiply the priority of Cj with respect to the goal by the priority vector of aIl the 

alternatives with respect to Cj; (2) for each alternative Ai> add aIl the ith elements from 

the results of (1), the sum is the priority of Ai with respect to the global goal; (3) the 

alternative with the highest priority with respect to the goal is considered the final decision 

choice. 

The ARP method is a weIl-structured technique to help DMs understand and analyze 

complex decision problems. It selects the best decision from a number of alternatives 

evaluated with several criteria. In this process, DMs use simple pairwise comparison 

judgments to develop overall priorities for ranking the alternatives. It has received the 

most academic attention and been frequently used around the world in a large variety of 

applications due to its simplicity, ease to understand and the quality assurance provided 

by the consistency check. The disadvantages of ARP are that the potential compensation 

between good scores on sorne criteria and bad scores on others cause the loss of 

information (Machairs, Witte, & Ampe, 2008) and the complexity and time of 

computation depends on the number of criteria and alternatives (Chou, Chang, & Shen, 

2008). 
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4.3 TOPSIS 

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), from 

the group of goal, aspiration or reference level methods, was first presented by Hwang 

and Yoon in 1981 (Hwang & Yoon, 1981). The basic principle ofthis method is that the 

best alternative is the one that is the shortest distance to the ideal solution and the furthest 

distance from the anti-ideal solution (lshizaka & Nemery, 2013) (Kabir, Sadiq, & 

Tesfamariam, 2014). The ideal solution maximizes the benefit criteria and minimizes the 

cost criteria, whereas the anti-ideal solution maximizes the cost criteria and minimizes the 

benefit criteria (Kabir, Sadiq, & Tesfamariam, 2014) (Kabir & Sumi, 2012). It is applied 

across many fields such as supply chain management and logistics (Chen, Lin, & Huang, 

2006), (Dalalah, Hayajneh, & Batieha, 2011); design, engineering and manufacturing 

systems (Lin, Wang, Chen, & Chang, 2008); business and marketing management (Peng, 

Wang, Kou, & Shi, 2011); energy management (Kaya & Kahraman, 2011), etc. 

The TOPSIS process is built with five computation steps (lshizaka & Nemery, 2013). It 

first generates the decision matrix that contains the performances of the alternatives for 

the different criteria. Then the decision matrix is normalized and weighted. The distances 

to the ideal and anti-ideal solution are calculated. Finally, the relative c10seness is 

computed by the ratio of these distances. The details of each step are: 

Step 1. The decision matrix is generated as A = (aij)m xn which contains m alternatives, 

denoted as dv d 2 , ... , dm , and n criteria, denoted as Cl' C2, ... , Cn, with the performance of 

each alternative on a criterion given as a i j . 

Step 2. The decision matrix needs to be normalized in order to be able to compare the 

measure on different units (e.g. , dollars, days and km). Distributive normalization is one 
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of the nonnalization methods; it calculates the nonnalized matrix R = (rij)mxn using the 

following equation: 

aij . 12 . 12 rij = J ,l = ,,"', m,) = , ,''', n 
~m 2 
L...k=l akj 

(4.1) 

Step 3. The weights are taken into account. The weighted nonnalized matrix is T = 
(tij)mxn by 

tij = rij • Wj ,i = 1,2,'" , m, j = 1,2,'" , n (4.2) 

where W v Wz, "', wn is a set ofweights associated with the criteria and Il=1 Wj = 1. 

Step 4. The ideal solution S+ and the anti-ideal solution S- are defined as follows: 

where J+ and J- are related to the benefit and cost criteria respectively. 

Step 5. Finally, the n-dimensional Euclidean distance from the alternative i to the ideal 

solution S+ and the anti-ideal solution S-, denoted as Dt and Dj- in the following 

equations is calculated: 

(4.5) 

(4.6) 
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Step 6. The relative closeness of each alternative to the ideal solution is obtained by 

(4.7) 

if Ci = 1 , alternative i is the ideal solution, if Ci = 0, alternative i is the anti-ideal 

solution. Then, rank the alternatives based on the values of Ci; the maximum value refers 

to the best solution to the problem. 

The advantage ofthis method is that it requires minimal input from DMs and its output is 

easy to understand; the drawback is that vector normalization is needed to solve multi­

dimensional problems (Kabir, Sadiq, & Tesfamariam, 2014). 

4.4 ELECTRE 

One of the famous outranking methods is ELimination Et Choix Traduisant la REalité 

(ELECTRE). The ELECTRE is a family of MCDM methods containing ELECTRE 1, 

ELECTRE II, ELECTRE III, ELECTRE IV, ELECTRE IS and ELECTRE TRI. The two 

main procedures in ELECTRE methods are: a multiple criteria aggregation procedure that 

builds one or several outranking relation(s) in order to compare each pair of alternatives 

in a comprehensive way; an exploitation procedure that can provide results based on how 

the problem is being addressed: choosing, ranking or sorting (Figueira, Mousseau, & Roy, 

2005). ELECTRE 1 was frrst presented by B. Roy in 1968 (Roy, 1968), which triggered 

the development of other ELECTRE methods in order to deal with different types of 

decision problems: ELECTRE 1 is made for selection problems; ELECTRE TRI for 

assignment problems; ELECTRE II, III and IV for ranking problems. ELECTRE III is the 

most popular of the ELECTRE methods and a well-established partial ranking method, as 

it considers imprecise data and uncertainties (Kabir, Sadiq, & Tesfamariam, 2014) 

(Salminen, Hokkanen, & Lahdelma, 1998) and has many successful real-world 

applications such as environmental and energy management (Figueira, Mousseau, & Roy, 

2005) (Karagiannidis & Papadopoulos, 2008), strategic planning (Kangas & Pykalainen, 
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2001), water and wastewater management (Carriço, Covas, Almeida, Leitao, & Alegre, 

2012). 

4.4.1 ELECTRE III Procedure in Theory 

ELECTRE III constructs and exploits outranking relations between alternatives based on 

the weights of the criteria, the indifference, the preference and the veto thresholds 

provided by DMs. An outrank:ing relation, where a outranks b (denoted by aSb), indicates 

that there are sufficient reasons to prove that a is at least as good as b and there are no 

important arguments disproving this (Roy, 1974). An outranking degree S(a, b) between 

a and b measures the power of the statement "a outrank:s b". It is a grade between 0 and 

1, where the closer S(a, b) is to 1, the more a outranks b. This outranking degree S(a, b) 

is computed with two perspectives: the concordance and the discordance ofthe statement 

that a outrank:s b. The concordance and discordance are evaluated separately while 

incorporating the decision maker' s preference on various (often conflicting) criteria. DMs 

need to provide the indifference and preference thresholds for calculating the concordance 

index and the veto threshold for the discordance index (Ishizaka & Nemery, 2013) (Tzeng 

& Huang, 2011). 

AlI the criteria have to be maximized without loss of generality. Let ' s define A = 

(a, b, c, ... , n) to be a set of alternatives and n criteria, denoted as (gv gz, ... , gn) for a 

MCDM problem; gj(a) represents the performance or the outcome of the alternative a E 

A for the criterion gj; thus, the multi-criteria evaluation of alternative a is represented by 

the vector g(a) = (gl(a),gZ(a), ... ,gn(a)). Let q(g) and p(g) be the indifference and 

preference thresholds, respectively. For one pair of alternatives if g(a) ~ g(b), then 

g(a) > g(b) + p(g(b)) <=> aPb 

g(a) + q(g(b)) < g(a) < g(b) + p(g(b)) <=> aQb 

g(b) < g(a) < g(b) + q(g(b)) <=> alb 
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where P represents a strong preference, Q represents a weak preference, 1 represents 

indifference. 

With an the denotations introduced so far, the ELECTRE III procedure is presented below 

(Ishizaka & Nemery, 2013), (Roy & Bouyssou, 1993). 

Step 1. The partial concordance index Cj(a, b) measures the statement " a outranks b" or 

"a is at least as good as b" on the specific criterion gj and is calculated by 

(4.8) 

where Pj, qj (Pj > qj) denote respectively the preference and indifference thresholds for 

criterion 9 j' The higher Cj (a, b), the more a outranks b on criterion 9 j' It is a value 

between 0 and 1. When Cj (a, b) = 0, this means that the performance of alternative b on 

gj is higher than the performance of a augmented with preference threshold Pj and there 

is a strict preference for b over a, i.e., a does not outrank b; when it equals 1, the 

performance of b on 9 j is less than the performance of a augmented with indifference 

threshold qj and a and b are indifferent, i.e., ais at least as good as b; when it is between 

o and 1, the performance of b on 9 j is between the performance of a augmented with 

indifference threshold qj and the performance of a augmented with preference threshold 

P j and b is slightly preferred to a. 

Step 2. The global concordance index C (a, b) combines an the partial concordance 

indices on the different criteria together with their corresponding criteria weights. Rence, 
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it is the weighted sum of aIl the partial concordance indices and measures the concordance 

ofthe statement "a is at least as good as b" with an the criteria: 

(4.9) 

Step 3. The partial discordance index dj(a, b) measures the discordance with the 

statement " a is at least as good as b" for criterion Bj and is computed as follows: 

(4.1 0) 

where Vj (satisfying Vj > Pj) is the veto threshold for criterion Bj ' The higher the 

discordance index, the more discordant this statement. Its value is between 0 and 1. When 

dj(a, b) = 1, it means that Bj(b) is higher than Bj(a) + Vj , the difference between band 

a exceeds the veto threshold and the statement "a is at least as good as b" is completely 

discordant. When dj (a, b) = 0, the statement " a is at least as good as b" is correct and 

there is no discordance. When dj(a, b) is between 0 and 1, the performance of b is 

between Bj(a) + Pj and Bj(a) + Vj ; therefore, b is slightly preferred to a. 

Step 4. The outranking degree S(a, b) is ready to be computed. It summarizes the 

concordance and discordance index into one measurement ofthe statement "a outranks b" 

as below: 

( 

C(a, b) 

S(a, b) C(a b) . n [l-djCa,b) ] 
, l-C(a,b) 

if C(a, b) ;::: dj(a, b) 

ifC(a,b) < dj (a,b) 
(4.11) 
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Step 5. To ob tain the ranking order of the alternatives, descending distillation and 

ascending distillation must first be determined, then the final ranking is obtained by 

combining both orders. 

Descending distillation 

• Determine the maximum value of the credibility index: ilmax = maxS(a, b) ; 

• Calculate il = ilmax - (0.3 - 0.15ilmax)' where -0.l5 and 0.3 are the preset up 

values of distillation coefficients, a and f3 ; 

• For each alternative a, determine its il-strength, i.e. the value of alternative b with 

S(a, b) > il; 

• For each alternative a, determine its il-weakness, i.e. the value of alternative b with 

(1- (0.3 - 0.15il)) * S(a,b) > S(b,a); 

• For each alternative, determine its qualification, i.e. the difference between il­

strength and il-weakness; 

• The set of alternatives with the largest qualification is called the first distillate (Dl) ; 

• If Dl has more than one alternative, repeat the process on the set Dl until aIl 

alternatives have been classified. If there is a single alternative, then this is the most 

preferred one. Then continue with the original set of alternatives minus the set Dl ' 

repeating until aIl alternatives have been classified; 

Ascending distillation 

• This is computed in the same way as descending distillation but the lowest 

qualification is used to form the first distillate. 

ELECTRE III has many advantages for decision-making problems. Compared to 

ELECTRE II, the ELECTRE III implements a structured procedure to extract the 

relationship between decision alternatives. Its main advantage is that ELECTRE III is an 

interactive method, which me ans DMs directly participate in the decision process. 

Another advantage is that ELECTRE III avoids compensation between criteria and any 
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normalization pro cess, which distorts the original data; the drawback is that it requires 

various technical parameters such that it is not always easy to fully understand them 

(Ishizaka & Nemery, 2013). 

4.5 PROMETHEE 

The PROMETHEE, another family of outranking methods, ranks alternatives by 

computing a positive outranking flow and a negative outranking flow for each alternative. 

Seven different methods in the PROMETHEE group have been developed and used by 

decision makers. PROMETHEE l (partial ranking) and PROMETHEE II (complete 

ranking) were first published in 1982 by Brans (Brans J. , 1982), then in 1985, Brans and 

Mareschal developed PROMETHEE III (ranking based on intervals) and PROMETHEE 

IV ( continuous case) (Brans & Vincke, 1985). They subsequently suggested 

PROMETHEE GAIA, which provides geometrical representation in support of the 

PROMETHEE methodology in 1988 (Mareschal & Brans, 1988). In 1992 and 1995, the 

same authors proposed another two versions: PROMETHEE V (including segmentation 

constraints) (Brans & Mareschal, 1992) and PROMETHEE VI (representation of the 

human brain) (Brans & Mareschal, 1995). In this section, PROMETHEE land 

PROMETHEE II are fully described below. 

4.5.1 PROMETHEE l & II Procedure in Theory 

4.5.1.1 Essential concepts of the PROMETHEE method 

According to the literature (Ishizaka & Nemery, 2013) (Brans J. , 1982), PROMETHEE 

methods follow three main steps: (1) computing the preference degrees for every ordered 

pair of alternatives on each criterion, (2) computing the unicriterion flows, (3) computing 

the global flows. The global flows give DMs a ranking order of the alternatives and a 

graphical representation of the decision problem. The three steps are explained in greater 

detail below. 
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Step 1. Unicriterion preference degrees. The unicriterion preference degree is a grade 

(between 0 and 1) that shows that an alternative is preferred over another on a certain 

criterion from the decision maker' s own point of view. A preference degree of 1 denotes 

a strong preference for one ofthe alternatives for this criterion. Ifthere is no preference at 

aIl, then the preference degree is O. On the other hand, ifthere is sorne preference but not 

a strong preference, then the preference degree lies somewhere between 0 and 1. 

DMs evaluate each alternative on every specific criterion with numerical values or scaled 

values (e.g. , good, average, poor, etc.), then PROMETHEE uses pairwise comparisons to 

identify the differences between evaluations of each alternative on one specific criterion 

and preference function to explore the relation between the difference and the preference. 

There are a few different types of preference functions; of them, the linear function is the 

most common. The linear preference function requires two parameters: an indifference 

threshold q and a preference threshold p. If the difference between the evaluations of a 

criterion is smaIler than the indifference threshold, then the decision maker sees no 

difference between these two alternatives (i.e. the preference degree is 0). Ifthe difference 

is higher than the preference threshold, then the preference is strong (i.e. the preference 

degree is 1). The preference function gives the value of the preference degree for 

differences that faIl between the indifference and preference threshold. See Figure 4-2. 

Preference 

q p Difference 

Figure 4-2: Linear Preference Function 
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Step 2. Unicriterion positive, negative and net flows. With the unicriterion pairwise 

preference degree, it is hard to detennine the ranking of aU the alternatives, especially 

when there are many. Therefore, it is necessary to summarize aU the unicriterion pairwise 

preference degrees into unicriterion positive, negative and net flows, which present that 

an alternative is preferred over aU other alternatives. 

A unicriterion positive flow of an alternative is a score between 0 and 1, which shows that 

an alternative is preferred (based on the decision maker' s preference) over all other 

alternatives on that particular criterion. The higher the positive flow, the betler the action 

compared to the others. It is an average combination of aU the preferences of an alternative 

compared to the others (exc1uding the preference degree compared with itself). Bence, it 

is the nonnalized sum of aU the row elements and always lies between 0 and 1. 

A unicriterion negative flow expresses that the other actions are preferred to this one. The 

negative flow is thus computed by taking an average combination of all the preference 

degrees of the actions compared to that particular action (exc1uding the preference degree 

compared with itse1f). It corresponds to the average of the entire column except for the 

diagonal element. This score thus always lies between 0 and 1. Note that the unicriterion 

negative flow needs to be minimized; the lower the negative flow, the more preferred the 

alternative. 

Unicriterion net flow considers both the positive and the negative flows. The net flow of 

an alternative is ca1culated by the positive flow minus the negative flow. It represents the 

balance between an alternative's global strength and its global weakness; hence it should 

be maximized. It always lies between -1 and 1 according to the method of computation. 

Step 3. Global flows. In the previous steps, only one criterion is considered. In order to 

inc1ude aU the criteria, DMs need to specify a weight for each criterion so that a weighted 

sum of aU the unicriterion positive, negative and net flows can be calculated into global 

positive flows, global negative flows and global net flows respectively. 
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A global positive score indicates that an alternative is globally preferred to all the other 

alternatives when considering several criteria. Since the weights are nonnalized, the 

global positive score always lies between 0 and 1. 

Similarly, a global negative score indicates that other alternatives are preferred over a 

given alternative. The negative score always lies between 0 and 1 and must be minimized. 

The global net flow of an alternative, obtained by subtracting the negative flows from the 

positive flows, includes both perspectives (preferred over other alternatives and other 

alternatives preferred). 

4.5.1.2 The PROMETHEE 1 Ranking 

The PROMETHEE 1 ranking depends on the global positive and negative flows. It follows 

four different rules to analyze the flows of two alternatives and conclude their ranking 

order: 

An alternative has a better rank than the other one if its global positive flow score 

is higher and its global negative flow score is lower simultaneously than the scores 

of the other alternative. 

An alternative has a worse rank than the other one ifboth the global positive and 

negative flow are worse. 

Two alternatives are considered to be incomparable if one alternative has a higher 

global positive score but a lower global negative score (or vice versa). 

Two alternatives are considered indifferent if they have identical global positive 

and negative flows. 
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4.5.1.3 The PROMETHEE II Ranking 

The PROMETHEE II ranking is based on the global net flows only and leads to a complete 

ranking ofthe actions (i .e., the incomparable status does not exist). Hence, the alternatives 

can be ordered from best to worst. 

4.5.1.4 Summary 

The decision process of PROMETHEE 1 and II is the following: first, DMs define which 

criteria they want to consider in their decision making; second, aIl the alternatives are 

evaluated according to those criteria. Third, by specifying the preference function and 

associated parameters, the pairwise criterion preference degrees can be computed; fourth, 

unicriterion flows are calculated from the pairwise criterion preference degrees; last, the 

unicriterion flows are summarized into global flows . Then the ranking order is obtained 

based on whether PROMETHEE 1 or PROMETHEE II is chosen. 

The PROMETHEE method allows direct operation on the variables inc1uded in the 

decision matrix without requiring any normalization and is applicable even when there is 

insufficient information. However, its main drawback is that it is time consuming and 

difficult for DMs to have a c1ear view of the problem, especially when there are many 

criteria involved (Kabir, Sadiq, & Tesfamariam, 2014) (Brans & De Smet, 2005). 

4.6 Conclusion 

This chapter explains AHP, TOPSIS, ELECTRE III and PROMETHEE I&II in theory. It 

gives a c1ear description of their mathematical algorithms. Furthermore, each method's 

advantages and limitations are underlined in order to provide a high-level overview of 

what kind of decision environment each method is suited for. In general, computation is 

difficult for ARP when there are quite a number of criteria and alternatives; TOPSIS 

involves fewer inputs, but it requires vector normalization for multi-dimension criteria. 

ELECTRE III uses original data without any normalization requirements, but it has 
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various technical parameters such that it is not always easy to fully understand; 

PROMETHEE 1&11 are applicable even when there is insufficient infonnation, but can be 

time consuming as weIl when many criteria are involved. In the next chapter, these 

MCDM methods will be implemented in order to perfonn a deep comparative analysis. 
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CHAPTER 5 - A COMPARATIVE STUDY OF MCDM METHODS 

5.1 Introduction 

Due to the number of MCDM methods available, DMs are confronted with the difficult 

task of selecting the appropriate MCDM method, as each method has its own limitations, 

particularities, hypotheses, premises and perspectives and can lead to different results 

when applied to an identical problem (lshizaka & Nemery, 2013). Hence, it is worth 

evaluating the performance of different methods using a single decision problem. The aim 

ofthis chapter is to present a comparative study of four MCDM methods (AHP, TOPSIS, 

ELECTRE, PROMETHEE) by applying them to one real-world sewer network planning 

case study and analyzing the suitability of results in order to highlight the differences and 

reach meaningful conclusions. The purpose ofthis chapter is to help DMs fully understand 

each MCDM method' s particularities, strengths and weaknesses in a practical way and 

choose the suitable MCDM method for their unique decision problem. 

A sewer network system is the infrastructure that transports sewage, rainwater or 

stormwater. The main part of this system encompasses components such as manholes, 

pumping stations and large pipes in a combined sewer (sewage and rainwater) or sanitary 

sewer (sewage only) system. Sewer water infrastructure asset management has major 

impacts on protecting public health and sustaining our environments (Cardoso, Silva, 

Coelho, Almeida, & Covas, 2012) (Ugarelli, Venkatesh, Bratteb0, Di Federico, & Saegrov, 

2010) (Grigg, 2012). Deciding on the right sewer network plan is challenging, especially 

when considering the following requirements (Zheng, Egger, & Lienert, 2016): first, the 

selected sewer system plan' s quality, life-cycle maintenance and performance need to 

meet the sustainability requirements for society, the economy, and the environment 

(Ashley, Blackwood, Butler, & Jowitt, 2008); second, the decision should involve aB the 

stakeholders ' preferences (Reed, 2008); third, the decision making must incorporate 

uncertainty, i.e. , information is imperfect or unknown (Gregory, et al. , 2012); fourth, long­

term planning for future climate changes, urban development in the context of population 

increase or decrease, numerous environmental poButants, etc., must be a factor. 
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Multi-criteria decision making (MCDM) is able to meet aIl the above challenges (Keeney 

& Raiffa, 1976) (Belton & Stewart, 2002) for a sewer network plan decision problem. It 

is a procedure that structures and solves decision problems by combining the performance 

of each decision alternative for multiple conflicting, qualitative and/or quantitative 

decision criteria and outcomes into a compromise choice. The relevant MCDM methods 

have been developed to help DMs solve MCDM problems. They are widely applied in 

different types of real-life problems where groups of decision alternatives are considered 

against conflicting criteria (Triantaphyllou & Mann, 1995). The application of MCDM 

methods in water and wastewater infrastructure management has steadily increased in the 

literature since 1990, where the analytic hierarchy process (AHP) (Saaty, The Analytic 

Hierarchy Process, 1980), the elimination et choix traduisant la realité (ELECTRE) 

(Benayoun, Roy, & Sussman, 1966), the preference ranking organization methods for 

enrichment evaluations (PROMETHEE) (Brans & Vincke, 1985) and the technique for 

order preference by similarity to Ideal Solution (TOPSIS) (Y oon & Hwang, 1995) are the 

most employed of aIl the various MCDM methods (Kabir, Sadiq, & Tesfamariam, 2014). 

The remaining parts of this chapter are organized as follows : section 5.2 gives a brief 

description of AHP, TOPSIS, ELECTRE III and PROMETHEE II; section 5.3 provides 

the details of constructing the sewer network decision problem (introduced in Section 2.3) 

into a MCDM problem and using four MCDM methods for this case study to compare 

and analyze their results. 

5.2 MCDM Methods 

The following methods have been selected for the purposes of this chapter, as they are 

widely used MCDM methods in decision problems for water and wastewater 

infrastructure management: AHP, TOPSIS, ELECTRE and PROMETHEE. 
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• AHP 

AHP contains four steps as shown in Figure 5-1 . In its first step, it structures the original 

decision prob1em into a hierarchical structure. The overall goal of the problem is at the 

top level of the hierarchy; the next level contains the criteria representing the different 

dimensions from which the alternatives can be considered; while the bottom level is filled 

with decision alternatives, which are the different choices available to the decision maker. 

The second step is to calculate the priority of each criterion with respect to the goal and 

the priority of each alternative with respect to one specific criterion. The technique of 

pairwise comparison with a 1 - 9 fundamental scale (Saaty & Vargas, 2001) is used to 

obtain pairwise comparison matrix S = (Sij) , which is a positive reciprocal matrix, i.e. 

Sji = s~ . · Saaty proves that the principal right eigenvector of S sufficiently represents the 
IJ 

priority vector when S is a small perturbation of a consistent matrix (Saaty, 2003). Hence, 

the third step is to perform a consistency check of pairwise comparison matrices. This 

requires computing the consistency index (CI) by: CI = Àmax -
n 

, where Àmax is the largest 
n-l 

eigenvalue of the matrix and n is the number of independent rows in the matrix. Then the 

random index RI (see Table 3-2), which is the average CI values from a random simulation 

ofpairwise comparison matrices (Alonso & Lamata, 2006), is introduced. If ~: :5 0.1, the 

inconsistency is acceptable; if ~: > 0.1 , the subjective pairwise comparison judgment 

needs to be revised. The last step is to summarize a set of overall priorities in order to 

make the final decision. The alternative with the highest priority with respect to the goal 

is considered the final decision choice. 

AHP has received the most academic attention and been frequently used around the world 

in a large variety of applications due to its simplicity, ease to understand and the quality 

assurance provided by the consistency check. AHP is used in 28.3% of publications 

regarding water and wastewater (Kabir, Sadiq, & Tesfamariam, 2014) (Huang, Keisler, & 

Linkov, 2011). The disadvantages of AHP are: the potential compensation between good 

scores on sorne criteria and bad scores on others causes the loss of information (Machairs, 
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Witte, & Ampe, 2008); and the complexity and time of computation depends on the 

number of criteria and alternatives (Chou, Chang, & Shen, 2008). 

• TOPSIS 

Structure the 
problem into 
a hierarchy 

Ca1culate 
priorities 

Check the 
consistency 
of the 
pairwise 
comparison 
matrix 

Figure 5-1: ARP 

Synthesize 
the fmal 
priorities 

The TOPSIS process as shown in Figure 5-2 first generates the decision matrix A = 
(aij)m xn' Then, it ca1culates the normalized matrix R = (rij)mxn and the weighted 

normalized matrix T = (tij)mxn' The ideal solution S+ and the anti-ideal solution S- are 

defined based on the weighted normalized matrix. Subsequently, it computes the n­

dimensional Euclidean distance from the alternative i to the ideal solution S+ and the anti-

ideal solution S- in order to obtain each alternative's relative closeness to the ideal 

solution. The rank of the alternatives is based on the relative closeness value. 

The application of this method in water and wastewater management can be found in 

Afshar, Marino, & Saadatpour (2011) for ranking projects in the Karun river basin; 

Coutinho-Rodrigues, Simao, & Antunes (2011) for selecting the water supply system 

investment option for an urban developmentlexpansion project; and in Srdjevic, Mederios, 

& Faria (2004) for ranking water management scenarios. 
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• ELECTREIII 
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Figure 5-2: TOPSIS Process 

Calculate 
relative 
closeness 

Rank the 
alternatives 

72 

To use ELECTRE III as shown in Figure 5-3 , DMs need to define criteria indifference 

(q), preference (p) and veto (v) thresholds where (v ~ q ~ p) and the weight (Wj) for 

each criterionj. The main ELECTRE III steps are shown in Figure 5-3. The concordance 

index, denoted as C (a, b), is evaluated by an overall comparison of the performances of 

each pair of a and b alternatives for aIl criteria. It varies from 0 to 1; a value of 0 means 

that alternative a is worse than alternative b for aIl criteria. The concordance index is 

computed by a weighted comparison of the performances for each criterion Cj (a, b) 

individuaIly; the discordance index for one criterionj, denoted as Dj(a, b) , describes the 

situation where alternative a is better than b generaIly, but for criterion j, alternative a is 

worse than b. The estimation of credibility scores is based on the concordance and 

discordance indices in one of the following two scenarios: first, the degree of outranking 

is equal to the concordance index if there is no criterion that is discordant or where no 

veto threshold is used; second, the degree of outranking is equal to the concordance with 

a reduction as the level of discordance increases above a threshold value. The distillation 

procedure comprises two parts: Descending Distillation, where the alternatives are 

ordered from the best rankings to the worst, and Ascending Distillation, which is to order 

the alternatives from the worst rankings to the best. The final complete ranking result 

cornes from the combination of Descending Distillation and Ascending Distillation. 
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ELECTRE methods have been applied in approximately 15.1 % of publications regarding 

water and wastewater: Carriço, et al. (2012) used ELECTRE TRI and ELECTRE III to 

prioritize rehabilitation interventions on the sanitary sewer system in Lisbon; Trojan and 

Morais (2012) applied ELECTRE II to prioritize alternatives for maintenance of water 

distribution networks; ELECTRE l is implemented in Morais, & Almeida (2006) for the 

decision on a city water supply system. 

Estimation of 
Concordance 
Indices 

Estimation of 
Discordance 
Indices 

Estimation of 
Credibility 
Scores 

Perfonning 
Distillation 
Procedure 

Figure 5-3: ELECTRE III Process 

• PROMETHEE 

Perfonning 
Complete 
Ranking 

The PROMETHEE l or II process as shown in Figure 5-4 first looks into each pair of 

alternatives for one criterion and computes the unicriterion pairwise preference degree, 

which is a score (between 0 and 1) showing that the decision maker prefers one alternative 

over the other one for the considered criterion. Then, it summarizes all the unicriterion 

pairwise preference degrees into unicriterion positive, negative and net flows, which 

demonstrate that an alternative is preferred over aIl other alternatives. In the previous steps, 

only one criterion is considered at a time. Now, aIl the criteria are taken into account at 

the same time in order to compute the global flow. To do so, DMs first need to define the 

relative importance or weight of each criterion Wj' where LJ=l Wj = 1. Then, DMs 

calculate the weighted sum of aIl the unicriterion positive, negative and net flows into 

global positive, negative and net flows. The PROMETHEE l ranking is dependent on the 

global positive flows and the global negative flows. The PROMETHEE II ranking is 
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dependent on global net flows only. In this chapter, PROMETHEE II is used, since 

alternatives can be ranked from the best to the worst, resulting in a complete ranking of 

the alternatives. 

PROMETHEE has been applied in 13.2% of publications regarding water and wastewater: 

Morais, & de Almeida (2007) used PROMETHEE V to rank alternative strategies for 

municipal water distribution systems to reduce leakage; PROMETHEE II was applied in 

Khelifi, et al. (2006) to select groundwater remediation technologies; implemented 

PROMETHEE and GAIA for the selection of a wastewater treatment plant. 

Computation of 
preference 
degrees for every 
pair of 
alternatives for 
each criterion 

Computation of 
unicriterion 
positive, negative 
and net flows 

Computation of 
global flows 

Figure 5-4: PROMETHEE Process 

5.3 MC DM Problem Case Study 

This case study was provided by the civil engineering team from the city of Trois-Rivières 

(introduced in Section 3.3). The decision problem is to select one construction plan to 

reduce the rainfall flow channeled to the pumping station so that it can accommodate a 

greater sanitary flow. In order to define this project as a MCDM problem, eight 

professionals participated in structuring and analyzing the decision alternatives and 

criteria: one project manager, two civil engmeers, two sanitary engineers, two road 

operators and one environment/weather expert. 
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5.3.1 Structuring the MCDM Problem 

To meet the goal, a rainfall water pipe needs to be designed to guide rainfall water to the 

local river instead of the pumping station. Civil engineers and sanitary engineers propose 

four designs; they are referred to as alternatives 1, 2, 3 and 4. Alternatives 1 and 2 are the 

short-term plans, while alternatives 3 and 4 are their respective long-term extensions. 

Briefly, Alternative 1 is to build a new rainfall water pipe along Barkoff street from 

Boulevard des Ormeaux flowing directly to the river (see solid black line in Figure 3-2); 

Alternative 2 is to extend the existing rainfall water pipe along Vachon street to the river 

(see grey solid line in Figure 3-2); Alternative 3 inc1udes the construction of Alternative 

1, but will further extend the rainfall pipe to the northeast to du Parc road (see solid and 

dashed black lines in Figure 3-2); Alternative 4 inc1udes the construction of Alternative 2, 

while extending the rainfall pipe to the northeast along Morin road and Highway 40 (see 

solid and dashed grey line in Figure 3-2). 

In order to identify evaluative criteria, the group of experts he1d a meeting to brainstorm 

the values and objectives of the problem in order to come up with a list of criteria, and 

descriptions of why each of them has been chosen as a criterion. In addition, they 

identified whether they are quantitative or qualitative ( criteria source) and whether they 

are to be minimizing or maximizing (aim). In this way, five criteria were identified on 

which to base their decision, see Table 5-1. 

Table 5-1: Criteria for Case Study 

Source Status Aim 

Cl Dynarnic perfonnance Quantitative Positive Maxirnize 

C2 Cost of construction Quantitative Negative Minimize 

C3 Cost of maintenance Qualitative Negative Minimize 

C4 Environmental impact Qualitative Negative Minirnize 

CS Potential future profit Qualitative Positive Maximize 
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Dynamic performance is a positive quantitative variable, and it represents by how much 

rainfall flow volume can be reduced in the pumping station. This criterion is evaluated 

based on the amount of rainfall water relieved from the pumping station under 9mrn!3h 

rainfall conditions (refer to Figure 3-3 to 3-6). 

The cost of construction is a negative quantitative variable defining how much it costs to 

implement a plan. It covers the cost of the duration of work, manpower, materials, and 

machines, etc. Note that the cost of construction for each alternative is listed in Table 3-1 . 

The cost of maintenance is a negative qualitative variable defining the cost of possible 

maintenance. For example, regular inspections or repairing damage due to human fault or 

extreme weather issues. It is not limited to a monetary valuation, as it also includes societal 

and environmental considerations. 

Environmental impact is a negative qualitative variable that includes the disruption to 

CUITent inhabitants and existing industries, for example, noise, traffic, air or water 

pollution, water suppl y disruptions, etc. 

Potential future profit is a positive qualitative variable indicating the possible benefit a 

plan could provide after its implementation. For example, more population, or capacity 

during extreme weather (heavy rain), etc. It is not limited to a monetary valuation as it 

also includes societal and environmental considerations. 

Before going through any MCDM method, the overall opinions of the expert team are as 

follows: of the four construction plans, Plan 3 is most expensive in terms of cost of 

construction. However, this plan has the best potential future profit and leads to the 

maximum pumping station capacity. Plan 2 has the lowest construction costs but it would 

become more expensive if expansion is required. The costs of Plan 1 and Plan 4 fall in the 

middle but their maintenance costs and environmental impact are not low. 
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5.3.2 Implementation of the MCDM Methods 

The entire AHP and TOPSIS processes are implemented manually since neither method 

is based on complex algorithms. ELECTRE and PROMETHEE can be implemented by 

performing aIl the computation steps in a spreadsheet, but it is not easy work. A number 

of user-friendly software packages are available that successfully apply the ELECTRE 

and PROMETHEE methods. In this paper, the Chemdecide decision framework (Hodgett, 

2016) for the ELECTRE III method and the Smart-picker decision software (Brussels, 

2011) for PROMETHEE II are used. 

During the implementation process, in order to take into account an of the eight 

professionals ' opinions, the Delphi technique is applied. The Delphi method, originally 

developed by Dalkey in 1969 (Dalkey, 1969), is a structured communication technique to 

extract and refine group judgments. The Delphi method uses three essential elements: 

anonymous response, iteration and controlled feedback, and statistical group responses. 

Each member of the group answers the questionnaire in two or more rounds. After each 

round, each participant revises hislher previous answers based on the anonymized 

summary of the previous round until a stable result is achieved, i.e. , the results from the 

last two rounds are the same. This technique is built to minimize the biasing effects of 

irrelevant communications, dominant individuals and group pressure towards conformity. 

The next section contains a detailed description of implementing each MCDM method. 

This leads to a comparative analysis ofMCDM methods 

5.3.2.1 ARP 

As there are five criteria, ARP requires 10 pairwise comparisons to caIculate criteria 

weights. Furthermore, with four alternatives, six pairwise comparisons for each of the five 

criteria are needed. Each professional provides her/his pairwise comparison results, then 

the Delphi method is used to collect aIl the results to form the final six pairwise 
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companson matrices. Although this required a significant number of inputs, the 

consistency is checked and the resulting pairwise comparisons are consistent. 

Figure 5-5 shows the criteria weight resulting from using pairwise comparison. Dynamic 

performance has the highest weight, foHowed by potential future profit and cost of 

construction. Environmental impact and cost of maintenance have the lowest weights. AH 

the professionals are comfortable with the weight distribution among the criteria. Figure 

5-6 displays the alternatives' performance for each criterion. P3 and Pl are the top two in 

terms of dynamic performance, foHowed by P4, which is less than half of P3 , and P2 is 

the lowest of aH. Regarding the cost of construction, cost of maintenance and 

environmental impact criteria, the alternatives have relatively similar normalized score 

behaviour, where the least expensive project (P2) clearly outperforms the other 

alternatives, while P3 , the most expensive project, has the lowest score, and Pl and P4 are 

in the middle. For potential future profit, P3 has the highest score--almost three times 

more than the runner up, Pl. P4 is in third position, which is less than half of P 1 and two 

times higher than the last one, P2. 

AHP Criteria Weights 
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Figure 5-5: ARP: Criteria weights using pairwise comparison 
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Figure 5-6: AHP: Nonnalized alternative score for each criterion using pairwise 
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The results from Figures 5-5 and 5-6 summarize the final score and derive the rank of the 

alternatives, shown in Figure 5-7, where P2 is the selected alternative according to the 

AHP methodology, followed by P3 and Pl. P4 receives the lowest score. 

AHP: Final Score 

P4 

P3 

P2 

Pl 

0,0000 0,0500 0,1000 0,1500 0,2000 0,2500 0,3000 0,3500 0,4000 

Figure 5-7: AHP: Results for sewer network planning case study 

5.3.2.2 TOPSIS 

When implementing the TOPSIS process, each professional can assign criteria weighting 

based on hislher own knowledge. Professionals choose a value between 0% and 100%; 
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the higher the percentage, the greater the criterion's weighting. For simplicity, the total 

sum of the assigned weighting of the five criteria must equal 100%. With three rounds of 

the Delphi technique, each professional finalized hislher assignment, and the final criteria 

weighting is calculated by taking the average from all professionals; the result is shown 

in Figure 5-8. The weighting is almost equally distributed among dynamic performance, 

cost of construction, cost of maintenance and potential future profit, while environmental 

impact received a lower weighting. 

After deciding the criteria weighting, the TOPSIS process also requires all professionals 

to provide their opinions on the alternatives' performance for each criterion in order to 

form the decision matrix. Furthermore, due to the normalization in TOPSIS, the 

alternatives' performance for different criteria must be expressed in the same 

measurement unit. Rence, in order to formalize their opinion, all professionals are asked 

to rate the alternative between 1 and 10 for each criterion, where 1 denotes extremely poor 

performance and 10 denotes excellent performance. For example, Alternative Pl is rated 

by each expert (colurnns in Table 5-2) for each criterion (rows in Table 5-2), and Pl ' s 

final rating for one criterion is the average of all the professionals' scores. The final 

column "Average" in Table 5-3 is the final score for Pl for different criteria. Note that the 

scores in Table 5-2 are from each expert and are also derived through the Delphi technique. 

0,2500 

0,2000 

0,1500 

0,1000 

0,0500 

0,0000 

Criteria Weighting from group discussion used in TOPSIS 

dynamic cost of cost of environmental potential future 
performance construction maintenance impact profit 

Figure 5-8: TOPSIS: Criteria weighting from the group discussion 
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Table 5-2: Professionals' ratings for Pl in TOPSIS 

PI Project Civil Civil Road Road Weatherand Sanitary Sanitary Average 
manager engineer 1 engineer 2 operator 1 operator 2 environment engineer 1 engineer 2 

expert 

Dynamic 8 8 8 7 7 7 7 7 7.375 

performance 

Cost of 6 6 6 7 6 6 6 6 6.125 

construction 

Cost of 7 7 6 6 6 6 6 6 6.25 

maintenance 

Environmen 7 7 7 7 7 6 7 7 6.875 

tal impact 

Potential 7 7 8 8 8 7 7 7 7.375 

future profit 

This process is repeated for aIl the other alternatives, and the decision matrix is formed by 

the average rate of each alternative for each criterion; see Table 5-3. Figure 5-9 illustrates 

the decision matrix for Table 5-3 for a better overview. Pl received above 6 for aIl the 

criteria. P2 has a very good rate (over 8) in terms of cost of construction, which is 

reasonable since its construction cost is significantly lower than the others. P3 has very 

good rates for the dynamic performance and potential future profit criteria (both are over 

8), while it does not have any advantages for cost of construction and environmental 

impact. P4 receives relatively similar rates for aIl criteria and the average is 4.5. 

Table 5-3: TOPSIS decision matrix 

~ Pl P2 P3 P4 
Criteria 

Dynamic performance 7.375 4.875 8.375 5 

Cost of construction 6.125 8.5 3 4.5 

Cost of maintenance 6.25 7.75 5.125 5.125 

Environmental impact 6.875 7.375 3.25 3.875 

Potential future profit 7.375 2.875 8.375 5.125 
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TOPSIS decision matrix 
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Figure 5-9: TOPSIS decision matrix 

After the decision matrix is built, the next steps in TOPSIS are: deriving the standardized 

matrix; next, considering the weights of the criteria to get the weighted standardized 

matrix; followed by finding the ideal solution S+ and anti-ideal solution S- in order to 

calculate the Euclidean distance from each alternative to the ideal solution S+ and the anti­

ideal solution S-, i.e. Dt and Dj-; finally, obtaining the relative closeness. The selected 

choice is the one with the highest relative closeness value. Table 5-4 shows the result from 

TOPSIS, where Pl receives the highest relative closeness value, i.e., it is the alternative 

that is the farthest from the anti-ideal solution and nearest to the ideal solution. 

Table 5-4: TOPSIS results for sewer network planning case study 

TOPSIS Results Pl P2 P3 P4 

Rank pt 2nd 3rd 4 th 

Relative closeness 0.6663 0.5538 0.4462 0.2672 

5.3.2.3 ELECTRE III 

The Chemdecide decision framework is introduced and developed in Hodgett (2016), 

where Hodgett explained the worktlow for ELECTRE III and illustrated how to use the 

software by applying it to an equipment selection decision problem. The Chemdecide 
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framework contains four different tools, one related to structuring the decision-making 

problem and the other three associated with the analysis provided by three different 

MCDM methodologies; one of the methodologies is ELECTRE III. The problem­

structuring tool requires the user to designate a goal, a set of alternatives and a defined set 

of criteria (including whether the criterion is qualitative or quantitative and minimizing or 

maximizing). The analysis tool requires the decision maker to input the criteria weights 

and the alternatives ' performances. 

It is time consuming and unrealistic to ask each expert to use the software. Since aB experts 

have attended several group meetings to structure the decision problem and to decide the 

criteria weights for AHP and TOPSIS, the project manager is aware of each professional ' s 

perspective; he represents the group as the user to provide the inputs to the software. His 

inputs are concluded and gathered to include the perspectives of aB the professionals. The 

complete description of this software framework can be found in Hodgett (2016). The 

foBowing is a brieflist of the steps in using this software to implement the sewer network 

planning case study. 

Step 1. Choose the decision setup tool to enter the goal ofthe sewer network planning, aB 

the available alternatives, plus five criteria and indicate wh ether each criterion is 

qualitative or quantitative and minimizing or maximizing. 

Step 2. Choose the ELECTRE III analysis too1. Open the structured problem from Step 1. 

Then make selections using the slider bars to indicate which criterion is more important, 

i.e. higher weighting. Here, the project manager decided to use the weighting (in Figure 

5-8) derived from the group discussion during the TOPSIS process to define the criteria 

weights. See Figure 5-10. The weights are not exactly the same because they are entered 

using a slider bar. 



Criteria Selection 
Please now make selections using the slider bars to indicate which criterion is more important. 
Ensure you also provide notes below each slider bar to explain your selections. 

_ Oynamic performance 
_ Cost of construction 
_ Costofmaintenance 
_ Environmental impact 

Poteotial future profit 

Figure 5-10: Cherndecide software framework ELECTRE III: criteria weights 
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Step 3. For each quantitative criterion, enter its true quantitative data source (numerical 

value and unit) as well as the indifference, preference and veto thresholds. Two 

alternatives are considered indifferent if their difference is srnaller than or equal to the 

indifference threshold; Alternative A is preferred to Alternative B if their difference is 

larger than the indifference threshold and srnaller than or equal to the preference threshold; 

Alternative A is vetoed in favour of Alternative B if their difference is larger than the 

preference threshold and srnaller than or equal to the veto threshold. In this case, the user 

does not know the rneaning thresholds; the tool has already provided the explanation to 

rnake sure the user entered reasonable inputs. For each qualitative criterion, the user 

indicates hislher preference for each alternative using the slider bar. The slider bar assigns 

an evaluation of extrernely poor, very poor, average, good, very good, and excellent. 

Figures 5-11 and 5-12 provide sorne insight into the ab ove description. 

The user has entered aIl the information in the above steps. The software generates a report 

showing the results as in Table 5-5. It shows that ELECTRE III assigns both Pl and P2 

first rank: the descending order proposes Pl as the best alternative, while the ascending 

order proposes P2 as the best alternative. 
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Table 5-5: ELECTRE III: results of sewer network planning case study 

Descending Order Ascending Order FinalOrder 

1"1 Pl P2 Pl P2 

20d P2 Pl P3 

3rd P3 P4 P3 P4 

41h P4 

Dynamic performance Selection 
Please provide your quantitative data source, the values for each alte rnative and the values' units. 

What units are u~ed to measure th5e alternativ5? 

Alt~rnativ~ 1 va l u~: Sourc~: 

1196.41 
1 1 

Alternative 2 va lue: Source: 

1 1 

Alt~rnative 3 va lu~: Source: 

1 1 

Alt~rnative 4 va lue: Source: 

1105.87 
1 1 

Thresholds: 

Indifference (at which you have 'no preference' over the difference in value between one alternative and another): 

1
0 

Preference (at wh ich you have a 'preference' over the difference in value between one alternative and another) : 

1
30 

~to (wher~ the diff~rence in va lue between alternative~ would lead you toveto an a lternative) : 

1
80 

Figure 5-11 : Chemdecide ELECTRE III quantitative criterion 



Potential futu re profit Selection 
Please indicate your preference for each alternative in terms of Potential future profit. 

Ensure you also provide notes below each slider bar to explain your selections. 

Altern zttive 1 : 

Alternative 2 : 

Altern ative 3 : 

Al ternative 4 : 

Very Paor 

Excellent 

For criterion 'Potential future profit' please also select approprlate threshold values. 

• Indifferent D We .. k Preference Strong Preference • Veto Threshold 

Figure 5-12: Chemdecide ELECTRE III qualitative criterion 

5.3.2.4 PROMETHEE II 
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Although all the PROMETHEE II computations can be performed manually, for 

simplicity' s sake, and because DMs can have a different experience using a manual 

decision-making process, a software tool is chosen to aid professionals in implementing 

this MCDM method. The CUITent available software for PROMETHEE are Decision Lab, 

D-Sight, Smart Picker Pro and Visual Promethee (Ishizaka & Nemery, 2013). From these, 

Smart Picker Pro (Brussels, 2011), developed by a team from the engineering department 

at the Free University of Brussels, is chosen. Its user-friendly interface allows DMs to 

model the decision problem step by step and enter their preferences, e.g., the criteria 



87 

weighting and other preference parameters. It reflects the user preferences entered into the 

software. AIso, unlike other software, it is available as a free trial version (www.smart­

picker.com) with time-unlimited use. However, its trial version is limited to a maximum 

of five alternatives and four criteria, but this is sufficient to comprehend its application. 

Smart Picker Pro does not require much understanding of the PROMETHEE II method 

itself, which makes it very easy to use. The algorithm behind this tool is PROMETHEE 1 

(partial ranking) and PROMETHEE II (complete ranking). As previously mentioned, 

PROMETHEE II is the method used from the PROMETHEE family in this case study. 

Full instructions for this software can be found in Ishizaka and Nemery (2013) or the 

HELP menu in the tool. 

As was the case for ELECTRE III, the project manager represents the whole project group 

in using the software. The essential operating steps for the tool in solving the sewer 

network planning decision problem are listed below. 

Step 1. Enter the performance of alternatives for different criteria. See Figure 5-13. The 

performance of alternatives for qualitative criteria (dynamic performance and cost of 

construction) are based on the true experiment value, while the performances for 

quantitative criteria are evaluated on a scale of Very Good, Good, Average, Bad or Very 

Bad; the corresponding scores for this scale are 4, 3, 2, 1, 0 respectively. Ultimately, both 

quantitative and qualitative criteria are quantified. It is worth mentioning that in the 

PROMETHEE method, there is no need to restrict aIl the performances measured to the 

same unit. 

_ AlI Dam X Parameœrs Sn W~ts 

PerfOll11auces of the actions 

l\"ame Cl C2 

Al pl 196.41 1884753.0 

A2 p2 75.64 437606.0 

A3 p3 214.34 4127967.2 
A4 p4 1105.87 2680820.57 

C3 

costof ........... 
2()()d 

~r bad 
bad 

average 

200d 
bad 
bad 

C4 

average 

bad 
,"el)· 200d 
average 

Figure 5-13: Smart picker pro PROMETHEE II: performance of alternatives 
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Step 2. Set up the preference parameters, such as: maximize or minimize, to indicate 

whether it is a positive or negative criterion; preference function: linear function is 

selected for aIl criteria; indifference and preference threshold; see Figure 5-14 for the setup 

of one criterion. 

. AI Data ~ Pararm!œrs fil. Weights 

Criterion :: dynamic performance Set Scale Help 

1 dynamic perfurmanœ v ii Flow V~wer 1 

llinear Preference v 1 @ Maxinize o Minimize 121 AbsoIute [ll.ela~f] 

Indifference Threshold (q): LI o ___ --'I~ Preference Threshold (P): IL30 ___ --'I~ 

q: . " " "" , ,',' ,',,", 

p: • 
Figure 5-14: Smart Picker Pro PROMETHEE II: preference parameter setup for 

dynamic performance 

Step 3. Set the criterion weight values. In this case, the project manager decided to use 

the weights derived from the group discussion during the TOPSIS process to define the 

criteria weights. In Smart Picker Pro, users set the weights using a slider bar. See Figure 

5-15. Note that the weights are not exactly the same values as shown in TOPSIS, because 

the slider bar cannot provide the exact value and causes bias. 
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Figure 5-15: Smart Picker Pro PROMETHEE II: criteria weights 
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With the above steps, an the decision problem inputs are ready for Smart Picker Pro to 

analyze and show the final ranking result. The result is shown in Figure 5-16. Pl , ranked 

in first position, has the highest net flow, which is much higher than the runner up, P2; 

this ensures its first position over an other alternatives. P3 and P4 received negative net 

flows far behind the first two. 

Results Proœssed Data 

Actions et Flows Position 

Al - p l '0.30621 1.0 
-

Al-p2 0.07286 2.0 
- -

A3 -1>3 -0.07731 3.0 - - - - -
A4 - v4 -0.30175 4.0 

-

Figure 5-16: PROMETHEE II: fmal results for sewer network planning case study 
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5.3.3 Results Summary and Post-Analysis Interview 

Figure 5-7, Table 5-4, Table 5-5 and Figure 5-16 show the results of AHP, TOPSIS, 

ELECTRE III and PROMETHEE II respectively. AlI ofthem recommend alternatives Pl 

and P2 over P3 and P4. Table 5-6 groups aIl the results together. It shows that AHP chose 

P2 over Pl as the best option; TOPSIS and PROMETHEE II prefer Pl over P2; ELECTRE 

II could not provide a conclusive decision between Pl and P2, where both are given first 

ranking. 

Table 5-6: Comparison of results from four MCDM methods 

AHP P2 Pl P3 P4 

TOPSIS Pl P2 P3 P4 

ELECTRE m Pl P2 P3 P4 

PROMETHEE n Pl P2 P3 P4 

The whole project team is interviewed to review their experiences and discuss the results. 

On reflection, for AHP, they agreed that pairwise comparison is indeed an efficient and 

accurate way to evaluate the preference between two alternatives rather than 

simultaneously evaluating aIl alternatives. However, numerous pairwise comparisons are 

required. Even though there is a consistency check to guarantee the subjective judgments 

from pairwise comparison, professionals still feel somewhat less confident with their 

inputs during the long pairwise comparison process. They stated that AHP is a good option 

for a decision involving only a few criteria and alternatives. During the pro cess ofTOPSIS, 

experts also needed to have team meetings to decide criteria weighting and use a 1-10 

scale to score the performance of each alternative for different criteria. They felt more 

comfortable and confident in evaluating their preference since it is less complex than 

pairwise comparison in terms of the number of inputs and measurement scale. This is also 

why the project manager used the criteria weights from TOPSIS for the other two MCDM 

methods instead of the weights from the pairwise comparison. They also wanted to 

mention that TOPSIS requires aIl performances for different criteria to be in the same 

measurement unit, even the quantitative criteria, which means their true experimental 
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values cannot be input into the decision matrix, but are instead transferred to a 1-10 scale. 

This also causes bias for the final score. The two software tools for ELECTRE III and 

PROMETHEE II are easy to operate and understand, which is the opposite of their 

complex underlying algorithms. The project manager found that the whole experience 

with software tools for the decision-making process was positive in terms of organization. 

It helped him to have a clear structure of the decision problem and give aIl necessary and 

correct inputs. Moreover, he had a clear view of the relations between the input values and 

the outcomes so he is aware of which factors had more impact during the process. 

Therefore, using software tools definitely reduced the disadvantages ofthese two methods. 

The result from PROMETHEE II is clearly indicated via each alternative' s net flow value, 

while ELECTRE III does not give a specific score to each alternative. Besides, ELECTRE 

III could not make a definite decision between Pl and P2, which made it more clear from 

the decision maker' s point ofview. 

5.3.4 Comparative Analysis and Discussion 

In order to fully understand the decision reached by different MCDM methods, a deep 

comparative analysis is carried out on two factors : criteria weights obtained during the 

different MCDM processes and alternatives ' scores for each criterion assigned by 

different methods. 

5.3.4.1 Comparison of criteria weights 

In Figure 5-17, each criterion's weight derived from AHP, TOPSIS, ELECTRE III and 

PROMETHEE II are displayed together for a clear picture for comparison. 

In general, the weight allocations for different criteria are consistent ln TOPSIS, 

ELECTRE III and PROMETHEE II. Inconsistency occurs during AHP, which places 

considerable attention on the maximizing criteria (dynamic performance, potential future 

profit) compared to the other three minimizing criteria. As mentioned before, the user 

input the criteria weights derived from TOPSIS for ELECTRE III and PROMETHEE II. 
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In Figure 5-17, there are still slight differences among them that could be caused by 

manual operation errors. 
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.AHP • TOPSIS • ELECTRE III PROMETHEE Il 

Figure 5-17: Comparison of criteria weights 

5.3.4.2 Comparison of alternative scores 

Figure 5-18 provides an overview of the differences for each alternative evaluated via 

different MCDM processes. Note that aU scores have been normalized in order to make 

the comparison more persuasive. 

For the two quantitative criteria (dynamic performance and cost of construction), the 

alternative scores in ARP, ELECTRE III and PROMETHEE II are consistent because the 

true experimental numerical values are used as input. However, in the TOPSIS process, 

since the decision matrix needs to be measured in the same unit, the inability to use true 

values for quantitative criteria causes inaccuracy. 

For the other three qualitative criteria (cost of maintenance, environmental impact and 

potential future profit), alternative scores show a number of inconsistencies in the four 

MCDM methods. One explanation is that it is difficult to stay consistent when making 

subjective judgments on alternatives for qualitative criteria in different processes. The 

difficulty can be the result of decision-maker fatigue after prolonged attention and mental 
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effort. Vohs, et al. (2005) argue that making decisions from different alternatives for 

various criteria requires energy, tires out decision makers and thereby impairs self­

regulation. Vohs, et al. (2005) refer to this situation as decision fatigue and conclude that 

"self-regulation was poorer arnong those who had made choices than arnong those who 

had not". Another explanation for the inconsistency is that decision makers might feel that 

the impact of scores for qualitative criteria are minor. However, to have a sound, reliable 

decision result from a structured decision analysis requires decision makers to express 

their preferences more carefully. 

Nevertheless, it is worth mentioning that AHP has the most inconsistencies for qualitative 

criteria, with the majority of scores showing higher or lower criteria weights than the other 

three MCDM methods. This happened even though all of the decision makers ' pairwise 

comparisons are theoretically consistent, i.e. the consistency ratio is less than 0.1. 

Therefore, either the decision makers placed emphasis on their preferences on purpose or 

there are inaccuracies in the 1-9 fundarnental scale proposed by Saaty and Vargas (2001). 

In fact, Salo, & Harnalainen (1997) point out that there is an uneven dispersion of values 

in Saaty' s AHP selection scale. They conclude that the difference in selecting between the 

scale of 1 and 2 is 15 times greater than the difference in selecting between the scale of 8 

and 9. This indicates that Saaty' s AHP selection scale is responsible for the 

overemphasized criteria weights and alternative scores in the case study. 
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Figure 5-18: Comparison of alternative scores from the four MCDM methods 
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Making a decision on a sewer network construction project is important for urban 

development, public health and environmental sustainability. It has been suggested that a 

group of decision makers should apply an effective and efficient MCDM method for the 

sewer network decision problem. However, different methods have their own limitations, 

hypotheses, premises and perspectives, which leads to different decision results when 

applied to an identical problem. This chapter provides a comparative study on four 

different MCDM methods (AHP, TOPSIS, ELECTRE III and PROMETHEE II) from 

their distinctive theoretical algorithms and from their implementation on one sewer 

network planning group decision problem. AHP and TOPSIS were implemented via 

spreadsheets, while ELECTRE III and PROMETHEE II were applied via available 

software tools due to their complex algorithms. A number of conclusions can be drawn: 

Five criteria require 10 pairwise comparisons to determine the criteria weights in 

AHP, which is more time consuming. The other three methods only need 10 inputs. 

By increasing the number of criteria and alternatives, AHP is not a practical method 

to implement. 



95 

The criteria weights and scores of the four methods are inconsistent, with AHP 

showing the greatest variation (Figure 3-14 and Figure 3-15). This is most likely 

because of inaccuracies in AHP's 1-9 fundamental scale, decision fatigue and 

decision makers ' perception that qualitative criteria with low weights have minor 

impact on the decision results. 

There are visible differences in the results of the four methods (Table 4-6). It needs 

to address out that ELECTRE III was unable to provide a conclusive result, 

identifying both Pl and P2 as the best alternatives. PROMETHEE II and TOPSIS 

prefer Pl, while AHP selects P2 as the best option. In general, P2 receives extremely 

high scores on three criteria and extremely low scores on the other two criteria, while 

Pl has a more or less average evaluation on different criteria. When considering this, 

decision makers aIl prefer Pl over P2. 

TOPSIS requires aIl the performances for different criteria to be expressed in the 

same measurement unit. This makes decision makers feel TOPSIS is limited when 

the true numerical experimental values cannot be used as input directly. 

PROMETHEE is the favoured method for decision makers in terms of the decisive 

result identifying Pl as the best option and decision makers ' satisfaction with the 

implementation process. 

The comparison of the different MCDM methods directly helped the whole project team 

to make an informed decision. By going through this process, aIl the experts became more 

knowledgeable about their decision and the uncertainty associated with each sewer 

network plan. The results clearly show that there is a risk in foIlowing the results of just 

one MCDM method; therefore, iftime permits, it is advisable to approach a sewer network 

group decision problem using different decision-making methods. However, if time is a 

limitation then the results indicate that PROMETHEE II is the method that most 

effectively provided an accurate representation of the decision makers ' preferences. The 

conclusion of this comparative study should also encourage industry professionals to 

cooperate with academic researchers in order to examine the compatibility of a wider 

range ofMCDM methods with sewer water infrastructure management. More case studies 
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are required to test and validate the theories, since the recommendations presented in this 

paper are based on only one sewer network decision problem. 
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CHAPTER 6 - CONCLUSION AND FUTURE RESEARCH 

This work tirst discussed in detail the detinitions, differences and perspectives of three 

different types of decision-making processes (DMUSU, DMUR and MCDM), in order to 

guide DMs in structuring their decision problems into the right type, which is essential for 

making a good decision. Once DMs formulate their decision problems into the right type, 

it is time for them to think about which DM methods associated with this type of decision­

making process to implement. Hence, this work provides a study of the comparative 

research on various DM methods within each type of decision process from detailed 

theoretical algorithm to practical implementation. Note that this work does not compare 

the methodologies from different types of DM processes, simply because this work has 

focused on the discussion of differences among types of DM pro cesses from the beginning. 

The outline ofthis research work can be seen in Figure 6-1. How the results ofthis research 

help DMs in their decision problems is summarized in the following subsections. 

6.1 Decide the Type of Decision Process 

The two main types of decision process considered here are DMUU and MCDM. Three 

basic elements for DMUU are states of nature, alternatives and outcomes. Based on DMs' 

knowledge of states of nature, DMUU contains two sub types: DMUSU, where DMs need 

to make a decision without any information about the probabilities of the various states of 

nature, and DMUR, where DMs can subjectively assign the probabilities of the states of 

nature. MCDM is a sub-discipline of operations research, where DMs evaluate multiple 

conflicting criteria in order to tind a compromise solution subject to aIl the criteria. 

MCDM mainly focuses on helping DMs synthesize information to tind a trade-off among 

the conflicting criteria. 

In order to decide which type of decision process, this study advises DMs to consider tirst, 

what kind of external criteria they want to involve to evaluate the options; second, how 

much they know about those criteria; third, how actively they want to be involved in the 

whole process, i.e., inputting their own opinions during the process. One example is a 
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farmer ' s decision problern ofwhether or not to harvest tornorrow. If only weather rnatters 

for the farmer, then, he needs to consider how rnuch he knows about the weather tornorrow. 

If he does not know or is not willing to research weather conditions, then he would 

structure bis decision problern according to DMUSU. However, if he can subjectively 

estirnate the weather conditions (the percentage of likelihood of rain), he could consider 

DMUR. If there are other perspectives or criteria that the farmer needs to consider (e.g., 

cost, profit, etc.), then he can structure the decision into MCDM to list the cost of 

harvesting tornorrow, and the cost of not harvesting, as weIl as the profits for both 

scenanos. 

Outline 

Figure 6-1 : Outline of the research work 

6.2 Decide Which Methodology to Use 

Once the type of decision process is selected, it is tirne to choose which rnethodology 

under this type to ernploy. 
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For DMUSU, Laplace' s principle of insufficient reason, Wald' s Maximin, Savage' s 

Minimax regret, Hurwicz' s method and Starr' s Domain are introduced and compared. 

Furthermore, a DMUSU problem is considered a two-player game, and NE is considered 

a method as well. The theoretical comparison of each method is summarized as follows: 

Laplace' s principle of insufficient reason transforms a difficult problem into a simple one 

by assuming that all states of nature are equally alike. The need to construct the state space 

to be amenable to a uniform probability distribution is a major drawback of this method. 

Wald ' s Maximin is extremely conservative and does not provide a faithful representation 

of how people operate in reality. It could lead to exceedingly costly results from over­

protection against uncertainty. Savage' s Minimax regret method suggests the 

consequences of one action should be compared with the consequences of other actions 

under the same state of nature. Accordingly, it only reflects the difference between each 

payoff and the best possible payoff in a colurnn. Hurwicz' method takes into account both 

the best and the worst possible results, weighted according to the decision maker' s attitude 

(optimistic or pessimistic) towards the decision. This method only considers the highest 

and the lowest payoff for each alternative. It does not take other non-extreme payoffs into 

account. Therefore, two decisions with the same minimal and maximal profits al ways 

obtain an identical Hurwicz's measurement, even if one of them results in many small 

payoffs and the other one has many high payoffs. Starr's Domain has the disadvantage of 

complexity of computation when there are more than three states. Since a DMUSU 

problem can be considered a two-player non-cooperative and non-zero-sum game, NE 

becomes one of the solution options for solving a DMUSU problem. Pure-strategy NE is 

where all players are playing pure strategies, and mixed-strategy NE is where at least one 

player is playing a mixed strategy. All that said, if the DM's attitude is more conservative, 

Wald ' s and Savage' s methods are correct. Wald's method uses the payoffmatrix. IfDMs 

would like to have a picture of their level of regret after making such a choice, they can 

use Savage' s Minimax. If DMs would like to use a numerical value to represent their 

attitude, they can choose Hurwicz' s method. Starr's Domain method is suitable where 

there are few states ofnature. Laplace' s method is quite intuitive and simple to use. NE is 

an algorithm from game theory. 
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For DMUR, the principle of the EMV rule is nearly identical to the EOL rule, except that 

one is using a payoff matrix, the other is using an opportunity-loss matrix. The most 

probable state of nature rule takes only one uncertain state of nature into account; it may 

lead to bad decisions. The expected utility rule is a better choice when dealing with a risky 

decision problem (e.g., the decision can only be made once or significant amounts of 

money are involved in the problem), as the expected monetary value criterion cannot 

encompass the full range of reasoning behind a decision as a human would. Thus, the 

decision chosen by EMV can be different from the one the decision maker himself would 

choose. In short, the computation of four decision rules for DMUR is similar. The 

difference is that each decision rule maximizes or minimizes different objects, i.e. , the 

expected monetary value, the expected opportunity loss, the expected utility. The decision 

maker needs to choose which object slhe wants to consider based on the property of each 

individual DMUR problem. 

For MCDM, AHP requires many inputs for pairwise comparisons, which is a time­

consuming process. Therefore, this method should be chosen oruy for a small number of 

criteria and alternatives. Furthermore, the potential compensation between good scores on 

sorne criteria and bad scores on others causes the loss of information. The advantage of 

TOPSIS is that it requires only a few inputs from the decision maker and its output is easy 

to understand. The drawback is that vector normalization is needed for solving multi­

dimensional problems. The main advantage of ELECTRE is that it avoids compensation 

between criteria and any normalization process, which distorts the original data. The 

drawback is that it requires various technical parameters such that it is not always easy to 

fully understand iL The PROMETHEE method allows direct operation on the variables 

included in the decision matrix without requiring any normalization and is applicable even 

when there is insufficient information. However, its main drawback is that it is time 

consuming and difficult for decision makers to have a clear view of the problem, 

especially when there are many criteria involved. 
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6.3 Further Comments on the Case Study: Sewer Network Selection 

Making a decision on a sewer network construction project is important for urban 

development, public health and environmental sustainability. In this work, the same sewer 

network plan selection problem is structured into two different types of DM processes: 

DMUSU and MCDM. It is worth mentioning that if the probability of the different rainfall 

weather conditions can be assigned by the DMs, this practical problem can also be 

structured as DMUR. This shows that the same specific decision-making problem can be 

structured into different types of decision processes based on available information and 

on DMs' subjective preferences. 

The practical comparison within each type of decision process is carried out using the 

same project; this can effectively show each method's limitations, hypotheses and 

differences. 

Three basic elements for DMUSU are states of nature, alternatives and outcomes, where 

DMs need to make decisions without any information about the probabilities of the 

various states of nature. Laplace' s principle of insufficient reason, Wald' s criterion, 

Savage' s Minimax regret criterion, Hurwicz' s criterion and Starr' s Domain criterion are 

introduced and compared. Furthermore, DMUSU problems are considered two-player 

games, and NE is used as well to find the selected decision. While different methods 

recommend different alternatives, the fact that the NE is 100% behind Alternative 1 is a 

compelling argument for choosing it. While Alternative 2 is the most-recommended 

alternative, it is interesting to note that Alternative 3 is not selected for any of the criteria. 

However, most civil engineers intuitively rooted for Alternative 3 from a purely city 

planning point ofview. Further studies should compare this approach on more projects to 

evaluate if a trend is emerging. AIso, from a pragmatic point of view, it is advjsable to 

adapt the current decision process to inc1ude the comparison of these five DMUSU 

methods (and NE) to give a better depth to the decision. The next step is c1early to form a 

portfolio of decision policies and evaluate the robustness of such an approach compared 

to the individual criterion or the city' s CUITent decision process. 
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Since a sewer network plan selection problem is a complex decision problem that needs 

to be considered from different perspectives by different professionals, it is also 

restructured into a MCDM group decision problem. The Delphi technique is introduced 

in order to reach an opinion from a team. Of aIl the various MCDM methods, AHP, 

TOPSIS, ELECTRE III and PROMETHEE II are selected to implement, as they are the 

most-used MCDM methods in sewer network infrastructure asset management. The 

purpose is to conduct a comparative study ofthese methods on a single decision problem 

in order to address their limitations, hypotheses, premises and perspectives and help DMs 

to select the proper decision-making method for their decision problem. AHP requires 

many inputs because of pairwise comparisons, which is time-consuming. This method 

should be selected only when there are few criteria and alternatives. The AHP method also 

shows more inconsistency in the decision process than other methods. This could be the 

inaccuracy of the 1-9 scale. Inconsistency in TOPSIS, PROMETHEE II and ELECTRE 

III could be caused by decision maker fatigue in a long decision process or decision 

makers ' perception that qualitative criteria with low weights have minimal impact on the 

decision result. ELECTRE III is not considered a favourable method, as it cannot provide 

a conclusive result for this particular decision problem. The limitation of TOPSIS is that 

it requires aIl the performances under different dimension criteria to be evaluated by the 

same measurement unit. By doing this, it loses information from the true value. 

PROMETHEE is considered the favoured method for decision makers for its conclusive 

decision result and the reflection of the decision makers' preferences. Furthermore, as it 

does not require aIl the performances to be expressed in the same unit, it is more in line 

with the true facts than others. 

6.4 Future Research 

The foIlowing future research related to this PhD study can be considered: 

• Nash equilibrium implemented in DMUSU problem brings another perspective for 

solving DM problems. It is interesting to provide a mathematic proof in theory to 

see further, how decision-making and game theory are related with each other; 
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• Applying the considered DM methods in this thesis into more real life projects 

from different industry area can solidify the comparative conclusion; 

• More focus can be given to DMUSU in order to make the system more resilient to 

cope with sudden changes or any type of crisis, because the effect of perturbation 

in these scenarios is exponential. 

• Other different MCDM methods are also worth to study and implement. 

6.5 Final Remarks 

The results clearly show that there is a risk in following the results of one particular 

DMUSU method or one particular MCDM method. Therefore, if time allows, it is 

advisable to structure the decision problem into different types of DM problems and use 

different decision-making methods. However, iftime is a limitation, through this research, 

decision makers have obtained sufficient knowledge about various DM methods to make 

their own choice of which method to use. The results of this PhD work should encourage 

industry professionals to work together with academic researchers in order to explore and 

compare other available DM methods for various practical decision problems to validate 

the theories and recommendations. 

The whole PhD work can be illustrated by the diagram in Figure 6-1. The initial 

motivation and objective ofthis research is to help DMs choose the right decision-making 

methodology that suits the subjective preferences and the objective information, so that 

an selected decision can be made to balance the whole situation. This work suggests DMs 

first define the goal of the decision problem and check what kind of information is 

available to use, in order to clarify if they want to use the decision-making process with 

uncertainty, i.e. , DMUU, or if they know a list of criteria from which the alternatives 

should be evaluated, i.e., MCDM. Second, they have a list of DM methodologies to choose 

from, depending on the type of decision-making process. Based on the comparative results 

of this work, DMs can confidently choose the appropriate method based on each 

methodology' s characteristics and the decision maker' S own preference. 
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APPENDIXI 

Matlab codes for DMUSU Methods 



%% Laplaee's insuffieient reason eriterion 

%M is deeision matrix, indexX indieates the index of the seleeted decision. 

funetion indexX = laplaee_insuffieienCreason(M) 

v=sum(M,2); %v is a eolumn veetor eontain ing the sum of eaeh row. 

[a,indexX]=max(v); 

end 

% 

%% Wald Maximin funetion 

%M is deeision matrix, indexX indieates the index of the seleeted deeision. 

funetion [v,indexX,indexY] = maximin(M) 

[s,idy]=min(M,D,2); 

[v,indexX]=max(s); 

indexY=idy(indexX); 

end 

% 

%% Savage funetion payoff 

funetion [v,indexX,indexY]=savageMinimax(M) 

tmpM=ones(size(M,1),1 )*max(M)-M; 

[v,indexX,indexY]=minimax(tmpM); 

end 

% 

%hurwiez on positive flow matrix M e.g. payoff 

%alpha is the degree of optimism, 1-alpha is the degree of pessimism 

%for eaeh row i, determine a P j = alpha * best payoff + (1-alpha)*worst payoff 

funetion row_number = hurwiezpositiveflow(M,alpha) 

[nr, ne] = size(M); 

h=ones(nr,1 ); 

for i =1 :1 :nr 

h(i)=max(M(i ,:) )*alpha + m in(M(i,: ) )*( 1-alpha); 

end 

[v,row_number] =max(h); 

% 
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%% Starr function 

% A is the decision matrix 

function [v,idx,count] = starr(A) 

[r,c]=size(A); 

count=zeros(1 ,r); 

total = 1000000; 

for i=1 :total 

%Monte-Carlo 

me = sort(rand(1 ,c-1 )); 

mc1 =[O,mc]; 

mc2=[mc,1 ]; 

mcs=mc2-mc1 ; 

score=sum(A *mcs' ,2); 

idx=find( score==max( score)); 

count(idx)=count(idx)+1 ; 

end 

count 

idx=find(count==max(count)); 

v=count(idx)/total; 

end 

% 

%computes the mixed nash equilibrium for two players zero-sum games 

function [v,p,q] = mixedNE4(A) 

[r,c]=size(A);%r:row ; c:coloumn 

AA = [-A', ones(c,1)]; 

116 



Aeq = [ones(1 ,r),O); 

AA_octave = [AA;Aeq) ; 

b = zeros(c,1 ); 

beq = 1; 

b _ octave=[b; beq); 

lb = [zeros(r,1 );-inf]; 

f = [zeros(r, 1 );-1); 

options = optimset('Display', 'off); 

s = 1; 

P = Iinprog(f,AA,b,Aeq ,beq,lb,D,D,options); % for matlab 

v = p(r+1); 

p = p(1 :r); 

if nargout > 2 

[w,q) = mixedNE4(-A'); 

end 

end 
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APPENDIXII 

Excel file for data collection during MCDM Implementation 
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