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Foreword 

My previous discipline being organic chemistry, when 1 first leamed that my topic was 

about biomass, 1 found it to be a real challenge due to the limited knowledge 1 had on the 

topic. 

The basis for this research originates from the BioÉnergie La Tuque (BELT) refinery 

project objective of my thesis was to find ways to pro duce syngas from a slurry consisting 

of a mixture of biochar and pyrolysis oil. The gasification experiment was supposed to be 

do ne at CanmetENERGY research center in Ottawa. Unfortunately, the planning ofthese 

experiments had to be abandoned for various reasons, essentially for lack of funding. 

Therefore, the thesis had to be redirected to a more fundamental, yet practical approach 

based on various simulations of the gasification with an extensive use of the Aspen Plus 

software to analyse new ways to optimise these processes. Consequently, various 

parameters were tested by the model design during the first part of my PhD work. The 

results obtained could then be compared with experimental data collected in the literature, 

making it possible to validate our model and approaches. The results of the simulated 

experiments on syngas properties at an in dustri al scale allowed us to highlight the 

advantages and limitations of the gasification technology. These findings are extremely 

relevant for any future practical syngas application and constitute the main contribution 

of my thesis work. In addition to syngas synthesis, 1 also have extended my study to its 

application to synthetic biofuels. On this basis, 1 also achieved a techno-economic analysis 

to explore the feasibility of methanol production. 

As part of my future research, 1 am planning to continue to explore this topic further and 

use what 1 have leamed to contribute more to transforming our society in a more 

sustainable society. 
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Summary 

Among the major economic and ecological challenges of the 21st century, climate change 

and sustainable development are the most publicised but also the most crucial. Thus, 

renewable and sustainable energy sources such as solar, wind, and biomass have been 

recently considered as an elegant solution to the energy crisis, and biofuels as an 

alternative to fossil ones. Indeed, fuels produced from biomass are renewable and reduce 

oil dependency while diversifying the energy supply. In addition, because biofuels are 

produced from biomass, the use ofbiofuels potentially has a zero or even negative carbon 

impact on the environment. 

Canada has an abundance of renewable biomass, both forestry and agricultural that can be 

used to provide c1ean energy and materials. Canada is the second largest country in the 

world with 9.985 million km2; it alone holds 9% of the world's forest area (347 million 

hectares). The use of the huge Canadian "forest and agricultural reservoir" produces many 

wastes and non-recovered co-products, such as sawdust and other forest residues, corn 

stalks for the food industry, but also municipal wastes (e.g. school canteens, road 

services ... ). Ali these unused wastes could be recovered and converted into biofuels. 

Using these leftover residues to produce green fuels could help Canada to reduce its waste 

generation, while providing a solution to c1imate change as weil as a new circular and 

sustainable economy form. 

Pyrolysis oil, as liquid energy carrier, is produced from lignocellulosic biomass by fast 

pyrolysis at high temperature. Pyrolysis oil has attracted extensive attention due to its 

high volumetric energy density and its ease of transport and storage. 1t is worth noting that 

pyrolysis oil contains only a small amount, sometimes even undetectable depending on 

the biomass source, of sulfur, nitrogen, metals and ash. As a result, the syngas produced 

by gasification of pyrolysis contains less harmful gas emissions and can be directly used 

in downstream applications. 

The purpose of this thesis is to explore the application of pyrolysis oil. Firstly, a model 

for syngas production from pyrolysis oil gasification was developed to predict the effect 

of gasifier operating conditions on syngas properties. Two syngas application are 
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assumed: (1) direct use in fuel cells and (2) biofuel synthesis. The actual experimental 

parameters such as gasifier agent, temperature, and moisture content in pyrolysis oil were 

investigated. Secondly, a novel process model simulating methanol synthesis via pyrolysis 

oil gasification was developed to predict the effect of operating conditions on methanol 

production yield. Rectisol® unit acted as syngas purifier that not only remove impurities, 

but also changed the syngas composition and improved methanol yield. The main 

parameter, i.e. the gasifying temperature, pyrolysis oil moisture content, Rectisol® 

temperature/pressure, and methanol synthesis reactor temperature/pressure, were explored 

then discussed to highlight the impacts ofvarious operating conditions on methanol yield. 

Although methanol produced from natural gas is commercially available, there is currently 

no production based on pyrolysis oil. Therefore, we decided to conduct a technical and 

economic analysis of methanol production from pyrolysis oil. This study was based on 

current technologies such as gasification, syngas post-treatment, and methanol synthesis, 

and at different scales of plants, in order to test its potential feasibility. Then, in order to 

estimate the competitiveness of this new technology, two other sources of raw materials 

were also studied: biochar and pine biomass. 

In order to carry out this study, initially a dual theoretical and experimental approach was 

envisaged. However, due to unforeseen circumstances beyond our control , only the 

theoretical part could be explored. Theoretical study was based on Aspen plus software, 

and results obtained with the designed model were validated by experimental data from 

the literature. Therefore, this study provides guidance for potential future applications of 

pyrolysis oil. 

Firstly, a model simulating syngas production from pyrolysis oil is studied. Aspen plus 

software is used to simulate gasification that includes drying, decomposition, combustion, 

and gasification processes. The syngas composition obtained from simulation are 55 .9 

mol% H2, 24.0 mol% CO, 19.8 mol% C02, and 0.3 mol% CH4. The simulated syngas 

results are in good agreement with the experimental results. Two syngas applications are 

assumed, fuel cell and methanol synthesis. Studies have shown that the syngas produced 

from pyrolysis oil at high temperature with low moisture content in pyrolysis oil is 

beneficial for fuel cell applications. Oxygen and air should not be used in gasification that 
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will decrease syngas enthalpy value. On the other hand, the syngas produced at an 

appropriate temperature around 1000°C with the moi sture content in pyrolysis oil selected 

at 40% is beneficial for fuel production. Secondly, based on the results of previous study, 

we extend the syngas application in biofuel synthesis. An Aspen plus model is developed 

to simulate the production of methanol. The model comprises gasification, syngas 

cleaning, and methanol synthesis. It is concluded from the simulation that the maximum 

methanol yield is around 8.04 kmo1l1000kg (methanollpyrolysis oil). The entire process 

incIudes gasification, Rectisol®, and methanol synthesis processes. The simulations of 

gasification, Rectisol® and methanol synthesis were ail validated by experimental results 

from literature. Research shows that an increase in gasification temperature from 

400 oC to 600 oC resulted in a higher syngas stoichiometric number (SN) value. Moisture 

content in pyrolysis oil increases from 10% to 30% leads to an increase in SN value. 

Rectisol® operated at -20 oC and 40 bar leads to an appropriate SN value and a higher 

methanol yield. Methanol synthesis reactor operating at 250 oC and 50 bars can be an 

optimal choice. Finally, a model simulating methanol production from different 

bioresources is investigated by using simulation software Aspen plus. The model process 

consists of gasification, syngas post-treatment, methanol synthesis with recycle system 

and methanol purification. This simulation is similar to the actual methanol synthesis 

process. As this research project is intended to provide guidance on potential industrial 

applications, we extended the scope of the study to two additional feedstocks, namely pine 

biomass and biochar, and conducted a techno-economic analysis of these three (the 

original plus the extended two) feedstocks to explore whether the use of pyrolysis oil to 

produce methanol is commercially competitive. The syngas composition produced by 

gasification as weil as methanol yield are obtained from the model results. The methanol 

yields from biomass, biochar, and pyrolysis oil are 507.3kg, 578.2kg, and 283.1kg, 

respectively. The study has demonstrated that the methanol produced from biochar seems 

to be the most promising option. In contrast, pyrolysis oil appears to be the most expensive 

solution. Regardless of the feedstock used in any project, biomass, biochar, or pyrolysis 

oil, it is difficult to reach economic benefits when the plant scale is below 1000 tons per 

day (TPD). The sensitivity analysis has shown that bio-methanol price is the most 
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significant factor. For biochar, wh en the bio-methanol price is 1100$/ton, the economic 

benefits can be realized at the minimum plant scale of 1000 TPD. 
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Résumé 

Parmi les grands défis économiques et écologiques du XXIe siècle, le changement 

climatique et le développement durable sont les plus médiatisés mais aussi les plus 

cruciaux. Ainsi, les sources d'énergies renouvelables et durables telles que le solaire, 

l'éolien et la biomasse ont récemment été considérées comme une solution prometteuse à 

la crise énergétique, et les biocarburants comme une alternative aux combustibles fossiles. 

En effet, les carburants produits à partir de la biomasse sont renouvelables et permettent 

de diminuer la dépendance au pétrole tout en diversifiant l'approvisionnement 

énergétique. De plus, parce qu'ils sont produits à partir de la biomasse, ils ont 

potentiellement un impact carbone zéro ou même négatif sur l'environnement. 

Le Canada dispose d'une abondance de biomasse renouvelable, tant forestière qu'agricole, 

qui peut être utilisée pour fournir de l'énergie et des matériaux propres. Deuxième plus 

grand pays du monde avec 9,985 millions de km2
, il détient à lui seul 9 % de la superficie 

forestière mondiale (347 millions d'hectares). L'utilisation de cet immense réservoir 

végétal produit de nombreux déchets et coproduits non valorisés, tels que la sciure et 

autres résidus forestiers, les tiges de maïs pour l'industrie alimentaire mais aussi les 

déchets municipaux (par exemple, les cantines scolaires, les services de voirie .. . ). Tous 

ces déchets non utilisés pourraient être récupérés et transformés en biocarburants. 

L'utilisation de ces biomasses résiduelles pour produire des carburants verts pourrait aider 

le Canada à réduire sa production de déchets, tout en apportant une solution au 

changement climatique ainsi qu'une nouvelle forme d'économie circulaire et durable. 

L'huile de pyrolyse, en tant que vecteur d'énergie liquide, est produite à partir de biomasse 

lignocellulosique par pyrolyse rapide à haute température. L'huile de pyrolyse a suscité 

un grand intérêt en raison de sa densité énergétique volumétrique élevée et de sa facilité 

de transport et de stockage. Il convient de noter que l'huile de pyrolyse ne contient qu'une 

faible quantité, parfois indétectable selon le type de biomasse, de soufre, d'azote, de 

métaux et de cendres. Par conséquent, le gaz de synthèse produit par la gazéification de la 

pyrolyse contient moins d'émissions de gaz nocifs et peut être directement utilisé dans des 

applications en aval. 
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L'objectif de notre projet de thèse est d'explorer l'application de l'huile de pyrolyse. 

Premièrement, un modèle de production de gaz de synthèse à partir de la gazéification des 

huiles pyrolytiques a été développé. Ce dernier avait pour but de prédire l'effet des 

conditions de fonctionnement du gazéifieur sur les propriétés finales du gaz. Deux 

applications du gaz de synthèse sont considérées: (1) utilisation directe dans les piles à 

combustible ; (2) la synthèse de biocarburants. Les paramètres expérimentaux tels que 

l'agent de gazéification, la température du gazéifieur et la teneur en humidité de la biohuile 

pyrolytique ont été étudiés. Ensuite, un nouveau modèle simulant le procédé de synthèse 

du méthanol suite à la gazéification d'huiles pyrolytiques a été mis au point pour prédire 

l'effet des conditions de fonctionnement sur le rendement en méthanol. La technologie 

Rectisol® a été choisie comme purificateur du gaz de synthèse, qui non seulement élimine 

les impuretés mais également modifie la composition du gaz et ainsi améliore le 

rendement en méthanol. Les principaux paramètres ont été examinés afin de mettre en 

lumière l'influence des diverses conditions de fonctionnement sur le rendement en 

méthanol: température de gazéification, teneur en humidité de l'huile de pyrolyse, 

température/pression du Rectisol® ou encore la température/pression du réacteur de 

synthèse du méthanol. 

Bien que le méthanol issu du gaz naturel soit disponible commercialement, il n'existe 

actuellement aucune production de méthanol à partir d'huile pyrolytique. C'est pourquoi 

nous avons décidé de réaliser une analyse technico-économique de la production de 

méthanol à partir d'huile de pyrolyse. Cette étude a été basée sur la technologie actuelle 

de gazéification, post-traitement du gaz de synthèse et synthèse du méthanol, et à 

différentes échelles d'usines, afin d'en tester la faisabilité technico-économique 

potentielle. Ensuite, afin d'estimer la compétitivité de cette nouvelle technologie, deux 

autres sources de matières premières ont également été étudiées, soit du biochar, un sous­

produit de la pyrolyse, et de la biomasse. 

Pour mener à bien cette étude, une double approche théorique et expérimentale a été 

envisagée. Cependant, en raison de circonstances imprévues et indépendantes de notre 

volonté, seule la partie théorique a pu être explorée. L'étude théorique était basée sur une 

utilisation ad hoc du logiciel Aspen plus, et les résultats obtenus avec le modèle ont été 



Xl 

validés par des données expérimentales provenant de la littérature. Par conséquent, cette 

étude a fourni des orientations pour les futures applications potentielles de l'huile de 

pyrolyse. 

Tout d'abord, un modèle simulant la production de gaz de synthèse à partir d'huile de 

pyrolyse est étudié. Le logiciel Aspen plus est ici utilisé pour simuler la gazéification qui 

comprend les processus de séchage, de décomposition, de combustion et de gazéification. 

La composition du gaz de synthèse obtenue par simulation est de 55,9 % en moles de H2, 

24,0 % en moles de CO, 19,8 % en moles de C02 et 0,3 % en moles de CH4. Les résultats 

du gaz de synthèse simulé sont en bon accord avec les résultats expérimentaux. Deux 

applications de gaz de synthèse sont considérées, l'alimentation de piles à combustible et 

la synthèse de méthanol. Des études ont montré que le gaz de synthèse produit à partir 

d'huile de pyrolyse à haute température avec une faible teneur en humidité dans l'huile de 

pyrolyse est bénéfique pour les applications de piles à combustible. L'oxygène et l'air ne 

devraient pas être utilisés dans la gazéification, ce qui diminuerait la valeur d'enthalpie du 

gaz de synthèse. D'autre part, le gaz de synthèse produit à une température appropriée 

d'environ 1000c C avec une teneur en humidité de l'huile de pyrolyse sélectionnée à 40% 

est bénéfique pour la production de combustible. Deuxièmement, sur la base des résultats 

d'une étude précédente, nous avons élargi l'application du gaz de synthèse dans la synthèse 

des biocarburants. Un modèle Aspen plus a été développé pour simuler la production de 

méthanol. Le modèle comprend la gazéification, l'épuration du gaz de synthèse et la 

synthèse du méthanol. À partir de la simulation, nous avons trouvé que le rendement 

maximum de méthanol est d ' approximativement 8,04 kmol/1000kg (méthanol/huile de 

pyrolyse). L'ensemble du processus comprend la gazéification, le procédé Rectisol® et la 

synthèse du méthanol. Les simulations de la gazéification, du Rectisol® et de la synthèse 

du méthanol ont toutes été validées par des résultats expérimentaux provenant de la 

littérature. Nos travaux montrent que l'augmentation de la température de gazéification de 

400 oC à 600 oC entraîne une valeur stoechiométrique (SN, de l' acronyme anglais 

stoichiometric number) plus élevée du gaz de synthèse. L'augmentation de la teneur en 

humidité de l'huile de pyrolyse de 10 à 30 % entraîne une augmentation de la valeur SN. 

Le Rectisol® opéré à -20 oC et 40 bar conduit à une valeur SN appropriée et à un 
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rendement en méthanol plus élevé. Le réacteur de synthèse du méthanol fonctionnant à 

250 oC et 50 bars représente un choix potentiel optimal. Enfin, un modèle simulant la 

production de méthanol par différentes ressources de biomasse est étudié à l'aide du 

logiciel de simulation Aspen plus. Le modèle inclut la gazéification, le post-traitement du 

gaz de synthèse, la synthèse du méthanol avec un système de recyclage et la purification 

du méthanol. Cette simulation est similaire au processus réel de synthèse du méthanol. 

Comme ce projet de recherche est destiné à fournir des indications sur les applications 

industrielles potentielles, nous avons étendu la portée de l'étude à deux matières premières 

supplémentaires : biomasse de pin et biochar. Nous avons effectué une analyse technico­

économique de ces trois (la biomasse initiale plus les deux supplémentaires) matières 

premières afin de déterminer si l'utilisation de l'huile de pyrolyse pour produire du 

méthanol est commercialement compétitive. La composition du gaz de synthèse produit 

par gazéification ainsi que le rendement en méthanol sont obtenus à partir des résultats du 

modèle. Les rendements en méthanol de la biomasse, du biochar et de l'huile de pyrolyse 

sont respectivement de 507,3 kg, 578,2 kg et 283,1 kg. L'étude a démontré que le méthanol 

produit à partir de biochar semble être l'option la plus prometteuse. En revanche, l'huile 

de pyrolyse est difficilement envisageable. Quel que soit le projet basé sur la biomasse, le 

biochar et l'huile de pyrolyse, il est difficile de réaliser des bénéfices économiques lorsque 

la capacité de l'usine est inférieure à 1000 tonnes par jour (TPD). L'analyse de sensibilité 

a montré que le prix du bio-méthanol demeure le facteur le plus important. Pour le biochar, 

lorsque le prix du bio-méthanol est de 1100$/tonne, les bénéfices économiques peuvent 

être réalisés à l'échelle minimale d'une usine de 1000 TPD. 
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Chapter 1 - Introduction 

Nowadays, energy consumption increases drastically in the world, especially in 

developing countries, such as China, India, and Cuba. The annual energy consumption is 

about 14000 Mtoe (Million tons of oil equivalent), 80-85% ofwhich is supplied by fossil 

fuels [1]. Thus, the renewable resources only account for a small proportion of global 

energy consumption. The term renewable energy is used to refer to energy that, at least on 

a human timeline, is naturally renewed to the point of being considered as practically 

inexhaustible and also available in large quantities. There are five main types ofrenewable 

energy: solar, wind, hydro, biomass, and geothermal. Their common characteristic is that 

they produce little or no polluting emissions during the exploitation phase, thus helping to 

combat the greenhouse effect and global warming [2]. In contrast, gasoline, coal, natural 

gas, diesel, plastics, and other products that come from fossil fuels are not renewable and 

emit several pollutants into the atmosphere [3]. The increase in the global energy 

consumption has led to an alarming rise in emissions of C02, NOx and SOx into the 

environment [4]. The greenhouse gases (GHG) emissions from fossil fuels have a 

dominant influence on the atmospheric C02 concentration that results in rising global 

temperatures and sea levels. Furthermore, C02 emissions from fuel combustion grew 

rapidly in the past decades. According to the International Energy Outlook, world energy­

related C02 emissions will increase from 30.2 billion metric tons in 2008 to 43.2 billion 

metric tons in 2035 [5]. 

In Canada, Bliss Baker, president of the Global Renewable Fuels Alliance (GRF A), called 

for a climate agreement at the 21 st Conference of the Parties (COP 21) to take action to 

significantly reduce carbon emissions from the transportation sector and incorporate 

increased percentages ofbiofuels blending as part oftheir national plans. Baker noted that 

the transportation sector produces about 25-30% of the world's greenhouse gas (GHG) 

emissions. Therefore, low-carbon transport fuel alternatives to crude oil, su ch as ethanol , 

are a co st-effective and immediately available option for countries to adopt. Biofuels 

represent a significant step in the right direction that governments can take substantial 

actions to address climate change coming out ofCOP 21 [6]. 
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In order to meet the rapidly increasing global energy demand while respecting new 

environmental challenges, the use of renewable and sustainable energies (e.g. solar, wind 

and biomass) appear to be an elegant, economic, and viable solution. 

Renewable energy sources, such as photovoltaic, wind, solar or small-scale hydro energy, 

provide an alternative to electricity generation in remote areas [7] . It creates a new 

pathway of energy system for remote communities, where the cost of grid extension is 

expensive and the price for fuel transportation increases drastically with the remoteness 

of the location. The widely used term "Hybrid Energy System" (HES) describes an energy 

system, which combines renewable and conventional energy sources. The systems are 

known as Integrated Renewable Energy Systems (IRES) [8]. Numerous hybrid energy 

systems have been installed in many countries over the last two decades, resulting in the 

development of systems that can compete with conventional, fuel-based remote area 

power supplies. Hoicka and Rowlands [9] have indicated that the complementary nature 

of solar and wind resources is a potential advanced option for the Integration of renewable 

energy into Ontario power system. Thomaidis et al [10] have shown that the 

complementarity of solar and wind resources can improve the reliability of the power 

system in the Iberian Peninsula. However, the IRES shortcomings limit them from being 

widely used in ail regions of the world. The initial co st of purchasing an IRES system is 

fairly high, the IRES system is influenced by weather and terrain, and cloudy and rainy 

days have a noticeable effect on this energy system. Besides that, the energy produced by 

an IRES system should be used immediately or it needs to be stored in a large battery, 

which also increases the co st and limits IRES applications [Il]. 

Thus, biofuels are now seen as a credible alternative to fossil fuels . Biofuels are liquid or 

gaseous fuels produced from biomass. Two of the most common biofuels are ethanol and 

biodiesel. Indeed, biofuels can be considered as a renewable energy source since they 

are derived from biomass which is renewable. Moreover, their carbon balance is neutral 

and sometimes even negative, as the C02 emissions caused by their combustion are offset 

by the C02 absorbed upstream by the cultivated biomass [3]. Biofuels are often also called 

renewable biofuels of simply renewable fuels . For practical reasons, we will use 

"biofuels" as it is the most corn mon term. 
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There is a worldwide interest for using biomass as a friendly method for hydrogen-rich 

gas production, which also has a potential to decrease C02 emissions [12] . Using biomass 

can mitigate the carbon dioxide concentration in the atmosphere, meaning that the amount 

of carbon dioxide released by biomass combustion is the same as the one absorbed through 

plant photosynthesis. However, about 95% of worldwide hydrogen production cornes 

from catalytic Steam Methane Reforming (SMR) of natural gas. Using natural gas 

generates roughly 30 million tons per year of carbon dioxide [13]. Natural gas remains a 

cheap source of hydrogen. There is an increasing interest in replacing it with renewable 

sources ofhydrogen to reduce greenhouse gases emissions and mitigate the environmental 

impacts. Therefore, the industry is trying to explore renewable sources of hydrogen. 

Producing hydrogen-rich gases from biomass is currently one of the other potentially 

effective methods that would greatly reduce the amount of C02 release since the carbon 

is absorbed from the atmosphere and recycled by growing into biomass through 

photosynthetic reactions [14, 15]. 

Even though hydrogen is considered as a c1ean and efficient fuel, it needs nevertheless 

costly high-pressure infrastructures for its storage and transportation since it is a volatile 

gas. Moreover, hydrogen is an inflammable gas, which involves security risks during use, 

storage and transportation. Besides, a large amount of energy is consumed to pro duce 

hydrogen [16]. On the contrary, methanol is an energy-dense and reasonably stable liquid 

under normal conditions. It is considered as a potential alternative fuel that can be used as 

a gasoline blend for combustion engines or fuel cell vehicles. In addition, methanol serves 

a variety offunctions as a feedstock for many chemicals in the chemical industry, such as 

methylamines, methyl halides and methyl ethers [17]. Several advantages of methanol, 

such as higher boiling points, lower production and improved safety make it can be widely 

util ized in the engines and fuel cells [18]. 

From a green energy transition perspective, Canada is an excellent candidate. Indeed, as 

shown in Figure 1.1, this country has significant natural resources and the second 1argest 

forest area in the wor1d with 347 million hectares (9% of the world's forest). Considering 

only the province of Quebec, we arrive at an area of 76 million hectares (i.e. 18.92% of 

the Canadian forest and 2% of the world's forest area) [19] . 
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Figure 1.1 Global forest distribution [20] 
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Chapter 2 -Literature review 

Lignocellulosic biomass is the most abundant organic material on earth and has the 

greatest potential as renewable feedstock to produce fuel , heat, and electricity [21]. 

Biomass consists mainly of cellulose, hemicellulose, and lignin polymers, other 

components are minerais, proteins, starch, nucleic acids, oils, and resins [22]. The content 

of cellulose in biomass ranges from 40 to 60 wt.%; lignin being the second largest 

component of biomass, accounting for 18 to 40 wt.%. Hemicellulose accounts for 20 to 

40 wt.% of the biomass [23]. In recent years, due to the steady depletion of traditional 

fossil fuels but mainly due to growing concerns about environmental pollution and c1imate 

change, lignocellulosic biomass is becoming popular as an alternative solution [24] . In a 

biorefinery, almost all the types of biomass feedstocks can be converted into energy 

through applied specific conversion technologies. Through biological, chemical or 

thermochemical processes, the biomass is converted to its elementary components, which 

will then be used to produce molecules with high added value. Compared to biological 

processes, thermochemical treatments present several advantages in terms of treatment 

time and product yields. Among the thermochemical processes, gasification and pyrolysis 

have been extensively studied because these technologies have reached a certain level of 

maturity and are deployed in several sectors of industry, which allows today 

lignocellulosic biomass to be considered to be used on a large industrial scale. 

2.1 Biorefinery concept 

A biorefinery is a faci lity with integrated processes that aim at converting in an efficient, 

sustainable and flexible manner, biomass feedstock into multiple marketable bioproducts, 

biofuels, and energy (heat and power) [25]. The biorefinery (see Figure 2.1) includes a 

wide range of processes that convert biomass into products, which can then be used as 

value-added products, e.g. biofuels and chemicals. 
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Figure 2.1 Scheme of biorefinery concept [26] 
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Several different biorefinery pathways exist, including thermochemical, biochemical, 

physical, and chemical processes [27] , as shown in Figure 2.2. 
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Chemical processes in a biorefinery aim at producing high added-value products from 

reactants. The typical chemical pathway in biomass conversion is hydrolysis. Hydrolysis 

uses dilute or concentrated acid, alkaline or enzymes to depolymerize the raw biomass 

into sugars or other biomass derived chemicals [29]. Acid hydrolysis with dilute or 

concentrated acids could be used to generate sugar monomers from Iignocellulosic 
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biomass [30]. The highest glucose yields from concentrated acid hydrolysis reach up to 

90% [31]. Another kind of hydrolysis is the alkaline hydrolysis, even though it is a fast 

reaction process, it can lead to degradation and formation of lactic acid [32]. For this 

reason, alkaline hydrolysis has been considered more suitable as a pre-treatment for 

biomass to perform subsequent enzymatic hydrolysis. 

Biochemical processes operate commonly at lower temperatures and slower reaction rates 

than thermochemical processes. The common types of biochemical processes are 

fermentation and anaerobic digestion. The fermentation uses microorganisms and 

enzymes to con vert biomass into recoverable products, usually alcohols or organic acids, 

including ethanol which are the main products obtained from fermentation [33]. The 

enzymatic hydrolysis requires pre-treatment to separate the lignocellulosic biomass into 

cellulose, hemicellulose, and lignin [14] . Several pre-treatment processes are used to 

remove the inhibitory substances, such as acid-based, hydrothermal, mi Id alkaline, 

oxidative, and chemical pulping processes [34] . Cellulose crystallinity, lignin and 

hemicellulose contribute to the resistance ofbiomass to enzymatic hydrolysis. So, biomass 

pre-treatment such as hot water and ammonia fibre expansion have proven necessary [35 , 

36]. Unfortunately, the co st of the enzyme remains currently an important bottleneck for 

such processes. Other concems include slow reaction rates and low thermal stability of 

enzymes, which drastically reduces profitability on an industrial scale. 

Anaerobic digestion involves the bacterial breakdown ofbiodegradable organic materials 

in the absence of oxygen over a temperature range from about 30 to 65°C. The main 

product of this process is biogas (methane, C02 and other impurities), which can be 

upgraded up to above 97% methane content and used as renewable natural gas (RNG) 

[37]. But the ·anaerobic digestion needs a pre-processing of the input material in order to 

ensure smooth process operations. 

Compared to other processes, thermochemical processes are characterized by higher 

temperatures and faster conversion rates. They use high temperature, reactants and 

pressure to break biomass down into smaller parts which can be converted into biofuels, 

chemicals, heat and power. The kind of products generated by thermochemical processes 

depend on parameters such as temperature, pressure, feed rate, residence time, biomass 
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particle size, and any quenching pro cesses [38J . The low requirement of physical and 

chemical properties of the feedstock is the reason for the popularity ofthe thermochemical 

pathway. Other advantage ofusing a thermochemical process compared to other processes 

is that it is easier to break down the lignocellulosic material in a controlled manner to 

produce high concentrations of the desired intermediate products. In addition, 

thermochemical processes can be allowed to be carried out on a large scale [39]. 

Considering that Canada has abundant biomass resources [19J, the thermochemical 

process becomes, for Canada, a most interesting pathway to pro duce biofuels. 

2.2 Thermochemical processes 

Thermochemical processing is the use of heat to facilitate the chemical conversion of 

biomass into energy and chemical products. The thermochemical conversion process is 

complex. The components, configurations and operating conditions used are somehow 

typical and comparable to petroleum refining processes [40J. Biomass can be converted 

into syngas by thermochemical conversion. Thermochemical processes consist typically 

ofthree main processes for converting biomass into energy and chemicals, i.e. combustion 

(complete oxidation), gasification (partial oxidation), and pyrolysis (thermal degradation 

without oxygen) [41]. Other thermochemical conversions are the torrefaction and 

hydrothermal liquefaction. These categories are classified according to the product and 

temperature range. The main pathways for the thermochemical conversion are represented 

in Figure 2.3. 
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Figure 2.3 The overall scheme of the thermochemical conversion process [38] 
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The gasification con verts biomass at high temperature with low oxygen content to produce 

syngas, which is a mixture of H2, CO, C02 and CH4 [42]. Through post-treatment, the 

syngas then can be directly used as biofuels or as a chemical platform to produce fuels 

such as Fischer-Tropsch (FT) fuels, dimethyl ether, ethanol, isobutane... or chemicals 

such as aJcohols, organic acids, ammonia, and so on. Another thermochemical method is 

pyrolysis, which utilizes intermediate temperatures (300- 600°C) without oxygen to 

convert the solid feedstock into liquid pyrolysis oil (or bio-oil), solid biochar and gases 

[43]. Combustion is the most common pathway for biomass conversion, which involves 

buming biomass in an oxygen-rich environment, mainly for heat and power applications 

[44]. 

2.2.1 Pyrolysis 

Pyrolysis is the thermal decomposition of organic matter occurring in the absence of 

oxygen. It is an endothermic process that can be balanced energetically when a small 

percentage of oxygen is used. Biomass is thus transformed into liquid oil (bio-oil), 

pyrolysis char (biochar) and non-condensable gas [45-47]. Pyrolysis of organics is a 

complex process since it consists of simultaneous and successive reactions. In the process, 

the thermal decomposition starts at 350 oC - 550 oC and go es up to 700 oC - 800 oC in 

the absence of oxygen [48]. The macromolecules are cracked into smaller molecules, e.g. 

gases, condensable vapours (tars and oils) and solid biochar. Pyrolysis concentrates most 

ofthe chemicals and energy into a denser liquid oil or biochar [19, 20, 23, 24] . Although 

the liquids are not "oils" per se, there are commonly referred as bio-oil or pyrolysis oil 

that can be considered as highly oxygenated "crude oils". Pyrolysis has the advantage of 

converting biomass into an intermediate energy carrier that can be stored and transported 

economically. Pyrolysis oil has sorne advantages, compared to solid biomass. First (1), in 

comparison with the solid fuels, the pyrolysis oil con tains a small amount of sulfur, 

nitrogen and ash. Therefore, its combustion produces less harmful gas emissions such as 

nitrogen oxides (NOx) and sulfur dioxide (S02), compared to conventional fossil fuels 

[49]. Second (2), the volumetric energy density is increased about 5 times more than the 

"bulk" biomass [49], as shown in Figure 2.4. It makes pyrolysis oil cheaper to transport 

over long distances. Third (3), pyrolysis oil can be stored in tanks, resists weil against 
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biodegradation and cannot be ignited at ambient temperature. Fourth (4), liquids are easier 

to process especially wh en pressurized processes are considered. This method gives the 

opportunity to take advantage of the biomass when large-scale plant is considered. 

15 - lO % 1i0 - 70" 

Ptopon#ofI of sollds ln Iéna ftMIs. AM .. lNwe lM 
.,.., NMNon 1M3}. 

Figure 2.4 Volumetrie energy density depending on the forest biomass condition 

[50] 

2.2.1.1 Pyrolysis proeess 

Pyrolysis can be described as the thermal decomposition of an organic compound to 

produce solid, liquid (from vapour condensation), and gas products. Typically, the 

outcome and yield ofproducts from biomass pyrolysis depend on the operating conditions: 

biochar production is favored by low temperatures, slow heating rates, and long residence 

time; pyrolysis oil production is favored by low or moderate temperatures, high heating 

rates, and short gas residence times; gas production is favored by high-temperatures, low 

heating rates, and long gas residence times [51]. Examples of product distributions 

obtained from fast and slow pyrolysis processes are summarized in the following Table 

2.1 [46] [52]. 
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Table 2.1 Typical product yields obtained from fast and slow pyrolysis of wood 

Process Conditions Product yield (%) 

Liquid Char Gas 

Fast pyrolysis Moderate temperature and 75 12 13 

short residence time « 5 

sec) 

Slow pyrolysis Low temperature and long 30 35 35 

residence time (5-30 min) 

(1) Slow pyrolysis is the most common way to produce biochar at slow heating rate, 

relatively low temperatures (from 300 to 600 OC), and long residence times. Slow 

pyrolysis is recommended for solid production (20- 40% of charcoal). Figure 2.5 presents 

a slow pyrolysis reactor for biochar product. 

lnertgas 
(~) 

Pyrolysil Re.ctor 
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Figure 2.5 Schematic diagram of a slow pyrolysis reactor [53] 

(2) Fast pyrolysis is the thermal decomposition of biomass to liquid oil as the main 

product. The process in volves faster heating rates and much shorter residence times than 
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slow pyrolysis. Under proper conditions, the pyrolysis oil yield can reach as much as 75% 

[23]. A fluidized bed reactor for pyrolysis oil production is presented in Figure 2.6. 
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Figure 2.6 Schematic diagram of a fast pyrolysis fluidized-bed reactor [46] 

2.2.1.2 Pyrolysis products properties 

(a) Pyrolysis oil 

Pyrolysis oil is a complex compound of numerous oxygenated hydrocarbons produced, 

for example, from lignocellulosic biomass. It includes carboxylic acids, sugars, alcohols, 

aldehydes, ketones, esters, furans, and aromatics, and the water content of pyrolysis oil 

generally ranges between 15 and 25 wt.% (the moisture content varies depending on the 

processes used to produce the pyrolysis oil) [54, 55]. Example of the chemical 

composition of pyrolysis oil is shown in Figure 2.7 [56]. The composition of pyrolysis 

oil depends on the type of biomass feedstock, alkali content, reactor type, pyrolysis 

temperature, residence time, efficiency of char removal, etc. [45, 57, 58]. The pyrolysis 

oil can be separated into water-insoluble and aqueous fractions by water addition [59]. 
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The water-insoluble fraction is deemed as more suitable for upgrading because it contains 

less oxygenated molecules and is compatible with crude oil. It is also considered as a high­

value fraction due to its higher energy content compared to other fractions of the pyrolysis 

oil [60]. The aqueous fraction is a light brown liquid composed of water and mostly 

hydrophilic low molecular weight oxygenated compounds such as carboxylic acids, 

carbohydrates, aldehydes, ketones, and alcohols. 

~ ___ O% • water 
• Other uncharacterized compounds 
• Pyrolityc Iignin 
• Acetic Acid 6% 

• Ketones 
• Dimethoxy Phenols 
• Levoglucosan 
• Monomethoxy Phenols 
• solids 
• Furans 
• Aditional Phenolic Compounds 

Figure 2.7 Chemical compounds detected in pyrolysis oïl [56] 

Pyrolysis oil has a similar appearance to heavy oil and is also considered as energy and as 

a hydrogen carrier. However, its properties (Table 2.2), such as the lower heating value, 

high oxygen content, volatility, high viscosity, acidity, chemical instability, and 

incompatibility with respect to standard petroleum fuels, li mit the pyrolysis oil potential 

applications. Due to its chemical instability, the pyrolysis oil is subjected to aging, which 

leads to a decrease in hydrogen content when stored for a long time [61]. During storage, 

the pyrolysis oil becomes more viscous due to chemical and physical changes: many 

polymerization reactions occur, and volatiles are emitted with aging. Sorne studies found 

that the reactions and aging effects occur quite quickly, especially at higher temperatures 

but the effects are lessened if the pyrolysis oil is stored at low temperature [62]. To address 

the barri ers of using bio-oil as a fuel, several approaches, e.g. increasing pH, filtration, 

and/or solvent addition, to modify and improve its quality have been explored [63]. The 

pyrolytic oil characteristics seriously limit its applications [64]. The high level of 

oxygenation of pyrolysis oil makes them more reactive wh en compared to traditional 

feedstock [65, 66]. Sorne of the main limitations of pyrolysis oil utilization include: high 

production cost, incompatibility with conventional fuels, and the lack of defined standards 
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(quality, transportation and handling) [45, 67]. However, pyrolysis oil is still being 

considered for use as energy carrier due to its high enthalpy value. Canadian "fast 

pyrolysis" companies are in a stage of using biomass through a biorefinery approach. The 

pyrolysis oil can be directiy used as an energy source. Even so, commercial production is 

still in its infancy. However, pyrolysis oil has a significant advantage over sorne other 

biomass fuels in that, once it is produced, it can be exploited to extract value-added 

products or even transport the liquid to a central processing plant for conversion into 

energy [68]. 

Table 2.2 Typical properties ofwood pyrolysis oH, heavy fuel oH, diesel and gasoline 

[69-71] 

Physical pro pert y Pyrolysis oH Heavy fuel oH Diesel Gasoline 

Moisture content 
15-30 0.1 

(wt.%) 
- -

pH 2.5 - - -
Elemental composition (wt. %) 

C 54-58 85 86 85 
H 5.5-7.0 11.0 12.9 15.0 
0 35-40 1.0 - -
N 0-0.2 0.3 0.1 -

Ash 0-0.2 0.1 - -
LHV(MJlkg) 16-19 40 42 42 

17-100 (medium 
Viscosity at 50°C bio-oil) 

180 2.9 OA 
(cP) 100-600 (heavy 

bio-oil) 
Solids (wt.%) 0.2-1 1 - -

Distillation residue 
Up to 50 1 

(wt.%) 
- -

(b) Biochar 

In parallel with oil , charcoal-rich material is also produced by pyrolysis. This material is 

often named "biochar" and have a high ash content and porosity [72, 73] . Biochar 

produced from slow pyrolysis treatment of waste biomass is used for solid fuel 

applications [74]. However, biochar poses sorne difficulties, such as incompatibility with 

automobile engines and higher ash pollutants [37- 39]. Nevertheless, biochar has several 

merits, inc\uding high carbon content, high stability, high porosity, and high surface area, 
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which makes it an important product of pyrolysis [75]. The reaction temperature and raw 

materials are two main factors affecting the properties of biochar [76]. The increase of 

pyrolysis tempe ratures willlead to the increase of surface area ofbiochar, which facilitates 

higher sorption of chemicals such as pesticides [77]. The biochar elemental distribution 

has been studied in sorne research studies (Table 2.3). Approximately 70 percent of its 

composition is carbon, the remaining percentage consists of nitrogen, hydrogen and 

oxygen, among other elements. The biochar properties depend on several parameters, such 

as feedstock, process, residence time, heating rate, etc. [78]. 

Table 2.3 Biochar characteristics based on biomass source 

Biomass C H N 0 Ash Calorific 
source (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) value 

(MJ/kg) 
Switchgrass [79] 60.7 4.0 0.8 8.7 25.9 19.4 
Wheat straw [80] 71.1 3.0 0.3 25.6 - 28.1 
Pine wood r81] 83.5 3.0 0.3 8.3 2.3 31.7 

Mixed sawdust r821 83.1 3.7 0.2 13.0 - 30.8 

(c) Pyrolysis gas 

In general, pyrolysis gas is not a desired product. Nevertheless, it is an inevitable product 

during the pyrolysis process. The pyrolysis gas, also named "syngas", is composed of 

C02, CO and a small amount of NOX, SOx, H2S, H2, aldehydes, ketones, volatile 

carboxylic acids, and gaseous hydrocarbons. The major gas components are C02 and CO 

[83]. Pyrolysis gases have relatively low average calorific values, which are about 1.3 

MJ/kg [84] and are produced in small volumes, difficulty to valorize. 

2.2.1.3 Pyrolysis product applications 

As described above, pyrolysis oil, biochar and syngas are produced from biomass through 

pyrolysis. Due to their specific properties, these three products can be used for many 

different applications, ranging from the synthesis of chemica! reagents to soi! 

improvement and energy production. 

(a) Pyro!ysis oi! 
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Pyrolysis oil is composed of a complex mixture of more than 300 oxygenate compounds. 

However, numerous compounds and properties are close to crude oil, which makes 

pyrolysis oil useable in chemical and thermal applications [85]. Considering pyrolysis oil 

properties, multiple utilizations may be envisaged such as shown in Figure 2.7. In terms 

of thermal applications, pyrolysis oil can be used as a substitute to fossil fuels to generate 

heat, electricity, and chemicals, which can then be used in boiler, fumace, turbine, diesel 

engine, or power stations. In terms of chemical applications, upgrading pyrolysis oil to a 

transportation fuel is feasible. Transportation fuels such as methanol or Fischer-Tropsch 

products can be derived from pyrolysis oil by gasification and synthesis gas processes. 

Moreover, a wide range of chemicals can be extracted from pyrolysis oil, such as 

aldehydes, phenols, and L- (-)-glucose. 

(b) Biochar 

1 hell1lal 

l'ractions 

Liquid smo"c 
Adhesives 
Fcrtilizers 

Figure 2.8 Various applications of pyrolysis oïl [86] 

The applications of biochar (Figure 2.8) include, for example, soil enhancer, bulking 

agent for composting, activated carbon, remediation ofwater and soil, energy, and carbon 

sequestration [87-90]. Biochar can also be used as an efficient sorbent for various organic 

and inorganic contaminants, due to its significant specific surface area and special 

structure [88]. Biochar has also positive effects on overall plant growth, since its basic 
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physical and chemical characteristics su ch as pH, porosity and metal adsorption property, 

enable the slow release ofnutrients and improve the soil quality. Such an application can 

potentially reduce the requirements of conventional dosage of fertilizers [91]. It is worth 

noting that the higher heating value of biochar produced from pine wood reach up to 31 .7 

MJ/kg, which makes that biochar can be used as a fuel (see Table 2.3). 
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(c) Biogas 

Most of the time, pyrolysis gases are recycled in the pyrolysis process in order to provide 

heat [46]. The residual heat coming from the flue gas (bumed syngas) can be used to 

preheat the biomass and decreases consequently the energy needs for biomass drying. 

2.2.2 Gasification 

Gasification is the process of converting carbonaceous materials into carbon monoxide, 

hydrogen, and carbon dioxide. That is achieved by making the feedstock react with a 

controlled amount of oxygen and/or steam at high temperature without combustion. 

During the gasification process, high temperatures break down feedstock into small 

molecules including H2, CO, C02, CH4 and water along with ashes, char, tars, as weil as 

sorne amount ofH2S [93]. By this way, gasification process is able to separate pollutants 

and inorganic contents from the clean gas. The operating temperatures of gasification units 

generally range from 750 oC to 1100 oC [94], and sometimes even higher like in plasma 

gasification. 

Figure 2.9 shows a schematic diagram of the gasification process reactions in a fixed bed 

gasifier (Updraft gasifier: air/stream is fed from bottom to top, while produced syngas 

leaves from gasifier top). Initially, feedstock, for example coal, is fed into gasifier top 

where coal is dried and heated up (zone 4). After that, the coal is devolatilized in a separate 

zone (zone 1). The first reaction, which occurs in zone 1, is carbon combustion to produce 

carbon dioxide and thus provide the necessary heat for the endothermic gasification 

reaction that occurs in the upper zones 2 and 3. In this section, charcoal is bumed and 

transformed into ashes. Combustion gases and ste am flow to the next zones 2 and 3, 

pro vi ding char to the lower combustion zone where syngas, such as H2, CO and C02, is 

produced. 
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Figure 2.10 Schematic reaction of a gasification in a fixed bed [95] 
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During gasification, several physicochemical processes take place at different temperature 

ranges [95] (see Table 2.4). 

Table 2.4 Physicochemical processes at each temperature range 

Process Reaction Temperature 
1 Drying > 150 oC 

2 Pyrolysis 150~700 oC 

3 Combustion 700~1500 oC 
4 Reduction 800~ 1100 oC 

Processes 1,2 and 4 are endothermic reactions that absorb heat provided by the exothermic 

combustion and often by an external heating system. In the drying process, the moisture 

and the light fraction compounds are evaporated at low temperature (above 150 OC). The 

water vapour, organic liquids and non-condensable gases (such as CO, C02, H2, and CH4) 
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are formed and separated from the solid carbon or oil in the pyrolysis process part of the 

gasification. The combustion process, an exothermic reaction, oxidizes fuel constituents 

while the gasification process reducing them to combustible gases is an endothermic 

reaction. In reduction processes, carbon deposition (char) is formed at high temperatures. 

Hydrogen-rich gas production through gasification from biomass resource such as 

industrial, agricultural, forestry waste have received much attention [96]. Considering the 

objectives of decrease in green house gases (OHO) emissions from fossil fuels 

consumption, biomass gasification for energy and fuels production is considered as one 

of the potential options to tackle this issue. 

2.2.3 Combustion 

Combustion is the simple method to con vert fuel into heat with oxygen in air. Since 

biomass are primarily composed of carbon, hydrogen and oxygen, the main products from 

combustion are carbon dioxide and water. Biomass combustion systems, based on fumace 

type and operation conditions can produce hot gas, air and steam very efficiently, typically 

recovering 65~90% of the energy contained in the fuel [97]. 

2.3 Gas c1eaning up and conditioning 

As described above, gasification is a process dedicated to the production of syngas (mainly 

H2, CO, C02 and CH4). However, depending on biomass used, the mixture may contain 

impurities that will need to be removed in order to allow downstream operations, often 

using catalysts that can be poisoned by such impurities, and obtain high purity gases. 

These impurities can be solid particles (char and tars), organic molecules (sulfur, 

hydrocarbons, ammonia, halide, C02) and even metals [98]. 

Raw syngas c1eanup is an essential process prior to syngas downstream application. In 

order to satisfy the operating conditions of downstream pro cesses such as Fischer­

Tropsch, methanol synthesis and fuel cell (see Table 2.5), a series of c1eaning steps are 

applied to ensure the syngas quality. On the other hand, in order to enlarge the syngas 

application in the biofuel synthesis, its composition must be adjusted to obtain the 
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appropriate H2/CO molar ratio, for example using a Water Gas Shift (WGS) process. To 

ensure a deep removal of impurities, a series of gas post-treatment processes based on 

chemical and physical rnethods are applied. 

Table 2.5 Contaminant specifications for Fischer-Tropsch, methanol synthesis and 
fuel cell [99, 100] 

Process Contaminants Requirements 
Sulfur < 60 ppb 

Fischer-Tropsch Halides < 10 ppb 
synthesis < 10 ppmv NH3 

Nitrogen < 0.2 ppmv NOx 
< 10 ppb HCN 

Sulfur (not COS) <0.5 ppmv 
Methanol synthesis Halides < 0.001 pprnv 

Fe and Ni < 0.005 ppmv 
Sulfur < 1QQmv 

Solid oxide fuel cell Nitrogen -
Chlorine < 10 ppmv 

*ppb part per billion 
*ppmv parts per million by volume 

2.3.1 Particulates removal 

The removal of solid particles and char contained in the syngas stream is regarded as the 

primary gas cleaning step. This first purification is typically performed by cyclones or 

filters at the outlet of the gasifier. This type of technology is widely applied in industry 

due to its low co st and significant level of performance for removing solid particles. 

Additionally, ceramic or candIe filters can be used to improve the particulate removal 

from syngas [101]. 

2.3.2 Tar removal 

The impurities include large molecular weight hydrocarbons, which are known as tars 

[102]. Tar deposits are accumulated in filters, pipes, engines, and other surfaces where 

they reduce the performance of downstream reactions. The content of these undesirable 

contaminants can be reduced by controlling the operating conditions such as temperature, 

biomass heating rate, reaction time, etc., appropriate reactor equipment design, and 

suitable gas conditioning systems [103]. For operation conditions, higher temperatures 
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can reduce the generation of tar during the gasification process. Recently, catalytic 

removal has been widely used due to its high removal efficiency and good selectivity. 

Two types of catalysts are designed for tar removal: (1) natural minerai catalyst, such as 

dolomite, olivine, clay mineraI, and iron ore, (2) synthetic catalysts, such as char, alkali 

metal carbonate, activated alumina, and transition metal-based catalyst [104]. For gas 

conditioning systems, tars can be destroyed by addition of steam and oxygen. For 

appropriate reactor equipment, sorne gas cleaning systems may be used to drastically 

reduce the tar and particulate components of the product stream. It is usually carried out 

by filtration and scrubbing of the output gas [105] . 

2.3.3 Sulfur removal 

Sulfur is a know poison for the majority of catalysts and should therefore be eliminated. 

It is present in syngas as hydrogen sulfide (H2S) or sulfur dioxide (S02). Hydrogen sulfide 

content in raw biomass-derived syngas depends on the type of feedstocks, ranging from 

100 ~ 200 ppmv [106]. H2S and S02 contents in the syngas can be high, especially when 

the syngas is derived from coal, heavy oil, biomass or waste materials. Hydrogen sulfide 

is a reactive compound and a high concentration in the natural gas could poison 

downstream catalysts and thus limit the syngas applications [107] . Therefore, the removal 

of sulfur is necessary to protect catalysts from poisoning and prote ct the turbines and pipes 

used in electricity generation from corrosion. 

To avoid the sulfur poisoning in downstream, conventional plants are equipped with 

desulfurizer units that rem ove H2S, S02 and COS (usually below 1 ppm) [108]. 

Conventional sulfur removal processes such as water scrubbing, amines scrubbing or zinc 

oxide sorption occur at low temperatures [109] . 

Amine scrubbing method is best suited for large-scale operations, with a decrease in H2S 

content below to 10 ppmv and 30 ppmv total sul fur [110]. As described by Lien and al., a 

simple water scrubbing column can be used to reduce the H2S content [111]. Their results 

demonstrated that the concentration of H2S in syngas decreased significantly with water 

level and increased with syngas flow rate, but the water scrubbing process can only be 

used on a sm ail scale [111] . Research in the last few decades have also been focused on 
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binary and temary oxides ofzinc [112], calcium [113] , manganese [114], and ceria [115]. 

For example, ZnO beds are used as a polishing step to reduce the sulfur concentration 

down to a level lower th an 0.01 ppm to meet the requirements for methanol and FT 

synthesis [116]. 

2.3.4 C02 removal. 

The syngas coming from the gasifier can contain a considerable amount of C02. The oil, 

gas and chemical industries have been separating C02 from gas streams for decades. In 

most cases the C02 is removed in order to me et the downstream product requirements 

[117] . C02 removal can be achieved through different processes such as chemical (amine) 

or physical (Selexol® or Rectisol®) absorption. 

The leading process for C02 capture is a chemical absorption, in which the solvent such 

as monoethanolamine (MEA), methyldiethanolamine (MDEA), and others amines or hot 

potassium carbonate can be considered as chemical absorption solvents [118]. The 

chemical solvents in such applications are less expensive than the physical method. 

However, the shortcomings of chemical pro cesses cannot be ignored. First (1), high 

energy consumption during the solvent regeneration; second (2), the need to use of 

inhibitors and resistant materials to prevent corrosion; third (3), a limitation due to the 

minimum size of actual plant being 800 tlday; fourth (4), the degradation of solvents in 

the presence of 0 2, SOx and other impurities such as particles and other chemicals (HCI, 

HF and Hg, .. . ) [119]. 

Physical absorption such as the Selexol® process is a mature technology which has been 

used in the refinery industry, natural gas sweetening (removal ofhydrogen sulphide) and 

syngas processing since the 1960s. The Selexol® process uses a mixture of different 

dimethyl ethers and polyethylene glycol, which provides a selective absorption of H2S, 

COS, mercaptans and C02 from a variety of natural and synthesis gas streams [119]. The 

disadvantage of the Selexol® process is that it requires high operating pressure when 

absorbing gas. Nowadays, the Rectisol® process is a better method for C02 removal. 

Indeed, compared to Selexol®, Rectisol® can operate at 10 oC and at pressures up to 0.5 

MPa which appears more advantageous for industrial applications [120] . Moreover, more 
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th an 98% of C02 and sulfur in the gas are removed. Methanol is used as a solvent in the 

Rectisol® process, since it's a better solvent to solubilize C02 than water, especially at 

low temperatures. The solubility of C02 in methanol is approximately four times higher 

than in water at ambient temperature, and more than eight times higher at temperatures 

below 273 K [121 , 122]. Therefore, methanol has been industrially used as a physical 

absorbent ofC02 in the Rectisol® method at 213~223 K [123]. 

2.3.5 Water gas shift 

Gasification of natural gas does not allow syngas composition to reach the H2/CO molar 

ratio of 2, as required for FT and methanol synthesis [124]. In order to reach a H2/CO 

molar ratio of 2, a Water Gas Shift (WGS) unit is usually required to increase the H2 

fraction in syngas [125]. The WGS reaction (Equation 2.1) is an industrial process 

typically coupled with steam methane reforming, which has been extensively studied 

[126-128]. It consists of converting the CO in the syngas into C02 and H2 by consuming 

steam (Equation 2.1), which is particularly interesting to counterbalance the H2/CO 

imbalance resulting from biomass gasification. The WGS reaction is typically performed 

by using two units, a high tempe rature shift reactor (350~450 OC), and a low temperature 

reactor (200~215 OC) [129]. 

(LlH300K = 41.21 kJ/mol) Equation 2.1 

In the low temperature shift reactor, the typical composition of commercial catalysts has 

been defined as 32- 33 % CuO, 34- 53 % ZnO, and 15- 33 % Ah03. The active catalytic 

species is CuO, while the ZnO and Ah03 structural supports have the key roles to prevent 

copper poisoning by sulfur and dispersion/pellet shrinkage, respectively. Low reaction 

temperatures must be maintained due to the susceptibility of copper to thermal sintering. 

These low temperatures also reduce the occurrence of side reactions [130]. 

In the high temperature shift reactor, the typical composition of commercial catalyst 

consists ofa mixture ofFe20 3, Cf203 and MgO. Here, the active catalytic species is Fe20 3, 

while chromium and MgO are used both to stabilize iron oxide and prevent sintering 

[131]. Other more noble metals su ch as Pt supported on ceria have been widely studied, 



54 

however they remain very expensive, which strongly limits their use on an industrial scale 

[132]. 

In the WGS process, the reactants must be desulfurized before they reach the catalyst 

reactor because most of the catalysts (e.g. CuO) are easily contaminated by sulfur. To 

circumvent this difficulty, much research has been carried out to develop new catalysts 

that are less sensitive to such type of poisoning and/or remain active when the reaction 

gas contains sulfur (e.g. H2S). Without being exhaustive, we can refer to products such as 

Iron cerium (Fe-Ce)-based [133-135] as weil as nickel molybdenum (Ni-Mo)-based 

catalysts [136]. Moreover, these catalysts and especially the Mo-based can be used over 

a wide range oftemperatures [137]. 

2.4 Methanol synthesis 

Methanol is considered as an alternative energy carrier (e.g. rocket fuel), a medium for 

the storage and transportation of hydrogen, and a starting building block for many 

chemicals (e.g. lacquers, paints, inks, antifreeze, dyes, plastics). In addition to its 

traditional use as solvent, methanol is used as a raw material for the synthesis of many 

chemical platform molecules. For example, its conversion into formaldehyde (about 35% 

of the world's methanol production) is used to manufacture plastics, synthetic resins, 

explosives and certain crease-resistant fabrics. It is also one of the precursors for the 

manufacture of acetic acid (9%), methyl tert-butyl ether (MTBE) (25%) or simply the 

manufacture of alcohols [138]. The remainder is used in the fuel and energy sector. For 

example, it can be blended with different grades of gasoline for existing automobiles and 

hybrid flexible vehic1es [139]. However, the last use remains limited because it can react 

with the aluminium in the tanks, forming methoxides capable of corroding the metal. 

Commercially, methanol is produced from natural gas or coal steam reforming, mainly 

containing CO and H2 along with a small amount of C02 [140]. The methanol synthesis 

process can be described by following equilibrium reactions: 

co + 2Hz ~ CH 3 0H (LlH300K = -90.77 kI/mol) 
COz + 3Hz~ CH 3 0H + HzO (LlH300K = -49.16 kI/mol) 

Equation 2.2 
Equation 2.3 
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It is necessary to take into account carbon dioxide, because the synthesis of methanol can 

occur through two different reactions (Equation 2.2) and (Equation 2.3). Carbon dioxide 

appears in one reaction (Equation 2.3) as one of the reactants. Moreover, carbon dioxide 

acts as a promoter of reaction and helps to main tain the activity of the catalyst [141]. In 

this research, Rozovsky used labelled CO, and then concluded that the C02 is a precursor 

of methanol [142] . This is confirmed by Chinchen et al. who also used labelled C02 [143] . 

The ideal gaseous composition for methanol synthesis reactor is expressed based on a 

stoichiometric number M [139], which is defined in the following Equation 2.4. The 

stoichiometric number M should ideally be equal to 2.1 [144]. 

M = n(H 2)-n(C0 2 ) 

n(CO)co+n(C02) 

Where n means molar fraction. 

Equation 2.4 

At the industrial scale, the purified syngas produced by SMR units usually contains the 

appropriate molar ratio of hydrogen to carbon monoxide. This mixture is then fed into a 

methanol synthesis reactor using a Cu/ZnO/ Ah03 catalyst at temperatures in the range of 

200~400 OC [139, 145]. The exothermic reaction implies that a sufficiently high pressure 

is desired to shift the equilibrium towards methanol production. Wang et al. [146] 

indicated that the incorporation of ZnO enhances the activities of Cu-based catalysts due 

to the improved synergic effect. Using alumina in the catalyst produces two unique 

properties: first, it delays and protects the active catalyst particles from agglomeration; 

secondly, it enhances carbon monoxide adsorption and activation [147]. In addition to 

alumina, oxides of Mn and Zr have been reported as good promoters for the Cu-based 

catalysts [148]. Nobel Pd/Ce02 catalyst allows a better syngas conversion and methanol 

selectivity, which has been reported as stable for 100 hours [149]. Deactivation of 

Pd/Ce02 catalysts during methanol synthesis reactions un der 30 ppm ofhydrogen sulfide 

gas was studied by Ma et al. Syngas conversion was performed at 240 oC, using a feed 

H2/CO molar ratio of syngas at a space velocity of 1000 h- I and a 3.0 MPa pressure. The 

catalyst used by Ma et al. showed a high sulfur tolerance [150]. 
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2.5 Fuel cells. 

Fuel cells directly convert the chemical energy of fuels into electricity and thermal energy, 

without any combustion. They require continuous flow of fuel, H2 being the most 

common, and oxygen to operate steadily. Due to their high efficiency and low 

environ mental impact, fuel cells have been extensively explored as a promlsmg 

technology for c1ean and efficient power generation for stationary and mobile 

applications. They provide an opportunity to develop thermodynamic systems that 

generate electricity on the basis of electrochemical reactions by consumption of reactants 

from external sources [151]. 

The power cycle based on gasification and Solid Oxide Fuel Cells (SOFC) is called the 

Integrated Gasification Fuel CeIl (lGFC) cycle. The IGFC cycle is similar to an integrated 

gasification combined cycle power plant, but the gas turbine power generation unit is 

replaced by a fuel ceIl power generation unit. SOFCs in the IGFC cycle can be operated 

to isolate a carbon dioxide-rich anodic exhaust stream, which efficiently captures carbon 

to address greenhouse gas emissions [152]. 

2.6 Aspen plus 

Aspen Plus is a weIl-known process software that integrates optimization, sensitivity 

analysis and economic evaluation tools. It is highly appreciated by researchers and 

industrialists for its ability to simulate chemical reactions and processes, from unit 

operations to complete chemical plants. Aspen plus is also able to perform many of the 

core calculations of chemical engineering, such as mass balance, energy balance, vapor­

liquid equilibrium, heat transfer, mass transfer, chemical kinetics, fractionation and 

pressure drop [153]. 

The advantage of Aspen Plus precise modeling ofthermodynamic properties has led to its 

widespread use in the chemical and petroleum industries for steady-state and dynamic 

simulation, process design, performance modelling and optimization. 
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The process model is the complete layout of the engineering system and includes the 

following steps: tlowsheet, chemical composition, operating conditions, and techno­

economic analysis (TEA). 

2.6.1 Flowsheet 

A process model tlowsheet encompasses the en tire system. The tlowsheet shows one or 

more inlet streams into the units (i. e. heat exchanger, compressor, reactor, distillation 

column, etc.) and throughout the process. The tlowsheet also defines the tlow rate and 

pathways of the various streams. 

2.6.2 Chemical Composition 

The process model specifies aIl the chemical components used in the system, from 

reactants to products. 

2.6.3 Operating conditions 

Ali unit operations in the process model are set un der specifie operating conditions (i.e. 

temperature, pressure, etc.). They are usually designed by the manager, since it is the 

operating conditions of the process that affect the outcome of the system. 

Due to its ability to define each variable and depending on the validity of initial hypotheses 

and description of the process to be calculated, the Aspen software allows to make 

calculations which are as close as possible to reality, allowing to obtain results easily 

transposable experimentally. 

2.7 Techno-economic analysis 

Techno-economic analysis (TEA) is a methodological framework for analyzing the 

techno-economic performance of a process, product or service. TEA typically combines 

process modeling, engineering design and economic evaluation. 
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The purpose of TEA is to enable engineers in research and technical development to 

conduct TEA work in a consistent and transparent manner. In principle, TEA is a cost­

benefit comparison using different methods. These assessment methods are used for 

following tasks: (1) evaluate the economic viability of a specific project; (2) investigate 

cash flows (e.g. financing issues) over the lifetime; (3) evaluate the scale and application 

possibilities of different technologies; (4) compare the economic quality of different 

technology applications providing the same service [154]. 

The internaI rate of return (IRR) and net present value (NPV) are two of the most 

important indicators in the TEA. The IRR is a measure used in capital budgeting to 

estimate the rate of retum on a potential investment. IRR is the interest rate at which the 

net present value of ail cash flows from a project or investment equals zero. NPV is used 

in capital budgeting and investment planning to analyze the profitability of a projected 

investments or projects. DPBP is a measurement that allows a company or investor know 

when their investment will pay off, i.e. wh en the cash flow generated by the project will 

coyer the cost of the project. The NPV and IRR calculation are shown in the following 

Equations. 

n 

~ Ct 
N PV = L (1 + iY - Co 

t=l 

n 

~ Ct 
N PV = L (1 + 1 RR)t - Co = 0 

t=l 

B 
DPBP = A+C 

Equation 2.5 

Equation 2.6 

Equation 2.7 
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Chapter 3 - Objectives 

3.1 Objectives 

The goal of this study is to investigate the use of pyrolysis products as material for 

production of energy and power in fuel cells or the synthesis of biofuels. 

Based on the literature review, pyrolysis oil as an alternative to biomass is seldom 

reported. Sorne researches demonstrated that pyrolysis oil can be used as an additive in 

engines, but its application is limited to large less efficient engin es (e.g. ships) because of 

the pyrolysis oil high viscosity, oxygen content and instability at high temperature. 

Pyrolysis oil exhibits many advantages over biomass as it constitutes a first conversion of 

biomass. Therefore, it is c1ean (low ash, sul fur, and nitrogen content), has higher 

volumetric energy density and easier to process, which can th en be considered for biofuel 

production. Consequently, in our work, pyrolysis oil is used as a feedstock to produce 

gases for use in fuel cell and biofuel synthesis. Once the pyrolysis oil is used to produce 

biofuels, the issue is to conduct a techno-economic analysis of the entire process for 

different feedstocks (biomass and biochar), so that it can be determined whether the use 

of pyrolysis oil to produce biofuel is economically competitive. The final challenge is to 

conduct sensitive analysis to minimize uncertainty in the techno-economic analysis. 

To achieve the thesis global objective, several specific objectives must be completed: 

a) Study of the conversion of the pyrolysis products into syngas through gasification 

using Aspen Plus simulations. Characterization of the syngas is achieved to know 

if it matches the specifications needed for direct use in fuel cells or for fuel 

synthesis (methanol synthesis). Several practical parameters such as gasification 

agent, gasification temperature, and moisture content in pyrolysis oil are tested. 

b) Methanol synthesis from pyrolysis oil gasification by Aspen plus simulations. 

Firstly, gasification is used to convert pyrolysis oil into syngas. Syngas must then 

be c1eaned and conditioned to reduce as low as possible pollutants such as HCI, 

NH3, CH4, H2S in order to match the syngas specifications for further applications 

and to avoid specific issues like catalysts poisoning during methanol synthesis. 
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Moreover, the content of C02 in the syngas needs to be adjusted, which has an 

effect on methanol synthesis. Depending on the syngas content, the methanol yield 

will be significantly decreased. Finally, the operating conditions of methanol 

synthesis also needs to be explored and optimized. 

c) Synthesis of methanol from different lignocellulosic bioresources (pine biomass, 

biochar, and pyrolysis oil) by using process simulation software Aspen plus. The 

whole process includes gasification, syngas post-treatment, and methanol 

synthesis with recycling system. For each raw material considered, a complete 

evaluation of the optimal parameters and maximum theoretical yields is carried 

out. Afterwards, techno-economic analysis of the production of methanol from 

biomass, biochar and pyrolysis oil at different plant scales is conducted to assess 

the competitiveness of pyrolysis oil in fuel production. Finally, a sensitivity 

analysis is conducted to identity the most important factors. 
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Chapter 4 - Materials and methods 

4.1 Materials 

In this project, we compared three feedstocks for methanol production: pyrolytic oil, 

biochar, and biomass. In order to best describe the properties of the different materials in 

simulations conducted using Aspen Plus software, experimental data from the literature 

were used. Pyrolysis oil was produced from beech wood chips in the pilot plant (200 kglh) 

at BTG, the Netherlands [155]. Biochar was produced from rapeseed grown in Germany 

and processed by pyrolysis using a Pyroformer at the University of Aston [156]. For the 

biomass, pine trees from the region ofCastilla La Mancha (Spain) were used [157]. Table 

4.1 describes the properties of each of the raw materials considered (elemental analysis 

and calorific value). 

Table 4.1 Elemental and calorific analysis of pyrolysis oH, biochar and biomass 

Element contents 
Pyrolysis oïl Biochar Biomass 

[155] [156] [157] 
Carbon (wt. %) 30.4 ~ 37.7 60.3 52.7 

Hydrogen (wt.%) 7.6 ~ 7.9 4.0 5.5 
Oxygen (wt.%) 54.4 ~ 61.7 27.2 41.7 
Nitrogen (wt.%) < 0.01 4.20 0.01 

Sulfur (wt.%) < 0.01 0.01 0.08 
Ash (wt.%) - 4.2 2.7 

Gross calorific value (MJ/kg) 17 24 20 

4.2 Methods 

The main purpose of this research is to design a comprehensive process model for 

methanol synthesis via pyrolysis oil. Aspen Plus process engineering software is applied 

to design the detailed process model and identify the influence of the operation conditions 

on syngas properties and methanol yield. After that, techno-economic analysis is 

performed based on the output of process models and literature data. 
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4.2.1 Modelling methodology 

The use of biomass-based resource to produce methanol in a plant can be broken down 

into three steps. In the first step, feedstocks are gasified in a gasification plant to be 

converted into syngas. The syngas produced is assumed to be used in biofuel synthesis 

and fuel cells, which must therefore comply with very precise specifications. That is the 

reason why in the second step, it is treated in a syngas post-treatment unit (Rectisol® and 

water scrubber), after what the syngas will be suitable for biofuel synthesis. The treated 

syngas is thus compressed and introduced into a methanol plant to produce the desired 

biofuel. 

4.2.1.1 Gasification 

The gasification process is composed of four parts, namely drying, decomposition, 

combustion, and gasification. The RStoic (drying) unit is simulated as a drying pro cess to 

extract moisture from feedstock. Then, the RYield (decomposition) unit is simulated as a 

decomposition process to con vert feedstock into its elemental composition. The 

combustion process is simulated by the RGibbs (combustion) unit to complete chemical 

equilibrium. Finally, another RGibbs unit is used to simulate gasification where the syngas 

composition is calculated by minimizing Gibbs-free energy. 

4.2.1.2 Syngas post-treatment 

The syngas post-treatment is composed of four units, namely, a cyclone, a cooler, a water 

scrubber or Rectisol®, and a multistage compressor. A SSplit (separation) unit is used to 

simulate a cyclone to remove condensable materials such as char and tar. Then, high 

temperature syngas is cooled down by a Heater unit. Afterward, syngas is feed into a water 

scrubber or Rectisol® (RadFrac unit) to remove impurities such as particulates, ammonia, 

halides, and tars. In Rectisol® process, methanol is used as solvent that can rem ove part 

of C02 at appropriate operating condition. After quenching and removing impurities, the 

syngas is compressed to high pressure by using a multistage compressor (MCompr unit). 
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4.2.1.3 Methanol synthesis 

After syngas post-treatment, the purified syngas is introduced into the methanol synthesis 

plant where hydrogenation of C02 and CO occurs. The methanol synthesis process is 

mode lied by a REquil (RGibbs reactor) and RPlug unit (Kinetic reactor). 

4.2.2 Economic analysis methodology 

Economic analysis is a process of analyzing the strengths and weaknesses of a system or 

process economy. Present study takes into account the opportunity costs of resources 

employed and attempts to measure in financial terms both private and social costs and 

benefits of a project. It can also provide the project developer with a method to understand 

the key parameters impacting a project so that he is in a position to optimize the allocation 

of resources. 

4.2.2.1 Total capital investment 

The total capital investment refers to the purchase of equipment, materials, installation, 

instruments, electrical systems, buildings, service facilities, supervision, contractor's fee, 

etc. Total capital investment always makes a significant impact on the economic analysis. 

Indeed, when companies make large investments in capital goods, revenues do not 

increase immediately, and it takes a long time for company to become profitable. That is 

either evaluated as cumulative cash flow which includes ail financial parameters (e.g. 

taxes, amortizing, credits, etc.) along the years as soon as initial investment is made or by 

the discounted payback period (DPBP). 

4.2.2.2 Product cost estimation 

The product cost estimation comprises raw materials cost, utilities cost, operating & 

maintenance cost, patents & royalties cost, depreciation cost, and local taxes & insurance 

cost. The co st of the product determines how much profit the company makes each year, 

the lower the co st of product, the more profit the company makes. 
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4.2.2.3 Profitability indicators 

Three indicators were chosen to assess the project profitability: Net Present Value (NPV), 

Internai Rate of Return (IRR), and discounted payback period (DPBP). NPV is the value 

of ail future cash flows discounted to the present over the entire life of an investment. The 

IRR calculates the rate of return provided by the project, DPBP calculates a period within 

which the initial investment of the project is recovered. Those indicators are used to 

estimate the profitability of potential investments. 

4.3 Publication of work - approach 

Based on the literature review and methodological discussion, we explored the potential 

use of pyrolysis oil in fuel cells and biofuel synthesis (bio-methanol). First, pyrolysis has 

been considered to produce gas for application in fuel cell or biofuel synthesis. The 

operating conditions of gasification and the properties of pyrolysis oil have been 

discussed. Then, our work has extended the application of syngas in biofuel synthesis by 

testing the effect of the operating conditions and properties of pyrolysis oil on methanol 

yield. Finally, a techno-economic analysis ofthe competitiveness of the pyrolysis oil route 

to biofuel synthesis compared to other feedstocks (biomass or biochar) has been carried 

out. 

Following such an approach to our thesis work, we carried out our research and decided 

to present a thesis based on publications. Consequently, the core of the thesis work has 

been published in: 

Article 1 (Chapter 5): "Simulation of Syngas Production via Pyrolysis-oil Gasification -

Impacts of Operating Conditions on Syngas Properties", BioResources journal; 2020; 

15(1), 729-745. 

Article 2 (Chapter 6): Methanol production from pyrolysis oil gasification- Model 

development and impacts of operating conditions, Zhihai Zhang, Benoit Delcroix, Olivier 

Rezazgui, Patrice Mangin. Accepted by Applied Sciences journal. Issue: Biorefineries and 
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Sustainable Biomass Conversion: Recent Advances - Section: Applied Biosciences and 

Bioengineering. 

Article 3 (Chapter 7): "Simulation and Techno-Economic Assessment of Bio-methanol 

from Biomass, Biochar and Pyrolysis Oil", Zhihai Zhang, Benoit Oelcroix, Olivier 

Rezazgui, Patrice Mangin, submitted to "Sustainable and energy technologies and 

assessments" August 12,2020. Under review. 
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Chapter 5 - Article 1: Simulation of Syngas Production via 

Pyrolysis-oil Gasification - Impacts of Operating Conditions 

on Syngas Properties 

Published article. Bio Res our ces journal; 2020; 15(1),729-745. 

Zhihai Zhang, Patrice Mangin, Sylvain Larose, Benoit De1croix; 

Institut d'innovations en Écomatériaux, Écoproduits et Écoénergies à base de biomasse, 

Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada 

Corresponding Author: E-mail: Zhihai.Zhang@uqtr.ca 

5.1 Foreword 

Preliminary potential applications of pyrolysis oil are published. The purpose of this part 

of the work was to explore potential applications of pyrolysis oils in fuel cells and fuel 

synthesis. In this section, a model simulating syngas production through pyrolysis oil 

gasification was established to predict the properties of syngas by changing the operating 

conditions such as agent, gasification temperature and moisture content in pyrolysis oil. 

The results are presented and discussed, focusing on the analysis of the effects of syngas 

composition, Lower Heating Value (LHV), H2:CO molar ratio, etc. 

5.2 Abstract 

In this paper, a model simulating syngas production from pyrolysis oil gasification was 

developed, validated and used to predict the effect of operating conditions on syngas 

properties. The model consists ofa process line that included units for pyrolysis oil drying, 

decomposition, combustion, and gasification. The model was validated using 

experimental data from literature, showing a good agreement between the model's results 

and the reference. Sensitivity analysis are carried out to evaluate the impacts of gasifying 

agent, temperature and pyrolysis oil moisture content on syngas composition, lower 

heating value (LHV) and H2:CO molar ratio. Gasifying with air leads to a significant 

decrease in syngas LHV. Rising the tempe ratures from 200 to 600 oC, leads to higher 
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LHV and H2:CO molar ratio. Above 600 oC, the LHV still increases, but the H2:CO ratio 

slightly decreases. Moisture content in pyrolysis oil also has a major effect on the syngas 

composition. A high moisture content leads to high hydrogen content and low syngas 

LHV. Potential syngas applications are also discussed, e.g. for direct use in fuel cells and 

fuel production. 

5.2.1 Keywords 

Renewable resources; Syngas composition; H2:CO molar ratio; Lower heating value; 

Aspen Plus model; 

5.3 Introduction 

The annual energy consumption is about 14000 Mtoe (Million tons of oil equivalent), 80-

85% of which is supplied by fossil fuels [1] . The steady increase in global energy 

consumption has led to an alarming rise in emissions of C02, NOx, and SOx pollutions 

into the environment. The greenhouse gases (GHG) emissions from fossil fuels have a 

dominant influence on increasing atmospheric C02 concentration that translates into rising 

global temperatures and sea levels. Considering the rapidly increasing global energy 

demand and the growing concerns about the environ mental challenges, renewable and 

sustainable energy (e.g. solar, wind, and biomass) is being viewed as a key solution to 

solve the energy crisis. Biofuels are regarded as a promising alternative to fossil fuels . 

Biofuels are considered as a renewable energy source since C02 emissions caused by their 

combustion are reabsorbed by the newly grown biomass [2]. 

Pyrolysis oil, also ca lied bio-oil, is a complex blend of numerous oxygenated 

hydrocarbons produced from lignocellulosic biomass by fast pyrolysis process in the 

temperature range from 400 oC to 600 oC in the absence of oxygen [3]. This liquid contains 

carboxylic acids, alcohols, aldehydes, ketones, esters, furans, and aromatics [4]. The water 

content ofpyrolysis oil generally ranges from 15 wt.% to 25 wt.% [5, 6]. Up to 70 wt.% 

of original dry biomass can be converted into pyrolysis oil [7]. The composition of 

pyrolysis oil depends on such factors as the type of biomass feedstock, alkali content, 

reactor type, pyrolysis temperature, residence time, efficiency of char removal, etc. [8-
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10]. 

Pyrolysis oil offers several advantages over primary biomass sources, which means that 

there is potential to expand the scope of biomass feedstock application. The volumetric 

energy density is increased about 5 times over that of "bulk" biomass, making 

transportation economically more attractive, especially over long distances [11]. When 

large-scale remote biomass collectionis considered, pyrolysis oil can first be produced 

locally and then transported to a central processing area to synthesize liquid hydrocarbons 

[12]. Second, pyrolysis oil being a liquid, makes its storage, transportation, processing, 

and pressurization easier. Pyrolysis oil can also be stored in tanks that resist well against 

degradation and cannot be ignited at ambient temperature. Third, pyrolysis oil con tains 

only a small amount of sul fur, nitrogen and ash. Therefore, its combustion produces less 

harmful gas emissions such as nitrogen oxides (NOx) and sul fur dioxide (S02), compared 

to conventional fossil fuels [11]. Furthermore, as pyrolysis oil is produced through a low­

temperature process, mineraIs and metals remain in the solid char. 

Pyrolysis oil can be upgraded to liquid fuels and considered as an energy carrier. However, 

the drawbacks ofpyrolysis oil are numerous and limit its applications. The use ofpyrolysis 

oil offers sorne challenges due to its properties, such as the low LHV, high oxygen content, 

volatility, high viscosity, acidity, chemical instability, and incompatibility with respect to 

standard petroleum fuels [13]. Therefore, research is being conducted to upgrade pyrolysis 

oil and enlarge its scope of application. For example, Elliott et al. [14] investigated 

catalytic hydrocarbons as a way to convert pyrolysis oil into hydrocarbons, alkanes, and 

aromatics. Pyrolysis oil was being used to produce syngas through gasification [15, 16]. 

Bleeker et al. suggested using pyrolysis oil to pro duce pure hydrogen. The research 

showed that hydrogen can be produced through the oxidation of pyrolysis oil with a yield 

of 0.84 Nm3lkg dry pyrolysis oil (LHV H2/LHV oil = 0.4) [17]. 

During gasification, several thermochemical reactions take place at various temperature 

ranges: drying (> 150 OC), decomposition (250 oC to 700 OC), combustion (700~ 1500 OC), 

and gasification (800~ 1000 OC). During drying stage, the moisture content is extracted 

from pyrolysis oil. The decomposition stage is initiated at about 250 oC when the labile 

bonds between the aromatic cIusters are cIeaved, generating light molecular weight 
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fragments. This stage generates gaseous molecules such as H2, CO, and CH4, as weil as 

light char and tar. After decomposition, pyrolysis oil undergoes combustion, which 

practically provides all the thermal energy required to sustain the endothermic reactions. 

This stage generates gaseous molecules such as C02 and H20. A series of endothermic 

reactions, inc1uding water gas, Boudouard, water gas shi ft, and steam methane reforming 

reactions occur at this stage [18]. Useful combustible gases, such as H2 and CO, are 

produced at the gasification stage. At the end, the whole gasification process generates a 

syngas composed mainly of CO, C02, H2, and CH4. The production of CO, C02, CH4, H2, 

and steam in the whole process can be explained by the reactions given in (R-1 to R-8), 

which occur at various stages [19]. 

C + 1/2 0 2 -+ CO - 111 MJ/kmol 
C + 0 2 -+ C02 - 283 MJ/kmol 
H2 + 1/2 0 2-+ H20 - 286 MJ/kmol 
C + C02 ~ 2CO + 172 MJ/kmol 
C + 2H2 ~ CH4 - 75 MJ/kmol 
C + H20 ~ CO + H2 +131 MJ/kmol 
CO + H20 ~ C02 + H2 - 41 MJ/kmol 
CH4 + H20 ~ CO + 3H2 + 206 MJ/kmol 

Combustion reaction (R -1) 
Combustion reaction (R-2) 
Combustion reaction (R-3) 
Boudouard reaction (R-4) 

Methanation reaction (R-5) 
Water gas reaction (R-6) 

Water gas shift reaction (R-7) 
Steam methane reforming reaction (R-8) 

Clean ash free syngas is an important intermediate product for many processes, like those 

aimed at producing ammonia, hydrogen, methanol , and Fischer-Tropsch fuels . The syngas 

can also be used directly into fuel cells to generate heat and power [20]. Proll et al. 

investigated the use of syngas produced from gasification and successfully fed into a 

combined heat and electrical power (CHP) unit rated at 8 MWth. Results demonstrated 

that CHP concepts based on biomass steam gasification can reach high electric efficiencies 

and high fuel utilization rates [21]. 

ln this study, a model simulating syngas production via pyrolysis oil gasification was 

developed, validated and used to predict the effect of varying operating conditions on 

syngas properties. First, the modeling methodology is discussed, i.e. the assumptions, the 

description, and the validation of the mode\. Thereafter, results are presented and 

discussed, highlighting the impacts of various operating conditions on syngas properties, 

i. e., syngas composition, LHV, and H2:CO molar ratio. Lastly, the results are presented 

and discussed, highlighting the impacts of various operating conditions on syngas 

properties such as syngas composition, LHV, and H2:CO molar ratio. 
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5.4 Modeling methodology 

The main purpose was to design a comprehensive pro cess model for pyrolysis oil 

gasification. Then, the model could be used as a predictive tool for optimization of the 

gasifier performance. Operating parameters such as gasifying agent type (steam, oxygen, 

and air), temperature, and pyrolysis oil moisture content were varied over wide ranges. 

The resulting syngas composition, LHY and H2:CO molar ratio were investigated. 

Although gasifying pressure is also an important parameter that affects syngas 

composition, it was set to atmospheric pressure in this research for the purpose of avoiding 

the need more costly equipment that would be required for higher pressures. 

5.4.1 Assumption 

The whole model is based on the following assumptions: 

(1) Gasification is assumed to be at ste ad y state, isothermal, and thermodynamic 

equilibrium conditions [22] . 

(2) Pyrolysis oil devolatilization takes place instantaneously, and volatile products 

mainly consist of H2, CO, C02, CH4, H2S, NH3 and H20 molecules. 

(3) Ali gases are ideal gases and are uniformly distributed in the gas phase. 

5.4.2 Model description 

Based on the recommendation of the Aspen Plus User Guide version 10.2 [23] , the Peng­

Robinson equation of state with Boston-Mathias alpha function (PR-BM) was chosen to 

estimate all physical properties of the conventional components in the gasification 

process. The parameter alpha in PR-BM in the property package is a temperature 

dependent variable [23]. The Peng-Robinson property method is suitable for non-polar 

and weakly polar mixtures, applicable to all temperature and pressure ranges. Therefore, 

this function is recommended for gas processing, refinery, and petrochemical 

applications. The enthalpy and density model selected for both pyrolysis oil, are non­

conventional components, HCOALGEN and DCOALIGT [22]. 
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The Process Flow Diagram (PFD) in Figure 5.1 shows the Aspen Plus blocks used to 

simulate the gasification process. The model consists of four stages in the modelling: 

drying (RStoic), decomposition (RYield), combustion (RGibbs), and gasification 

(RGibbs) [24] . The description of Aspen Plus block is presented in Table 5.1 . The 

pyrolysis oil is specified as a non-conventional component in Aspen Plus and defined in 

the simulation model by using the ultimate and proximate analysis of pyrolysis oil. The 

NC (nonconventional) definition of pyrolysis oil is shown in Appendix A. The data for 

pyrolysis oil is given in Table 5.2 and was extracted from previous work presented in the 

literature [12]. 

IELE~Nl C\I.C\IL<TO r----l~r------" GASIF 

CALaJlATOR 

Figure 5.1 Aspen Plus simulation of pyrolysis oïl gasification Process Flow Diagram 

Table 5.1 Description of blocks used in the gasification model 

Aspen Plus Flowsheet Block Description 
block ID ID 
RStoic DRIER Reactor with known conversion rate - used 

to extract moisture from pyrolysis oil. 
Operation at 150 oc. 

Sep SEPI Used to separate moisture from the pyrolysis 
oil. 

RYield DECOMPO Yield reactor- used to decompose non-
conventional pyrolysis oil into its 

components by FORTRAN statement. 
Operation at 500 oC. 

RGibbs COMBUST Gibbs free energy reactor- used to complete 
chemical equilibrium by minimizing Gibbs 

free energy. Operation at 800 oC. 
Mixer MIXER Used to mix pyrolysis oil and moisture 

RGibbs GASIF Gibbs free energy reactor- used to calculate 
syngas composition by minimizing Gibbs 



*Drying Constant: 0.325 of pyrolysis-oil 

free energy. Operation in the temperature 
ran e from 200 oC to 1200 oc. 

Table 5.2 Pyrolysis oïl composition defined in Aspen Plus 

Proximate analysis (wt.%) 
Moisture content 32.5 ~ 43.7 

Ultimate analysis (wt. %) 
Carbon 30.4 - 37.7 

Hydrogen 7.6 - 7.9 
Nitrogen < 0.01-0.27 
Oxygen 54.4 - 61.7 
Sulfur < 0.01 
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A kinetic free equilibrium model was developed in Aspen Plus to simulate the gasification 

process through the four stages. Aspen Plus simulation calculation method and syngas 

potential application are presented in Figure 2. Firstly, the moisture was extracted from 

pyrolysis oil, pyrolysis oil was fed into the RStoic block to model the drying pro cess 

controlled by the FORTRAN statement in the calculator block that calculated moi sture 

content. Secondly, dry pyrolysis oil was fed into a decomposition reactor where pyrolysis 

oil decomposes into its elemental components (C, H, 0 , N, S, etc.), the distribution of 

which was specified using a FORTRAN statement in a calculator block according to the 

pyrolysis oil ultimate analysis. R Yield block is used to con vert non-conventional 

pyrolysis oil into conventional components by using FORTRAN statements in the 

calculator block. Thirdly, combustion ofpyrolysis oil is modeled by a Gibbs reactor. The 

RGibbs block handles the complete chemical equilibrium by minimizing the Gibbs free 

energy at an elevated temperature. The decomposed pyrolysis oil enters the RGibbs block 

where partial oxidation and combustion reactions occur. After combustion, the produced 

syngas was mixed with steam originating from pyrolysis oil moisture in a MIXER block. 

The mixture was fed into the gasification unit. Lastly, gasification is also modeled using 

a Gibbs reactor. The RGibbs block handles the ca\culation of the syngas composition by 

minimizing Gibbs free energy [25] . Afterward, the produced syngas will be applied in 

fuel cell or fuel production. 
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5.5 Results and discussion 

The validated model is used alone with a sensitivity analysis to identify the effect of 

varying operating conditions on syngas properties. The key parameters investigated in 

this analysis are the type of medium (gasifying agent), gasification temperature, and 

moisture content in pyrolysis oil. The key syngas properties affected by the operating 

conditions and analyzed in this work are the syngas composition (given in mole fraction), 

the LHV and the H2:CO molar ratio. 

The LHV parameter represents the amount of heat released when a substance undergoes 

complete combustion with oxygen under standard conditions prior to condensation of 

water vapor produced. This parameter is meaningful wh en the generated syngas is used 

for energy applications, e.g. as a feedstock for fuel cells to generate electricity and heat 

(combined heat and power unit). The LHV can be calculated as a function of the molar 

fraction ofmolecules in the gaseous mixture as follow Equation 5.1 [19]: 

LHV (MJ/Nm3) = (CO * 126.36 + H2 * 107.98 + CH4 * 358.18 + C2H2 *56)11000 Equation 5.1 

If fuel synthesis applications are targeted, the main concern is the syngas composition 

(mole fraction of each element), with a particular focus on the H2:CO molar ratio. For 

example, methanol synthesis and Fischer-Tropsch synthesis require a value of 2 for this 

ratio as follow Equation 5.2 [26,27]. 

H2:CO molar ratio = n(H2): n(CO) ;::::: 2 Equation 5.2 

5.5.1 Validation of results 

The flowsheet in Aspen Plus is presented in Appendix B. The simulation model was 

validated by using experimental data from a study achieved by Van Rossum et al. [12] 

on the gasification of pyrolysis oil. The comparison between the reference experimental 

data and our simulation results is presented in Table 5.3. In the reference research, 

pyrolysis oil was used to produce syngas through gasification in a fluidized bed with 

nickel-based catalysts at 800 oc. The modeled syngas concentration is in good agreement 

with the experimental results, except for the concentration of carbon monoxide and 

methane. The most significant discrepancy is the high amount of methane (5.1 mol%) 
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obtained in the experimentations, compared to the amount predicted by the model (0.3 

mol%). This trend of ex cess methane with respect to thermodynamics is weil known. The 

methane reforming reaction (R-8) is limited due to slow kinetics at low temperature [28]. 

For the same reason, the actual amount of carbon monoxide found in the gas phase is 

smaller than that simulated by the kinetic-free model (see R-8). Nearly 90% carbon 

converted into syngas, the remaining carbon was converted into tar in Van Rossum 

research. In this research, tar was not defined in Aspen Plus, carbon was 100% converted 

into syngas. Table 5.4 also presented the energy consumption of pyrolysis oil gasification 

based on a flow rate of 100 kglh. As we can see that during the combustion stage, it 

releases 415.85 kW heat, which can be used for the gasification stage. The entire 

gasification process requires a total of 324.70 kW. 

Table 5.3 Comparison between experimental and simulated results 

Syngas composition (mole %) Experiment Model Difference 
[121 (model - experiment) 

H2 55.5 55.9 0.4 
CO 19.3 24.0 4.7 
C02 19.0 19.8 0.8 
CH4 5.4 0.3 -5.1 
C2H6 1.0 trace -
H2S - trace -
NH3 - trace -

Table 5.4 Energy Consumption for Each Stage 

Case Drying Decomposition Combustion Gasification Total 
(150 OC) (500 OC) (800 OC) (800 OC) 

Energy 
Consumption 24.50 643.74 - 415.85 72.31 324.70 

(kW) 

5.6 Effect of operating conditions 

5.6.1.1 Effect of gasifying agents 

The equivalence ratio is defined as the ratio of the actual fuel/air ratio to the stoichiometric 

fuel/air ratio required for complete combustion. In this research, the equivalence ratio of 

agent to pyrolysis oil was set at 0.2. Runs were conducted with three gasifying agents, i.e. 
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oxygen, steam, and air. Figure 5.2 presents the syngas composition for each gasifying 

agent used in the process. Figure 5.3 presents the LHV and H2:CO molar ratio for each 

gasifying agent. Syngas produced with steam had the highest content in hydrogen (53.3 

mol%) and carbon monoxide (33.0 mol%). As a result, the syngas LHV is also highest 

(9.89 MJ/Nm3
) in this configuration. Gasifying with oxygen leads to a smaller LHV 

because oxygen reacts with hydrogen and carbon monoxide within the mixture. However, 

the H2:CO molar ratio was higher when gasifying with oxygen (1.85) compared to 

gasifying with steam (l.61). The higher ratio is favorable for fuel synthesis. Finally, 

gasifying with air leads the lowest LHV, because oxygen is diluted to 21 % in this agent, 

the balance being mostly inert nitrogen. This trend of LHV variation as a function of 

gasifying agent is in good agreement with experiment with experimental results from Gil 

et al. [29], where three types of gasifying agents were used in biomass gasification and 

syngas distribution were tested. The H2-content in the syngas was highest when steam 

was used as gasifying agent. Gasifying with air led to the lowest syngas LHV. 
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800°C). 

5.6.1.2 Effect of gasifier temperature 
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The gasification tempe rature is an influential parameter in syngas production. Figure 5.4 

and Figure 5.5 show the effect oftemperature on syngas composition, LHV, and H2:CO 

ratio. The gasifier temperature ranged from 200 oC to 1200 oC. At low temperatures, the 

syngas is composed mainly of methane and C02. The concentration of methane decreases 

with increasing gasifier temperatures from 200 oC to 600 oc. This decrease is due to the 

steam methane reforming reaction (R-8), which converts methane into hydrogen and CO. 

The carbon and hydrogen in pyrolysis oil are not completely converted into syngas at low 

temperatures. However, when the temperature increases from 200 oC to 800 oC, the 

content in carbon monoxide and hydrogen greatly increases. This trend is consistent with 

Boudouard (R-4) and water gas (R-6) reactions, i.e. the carbon in pyrolysis oil reacts with 

water and carbon dioxide to generate hydrogen and carbon monoxide. The carbon dioxide 

content thus decreases with temperature increase. High operating temperatures favor the 

production of hydrogen and carbon monoxide. The H2:CO molar ratio reaches a 

maximum of 2.41 at 600 oC, and then gradually decreases with increasing temperature 
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within this range. At high temperatures (above 800 OC), the concentrations of hydrogen 

and carbon dioxide slightly decrease, while the concentration of carbon monoxide slightly 

increases. This trend is attributed to the water gas shift reaction (R-7) becoming 

thermodynamically un fav orab le. Due to its exothermic nature, this reaction is 

thermodynamically favoured at lower temperatures. Syngas LHV continuously increases 

(first rapidly, the more slightly) as the gasifier temperature rises, leading to higher 

production of carbon monoxide and to a syngas LHV of 9.51 MJ/Nm3 at 1200 oC. The 

trend ofH2 and CO concentration, syngas LHV value and H2:CO molar ratio was in good 

agreement with Dai study [30] . In his research, the H2 concentration increases with 

increasing temperature and then decreases slightly. Syngas LHV value increases as the 

gasifying temperature increase. Syngas producing from high temperature is beneficial to 

fuel cells applications and harmful to fuel synthesis. 
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Figure 5.5 Effect of gasifier temperature on syngas LHV and H2:CO molar ratio. 

5.6.1.3 Effect of pyrolysis oïl moisture content 

Figures 5.6 and 5.7 present the effects of a pyrolysis oil moisture content ranges from 10 

to 50 wt.% on syngas composition, H2:CO molar ratio, and LHV. According to the water 

gas shift (R-7) and water gas reactions (R-6), an increasing moisture content leads to an 

increase in the mole fractions of hydrogen and carbon dioxide, and a decrease in the 

amount of carbon monoxide. As a result, the H2:CO molar ratio gradually increases from 

a minimum of 1.5 to a maximum of2.24 at 50 wt.% moisture content. However, the LHV 

decreases from 10.1 to 9.2 MJ/N m3 over the same range, due to the decrease in carbon 

monoxide content. Therefore, if energy applications are targeted (heat and power 

generation), the moisture content in pyrolysis oil should be kept low. If fuel synthesis (e.g. 

methanol or Fischer-Tropsch fuels) is targeted, the moisture content can be optimized at 

40% to adjust the syngas composition, especially the H2:CO molar ratio. 
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5.7 Conclusions 

The objective of this study was to develop a model, simulate and predict the steady state 

performance of a pyrolysis oil gasification process. The results obtained from simulation 

are in good agreement with experimental data from literature. Therefore, the model can 

predict gasification performance over a wide range of operating conditions. The influence 

ofvarious gasification agents was investigated by using a fixed equivalence ratio at 800°e. 

At these conditions, the syngas LHV was maximized at 9.89 MJ/Nm3 by using steam as 

agent. High temperature favours to the production of carbon monoxide, which results in 

high syngas LHV (9.51 MJ/Nm3
) . High moisture content in pyrolysis oilleads to a syngas 

that is rich in hydrogen, but poor in carbon monoxide content. As a result, the syngas LHV 

decreases with increasing moi sture content in pyrolysis oil, but the H2: CO molar ratio 

increases to 2.24 at 50 wt.% moisture content in pyrolysis oil. 

If the syngas is applied to fuel cells to generate heat and electricity, then the 02 and air 

cannot be used as agent, which can reduce the LHV value of the syngas. Moisture content 

in pyrolysis-oil should be minimized. The syngas should also be produced at a high 

temperature for this application since it th en has a higher enthalpy value that can 

potentially generate more electricity and heat. 

If the syngas is used for methanol synthesis or Fischer-Tropsch fuel production, th en a 

small amount of 02 can be used to adjust the H2:CO molar ratio. The syngas should be 

produced at 1000°C where H2:CO molar ratio equal to 2. An appropriate amount of 

moisture content in pyrolysis oil should be selected at 40%. 

Syngas produced from pyrolysis oil contains less nitrogen oxides and sulfur dioxide, 

making the syngas more suitable to fuel cells or fuel production processes. Therefore, 

pyrolysis oil provides a sustainable energy pathway from fore st resources to a biofuel that 

can be used in the fuel cells, which can be deployed in the remote and off-grid 

communities to provide heat and electricity. Besides that, the use ofpyrolysis oil generated 

from forest resources would help reducing our dependency on fossil fuels and cutting 

down greenhouse -gases emissions. 
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5.9 Supplementary information 

Appendix A 

Table 5.5 Pyrolysis-oil Ne definition 

Attribute ID: 
PROXANAL SULFANAL 

MOISTURE 32.5 PYRITIC 0.001 
FC SULFATE 
VM ORGANIC 
ASH 
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Appendix B 

Table 5.6 Flowsbeet in Aspen Plus 

Component Pyro-oil Oil-H20 IN-DECO MOISTURE IN- IN-MIXER IN- SYNGAS 
Mass flow (kg/br) COMB GASIF 

Pyrolysis oi l 100 
Oi l 67.5 67.5 
H20 32.5 32.5 32.5 
*H2 4. 15 
*02 32.82 
·C 30.40 
*N2 0.27 
*S 0.001 

H20 trace trace 4.27 
H2 4.09 4.09 6.42 
CO 57.0 1 57.0 1 38.60 
C02 trace trace 50.04 
CH4 0.29 0.29 0.28 

C 5.97 5.97 
H2S 0.00 1 0.00 1 trace 
fuN 0.38 0.38 0.33 
C2H6 trace trace trace 

*Elemental distribution 

Appendix C 

Table 5.7 Effeet of gasifying agents (800 oC) 

Component Pyro-oi l Oi l- IN-DECO MOISTVRE IN-COMB IN-MIXER AGENT SYNGAS 
Mass flow H20 Steam Air 0 2 Steam Air 02 

(kglhr) 

Pyro lysis 84.4 
oil (20% 
moisture 
content) 

Oil 67.5 67.5 
H20 16.9 16.9 13.5 
H2 4.15 
02 32.82 2.8 13.5 
C 30.40 
N2 0.27 10.7 
S 0.00 1 

H20 trace 9.46 trace 2.08 
H2 4.09 5.64 5.2 1 4.50 
CO 57.0 1 49.46 43.07 34.3 
C02 trace 32.96 38.88 56.87 
CH4 0.29 0.253 0.009 trace 

C (Pure 5.957 
Solid) 
H2S 0.00 1 trace trace trace 
HlN 0.38 0.32 0.32 0.32 
C2H6 trace trace trace trace 

N2 10.7 
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6.1 Foreword 

This paper published an application of pyrolysis oil. The purpose of this part of the work was 

to explore the application of pyrolysis oils in fuel synthesis. In this paper, a model was 

developed to simulate the production of methanol by pyrolysis oil gasification, methanol 

gasification, Rectisol® and methanol synthesis. The model was validated by previous studies. 

The model was then used to predict methanol production under different operating conditions 

such as gasification temperature, pyrolysis oil gasification temperature, moisture content in 

pyrolysis oil Rectisol® temperature/pressure, and methanol synthesis reactor temperature/ 

pressure. 

6.2 Abstract 

A novel process model simulating methanol production through pyrolysis oil gasification was 

developed, validated then used to predict the effect of operating conditions on methanol 

production yield. The model comprised gasification, syngas post-treatment, and methanol 

synthesis units. The model was validated using experimental data from the literature, and the 

results obtained by the model were consistent with reference data. The simulation results 

revealed that gasification temperature has a significant impact on syngas composition. Indeed, 

rising temperature from 400 oC to 600 oC leads to higher syngas stoichiometric number (SN) 

value. Conversely, SN value decreases when the gasifier temperature is above 1000 oc. 
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Moisture content in pyrolysis oil also affects both syngas composition and SN value; an 

increase in the first (from lOto 30%) leads to an increase in SN value. The Rectisol® unit 

deeply influences the syngas SN value and methanol yield, the best results being obtained with 

operating conditions of -20 oC and 40 bar. lncreasing the operating temperature of the 

methanol synthesis unit from 150 oC to 250 oC leads to an increase in the yield of methanol 

production; the yield decreases beyond 250 oC. Although high pressures favor the methanol 

production yield, the operating pressure in the synthesis unit is limited at 50 bar for practical 

considerations (e.g. equipment priee, equipment requirements, or operational risks). 

6.2.1 Keywords 

Renewable resources; Aspen simulation; methanol synthesis; Rectisol®; sensitivity analysis; 

beechwood chips. 
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6.3 Introduction 

The increase in global energy depletion and the massive utilization of fossil fuels have led to 

an alarming increase in C02 emissions into the environment and to potential energy supply 

issues. World energy-related C02 emissions will increase from 30.2 billion metric tons in 2008 

to 43.2 billion metric tons in 2035 [1]. The greenhouse gases (GHG) emissions from fossil 

fuels have a dominant influence on the atmospheric C02 concentrations, leading to global 

temperature and sea level rise [2]. With the rapidly increasing global energy demand and the 

growing concerns about the environmental challenges, renewable and sustainable energy (e.g. 

solar, wind, and biomass) has been considered as key resources to solve the coming energy 

crisis. Among ail the possible alternatives, biofuels have been regarded as the most promising 

substitute to fossil fuels. Indeed, bioresources (such as biomass, biochar, and pyrolysis oil) are 

an attractive feedstock to produce fuels because its utilization emits less greenhouse gases 

(GHG) ifwe consider that the newly grown biomass absorbs C02 emissions [3] . However, the 

bioresources only account for a small proportion of energy consumption. 

Gasification is the most common thermochemical process to convert bioresources into a 

gaseous fuel in high temperature, partially oxidized atmosphere [4] . The syngas produced by 

gasification can be burned directly or used as fuel for turbines. It is also one of the key building 

blocks to produce fuels for transportation and chemicals. For example, the CUITent usage of 

synthesis gas is for the production of ammonia (50%) and hydrogen (25%). The rest is 

dedicated to the production of methanol , Fischer- Tropsch (FT) products and other purposes 

[5]. 

Gasification is a process dedicated to the production of syngas, mainly composed of gases such 

as H2, CO, C02 and CH4. However, syngas contains impurities, inc1uding char, tars, high 

molecular weight hydrocarbons, sulfur, or C02; but also trace contaminants (e.g. ammonia, 

metals, halides .. . ) [6]. Ali these impurities must be removed before the downstream operations. 

In addition to this purification step, the syngas composition must al so be modified to meet the 

requirements of methanol synthesis, especially the content of H2, CO, and C02. The most 

frequently applied technology for syngas c1eaning up and C02 removal is the absorption 

process by means of chemical solvents, such as alkanolamines and Monoethanolamine (MEA) 

[7]. However, those processes are expensive, and a large scale is needed to be cost-effective 

[8]. Nowadays, Rectisol® is a better method for its removal, given that more than 98% ofC02 

and sulfur in the gas can be removed [9] . Rectisol® uses methanol as C02 solvent since it is 
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much more effective than water, especially at low temperatures. The solubility of C02 in 

methanol is about y four times ofwater at room temperature and more than eight times higher 

than of water at temperatures below 0 oC [10, Il]. Therefore, methanol has been industrially 

used in the Rectisol® process as a physical absorber ofC02 [12]. 

Nowadays, methanol is gaining more attention as a possible future fuel that can be used in fuel 

cells and engines [13 ,14] . Methanol is of interest for large-scale transportation applications 

because it has a significant positive environmental impact over fossil fuels , particularly wh en 

used in fuel-ce Il vehic1es [15]. The technology to produce methanol from biomass is similar to 

that used to produce methanol from coal. [16]. The process flow ch art is mainly composed of 

commercially established technologies such as gasification, syngas c1eaning and conditioning, 

and methanol synthesis. 

Pyrolysis oil, also called bio-oil, is a complex blend of numerous oxygenated compounds 

produced from lignocellulosic biomass through a thermochemical process (i.e., pyrolysis) in 

the intermediate temperature ranges from 400 oC to 600 oC in the absence of oxygen [17]. 

Pyrolysis oil contains organic compounds such as carboxylic acids, alcohols, aldehydes, 

ketones, esters, furans , and aromatics [18]. The water content of pyrolysis oil generally ranges 

from 15 wt.% to 25 wt.% [19,20]. Up to 70 wt.% of the original dry biomass can be converted 

into pyrolysis oil [21]. The properties of pyrolysis oil depend on multiple factors such as the 

type of biomass feedstock, alkaline compounds content, reactor type, reaction temperature, 

residence time, char removal , etc. [22-24]. For example, the pyrolysis oil produced from 

pyrolysis of beech wood chips consist mainly of aldehydes, acids, esters, alcohols, ketones, 

benzene derivatives, phenol and alkanes, due to the different reaction conditions, the product 

content varies considerably [25] .Compared to the primary biomass, pyrolysis oil presents 

several advantages. First, its volumetric energy density is increased about 5 times more than 

the "bulk" biomass, making transport economically more attractive, especially over long 

distances [26]. When large-scale remote biomass collection is considered, pyrolysis oil can 

firstly be produced locally and then transported to the central processing area [21]. Second, 

pyrolysis oil is a liquid, which makes storage, transport, processing and pressurization easier. 

It can also be stored in tanks that resist weil against biodegradation and cannot be ignited at 

ambient temperature [26]. Third, compared to conventional fossil fuels , pyrolysis oil contains 

a small quantity of sulfur, nitrogen and ash. As a result, its combustion releases less harmful 

gas emissions such as nitrogen oxides (NOx) and sulfur dioxide (S02) [26]. Furthermore, as 
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the pyrolysis oil is produced through a low tempe rature process, mineraIs and metals remain in 

the solid char residue. However, the drawbacks of pyrolysis oil should not be ignored, the 

pyrolysis oil properties limiting its applications. This phenomenon is caused by high oxygen 

content, volatility, high viscosity, acidity, low heating value and incompatibility with 

petroleum and other bio-based fuels [28]. Despite these constraints, pyrolysis oil has plentiful 

advantages to be used to produce syngas by gasification. 

In this paper, a new model is dedicated to simulating the methanol production via a set of 

processes including pyrolysis oil gasification, Rectisol® and methanol synthesis. The model is 

then validated by experimental and industrial results and used in a sensitivity analysis to 

identify the effects of varying operating conditions on the methanol production yield. Firstly, 

the modeling methodology is discussed, i.e. assumptions, model ' s description and its 

validation. Thereafter, the main results of the sensitivity analysis are presented and discussed, 

highlighting the impacts of various operating conditions on methanol yield, i.e., the gasifying 

temperature, pyrolysis oil moisture content, Rectisol® temperature/pressure, and methanol 

synthesis reactor temperature/pressure. 

6.4 Materials and methods 

6.4.1 Pyrolysis oïl characteristics 

The pyrolysis oil in this study has characteristics mentioned in reference [21] . It is produced 

by a company named BTG located in the Netherlands, processing beech wood chips in a pilot 

plant facility. The proximate and ultimate analysis provided the properties ofthis pyrolysis oil, 

which are presented in Table 6.1. 

Table 6.1 Beech wood pyrolysis-oil composition 

Proximate analysis (wt. %) 
Moisture content 32.5 - 43.7 

U1timate analysis (%) 
Carbon 30.4 - 37.7 

Hydrogen 7.6 -7.9 
Nitrogen < 0.27 
Oxygen 54.4 - 61.7 
Sulfur < 0.01 
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6.4.2 Modeling methodology 

The main purpose was to design a comprehensive process model for methanol synthesis from 

pyrolysis oil gasification. The model was th en used as a tool to identify the influence of the 

operating conditions on the methanol synthesis yield. Operating parameters such as gasification 

temperature, moisture content in pyrolysis oil, Rectisol® pressure and temperature, but also 

methanol synthesis reactor conditions (temperature and pressure) were varied over wide 

ranges. 

Pyrolysis oil gasification was applied to produce syngas. In many cases, syngas produced from 

biomass through gasification is C02 rich or H2 deficient. However, it can be adjusted using 

processes like water gas shift reaction, methane reforming, or C02 removal [29]. Supplying 

external H2 is also a solution to adjust its composition before feeding into the fuel synthesis 

loop [30]. In this study, Rectisol® process was applied to clean up syngas and adjust syngas 

composition to satisfy the methanol synthesis requirements. Then post-treatment syngas was 

compressed at high pressure and introduced into the methanol synthesis reactor to produce the 

desired compound. The process flow diagram in Figure 6.1 shows the Aspen Plus blocks 

ilIustrating the model used to simulate the methanol synthesis production from pyrolysis oil. 

The model consists of three main parts: gasification, syngas post-treatment, and methanol 

synthesis. The pyrolysis oil is specified as a non-conventional ingredient in Aspen Plus and 

defined in the block by properties presented in Table 6.1. 
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Figure 6.1 Process flow diagram of the Aspen Plus model for methanol synthesis via 

pyrolysis oïl gasification 
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6.4.3 Gasification process 

Several thermochemical reactions occur during gasification at different temperature zones: 

drying zone (> 150 oC), decomposition zone (250°C to 700 oC), combustion zone (700 oC to 

1500 oC) and gasification zone (800 oC to 1200 oC) [30]. At drying stage, the moisture content 

is removed from pyrolysis oil. The decomposition stage is initiated at about 250 oC wh en the 

labile bonds between the aromatic clusters are cracked, generating light molecular weight 

fragments . This stage generates gaseous molecules such as H2, CO, CH4, as weil as light char 

and tar. After decomposition, pyrolysis oil undergoes combustion, which practically provides 

the thermal energy required to sustain the endothermic reactions. This stage generates gaseous 

molecules such as C02 and H20 [31]. A series of endothermic reactions, such as water gas, 

Boudouard, water gas shift, and steam methane reforming reactions occur at this stage [14]. 

Useful combustible gases such as H2 and CO are produced at gasification stage. At the end, the 

whole gasification process generates a syngas composed mainly of CO, C02, H2 and CH4. The 

production of CO, C02, CH4, H2, and steam in the whole process can be explained by the 

reactions given in ((R-l) - (R-8)), which occur at various stages [15]. 

C + 1/20z ~ CO 
C + Oz ~ COz 
Hz + 1/20z ~ HzO 
C + COz H 2CO 
C + 2Hz H CH4 

C + HzO H CO + Hz 
CO + HzO H COz + Hz 
CH4 + HzO H CO + 3+1z 

- III MJ/kmol 
- 283 MJ/kmo1 
- 286 MJ/kmol 
+ 172 MJ/kmol 
-75 MJ/kmol 

+ 131 MJ/kmol 
- 41 MJ/kmol 

+ 206 MJ/kmol 

Combustion reaction (R -1) 
Combustion reaction (R-2) 
Combustion reaction (R-3) 
Boudouard reaction (RA) 

Methanation reaction (R-5) 
Water gas reaction (R-6) 

Water gas shift reaction (R-7) 
Steam methane reforming reaction (R-8) 

The gasification model is based on the following assumptions, i.e.: 

(1) Pyrolysis oil feed rate is 1000 kglh. 
(2) Gasification is assumed to be steady state, isothermal, and simulated using a kinetic-free 
model [31]. 
(3) Pyrolysis oil devolatilization occurs instantaneously and the volatile products include H2, 
CO, C02, CH4, H2S, NH3, and H20. 
(4) Ali gases are ideal gases and uniformly distributed in the gas phase. 
(5) Ali reactions take place at a chemical equilibrium state and the pressure loss was not 
considered. 

A kinetic-free equilibrium model was designed for the gasification process by using Aspen 

plus. Gasification process is usually divided into four stages, as presented in Figure 1: drying 

(RI), decomposition (R2), combustion (R3) and gasification (R4). Table 6.2 lists a brief 

explanation of the blocks used in the gasification process. Firstly, the wet pyrolysis oil (stream 

1) was fed into RI block to model the drying process. Dry pyrolysis oil and moisture were 
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separated by the SEP-l block. Secondly, dry pyrolysis oil (stream 3) was fed into reactor R2 

where pyrolysis oil is decomposed into its elemental components (C, H, 0, N, S, etc.). The 

elemental distribution of pyrolysis oil was specified according to its ultimate analysis (see 

Table 1). R2 block was used to convert non-conventional pyrolysis oil into convention al 

components. The non-conventional definition ofpyrolysis oil is shown in Appendix A. Thirdly, 

combustion of pyrolysis oil is modeled by a Gibbs reactor. The RGibbs reactor handles the 

complete chemical equilibrium by minimizing Gibbs-free energy. The decomposed pyrolysis 

oil enters the R3 block where partial oxidation and combustion reactions occur. After 

combustion, the produced syngas with steam originating from pyrolysis oil moisture was fed 

to gasification units. Lastly, gasification is also modeled by using a Gibbs reactor, the R4 block 

handling the calculation of the syngas component by minimizing Gibbs free energy [31]. 

Table 6.2 Description of Aspen plus blocks used in the gasification model 

Flow sheet Aspen plus 
Description 

block ID block ID 

RI RStoic 
Reactor with known conversion rate - used to extract 

moisture form pyrolysis oil. Operation at 150 oC. 
SEP-l Sep Used to separate the moisture from the pyrolysis oil. 

Yield reactor - used to decompose non-convention al 
R2 RYield pyrolysis oil into its elemental components by 

FORTRAN statement. Operation at 500 oC. 
Gibbs free energy reactor - used to complete chemical 

R3 RGibbs equilibrium by minimizing Gibbs-free energy. 
Operation at 800 oC. 

Gibbs free energy reactor - used to calculate syngas 
R4 RGibbs composition by minimizing Gibbs-free energy. 

Operation tempe rature ranges from 400 oC to 1200 oC. 

6.4.4 Rectisol® unit 

The main purpose ofRectisol® is to clean up the outlet syngas of gasification to obtain a high­

quality syngas that can be used for the methanol synthesis [12]. The Rectisol® process uses 

chilled methanol as the solvent to remove the major impurities, such as C02, H2S, COS, CS2, 

and HCN, producing a cleaner syngas . Thus, the Rectisol® system is able to obtain a pure 

syngas stream and simultaneously adjust its stoichiometric ratio to satisfy the requirements of 

methanol synthesis. In addition, the methanol used in the purification step can be reused over 

several cycles, making the process economically feasible. 
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It is worth noting that the stoichiometric number (SN) (Equation 6.1) for the syngas 

composition plays a dominating role in methanol synthesis reaction. The ideal value of SN is 

slightly higher than 2, indicating an excess of H2 or less C02. 

n(H 2 ) - n(C02 ) 
SN=-----­

n(CO) + n(C0 2) 

Equation 6.1 

Table 6.3 lists a brief explanation of the Aspen Plus blocks used in Rectisol® system. Firstly, 

after the gasification process, ash content in syngas (stream 6) was eliminated by the SEP-2 

(Cyclone separator). Secondly, the syngas leaving the separator is cooled to a tempe rature of 

80 oC by the C-I. Lastly, the RECTISOL® block in Aspen Plus is used to simulate Rectisol® 

process where the syngas (stream 10) was fed into Rectisol® columns at the bottom. 

Meanwhile, a 20 kmol/h flow rate of cooled solvent methanol (RE-MEOH), entering from the 

top of columns, interacts with the syngas. Post-treatment syngas (stream Il) is withdrawn from 

the top ofRectisol® colurnn. Water, impurities and part ofthe C02 are absorbed by the cooled 

methanol (stream 12), flowing out from the bottom ofthe Rectisol® column. Meanwhile, SEP-

4 is used to separate gas (impurities and C02) and liquid phase (methanol and H20) from the 

liquid phase. Another separator (SEP-5) is used to separate H20 and methanol. After 

purification, the methanol (RE-MEOH) is re-introduced in to Rectisol® unit. 

Table 6.3 Description of Aspen plus blocks used in Rectisol® 

Flow sheet Aspen plus 
Description block ID block ID 

SEP-2 SSplit 
Used to separate ash from the syngas. Operation at 

800 oc. 
C-1 Heater Used to decrease syngas temperature to 80 oc. 

RECTISOL® Radfrac 
Used to remove acid syngas and partial carbon 

dioxide 

6.4.5 Methanol synthesis and water gas shift reaction process 

After syngas post-treatment, the syngas (stream 14) was introduced into the methanol synthesis 

reactor. At this step, C02 hydrogenation to methanol and water gas shift reaction over a 

commercial CulZnO/AIz03 catalyst occur simultaneously [33]. As the methanol synthesis is 

exothermic and volumetric reduction reaction, the productivity can be increased by rising 

pressure and reducing the reaction temperature. Therefore, the methanol synthesis reactor was 

assumed to operate at 250~350 oC and 50~ 150 bar [34]. The main reactions in the methanol 

synthesis unit can be expressed as described in the following reactions: 



CO 2 + 3H2 ~ CH 3 OH + H2 0 

CO + H2 0 H CO2 + H2 

- 49.5 kJ/mol 

- 41.2 kJ/mol 

Methanol synthesis (R-IO) 

Water gas shift (R-ll) 

The methanol synthesis model is based on several assumptions, i. e.: 

(1) Pressure loss in the methanol synthesis reactor is not considered. 
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(2) Syngas is preheated sufficiently and the temperature distribution in the methanol synthesis 
reactor is assumed to be uniform. 

Table 6.4 lists the blocks were applied in methanol synthesis system. The post-treatment 

syngas (stream Il) obtained from Rectisol® was heated up to 250 oC by H-l and compressed 

to 50 bar by COMPR block. The methanol synthesis reactor is simulated by the R5 block where 

C02 hydrogenation and water gas shift reaction occur. The Langrnuir-Hinshelwood-Hougen­

Watson (LHHW) kinetic model is applied in the format of the reactant fugacity of the 

hydrogenation of C02 and water gas shift. The kinetic parameters applied in the LHHW block 

are obtained from the William experimental results [35]. Finally, a SEP-3 block was used to 

separate residual syngas from the mixture of methanol and water. 

The LHHW expression is presented in Equation 6.2: 

. . (driving - force term) 
R = (kmetlc term) -------­

(adsorption term) 

Equation 6.2 

The reaction rate for the production of methanol from carbon dioxide hydrogenation is given 

in Equation 6.3: 

The reaction rate for the water gas shift reaction is given in Equation 6.4: 

[1 __ 1_ (PH 2 0PCO)] 
K E2 PC02 PH2 

RwGs(kmol / kgcat . s) = (kWGS Pco2 ) (P) 
[1 + k3 H2 0 + kl~ + k2 PH

2
0] 

PH 2 

Where Ri = reaction rate [mol/kgcat*S] 
ki = kinetic factor [kmol/kgcat*s*bar] or [kmol/kgcat*s*ba~] 
pi = partial pressure [bar] 
KEi = equilibrium constant [-] or [bar-2] 
kl /2/3 = adsorption constants [barn] 

Equation 6.3 

Equation 6.4 
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Table 6.4 Description of Aspen plus block used in methanol synthesis and operating 

condition 

Flow sheet Block Aspen plus block 
Description 

ID ID 
H-l Heater Used to heat up syngas to 250 oC 

COMPR MCompr Used to compress syngas to 50 bar 
R5 RPlug Used to simulate methanol synthesis reactor 

C-2 Heater 
Used to cool down the outlet syngas of 

methanol synthesis reactors 

SEP-3 Flash 2 
Used to separate produced methanol and 

residual syngas 

6.5 Results and discussion 

6.5.1 Model validation 

6.5.1.1 Gasification 

The flowsheet result of gasification in Aspen Plus is presented in Appendix B. The simulation 

model is validated by using experimental data from gasification of pyrolysis oil published by 

Van Rossum et al. [21] . The experimental data and simulation results are shown in Table 6.5. 

In this research, pyrolysis oil is used to produce syngas through gasification in a fluidized bed 

with nickel-based catalysts at 800 oc. It may be observed that the model syngas concentration 

is in good agreement with the experimental results except the concentration of CO and CH4. In 

the experiments, the steam methane reforming reaction is restricted by the reaction time so it 

cannot reach a state of the complete equilibrium [29]. Therefore, the concentration of CH4 

simulated by RGibbs reactor without the time limitation is very low and this part of CH4 reacts 

with steam into CO and H2 (R-8). Because the nitrogen and sulfur content in pyrolysis oil is 

relatively low, the content of H2S and NH3 in the produced syngas is low. 

Table 6.5 Comparison between experimental and simulated results of gasification 

process 

Syngas composition (mole %) Experiment Model Difference 
H2 55 .5 55 .9 0.4 
CO 19.3 24.0 4.7 
C02 19.0 19.8 0.8 
CH4 5.4 0.3 5.1 
C2H6 l.0 trace -
H2S - trace -
NH3 - trace -
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6.5.1.2 Rectisol® 

To validate the Rectisol® process model, the simulated results were compared with the 

experimental data. The flowsheet result ofRectisol® is presented in Appendix C. In Bell et al. 

research, Rectisol® is designed to process syngas from acid gas shift reactor prior to the 

synthesis of ammonia 1000 tons/day [36]. The Rectisol® columns are designed to remove most 

of the dissolved C02, H2S and COS. The syngas, composed ofH2, N2, Ar, CO, CH4, C02, H2S 

and COS, is fed to the bottom of the column, the chilled methanol is fed to the top of the 

Rectisol® column. As the gas flows upward in the Rectisol® column, downward flowing 

methanol absorbs H2S, COS and C02, so the syngas leaving the top of Rectisol® column is 

nearly sulfur and C02 free. Liquid methanol is withdrawn from the bottom of the column, the 

results are presented in Table 6.6. The simulation results are compared with the experimental 

results. There is a small discrepancy between the experimental data and simulation results, but 

not significant. Therefore, the Rectisol® model could be considered as a valid model to 

simulate Rectisol® process. 

Table 6.6 Comparison between simulated and experimental results of Rectisol® 

Component dry 
Purified syngas 

Feed syngas experimental Simulated results 
basis 

results 
Pressure (MPa) 7.8 7.6 7.8 

H2 62.5% 95.3% 95.9% 
N2+Ar 0.5% 0.8% 0.7% 

CO + CH4 2.7% 4.0% 3.4% 
C02 34.1% 20 ppm trace 

H2S + COS 0.3% 0.1 ppm trace 
Flow rate (kmollh) 6021.1 3936.1 3890.3 

6.5.1.3 Methanol synthesis 

The flowsheet result of methanol synthesis in Aspen Plus is presented in Appendix D. The 

methanol synthesis simulation results are compared with the data obtained from the industrial 

methanol synthesis results [37]. Results obtained from the simulation and the corresponding 

industrial data are presented in Table 7. As the comparison between experimental and 

simulated results shows, the model produces results close to the reference data. The error 

between simulated results and experimental results is 0.7%. It is worth noting that the 

discrepancy between the content of CO and C02, this is due to the synthetic pathway of 

methanol in the practical experiment where both of CO and C02 participate into the methanol 
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synthesis reaction. However, in the simulation, CO participates into the water-gas shift reaction 

instead of methanol synthesis. There is a difference between the reference and simulated 

pressure. This is because the syngas volume is reduced during methanol synthesis process, 

resulting in the decrease of the partial pressure ofH2, CO and C02. As a consequence, the side 

of the equilibrium with fewer moles is becoming more unfavorable [38]. Therefore, a higher 

reaction pressure is needed in the actual reaction to facilitate methanol synthesis. However, in 

the simulation, the methanol synthesis reactor pressure is fixed at 40 bar (Table 6.7). The 

simulated and experimental results of the methanol yield are approximately similar. Therefore, 

the model could be considered as a valid model to simulate the methanol synthesis process. 

Table 6.7 Comparison between simulated and industrial results of methanol yield 

Feed 
Outlet stream Outlet stream Difference 

(industry) (simulation) 
Temperature (oC) 225 255 225 -

Pressure (bar) 69.7 66.7 40 -
Mass flow rate 

57282.8 57282.8 57282.8 -
(kglh) 

Components flow 
rate (kglh) 

CO 10727.9 4921.0 4068.7 -17.3% 
C02 23684.2 18316.4 19577.3 6.9% 
H2 9586.5 8013.7 8063.6 0.6% 

H20 108.8 2309.3 1789.9 -22.5% 
Methanol 756.7 11283.1 11364.6 0.7% 

CH4 4333 .1 4333 .1 4333 .1 -
N2 8072.0 8071.9 8072.0 -

Ethanol 0.6 8.7 0.6 -
Propanol - 0.1 - -

Methyl formate 13.0 25.6 13.0 -

6.5.2 Effect of operating conditions 

In this section, the effect of the operating conditions, such as gasification temperature, 

pyrolysis-oil moisture content, Rectisol® temperature and pressure on syngas composition, SN 

and methano\ yield as weil as methanol synthesis operation conditions are discussed. 

6.5.2.1 Effect of gasifier temperature 

The gasification temperature is a key parameter for syngas production. Figures 6.2 and 6.3 

show the effect of gasifier temperature on syngas composition and SN. The gasifier 

temperature varies from 400 oC to 1200 oC. Low temperature conditions (from 400 oC to 600 
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oc) favor the production of C02 and CH4. Increasing the temperature from 400 oC to 800 oC 

leads to a constant and significant increase in CO and H2 concentrations. This phenomenon is 

caused by endothermic reactions like Boudouard (R-4), water gas shift (R-7), and methane 

steam reforming (R-8). According to Le Chatelier's principle, high temperatures favor the 

formation of endothermic reaction products [38]. Therefore, the CO and H2 concentrations 

increase at high temperatures, while the CH4 and C02 concentrations decrease. At high 

temperatures (above 800 oC), the concentrations of H2 and C02 slightly decrease, while the 

concentration of carbon monoxide slightly increases. This is attributed to the water gas shift 

reaction (R-7). Due to its exothermic nature, this reaction is thermodynamically favored at low 

temperatures. 

Figure 6.3 shows the effect of the gasification temperature on SN that c\osely determines the 

methanol yield. The SN value increased from a minimum of -0.49 (C02 content is greater than 

H2) to a maximum of 0.85 when the temperature increased from 400 oC to 1000 oC. This is 

because ste am methane reforming (R-8) and Boudouard (R-4) reactions are dominant reactions 

over the water gas shift (R-7) reaction [39]. However, when the temperature increased to 1000 

oC, the SN value dropped to 0.67. This is because of the water gas shift reaction; the carbon 

dioxide production being favored at high temperatures. The effects of gasifier tempe rature on 

syngas composition and SN value is c\osed to previous experimental results . In van Rossum 

research [26] , the effect on the trend ofH2, CO and C02 content is the same as our simulation, 

Due to the pyrolysis oil characteristics has a significant effect on the syngas composition, 

however, the trend of syngas SN value is the same, increasing and then decreasing. 



60 

~ 

~ 50 
ë5 
~ 
§ 40 

+=' 
ëii 
o 
Ê30 
o 
o 

gJ 20 
Cl 
c: 
>­

(j) 
10 

o 

- r-

- r-

r---

400 

DH2 

Dco 
Dco2 

- r-
DCH4 

r-

r- r-
-

r-
r- r--- - -

600 800 1000 1200 

Temperature (OC) 

Figure 6.2 Effect of gasifier temperature on syngas composition. 

1,0 

0 ,8 

0 ,6 

0,4 

z CI) 0 ,2 

-0 ,2 Temperature (oC) 

-0,4 

-0,6 

Figure 6.3 Effect of gasifier temperature on SN. 

6.5.2.2 Effect of pyrolysis oH moisture content 
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Figure 6.4 and 6.5 present the effects of pyrolysis oil moisture content on syngas composition 

and SN between 10 wt.% and 50 wt.%. According to water gas shift reaction (R-7) and water 

gas reaction (R-6), moisture content in pyrolysis oil increases the mole fraction ofH2 and C02, 

while the amount of CO decreased. As a result, the SN value constantly increased from 0.805 

to 0.865 with the pyrolysis oil moisture content from 10 wt.% to 30 wt.% . When the moisture 

content is more than 30 wt.%, the H2 and C02 concentrations continually increase while the 

CO decreases and the SN value is maintained at 0.865 . Therefore, the moisture content in 
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pyrolysis oil seems to be the most beneficial around 30% because ex cess moisture cont.ent has 

no positive effect on syngas composition and SN value. In contrast, it will consume more heat 

during gasification process. The effect of pyrolysis oil moisture content on syngas SN value is 

also similar to Van Rossum experimental research [21] . In this study, beech oil is used to 

produce syngas through gasification, and the steam/ carbon ratio is increased from 2.1 to 3.2, 

resulting in an increase in the syngas SN value from 0.566 to 0.692. 
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6.5.2.3 Effect of Rectisol® operating temperature 

As indicated in Figures 6.3 and 6.5, the SN ofsyngas produced from gasification is so low that 

it cannot satisfy the requirement of methanol synthesis. Therefore, a syngas post-treatment 

process like Rectisol® is needed to adjust its composition. Figure 6.6 shows the effect of 

Rectisol® temperature on syngas composition, SN and methanol yield. As weil known, the 

solubility of methanol to absorb C02 gradually decreases while the Rectisol® temperature 

increases [40] . When the Rectisol® temperature decreases from 40 oC to 40 oC, the content of 

C02 remaining in the syngas decreases from 6.175 kmol to 0.013 kmol. As a result, the SN 

continues to increase from 1.34 to 2.36 with the decrease of the Rectisol® temperature. As 

Figure 6.7 indicated, wh en the temperature of Rectisol® was -20 oC, the SN value was close 

to 2. At this point, the methanol yield reached the maximum of7.99 kmol. When the Rectisol® 

temperature was below -20 oC, the methanol yield decreased dramatically along with the 

decrease ofRectisol® temperature. This is caused by the low content OfC02 in syngas to react 

with H2 to synthesize methanol. When the Rectisol® temperature is higher than -20 oC, the 

methanol yield is also reduced due to excessive C02 in syngas that cannot satisfy SN 

requirement. 
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6.5.2.4 Effect of Rectisol® operating pressure 

The effects ofRectisol® pressure on the syngas composition, SN and methanol synthesis yield 

are presented in Figures 6.8 and 6.9. C02 content continuously decreases from 11.13 kmol to 

o kmol when the Rectisol® pressure raises from 1 bar to 80 bar. As a result, the SN increases 

from 0.87 to 2.5 while the Rectisol® pressure increases. When the pressure is around 40 bar, 

the SN value is close to 2 where the methanol yield reaches the maximum of 8.02 kmol. When 

the Rectisol® pressure increases from 40 bar to 60 bar, the solubility of methanol to absorb 

C02 continues to increase, producing a significant drop in the C02 content in the syngas. As a 

result, the methanol yield reaches the minimum of 0.01 kmol. This is because there is not 

enough C02 in the syngas to react with H2 to produce methanol. 
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6.5.2.5 Effeet of methanol synthesis operating temperature 
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The methano\ synthesis reactor temperature is an influentia\ parameter on the methano\ yie\d. 

Figure 6.10 shows the effect oftemperature on methano\ production between 150 and 350 oC. 

The methano\ yie\d is improved with increasing reaction temperature from 150 oC to 250 oC, 

reaching a maximum of 7.99 kmol/l 000 kg at 250 oc. This trend is consistent with the kinetics 
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of methanol synthesis that high temperatures favor its production. However, when the 

temperature increases from 250 oC to 350 oC, yields decrease significantly. This phenomenon 

is due to e02 liquefaction, which is an exothermic reaction. With respect to methanol synthesis 

thermodynamics, the methanol synthesis reaction is favored at low temperatures. Figure 10 

indicates that the optimal temperature for methanol synthesis is around 250 oC, which is in 

agreement with various studies reported [8, 41]. In those works, the typical operation 

temperature for methanol synthesis is in the range of 220 oC to 280°C. 
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Figure 6.10 Effect oftemperature on methanol yield (50 bar). 

6.5.2.6 Effect of methanol synthesis operating pressure 

Figure 6.11 shows the effect of methanol synthesis operating pressure on yield. It is observed 

that the methanol yield improves with increasing operating pressures, which is due to the 

reversible nature of the reaction (reducing the gas volume). Therefore, increasing reaction 

pressure favors the methanol production. For example, wh en the pressure increases from 1 bar 

to 50 bar, the methanol yield increases significantly from 0 kmol/l000 kg to 7.99 kmol/l000 

kg. However, when the pressure increases from 50 bar to 150 bar, the yield increases barely 

from 7.99 kmol/lOOO kg to 1l.35 kmol/l000 kg. The methanol yield increase rate from 0 bar 

to 50 bar is more significant than the yields at a pressure between 50 bar and 150 bar. Besides, 

using strong operating pressures involve higher equipment requirements, priee, and operational 
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risks. Therefore, although the methanol production is favored at higher pressures, a pressure of 

50 bar appears as a good compromise. 
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Figure 6.11 Effect of pressure on methanol yield (250 OC). 

6.6 Conclusion 

The objective of this study was to develop and validate a simulation model of methanol 

synthesis from a syngas obtained through pyrolysis oil gasification. For this purpose, Aspen 

Plus simulation software was used. The model was validated using experimental data from 

literature and the results show a good agreement between simulations and experimental data 

for gasification, Rectisol® and methanol synthesis processes. The validated model was then 

used to analyse the influence of operating conditions on key parameters. 

More specifically, the influence of the gasification temperature and moisture content In 

pyrolysis oil on syngas composition and syngas SN value. Afterwards, Rectisol® operation 

condition and methanol synthesis operation condition on methanol yield were studied. When 

gasification temperature increased at 1000 oC, the concentration ofCQ and H2 increased which 

results in the highest syngas SN value (0.85). The moisture content in pyrolysis oil should be 

kept at 30 wt.%, the SN reaches a maximum of 0.865. As the moisture content continues to 

increase, the syngas SN value is maintained at 0.865. The Rectisol® process was applied to 

absorb acid syngas and simultaneously adjust syngas SN value, Rectisol® unit was set at -20 

oC and 40 bar. Then, syngas SN value reached a maximum of 2.07, the methanol yields also 
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reached a maximum of 8.04 kmo!. The methanol production is favored at high pressure and 

relatively low temperature. In this context, 50 bar and 250 oC were selected as the optimal 

operating conditions for the methanol synthesis. 

Finally, Although the methanol yield of pyrolysis oil is relatively low compared to other 

feedstocks Ce.g. biomass and natural gas), the high volumetric density ofpyrolysis oil makes it 

less expensive to transport and store, this advantage gives biomass the opportunity to be used 

on a large-scale plant. Besides that, pyrolysis oil is a cleaner bioresource than its original 

biomass, syngas produced from pyrolysis oil contains less impurities, making the pyrolysis oil 

more suitable to methanol production process. This article briefly provides guidance for the 

future pyrolysis oil industrial application to produce methano!. 



109 

6.7 References 

1. Taba, L.E., et al., The effect of temperature on various parameters in coal, biomass and 
CO-gasification: a review. Renewable and Sustainable Energy Reviews, 2012. 16(8): 
p. 5584-5596. 

2. Zickfeld, K. , S. Solomon, and D.M. Gilford, Centuries of thermal sea-level rise due to 
anthropogenic emissions of short-lived greenhouse gases. Proceedings of the National 
Academy of Sciences, 2017.114(4): p. 657-662. 

3. McKendry, P., Energy production from biomass (part 1): overview of biomass. 
Bioresource technology, 2002.83(1): p. 37-46. 

4. Ruiz, J.A., et al., Biomass gasification for electricity generation: Review of current 
technology barriers. Renewable and Sustainable Energy Reviews, 2013 . 18: p. 174-
183. 

5. Rauch, R., J. Hrbek, and H. Hofbauer, Biomass gasification for synthesis gas 
production and applications of the syngas. Wiley Interdisciplinary Reviews: Energy 
and Environment, 2014. 3(4): p. 343-362. 

6. Abdoulmoumine, N., et al., A review on biomass gasification syngas cleanup. Applied 
Energy, 2015.155: p. 294-307. 

7. Moioli, S., L.A. Pellegrini, and S. Gamba, Simulation of C02 capture by MEA 
scrubbing with a rate-based model. Procedia Engineering, 2012. 42 : p. 1651-1661 . 

8. Ortiz, F.G., et al., Methanol synthesis from syngas obtained by supercritical water 
reforming of glycerol. Fuel, 2013. 105: p. 739-751. 

9. Gupta, M., 1. Coyle, and K. Thambimuthu. C02 capture technologies and opportunities 
in Canada. in 1st Canadian CC&S Technology Roadmap Workshop. 2003. 

10. Chihara, H., Kagaku binran-kiso handbook of basic chemistry, 3rd edn, vol Il. 
Maruzen, Tokyo, 1984: p. 158. 

Il . Hochgesand, G., Rectisol® and purisol. Industrial & Engineering Chemistry, 1970. 
62(7): p. 37-43. 

12. Gatti, M., et al., Review, modeling, Heat Integration, and improved schemes of 
Rectisol®®-based processes for C02 capture. Applied thermal engineering, 2014. 
70(2): p. 1123-1140. 

13. Vancoillie, J., et al., The potential ofmethanol as a fuel for flex-fuel and dedicated 
spark-ignition engines. Applied Energy, 2013.102: p. 140-149. 

14. Breeze, P. , Chapter 8 - Direct Methanol Fuel Cel/, in Fuel Cel/s, P. Breeze, Editor. 
2017, Academic Press. p. 75-82. 

15. Larson, E.D. and R.E. Katofsky, Production of hydrogen and methanol via biomass 
gasification, in Advances in thermochemical biomass conversion. 1993, Springer. p. 
495-510. 



110 

16. Chmielniak, T. and M. Sciazko, Co-gasification of biomass and co al for methanol 
synthesis. Applied energy, 2003. 74(3-4): p. 393-403. 

17. Alvarez, J., et al., Bio-oil productionfrom rice huskfast pyrolysis in a conical spouted 
bed reactor. Fuel, 2014.128: p. 162-169. 

18. Stas, M., et al., Overview of analytical methods used for chemical characterization of 
pyrolysis bio-oil. Energy & Fuels, 2014. 28(1): p. 385-402. 

19. Bridgwater, A. and M . Cottam, Opportunitiesfor biomass pyrolysis liquids production 
and upgrading. Energy & Fuels, 1992.6(2): p. 113-120. 

20. Radlein, O., The production of chemicals from fast pyrolysis bio-oils. Fast pyrolysis of 
biomass: a handbook, 1999. 164. 

21. Van Rossum, G., S.R . Kersten, and W.P. van Swaaij , Catalylic and noncatalylic 
gasificalion ofpyrolysis oil. Industrial & engineering chemistry research, 2007. 46(12) : 
p.3959-3967. 

22. Huber, G.W., S. Iborra, and A. Corma, Synthesis oftransportationfuelsfrom biomass: 
chemistry, catalysts, and engineering. Chemical reviews, 2006. 106(9): p. 4044-4098. 

23 . Oemirbas, A., The influence oftemperature on the yields of compounds existing in bio­
oils obtainedfrom biomass samples via pyrolysis. Fuel Processing Technology, 2007. 
88(6): p. 591-597. 

24. Brown, R .C., O. Radlein, and 1. Piskorz. Pretreatment processes to increase pyrolytic 
yield of levoglucosan from herbaceous feedstocks. in ACS Symposium Series. 200 l. 
Washington, OC; American Chemical Society; 1999. 

25. OZBA Y, G., A. OZÇiFÇi, and S. A YSAL, PYROLYSlS OF BEECH WOOD 
CATALYSED BY FeCI3: PRODUCTION AND CHARACTERISATlON OF BlO-OIL. 
9th Wood Science and Engineering in the Third Millennium-ICWSE, 2013.1: p. 75-
81. 

26. Rossum, G., Steam reforming and gasification of pyrolysis oil. 2009: University of 
Twente. 

27. Oasmaa, A. and o. Meier, Norms and standards for fast pyrolysis liquids: 1. Round 
robin test. Journal of Analytical and Applied Pyrolysis, 2005. 73(2): p. 323-334. 

28. Krutof, A. and K. Hawboldt, Blends of pyrolysis oi!, petroleum, and other bio-based 
fuels: A review. Renewable and Sustainable energy reviews, 2016. 59: p. 406-419. 

29. Zhang, Y., J. Xiao, and L. Shen, Simulation of methanol production from biomass 
gasification in interconnected jluidized beds. Industrial & engineering chemistry 
research, 2009.48(11): p. 5351-5359. 

30. Yin, X., et al., Characteristics of the synthesis of methanol using biomass-derived 
syngas. Energy & fuels, 2005. 19( 1): p. 305-310. 



111 

31. Begum, S., M. Rasul, and D. Akbar, A numerical investigation of municipal solid waste 
gasijication using aspen plus. Procedia engineering, 2014. 90: p. 710-717. 

32. Ramzan, N., et al., Simulation of hybrid biomass gasijication using Aspen plus: A 
comparative performance analysis for food, municipal solid and poultry waste. 
Biomass and Bioenergy, 2011. 35(9): p. 3962-3969. 

33. Bussche, K.Y. and G. Froment, A Steady-State Kinetic Modelfor Methanol Synthesis 
and the Water Gas Shift Reaction on a Commercial Cu/ZnO/AI203Catalyst. Journal of 
Catalysis, 1996.161(1): p. 1-10. 

34. Zhang, C., et al., Efficient utilization of carbon dioxide in a gas-to-methanol process 
composed of C02/steam- mixed reforming and methanol synthesis. Journal of C02 
Utilization, 2016.16: p. 1-7. 

35. Luyben, W.L., Design and control of a methanol reactor/column process. lndustrial & 
Engineering Chemistry Research, 2010. 49(13): p. 6150-6163. 

36. Bell, D.A., B.F. Towler, and M. Fan, Coal gasijication and its applications. 2010: 
William Andrew. 

37. Chen, L., et al., Optimization of methanol yield from a Lurgi reactor. Chemical 
engineering & technology, 2011. 34(5): p. 817-822. 

38. Atkin, P., The elements ofphysical chemistry: with applications in biology. 2000, WH 
Freeman and Company, New York. 

39. Fernandez-Lopez, M., et al., Simulation of the gasijication of animal wastes in a dual 
gasijier using Aspen Plus®. Energy Conversion and Management, 2017. 140: p. 211-
217. 

40. Pala, L.P.R., et al., Steam gasijication of biomass with subsequent syngas adjustment 
using shift reaction for syngas production: An Aspen Plus model. Renewable energy, 
2017.101:p.484-492. 

41. BUIT, B. and L. Lyddon. A comparison of physical solvents for acid gas removal. in 
Gas Pro cess ors ' Association Convention, Grapevine, TX 2008. 

42. Trop, P., B. Anicic, and D. Goricanec, Production of methanol from a mixture of 
torrefied biomass and co a/. Energy, 2014.77: p. 125-l32. 



112 

6.8 Supplement information 

Appendix A 

Table 6.8 Pyrolysis oH non-conventional definition 

Attribute ID: 
PROXANAL SULFANAL 

MOISTURE 32.5 PYRITIC 0.001 
FC SULFATE 
VM ORGANIC 

ASH 

Appendix B 

Table 6.9 Gasification flowsheet in Aspen Plus 

Component 
1 2 3 MOISTURE 4 5 6 

Mass flow 1kg/hr) 
Temp (oC) 50 100 100 100 500 800 800 

Pressure (bar) 1 1 1 1 1 1 1 
Pyrolysis oil 1000 

Oil 675 675 
H20 325 325 
*H2 4.15 
*02 32.82 
*C 30.40 
*N2 0.27 
*S 0.001 

H20 trace 42.7 
H2 40.9 64.2 
CO 570.1 386.0 
C02 trace 500.4 
CH4 2.8 2.8 

C 59.7 
fuS 0.01 trace 
H3N 3.8 3.3 
C2H6 trace trace 

*Elemental distributIOn 
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Appendix C 

Table 6.10 Syngas post-treatment flowsheet in Aspen Plus 

Mass RE- DIRTY MEOH- DIRTY 

Flow 
6 8 9 10 

MEOH 
13 14 

(kglhr) 
7 Il 12 GAS H20 H20 

Temp 
800 800 800 80 80 -20 -20 

-20 -20 -20 
250 250 (oC) 

Pressure 
1 1 1 1 40 40 40 1 1 1 40 50 

(bar) 
H20 42.7 42.7 42.7 42 .7 42.7 42 .7 42.7 
H2 64.2 64.2 64.2 64.2 64.2 64.2 64.2 
CO 386.0 386.0 386.0 386.0 386.0 386.0 386.0 
C02 500.4 500.4 500.4 500.4 50.2 450.2 450.2 50.2 50.2 

C~ 2.8 2.8 2.8 2.8 2.8 2.8 2.8 
H2S trace trace trace trace trace trace 
H3N 3.3 3.3 3.3 3.3 3.3 3.3 
ASH 0 0 

Me OH 640 640 640 

Appendix D 

Table 6.11 Methanol synthesis flowsheet in Aspen Plus 

Component 
14 15 16 17 18 

Mass flow (k~/hr) 
Temp (OC) 250 250 50 50 50 

Pressure (bar) 50 50 1 1 1 
H2 64.2 3l.0 31.0 31.0 
CO 386.0 175.6 175 .6 175.6 
C02 50.2 26.8 26.8 26.8 
CH4 2.8 2.8 2.8 2.8 
H20 9.5 9.5 9.5 

MeOH 257.3 257.3 257.3 
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6.9 Unit specification 

6.9.1 Gasification 

Table 6.12 Drying (RStoic) reactor specification 

Temperature (OC) 100 
Pressure (bar) 1 

Fractional conversion 0.325 component of pyrolysis-oil 

Table 6.13 Decomposition (Ryield) reactor specification 

Temperature CCC) 500 
Pressure (bar) 1 
Yield options Component yields 

H2 4.15 
C 32.8 
0 2 30.4 
N2 0.27 
S 0.001 

Table 6.14 Combustion and gasification (RGibbs) reactor specification 

Calculation option Calculate phase equilibrium and chemical equilibrium 
Temperature (OC) 800 

Pressure (bar) 1 
Products Identity possible products 

Component Valid phases 
CO Mixed 
H2 Mixed 

C02 Mixed 
CH4 Mixed 
NH3 Mixed 
H2S Mixed 

6.9.2 Rectisol® 

Table 6.15 Rectisol® (RadFrac) block specification (Configuration) 

Calculation type Equilibrium 
Number of stages 15 

Condenser None 
Reboiler None 
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Table 6.16 Steam: Feed 

Name Stage Convention 
9 1 Above-stage 
10 15 On-stage 

Table 6.17 Steam: Product 

Name Stage Phase Basis Units 
11 15 Liquid Mole kmol/hr 
12 1 Vapor Mole kmollhr 

Table 6.18 Pressure specification 

To /Bottom 
To 1-80 

6.9.3 Methanol synthesis 

Table 6.19 Methanol synthesis (RPLUG) reactor specifications 

Reaction type: Reactor with specified temperature 
Configuration: 

Multitube reactor: Number of tubes: 11458 
Tube dimensions: Length: 12.0 meters 

Diameter: 0.03675 meter 
Catalyst specifications: 

Bed voidage 0.5 
Particle density 2000 kg/m3 

Table 6.20 Water gas shift kinetic LHHW parameters 

RI (C02 + H2~CO + H20) 
Kinetic factor k=l 

n=O 
E = 0 kJ/kmol 

Driving-force expressions (partial pressure): 
Term 1 

Concentration exponents for reactants C02 = 1, H2 = 0 
Concentration exponents for products CO = 0, H20 = 0 

Coefficients: A = 4.80, B = -11398.2, C = 0, D = 0 
Term 2 

Concentration exponents for reactants C02 = 0, H2 = -1 
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Concentration exponents for products CO = 1, H20 = 1 
Coefficients: A = 0.13, B = -6624.98, C = 0, D = ° 

Adsorption expression: 
Adsorption term exponent: 1 
Concentration exponents: 

Term 1: H2 = 0, H20 = ° 
Term 2: H2 = -1, H20 = 1 
Term 3: H2 = 0.5, H20 = ° 
Term 4: H2 = 0, H20 = 1 

Adsorptions constantes: 
Term 1: A = 0, B = 0, C = 0, D = ° 
Term 2: A = 8.15, B =0, C = 0, D = ° 
Term 3: A = -6.45, B =2068.44, C = 0, D = ° 
Term 4: A = -34.95, B =14928.90, C = 0,0 = ° 

Table 6.21 Methanol synthesis kinetic LHHW parameters 

R2 (C02 + 3H2---+CH30H + H20) 
Kinetic factor k=1 

n=O 
E = ° kJ/kmol 

Driving-force expressions (partial pressure) 
Term1 

Concentration exponents for reactants C02 = 1, H2 = 1 
Concentration exponents for products CH30H = 0, H20 = ° 

Coefficients: A = -29.87, B = 4413.76, C = 0, D = ° 
Term 2: 

Concentration exponents for reactants C02 = 0, H2 =-2 
Concentration exponents for products CH30H = 1, H20 = 1 

Coefficients: A=17.55, B = -2645.97, C = 0, D = ° 
Adsorption expression 

Adsorption term exponent: 3 
Concentration exponents: 

Term 1: H2 = 0, H20 = ° 
Term 2: H2 = -1, H20 = 1 
Term 3: H2 = 0.5, H20 = ° 
Term 4: H2 = 0, H20 = 1 

Adsorptions constantes: 
Term 1: A = 0, B = 0, C = 0, 0 = ° 
Term 2: A = 8.15, B =0, C = 0, D = ° 
Term 3: A = -6.45, B =2068.44, C = 0, D = ° 
Term 4: A = -34.95, B =14928.9, C = 0, D = ° 
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Chapter 7 - Article 3: Simulation and Techno-Economic 

Assessment of Bio-methanol from Biomass, Biochar and 

Pyrolysis Oil 
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7.1 Foreword 

This paper published a fuel synthesis application ofpyrolysis oil. Based on the simulation 

of methanol synthesis in the previous paper, an economic analysis of the feasibility of 

producing methanol from pyrolysis oil was carried out. At the same time, the same model 

design and analysis were conducted between biomass and biochar. This comparison is 

used to test whether pyrolysis oil is potentially competitive. The economic evaluation is 

performed using three indicators su ch as NPV, IRR and OPBP. The sensitivity analysis is 

performed by varying parameters such as bio-methanol price, feedstock price, TCI and 

plant life to study the economic feasibility at different plant scales. 

7.2 Abstract 

ln this paper, a model simulating bio-methanol production through gasification of 

different woody bioresources (pine biomass, biochar, and pyrolysis oil) is investigated 

using process simulation software Aspen Plus. The process consists of gasification, syngas 

post-treatment, methanol synthesis with recycling and purification. The model results are 

used as inputs in a techno-economic analysis of the process to assess the economic 

feasibility, as well as a sensitivity analysis to evaluate the impact of key variables. The 

economic evaluation is conducted by using three indicators, i.e., the net present value 

(NPV), internai rate of return (IRR) , and discounted payback period (OPBP). The 
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sensitivity analysis is achieved to investigate the economic feasibility of different plant 

scales, changing parameters such as bio-methanol price, feedstock price, total capital 

investment (TCI), and plant lifespan. The preliminary economic evaluation results 

revealed that bio-methanol production from biochar can be an attractive option. The IRR 

obtained in the biochar seenario is greater, compared to using pine biomass. The IRR 

obtained in the pyrolysis oil scenario hardly reaches 5% unless the price considered for 

bio-methanol is as high as 2300 $/ton. Moreover, our results show that the bio-methanol 

priee, feedstock priee and TCI are the most significant factors. Finally, for plant lifespan, 

the first 20 years seem to be the most crucial. 

Keywords: pine biomass; biochar; pyrolysis oil; bio-methanol; Aspen Plus; Techno­

economic analysis, sensitivity analysis, profitability analysis. 

7.3 Introduction 

Nowadays, the global energy consumption increases drastically, which has led to an 

alarming rise in emissions of greenhouse gases (GHG). Emissions produced from fossil 

fuels have a dominant influence on the atmospheric C02 concentration, which results in 

rising global temperatures. According to the International Energy Outlook [1], world 

energy-related C02 emissions will increase from 30.2 billion metric tons in 2008 to 43.2 

billion metric tons in 2035. The depletion offossil fuels and the environmental challenges 

are the main motivations for the development of renewable and sustainable energy 

technologies. In this context, bio-based energy sources are a renewable and environment­

friendly alternative. Among those, biofuels are considered as one of the most promising 

alternatives to conventional fuels. In fact, biofuels can be produced from biomass and thus 

considered as a renewable energy. Biofuels produced from biomass are renewable and 

regenerative (unlike fossil fuels). In addition, the biomass captures the carbon dioxide 

produeed during the combustion ofthese biofuels, making it possible to be carbon neutral 

and even to have negative impact [2]. 
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Pyrolysis can be described as the thennal decomposition of biomass with little or no 

oxygen to produce solid (biochar), liquid (pyrolysis oil) and gas (syngas) products. 

Adapting the temperature and residence time in the reactor enables to modify the share of 

each ofthese products. For example, fast pyrolysis involves faster heating rates and shorter 

residence times than slow pyrolysis in order to favor the liquid fraction production [3]. 

Pyrolysis oil (or bio-oil) is a mixture of more than hundred compounds, and its chemical 

composition includes carboxylic acids, sugars, alcohols, aldehydes, ketones, esters, furan, 

and a wide range of aromatics [4]. Moreover, pyrolysis oil is known to present a high­

water content, which fluctuates generally between 15 and 25 wt.% (depending on 

pyrolysis process and biomass used) [5-7]. On the other hand, carbon-rich solid material 

is also produced during pyrolysis. This material is often named "biochar" and often 

presents large microscopic surface and high ash content [8]. The biochar is produced from 

biomass by slow pyrolysis process, which utilizes intennediate temperatures (300~600 °C 

) with an oxygen limited or oxygen free atmosphere to convert the solid biomass into 

biochar [9, 10]. The quality and yield of pyrolysis-oil and biochar production from 

biomass depend mainly on the operating conditions: temperature, heating rates and 

residence time [11] . 

In comparison with biomass, biochar and pyrolysis oil have several advantages. First of 

ail, biochar produced from biomass through slow pyrolysis has a higher bulk density, 

which can be economically transported over long distances. This characteristic can be 

increased at higher temperature [12]. The major application of biochar is found in four 

main areas: (1) soil improvement, (2) waste management, (3) climate change mitigation, 

and (4) energy generation [13]. On the other hand, pyrolysis oil has the advantage of a 

low content in sul fur, nitrogen and ash, leading to a better environmental perfonnance. 

Therefore, its combustion produces less hannful gas emissions such as nitrogen oxides 

(NOx) and sulfur dioxide (S02), compared to conventional fossil fuels. Besides, 

volumetric energy density ofpyrolysis oil is about 5 times higher than the "bulk" biomass 

[14, 15], making transportation economically more attractive, especially over long 

distances [14]. Pyrolysis oil also presents a promising alternative for high-efficiency 

energy production. Current research is being carried out to use pyrolysis oi! to generate 
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heat and power [16] [17]. Alternatively, both pyrolysis oil and biochar can be used in 

biorefineries to produce biofuels (gasoline and diesel) through gasification process [17]. 

Gasification is regarded as a key technology to convert feedstock into syngas, which can 

be transfonned into synthesized fuels (through Fischer-Tropsch process) and/or chemicals 

(e.g. methanol) [18]. Several publications and studies on gasification of biochar and 

pyrolysis oil in recent years have shown that this technique has become popular and 

promising. For example, Yan et al. [19] carried out gasification of pine sawdust biochar 

to produce syngas in a fixed bed. The hydrogen volume fraction reached up to 52.4% at 

850 oC, with a steam flow of 165 g.min-1.kg-1 biochar. Chaudhari et al. [19] carried out 

ste am gasification of bagasse biochar, and the maximum hydrogen volume fraction 

reached up to 76.2% at 700 oC and a steam flow rate of 20.8 g. min-l.kg-l of biochar. 

Van Rossum et al. [20] studied the gasification ofbeech oil in fluidized bed and achieved 

a hydrogen volume fraction of 55.5% at around 800 oC. 

Methanol is an energy-dense and reasonably stable liquid under nonnal conditions, which 

is considered as a potential renewable alternative fuel. Several advantages of methanol, 

such as higher boiling points, lower production cost, and enhanced energy security, make 

it widely used in the engines and fuel cells (e.g. , as a fuel by itself, or to be blended with 

gasoline [21 D. Methanol is also an important primary raw material for the chemical 

industry (e.g. , as solvent, or as key molecule to produce fonnaldehyde, olefins, acetic acid, 

esters, etc.) [22]. Currently, about 90% ofmethanol produced cornes from natural gas [23] . 

In this research, ail processes such as gasification, syngas post-treatment, methanol 

synthesis, and methanol distillation have reached maturity. However, high feedstock costs 

compared to natural gas will limit the technology for years to come. Project evaluation is 

the key to evaluating economic feasibility, which can be accomplished by techno­

economic analysis (TEA). TEA allows to assess economic feasibility of a project by 

varying different parameters to assess market availability [24]. 

In this paper, a model simulating bio-methanol production through the gasification of 

various feedstocks (biomass, biochar, and pyrolysis oil) was developed, validated and 

used to predict the bio-methanol yield. Firstly, the assumptions, the description, and the 
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validation of the model are discussed. Thereafter, the TEA was conducted to evaluate key 

indicators, i.e., the net present value (NPV), discounted payback period (DPBP) and 

internaI rate of return (lRR). Lastly, a sensitivity analysis is achieved to investigate the 

impact of several key parameters, such as the bio-methanol priee, feedstock price, total 

capital investment (TCl), and plant lifespan at various plant scales. 

7.4 Process modeling and analysis 

7.4.1 Materials 

The feedstock materials used in this study are pyrolysis oil, biochar and biomass. The 

biochar was produced from rapeseed cultivated in Germany and processed by pyrolysis 

using a Pyroformer apparatus at Aston University [25]. Pyrolysis oil was produced from 

beech chips in the pilot plant facility (200 kg/h) of the company BTG, Netherlands [20]. 

The pine biomass sample was chosen from the region ofCastilla La Mancha (Spain) [26J. 

Proximate, ultimate and elemental analysis of each sample are presented in Table 7.1. 

Table 7.1 Elemental and calorific analysis of pyrolysis oïl, biochar and biomass 

Composition Pyrolysis oH [20] Biochar [25] Biomass [26] 
Carbon (wt. %) 30.4 - 37.7 60.3 52.7 

Hydrogen (wt.%) 7.6 - 7.9 4.0 5.5 
Oxygen (wt.%) 54.4 - 61.7 27.2 41.7 
Nitrogen (wt.%) < 0.01 4.20 0.01 

Sulfur (wt.%) < 0.01 0.01 0.08 
Ash (wt.%) - 4.2 2.7 

Gross calorific value (Ml/kg) 17 24 20 

7.4.2 Modeling methodology 

The whole process model was simulated by the Aspen Plus software. A schematic of the 

generalized process model presented in Figure 7.1 shows that the following units are 

considered: gasification, syngas post-treatment, methanol synthesis and distillation. 

Firstly, feedstocks are fed to the gasifier unit to produce syngas via gasification. Syngas 

is th en introduced into the post-treatment unit to remove impurities, su ch as H2S, COS, 

NB3, tar, and char. Post-treated syngas is fed into methanol synthesis unit to produee 
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methanol via hydrogenation of C02 and CO. Lastly, distillation is achieved to separate 

synthetic methanol and unreacted syngas. Aspen plus blocks used in the simulation are 

described in Table 7.2. 
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Gasification Syngas post-tre.alment :vfethanol synthesis 

Figure 7.1 Process flow diagram of the Aspen Plus simulation of bio-methanol synthesis 
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Table 7.2 Reactor blocks description used in the simulation 

Unit 
Aspen plus Temperature Pressure 

Description 
Reactor block (OC) (bar) 

R-l RStoic 100 1 
Simulate drying process to 

extract moisture from feedstock 

SEP-1 Sep 100 1 Separate moisture and feedstock 

Decompose non-conventional 
R-2 RYield 500 1 feedstock into its components by 

FORTRAN statement 

R-3 RGibbs 800 1 
Complete chemical equilibrium 

by minimizing Gibbs free energy 

R-4 RGibbs 800 1 
Calculate syngas composition by 

minimizing Gibbs free energy 

SEP-2 SSplit 800 1 Separate ash from syngas 

COOLERI Heater 60 1 Cool down syngas temperature 

SCRUBBER RadFrac 40 1 Remove H2S, NH3, and tar 

M-1 MCompr 40 50 
Compress syngas to high 

pressure 

R-5 REquil 250 50 Methanol synthesis reactor 

COOLER Heater 60 1 
Cool down produced methanol 

temperature 

Flash Flash 2 60 1 
Separate gas stream with liquid 

stream 

DISTILL RadFrac 25 1 Distillate methanol 

7.4.2.1 Gasification 

When modeling gasification in Aspen Plus software, biomass, biochar and pyrolysis oil 

are specified as non-conventional (NC) components. The NC definitions of biomass, 

biochar, and pyrolysis oil are shown in Appendix A. Peng-Robinson equation ofstate with 

Boston-Mathias alpha function (PR-BM) was chosen to estimate aIl physical properties of 

the convention al components in the gasification process, which guarantees accurate 

calculation results in modeling light gases, alcohols, and hydrocarbons [27]. 
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The gasification unit is composed of four parts, namely, drying (RI), decomposition (R2), 

combustion (R3), and gasification (R4) [28]. First of al!, feedstock (stream 1) is fed into 

the drying chamber to extract moisture which is removed by a separator (SEPl). Then, the 

decomposition process is used to convert dry feedstock (stream 3) into its elemental 

composition (C, H, 0, N, S, etc.) (stream 4). The combustion process is used to complete 

chemical equilibrium by minimizing the Gibbs-free energy. After combustion, the model 

of gasification process with steam is used to calculate syngas composition by minimizing 

Gibbs-free energy. Eventual!y, the whole gasification process generates a syngas (stream 

6) composed mainly of CO, C02, H2, and CH4. The production of those gases and steam 

in the whole process can be explained by the reactions given in (R-1 - R-8), which occur 

at various stages [29] . Considering the heat 10ss, the gasifier efficiency is 72.9% [30]. 

C + 1/202 ~ CO 
C + O2 ~ CO2 

H2 + 1/202 ~ H2 0 
C + CO2 H 2CO 
C + 2H 2 H CH4 

C + H2 0 H CO + H2 

CO + H2 0 H CO2 + H2 

CH4 + H2 0 H CO + 3H2 

- 111 MJ/kmol 
- 283 MJ/kmol 
- 286 MJ/kmol 
+ 172 MJ/kmol 
-75 MJ/kmol 

+ 131 MJ/kmol 
- 41 MJ/kmol 

+206 MJ/kmol 

7.4.2.2 Syngas post-treatment 

Combustion reaction (R-1) 
Combustion reaction (R-2) 
Combustion reaction (R-3) 
Boudouard reaction (R-4) 

Methanation reaction (R-5) 
Water gas reaction (R-6) 

Water gas shift reaction (R-7) 
Steam methane reforming reaction (R-8) 

The syngas post-treatment is composed of four units, namely, a cyclone (SEP2), a cooler 

(COOLER1), a water scrubber (SCRUBBER), and a multistage compressor (COMPR). 

The generated syngas is introduced into a cyclone to remove condensable materials and 

solids (stream 7) from syngas. Then, high temperature syngas from the cyclone is cooled 

to 60 oC by a cooler. Afterward, cold syngas (stream 9) is fed into a water scrubber used 

to remove impurities such as particulates, ammonia, halides, and tars. After quenching 

and removing impurities, the scrubbed syngas (stream 13) is compressed to high pressure 

by using a multistage compressor. 

7.4.2.3 Methanol synthesis 

After syngas post-treatment, the purified gases (streall? 14) are sent into the methanol 

synthesis reactor where hydrogenation of C02 and CO occurs over a Cu-based catalyst. 



126 

Due to the principle of Le Chatelier, working at low-temperature and high-pressure favors 

the methanol synthesis. Therefore, the operating pressure and temperature of methanol 

synthesis are defined within 50-150 bar and 200-300 oC respectively, in the presence of 

Cu-based catalyst [31]. The methanol synthesis process is modelled by a stoichiometric 

reactor (R5) in Aspen plus software. Considering the side reactions in the methanol 

synthesis process, we assume that the efficiency of the methanol synthesis is 80%, as 

explained in Appendix B [32]. The reactions leading to methanol synthesis are expressed 

as follows: 

co + 2Hz = CH30H (ilH300K = -90.77 kJlmol) Equation 7.1 

COz + 3Hz = CH30H + HzO (ilH300K = -49.16 kJ/mol) Equation 7.2 

7.4.2.4 Methanol distillation 

After methanol synthesis, the crude products (stream 15) which contains methanol and 

unreacted syngas are cooled to 80 oC by a cooler. Then, a flash (SEP3) unit allows to 

separate unreacted syngas from mixture of water and bio-methanol. The unreacted gas 

(stream 17) is discharged from the top outlet of flash and recycled into the methanol 

synthesis reactor. At the same time, the liquid stream (bio-methanol and steam: stream 18) 

is discharged from the bottom outlet of flash, which contains methanol and water. At last, 

the liquid stream is injected to the distillation (DIS TILL) unit to purify methanol where 

product methanol is extracted at the upper stream (stream 20), the water and trace 

methanol (stream 19) are discharged from the bottom of distillation column. 

7.4.3 Model validation and results 

Both syngas composition produced during gasification and overall methanol yield by 

different feedstocks are listed in Table 7.3. The flow sheets of each scenario (biomass, 

biochar, and pyrolysis oil) in Aspen Plus are presented in Appendix B. The simulation 

model is validated by using experimental data about the gasification ofpine biomass [26], 

biochar [25] and pyrolysis oil [20], respectively. As we can see, the syngas concentration 

is in good agreement with experimental results, except for the concentration of CH4. 

Experimentally, the steam methane reforming reaction is limited by the reaction time, 

therefore it cannot reach the complete equilibrium state [33]. Thus, the concentration of 
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methane simulated by RGibbs reactor is very low and this part of CH4 reacts with steam 

into CO and H2 (according to R-8). It may be observed that the bio-methanol yield 

produced from biochar reached up a maximum of 578.2 kgf 1000 kg. This is due to its 

composition which contains the highest carbon content, compared to biomass and 

pyrolysis oil. Therefore, it required large quantity ofwater to complete water gas reaction 

(R-6). The content of CO and C02 increases with increasing carbon content in each 

feedstock (H2 content can be supplied by steam to react with carbon and C02, according 

to R-6 and R-7). As expected, the bio-methanol yield produced from pyrolysis oil is the 

lowest. This result could be easily explained by the carbon content in pyrolysis oil, which 

is the lowest of the three chosen feedstocks (see Table 7.1). In previous studies [34], the 

overall efficiency of conversion of biomass, coal to bio-methanol is 50- 60%, in our 

model, the overall bio-methanol yield is 58.3%, as presented in Appendix B. The 

simulated and experimental results ofbio-methanol yield are approximately similar. 

Table 7.3 Comparison between experimental and simulated syngas composition 

and bio-methanol yields 

Syngas Biomass (1000kg)+ Biochar (1000kg)+ Pyrolysis oïl 
composition H20 (700 kg: H20 (1000 k~) (1000 kga ) 

(vol %) Experiment Model Experiment Model Experiment Model 
r261 r251 r201 

H2 45-55 57.1 56-58 56.2 55.5 55.9 
CO 21-25 24.8 19-21 24.6 19.3 24.0 
C02 18-22 17.8 20-21 18.9 19.0 19.8 
CH4 2-4 0.3 0.5-1 0.3 5.4 0.3 
Bio-methanol 507.3 578.2 283.1 
yield (kgll 000 
kg) 
a) water content cornes from pyrolysis oil 

7.5 Techno-economic analysis 

The following techno-economic analysis uses the previous Aspen Plus simulations to 

evaluate the economic feasibility of a bio-methanol production plant using various 

bioresources, pro,:iding a basis for investment decisions. 
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7.5.1 Methodology 

When calculating the techno-economic analysis, the costs can be divided into two main 

categories: capital and operating costs. 

7.5.1.1 Total capital investment 

To determine the costs of a bio-methanol production plant with different sizes and 

feedstocks, the total capital investment (TCI) should be estimated first. This first 

calculation is then used to establish the other costs. The capital investments of equipment 

such as the gasifier, syngas post-treatment units, and methanol synthesis reactor were 

determined by the six-tenth factor rule [35]. Equipment costs were updated by using the 

2018 Chemical Engineering Plant Cost Index (CEPCI) [36]. The costs ofeach equipment 

are scaled from base equipment costs by following Equation 7.3, where: CoStl is the 

scaled new equipment cost and Costo is the base equipment cost; sizel is the size of new 

equipment and sizeo is the size ofbase equipment; n is the scaling exponent for a different 

system. Both scaling factor and base equipment cost come from literature [37]. 

[
SiZei ]n 

Casti = Casto -.­
sLzeo 

Equation 7.3 

The TCI of a chemical plant includes purchased equipment, installation, instruments, 

electrical systems, buildings, service facilities, supervision, contractor's fee, etc. TCI can 

be divided into 2 categories: fixed capital co st (FC) and working capital (WC) (Equation 

7.4). FC is the capital needed to supply the manufacturing and plant facilities (Equation 

7.5). WC is the capital needed to operate the plant until company gets income. 

TCI = Fixed Capital Cost (FC) + Working Capital (WC) Equation 7.4 

Where 

FC = Direct co st + Indirect co st Equation 7.5 

ln general, plant scale strongly affects its economy, the equipment cost decreasing with 

the upscaling of plant capacity [37]. Therefore, before achieving the techno-economic 

analysis, it is necessary to hypothesize about the plant's capacity. In our study, we assume 
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that the plant's capacities are 500 tons/day (TPD), 1000 TPD, 1500 TPD, 2000 TPD, and 

2500 TPD respectively. 

7.5.1.2 Total product cost 

The total product cost (TPC) consists of all costs required for efficiently operating the 

plant over the plant's life. The total product co st (TPC) ca\culation was based on several 

economic assumptions that are listed in Table 7.4. TPC was calculated by following 

Equation 7.6. 

Table 7.4 Economie assumptions for total product co st estimation 

Item Economie assumptions 
1. Raw materials Pyrolysis oil 117 US$/ton [38] 

Biochar 71 US$/ton [39] 
Biomass 40 US$/ton r401 

2. Utilizes (electricity, fuel, stream, water, air, 10% of total product cost [41] 
refrigeration and cool agent) 
3. Operating & maintenance 
3.1 Operating labor 30,40,50,60, and 70 labors/shift for 

Cases 1,2,3,4, and 5 respectively, 3 
shifts/day, 60,000 $/labor/year 

3.2 Supervisory 20% of operating labor 
3.3 Maintenance & Repairs 6% of fixed capital investment 
3.4 Maintenance supplies 15% of maintenance and repairs 
3.5 Laboratory charges 15% of operating labor 
4. Patents & Royalties (Indirect cost) 1 % of total product cost 
5. Depreciation Recovery period 20 years, salvage 

value 5% 
6. Local taxes & in surance 3% offixed capital investment 
7. Plant overhead costs 60% of (3.1 + 3.2 + 3.3) 
8. General expenses 
8.1 Administration 5% of production cost 
8.2 Marketing 5% of total production cost 
8.3 Research & Development 4% total production cost 
9. Total Operating co st (TPC) 1+2+3+4 + 5+6+7+8 

Where 

TPC = CR + Cu + COM + CPR + CD + Cu + CP + CG Equation 7.6 

Where CR, Cu, COM, CPR, CD, Cu, Cp, and CG represent the cost ofraw material, utilities, 

operating and maintenance, patents and royalties, depreciation, tax and insurance, plant 
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overhead, and general expenses, respectively. The depreciable value of an asset is the 

initial cost of the fixed capital investment minus the salvage value at the end of the 

considered depreciable life. For this chemical project, the salvage value is taken as O. In 

this research, a straight-line calculation method was selected as Equation 7.7, due to it 

is a simple method and distributes depreciation evenly over the life of the property. 

" (fixed capital investment - salvage value) 
Annual depreclatlOn = , l'. 

service !te 
Equation 7.7 

Before calculating the TPC, a number of assumptions were adopted firstly, as listed in Table 

7.5. 

Table 7.5 Economic analysis assumptions. 

Item Economic assumptions 
1. Steam Self-produced 
2. Proiect life 20 years + 3 years for construction 
3. Plant uptime 350 days/year 
4. Construction period 3 years 
5. Construction inflation rate 2%/year 
6. Income tax rate 35% 
7. Interest rate 5% 
8. Hurdle rate 10% 
9. Bio-methanol price 1100 $/ton r 421 

7.5.1.3 Profitability indicators 

Three indicators were chosen to assess the project profitability: Net Present Value (NPV), 

Internai Rate of Return (lRR), and discounted payback period (DPBP). The NPV, IRR 

and DPBP calculations are shown in the following Equations (7.7, 7.8 and 7.9). The IRR 

is defined as the discount rate i at where the NPV equals to zero. The minimum acceptable 

IRR and DPBP values are set as 5% and 10 years [30,43,44]. 
n 

~ Ct 
NPV = L (1 + i)t - Co 

t=l 
n 

~ Ct 
N PV = L (1 + 1 RR)C - Co = 0 

t=l 

B 
DPBP = A + C 

Where i = discount rate; 

Equation 7.8 

Equation 7.9 

Equation 7.10 



t = number of time periods; 
n = total number of years; 
Co = total initial investment cost; 
Ct = net cash inflow during the period; 
A = last period with a negative discounted cumulative cash flow; 
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B = absolute value of discounted cumulative cash flow at the end of the period A; 
C = discounted cash flow during the period after A. 

7.5.2 Economie evaluation results 

The main equipment costs estimation of methanol plant at different scales is shown in 

Table 7.6. The TCI of methanol synthesis process by different scales are listed in Table 

7.7. The TCI listed in Table 7 for aIl cases are between 329 and 1050.5 M$. These 

estimations are close to previous research results, e.g., in [43] where the authors computed 

a TCI of 1036.21 M$ for a 2500 TPD-case of methanol production plant from carbon 

dioxide. 

Even though the TCI increases with increasing plant capacity, the capital investment per 

TPD decreases simultaneously (economies of scale). The capital investment per TPD by 

various scales is illustrated in Figure 7.2. The results show that the capital investment per 

TPD gradually decreases with the increase in plant scale. This trend is consistent with 

economies of scale i.e., the co st per unit of production decreases as the scale increases. As 

the plant scale increases from 500 to 2500 TPD, we can observe a graduaI decrease in TCI 

per TPD by different feedstocks : biomass (185 .3 to 118.3 $/TPD), biochar (162.6 to 103.8 

$/TPD), and pyrolysis oil (332.0 to 212.0 $/TPD). 
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Table 7.6 Methanol plant scale factors and main equipment costs estimation 

No. Description Scaling Case 1 Case 2 Case 3 Case 4 Case 5 Ref. 
factor (500 TPD) (1000 TPD) (1500 TPD) (2000 TPD) (2500TPD) 

Cost [MS] Cost rMS] Cost rMS) Cost [MS] Cost [MS] 
1 Gasification 0.75 11.0 18.6 25.2 31.2 36.9 [45] 
2 Syngas cleaning up 0.70 26.8 43 .6 57.9 70.8 82.8 [30] 
3 Syngas compressor 0.85 4.9 8.9 12.6 16.1 19.4 [37] 
4 Methanol synthesis 0.70 23.8 38.7 51.5 62.9 73.6 [45) 
5 Methanol distillation 0.65 0.5 0.8 1.0 1.3 1.5 [30] 
6 Coolers 0.80 1.4 2.5 3.5 4.4 5.3 [46) 
7 Steam system & 0.70 11.7 18.9 25.2 30.8 36.0 [30] 

power generator 
(HRSG) 

Total purchased eQuipment cost 80.1 132.0 176.9 217.5 255.5 n.a. 
Total purchased equipment co st 88.1 145.2 194.6 239.3 281.1 n.a. 

(del ivered) 

Table 7.7 Total capital investment estimation 

Items Ratio Case 1 Case 2 Case 3 Case 4 Case 5 
factor Cost IMSI Cost [MSI Cost IMSI Cost IMSI Cost IMSI 

1. Direct cost 
1. 1 Purchased equipment (delivered) 1 88.1 145.2 194.6 239.3 281.1 
1.2 Equipment installation 0.40 [47) 35.2 58.1 78.8 95.7 112.4 
1.3 Instrumentation & controls 0.20 [47] 17.6 29.0 38.9 47.9 56.2 
1.4 Piping 0. 15 [47) 13.2 21.8 29.2 35.9 42.2 
1. 5 Electrical systems 0. 15 [47] 13.2 21.8 29.2 35.9 42.2 
1.6 Buildings 0.30 [48] 26.4 43.6 58.4 71.8 84.3 
1.7 Yard improvements 0. 10 [49] 8.8 14.5 19.5 23.9 28.1 
1.8 Service faci lit ies (waste treatment, 0.20 [50] 17.6 29.0 38.9 47.8 56.2 
receiving, shipping, packaging, storage, offices, 
etc.) 

2. lndirect capital cost 
2. 1 Engineering and supervision 0.25 [471 22.0 36.3 48.8 59.8 70.3 
2.2 Contingency 0.30 [501 26.4 43.6 58.4 71.8 84.3 
2.3 Contractors fees/overheads/profits 0.10 [501 8.8 14.5 19.5 23.9 28.1 
2.4 Start-up 0.10 [501 8.8 14.5 19.5 23.9 28.1 

3. Addit ional investrnent 
3.1 Working capital 0.15 FCI 42.9 70.8 95.1 116.6 137.0 

f481 
Fixed capital investment (FCI) FCI=direct 286.1 471.9 633.7 777.6 913.5 

cost + 
indirect cost 

Total capital investrnent (TCI) TCI=FCI+ 329.0 542.7 728.8 894.2 1050.5 
WC 
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Figure 7.3 shows the breakdown of total product costs (TPC) for different feedstocks at 

different scales. Higher plant scales lead to an increase of the TPC. In each case, the TPC 

of pyrolysis oil is higher than that of biochar and biomass. This result was expected given 

that pyrolysis oil price is the highest (Table 7.4). For example, the product cost of 

pyrolysis oil of Case 1 is 110.5M$, which is 4.7 M$ and 18.0 M$ higher than that of 

biochar and biomass. This is mainly due to the higher feedstock cost. 
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Figure 7.3 Total product cost of biomass, biochar, and pyrolysis oïl at various plant 

sc ales 

The economic evaluation is presented in Table 7.8 for al! feedstock and for the 2500-TPD 

case. For this analysis, the bio-methanol price was set at 1100 $/ton. As we can see, the 

NPV values ofbiomass and biochar are above 0, up to 1596.5 M$ in the biochar case, i.e., 

509.5M$ more than the biomass case. ln tenns ofIRR and DPBP, the same trend as for 

the NPV is observed, the IRR and DPBP for the biochar case being respectively higher 

(7.8 % vs. 4.6 %) and lower (8.3 years vs. 1l.1 years) than the biomass case. 

On the other hand, it is not possible to accurately estimate NPV, IRR and DPBP for the 

pyrolysis oil case, a low methanol yield coupled with a high pyrolysis oil purchase price 

leading to revenues below production costs. This causes distortion in the calculation. 

Therefore, the results obtained are not included. Considering these results, biochar seems 

to be the most promising feedstock, compared to biomass and pyrolysis oil. 
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Table 7.8 Preliminary economic evaluation 

Biomass Biochar Pyrolysis oil* 
Plant scale (TPD) 2500 2500 2500 
NPV (M$) 1087.0 1596.5 -
IRR (%) 4.6 7.8 -
DPBP (years) 11.1 8.3 -

* tncome IS lower than cost 

7.5.3 Sensitivity analysis 

A sensitivity analysis was conducted to investigate the impact of different factors (i.e., 

bio-methanol price, feedstock price, TCI, and project lifespan) on the project profitability 

at different plant scales, which enables to identify the most appropriate size of the plant. 

To perform the sensitivity analysis, a baseline must be defined for each case: 

• Biomass case: 
o Bio-methanol priee: 1100 $/ton. 
o Feedstock price (biomass): 40 $/ton. 
o TCI: ±O% (compared to TCI defined previously). 
o Project lifespan: 20 years. 

• Biochar case: 
o Bio-methanol priee: 1100 $/ton. 
o Feedstock price (biochar): 71 $/ton. 
o TCI: ±O% (compared to TCI defined previously). 
o Project lifespan: 20 years. 

• Pyrolysis oil case: 
o Bio-methanol priee: 2300 $/ton. 
o Feedstock price (biomass): 110 $/ton. 
o TCI: ±O% (compared to TCI defined previously). 
o Project lifespan: 20 years. 

These baselines are used as benchmarks f~r the following sensitivity analysis. In the case 

of pyrolysis oil, it is difficult to reach the minimum IRR value when bio-methanol priee 

is set at Il OO$/ton, so we adjust the price of bio-methanol to 2300$/ton, the results of the 

sensitivity analysis are presented in Table 7.9. 



Table 7.9 IRR (% ) evolution as a function of key parameters 

Pararneters Value 
Case: Biornass (TPD) 

500 1000 
900 - -16.4 

Bio-rnethanol 
1000 - -8 .7 

price ($/ton) 
1100 -16.7 -4.4 
1200 -9.6 -1.1 
1300 -5.7 1.9 
20 -12 .9 -2.1 

Feedstock price 
30 -14.3 -3.6 
40 -16.7 -4.4 

($/ton) 
50 -18.4 -5.1 
60 -22.1 -5.9 
-20 -12 .0 -2.2 
-10 -12 .7 -3.3 

TCI (%) 0 -16.7 -4.4 
+ 10 -17 .2 -5.2 
+20 -18.4 -5.9 
10 -31.9 -14.6 

Project lifespan 
15 -21.4 -7 .5 
20 -16.7 -4.4 

(year) 
25 -16.1 -4.2 
30 -15.8 -4.1 

- stands for incorne is lower than co st 
Green stands for acceptable (lRR > 5%) 
Red stands for unacceptable (IRR < 0%) 

1500 2000 
-7.2 -5.1 
-2.4 -0.8 
1.0 2.6 
4.0 5.7 
6.8 8.6 
2.3 3.9 
1.7 3.3 
1.0 2.6 
0.4 2.0 
-0.3 1.3 
3 .8 5.6 
2.3 4.0 
1.0 2.6 
-0.1 1.4 
-1.0 0.4 
-7.0 -4.8 
-1.3 0 .5 
1.0 2.6 
1.1 2.7 
1.2 2.8 

2500 
-2.9 
1.1 
4.6 
7.7 
10.7 
5.9 
5.2 
4.6 
3.9 
3.3 
7.9 
6.1 
4.6 
3.3 
2.2 
-2.1 
2.7 
4.6 
4.7 
4.8 

Value 
Case: Biochar TPD) 

Value 
500 1000 1500 2000 2500 

900 - -10.2 -3.4 -1.9 0.1 2100 
1000 -17.6 -4.8 0.6 2.2 4.2 2200 
1100 -9 .5 -0.9 4.1 5.8 7.8 2300 
1200 -5.2 2.4 7.2 9.1 11.1 2400 
1300 -1.8 5.3 10.2 12.2 14.4 2500 
50 -7 .8 0.3 5.2 7.0 9.0 100 
60 -8.7 -0.3 4.6 6.4 8.4 110 
70 -9.5 -0.9 4.1 5.8 7.8 120 
80 -10 .5 -1.5 3.5 5.2 7.2 130 
90 -11 .6 -2.2 2.9 4.6 6.4 140 
-20 -7.8 1.6 7.3 9.3 Il.6 -20 
-10 -8.8 1.3 5.6 7.4 9.5 -10 
0 -9.5 -0.9 4.1 5.8 7.8 0 

+ 10 -10.2 - 1.9 2.8 4.5 6.3 + 10 
+20 -10.8 -2.8 1.7 3.3 5.0 +20 
10 -22.2 -9.7 -2.8 -0.5 2.1 10 
15 -13.7 -3 .5 2 .2 4.1 6.3 15 
20 -9.5 -0.9 4.1 5.8 7.8 20 
25 -9 .3 -0.8 4.2 5.9 7.9 25 
30 -9 .1 -0.7 4.3 6.0 8.0 30 
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Case: p, rolysis oil (TPD) 
500 1000 1500 2000 2500 

- -10.4 -6.0 -2.0 -0.1 
- -7.4 -1.5 0.1 2.0 
- -5.0 0.4 2.0 4 .0 

-13.1 -3.0 2.2 3.8 5.8 
-9.9 -1.2 3.8 5.5 7.5 

- -3.6 1.7 3.3 5.2 
- -4.3 1.0 2.6 4.6 

- -5.0 0.4 2.0 4.0 
- -5 .9 -0.3 1.3 3.3 
- -6 .7 -0 .9 0.6 2.6 

- -3.0 3.1 4.9 7.2 
- -4.2 1.6 3.3 5.4 

- -5.0 0.4 2.0 4.0 
- -6.0 -0.7 0.9 2.7 
- -6.7 -1.6 -0.1 1.6 
- -15 .6 -7 .8 -5.6 -3.0 

- -8.3 -2.0 -0.2 2.0 
- -5.0 0.4 2.0 4.0 
- -4.9 0.5 2.1 4.1 
- -4.8 0 .6 2.20 4.2 
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This sensitivity analysis enables to highlight the impacts of key-parameters on the project 

IRR. Table 9 presents the results of this analysis. In this table, a first general observation 

is the graduaI increase of the IRR values when the plant scale increases from 500 to 2500 

TPD, proving the interest of the economies of scale. 

The selling priee ofbio-methanol is the most influential parameter that affects the IRR. In 

the case ofbiomass, it is worth noting that when the plant scale is expanded to 2500 TPD, 

even if the bio-methanol price is as low as 1000 $/ton, the IRR value is still above 0%. 

Moreover, as the bio-methanol price increases to 1300 $/ton, the IRR value increases 

above the minimum acceptable value (5%), reaching 6.8% at a minimum plant scale of 

1500 TPD. For biochar, when the plant scale expands to 2500 TPD, the IRR value is still 

above 0% as the bio-methanol price is as low as 900 $/ton. When the bio-methanol price 

is set at 1300 $/ton, the IRR value increases above 5% at a minimum plant scale of 1000 

TPD. With regard to the pyrolysis oil case, the bio-methanol yield simulated appears to 

be the lowest and the pyrolysis oil priee is about 3 and 1.5 times that of biomass and 

biochar respectively (see Table 4). Therefore, it is difficuIt to yield economic benefits. 

Even if bio-methanol price is set at 2500 $/ton, IRR values remain negative at the plant 

scales of 500 and 1000 TPD. An IRR of 5.8% is reached for a plant with a scale of2500 

TPD coupled with a bio-methanol price of 2400 $/ton. 

Feedstock priee seems to be the least influential parameter, its variation being the least 

impactful on IRR value. When biomass price decreases to 30 $/ton, the IRR value is 

greater than 5% at a minimum plant scale of 2000 TPD. When the biochar price drops to 

60 $/ton, the IRR value reaches 5% at a minimum plant scale of 1500 TPD. Even if the 

biochar price rises up to 90 $/ton, the IRR value is still above 5% at a plant scale of2500 

TPD. For pyrolysis oil, the best IRR value is obtained at a plant scale of 2500 TPD with 

pyrolysis oil price set up at 100$/ton, reaching to 5.2%. 

TCI is the second most influential factor, its variation affecting the IRR value and the plant 

scale. When TCI decreases by 20%, the IRR value of biomass scenarios is greater than 

5% at a minimum plant scale of2000 TPD. It is worth noting that when TCI decreases by 

20%, the IRR value of biochar scenarios is above 0% at a minimum plant scale of 1000 
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TPD. Even ifTCI increases by 20%, the minimum acceptable IRR value is still reached. 

In the case of pyrolysis oil, when TCI is reduced by 20%, IRR value is close to the 

minimum acceptable value with 4.9% at a minimum plant scale of2000 TPD. 

Project lifespan seems to be more influential in the first 2 decades and less so thereafter. 

It could be explained by the inflation of the interest rate, which leads to a graduai 

depreciation of income as project lifespan extend. It is worth noting that when the biochar 

is used to produce bio-methanol, the IRR value is higher than 0%, even though the plant 

life is only 10 years. 

ln general, when the plant scale is less than 1000 TPD, even if the price of bio-methanol 

continues to rise, the minimum acceptable IRR value of 5 % is hard to reach for each case. 

The price of bio-methanol has a significant impact on the IRR value: the higher the price 

of methanol, the higher the internai rate of return. TCI appears to be the second significant 

parameter to achieve relevant objectives. Lower TCI means lower costs of operations and 

maintenance. From an industrial perspective, this concept can be applied in the future in 

regions with lower equipment costs, such as China, Africa, and India. 

Biochar seems to be the most promising raw material to produce bio-methanol, as the 

IRRs obtained are more competitive than biomass at a reasonable price. In contrast, 

pyrolysis oil presents the worst trends. In each case, it is difficult to reach the 5% IRR 

value, even at the maximum scale suggested in the assumptions, i.e., 2500 TPD. To 

improve the IRR value, it would be necessary to expand the plant scale or to increase the 

bio-methanol selling price. 

7.6 Conclusions 

The objective of this study was to develop a model to simulate the production of bio­

methanol from different feedstocks (i.e., biomass, biochar and pyrolysis oil), to assess the 

economic profitability of a project of bio-methanol production plant and to perform a 

sensitivity analysis highlighting the key parameters to be considered. The model 

developed in Aspen Plus includes gasification, syngas purification, methanol synthesis 

and distillation. The simulation results were validated with experimental data from the 
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literature. The model was then used to assess the potential for producing bio-methanol 

from three feedstocks, namely pine biomass, biochar and pyrolysis oil. Simulation results 

show that biochar is the feedstock with the highest methanol production yield (578.2 

kg/lOOO kg) due to its higher carbon content. On the contrary, pyrolysis oil is the feedstock 

with the lowest yield (283 .1 kgll 000 kg), due to its high water and low carbon content. 

Based on the Aspen Plus model results, an economic evaluation was carried out to assess 

the economic feasibility using the IRR, NPV and DPBP profitability indicators. A 

sensitivity analysis was performed by varying several key parameters such as the selling 

price of bio-methanol, the price of feedstock, the total capital investment (TCI) and the 

project lifespan. In the case of biomass and biochar, it is possible to reach the 5% IRR 

threshold value when the price of bio-methanol is greater th an or equal to 1100 US$/ton. 

On the other hand, pyrolysis oil appears to be the worst option, with a minimum methanol 

price of 2300 US$/ton required for minimum profitability. The results of the sensitivity 

analysis show that the priee of bio-methanol, TCI, project lifespan, feedstock prices and 

project scale are key factors influencing the IRR value. (a few comments about the 

hierarchy of each parameter: the least and most influential parameters ... ) 

Given the CUITent price of conventional methanol, bio-methanol produced from 

bioresourees is unfortunately not commercially competitive with conventional methanol. 

However, the emergence ofnew regulations (taxes on petroleum products, carbon credits, 

subsidies for the development of green fuels, etc.) should gradually reverse this trend. 

Moreover, such a process is directly in line with the sustainable development goals ofthe 

United Nations and the commitments of COP2l. 
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7.8 Supplementary information 

Appendix A 

Table 7.10 Biomass Ne definition 

Attribute ID: 
PROXANAL SULFANAL 
MOISTURE 4.4 PYRITIC 0.08 
FC 31.3 SULFATE 
VM 61.6 ORGANIC 
ASH 2.7 

Table 7.11 Biochar Ne definition 

Attribute ID: 
PROXANAL SULFANAL 
MOISTURE PYRITIC 0.01 
FC SULFATE 
VM ORGANIC 
ASH 4.2 

Table 7.12 Pyrolysis-oil Ne definition 

Attribute ID: 
PROXANAL SULFANAL 
MOISTURE 32.5 PYRITIC 0.001 
FC SULFATE 
VM ORGANIC 
ASH 
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Appendix B 

Flowsheet in Aspen plus 

Table 7.13 Flowsheet in Aspen plus (Biomass) 

Stream 1 3 Moisture steam 6 7 9 10 Il 14 15 16 17 18 20 
No. 
Temp (oC) 40 100 100 100 800 800 80 20 26.2 42.6 250 50 50 65 65 
Pressure 1 1 1 1 1 1 1 1 1 55 55 1 1 1 1 
(bar) 
Flowrates 
(kg/h) 
Biomass 1000 
Dry 956 
biomass 
H20 44.0 700 32.3 32.3 200 229.4 2.9 4.8 4.8 45.3 
H2 114.2 114.2 114.2 31.1 31.1 31.1 
CO 694.4 694.4 694.4 121.2 121.2 121 .2 
C02 783 .2 783 .2 783.2 778.7 778.7 778.7 
CH4 4.8 4.8 4.8 4.8 4.8 4.8 
NH3 trace trace trace 
H2S trace trace trace 
Ash 27.0 27.0 
MeOH 659.0 659.0 869.8 866.3 

Methanol y ield = theoretical methanol yield* gasifier efficiency (0.729) * methanol synthesis effic iency (0 .8) = 507.3 kg 

Table 7.14 Flowsheet in Aspen plus (Biochar) 

Stream 1 3 Moisture steam 6 7 9 10 Il 13 14 15 16 17 18 20 
No. 

Temp 40 100 100 100 800 800 80 20 29.1 44.3 44.3 250 50 50 65 65 
(OC) 

Pressure 1 1 1 1 1 1 1 1 1 1 55 55 1 1 1 1 
. (bar) 

Flowrates 
(kg/h) 

Biochar 1000 
Dry 1000 

biochar 
H20 0 1000 15.9 15.9 200 213 .8 2.1 2.1 5.5 5.5 48.1 

H2 129.9 129.9 129.9 129.9 35.2 35.2 35.2 
CO 795.2 795.2 795 .2 795.2 145.6 145.6 145.6 
C02 959.2 959.2 959.2 959.2 950.9 950.9 950.9 
CH4 6.0 6.0 6.0 6.0 6.0 6.0 6.0 
NH:J 51.7 51.7 51.7 
H2S trace trace trace 
Ash 42.0 42.0 

MeOH 749.1 749.1 991.5 984.6 

Methanol yie ld = theoretical methanol y ield* gasifier efficiency* methanol synthesis efficiency = 578.2 kg 
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Table 7.15 Flowsheet in Aspen plus (Pyrolysis oil) 

Stream 1 3 Moisture steam 6 7 9 10 Il 13 14 15 16 17 18 20 
No. 

Temp 60 100 100 100 800 800 80 20 22.5 42.2 42.2 250 50 50 65 65 
(OC) 

Pressure 1 1 1 1 1 1 1 1 1 1 55 55 1 1 1 1 
(bar) 

Flowrates 
(kg/h) 

Pyrolysis 1000 
oil 

Dry oi l 675 
H20 325 325 42.7 42.7 200 241.1 1.6 1.6 3.1 3.1 27.3 
H2 64.2 64.2 64.2 64.2 18.1 18. 1 18. 1 
CO 386.0 386.0 386.0 386.0 68.9 68.9 68.9 
C02 500.4 500.4 500.4 500.4 496.7 496.7 496.7 
CH4 2.8 2.8 2.8 2.8 2.8 2.8 2.8 
Nfu 33.0 33.0 33.0 
H2S trace trace trace 
Ash 

MeOH 365.4 487.3 485.4 

Methanol yield = theoretical methanol yield* gasifier efficiency* methanol synthesis efficiency = 283.1 kg 
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Chapter 8 - Conclusions 

8.1 Main conclusions 

The main purpose of this work has been to identify potential applications of pyrolysis oil. 

Present thesis is bringing forth new avenues in a developing field of green energy or 

energy vector (biofuels) production. Indeed, we have developed new strategies and 

performed work in new, previously unexplored avenues. First, the use ofpyrolysis oil for 

the production of syngas and biofuel has not been reported in the literature before present 

thesis. Second, the influence of many parameters such as moisture content, gasifier 

temperature, syngas post-treatment, methanol synthesis temperature and pressure, on the 

syngas and biofuel production has also not been explored. Last but not least, the 

marketability of using pyrolysis oil to produce bio-methanol has not been investigated 

before present work. To address these questions and solve the issues, we used Aspen Plus 

to simulate the gasification and methanol synthesis processes. Specifically, we propose 

that the syngas produced by pyrolysis oil gasification, with a sufficient degree of purity 

related to syngas cleaning, can be used directly in fuel cells or for biofuel production. The 

effect of many factors on syngas composition are examined. For synthetic biofuels, the 

effect of sorne parameters on bio-methanol synthesis is explored. One innovation point is 

the syngas is purified by a Rectisol® unit, which changes the syngas SN value and 

increases methanol yield. Finally, the feasibility ofproducing methanol from pyrolysis oil 

at different scales was analyzed through techno-economic analysis. In order to assess the 

potential of pyrolysis oil, the same evaluation was achieved for biochar and pi ne biomass 

to see whether pyrolysis oil was a suitable candidate for methanol production. 

Several conclusions were highlighted in the course ofthis study: 

If syngas produced from pyrolysis oil gasification is used in fuel cells: 0 2 and air, 

which will reduce the syngas lower heating value (LHV) value, should not be used 

as a gasifying agent; moisture content in pyrolysis oil should be minimized; syngas 

should be produced at higher temperatures so that the syngas has a higher enthalpy 

value. 
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If syngas is used to synthesize methanol or Fischer-Tropsch fuel: a small amount 

of 0 2 can be used to adjust the H2:CO molar ratio; the syngas should be produced 

at 1000 oC, where the H2:CO molar ratio is equal to 2; furthermore, moisture 

content in the pyrolysis oil should be around 40 wt.% in order to maximize 

production yields. 

For fuel synthesis, the syngas gasifying temperature should be at 1000 oC with a 

maximum SN value of 0.85 . The moisture content in pyrolysis oil should be kept 

at 30 wt.% with a SN value of 0.865. The Rectisol® unit for purifying syngas and 

adjusting syngas composition should be set at -20 oC and 40 bars, where syngas 

SN value reached a maximum of2.07. For methanol synthesis reactor, 50 bar and 

250 oC were selected as the optimal operating conditions for the methanol 

synthesis. Thus, it was possible to reach a maximum methanol yield of 8.04 kmol. 

Producing methanol from pyrolysis oil is technically feasible, but industrially 

complex. The high purchase price coupled with its low carbon content in pyrolysis 

oil (compared to biomass and biochar) are factors that reduce the profitability of 

such a project. On the contrary, biochar seems to be a promising candidate for the 

production of methanol. Although expensive to purchase, it allows for high 

methanol yields due to its high carbon content, thus generating more easily profits . 

Biochar can also be a by-product of another project (e.g. IH2 from Shell 

technology) and such an avenue could be further explored for its economic 

feasibi 1 ity. 

A sensitivity analysis was carried out by varying several realistic parameters such 

as bio-methanol price, feedstock price, total capital investment (TCI) and plant 

life. Bio-methanol price appeared as the most significant factor. For biochar, when 

the bio-methanol price is 1100 $/ton, the project can achieve its economic benefit 

at the minimum plant scale 1000 TPD. 

8.2 Main contributions 

Throughout this work, we have simulated pyrolysis oil gasification for different purposes. 

Through the simulations carried out, our results have highlighted that the gasification 
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conditions and moisture content in pyrolysis oil have a significant impact on syngas 

properties. These results could be used as reference when gasifying other feedstocks. 

Subsequently, we simulated the methanol synthesis from pyrolysis oil, in which Rectisol® 

technology was used for syngas post-treatment. We have shown that the gasification 

conditions and the moisture content in the pyrolysis oil, as weil as the operating conditions 

of the Rectisol® and methanol reactors have an impact on the methanol yield. The study 

of the various parameters enabled us to propose a production plan maximizing gas and 

then methanol yields, potentially applicable for future industrialization. Through techno­

economic analysis, we have determined that the pathway of methanol production from 

pyrolysis oil is feasible but not financially viable. However, we found that the pathway 

for producing methanol from biochar was more attractive than that of biomass and 

pyrolysis oil. 

8.3 Future work 

First of aIl, gasification experiments at pilot or demonstration scales should be conducted 

to validate the simulation results with actual experimental data. It should however be noted 

that the obtention of such "demonstration experiments" would be quite expensive. For 

instance, the work to be performed by the BioÉnegie La Tuque project to just do that will 

costs around 12 million $Can. We have used here literature data as the thesis project could 

not afford such costs. We have also demonstrated that validations that the reaction 

conditions such as gasifier temperature and moisture content in pyrolysis oil are in 

agreement with the simulation results. 

The above studies show that the pathway of producing methanol from pyrolysis oil is not 

currently economically viable. However, future work may explore the potential 

applications ofpyrolysis oil in other areas. For example, it can be bumed in a boiler along 

with other feedstock to generate heat and power. Furthermore, part of pyrolysis oil can 

also be extracted for value creation from high value-added products: for example, 

chemical compounds such as aldehydes, phenols and laevoglucose can be extracted from 

pyrolysis oil. Applications like liquid smoke, adhesives and fertilizer have also be 

identified and explored in the literature. 
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Based on previous research, biochar appears to be a promising feedstock to produce 

methanol. Sorne work will need to be done to further explore the possibility of producing 

methanol from biochar and biomass in regions such as South Africa, China, and India, 

where the co st of equipment, feedstock and labor is cheaper. 

While simulating the methanol synthesis process, we found that not aIl the carbon in 

biomass, biochar and pyrolysis oil can be converted to methanol: this is due to insufficient 

hydrogen produced during the gasification process, essentially because biomass lacks the 

proper percentage of hydrogen in its elemental composition. Therefore, given Canadian 

abundant water resources and low electricity costs, we can obtain extra hydrogen through 

water electrolysis to ensure full utilization of carbon, which makes full use of the carbon 

and potentially reduces the co st of methanol production. 

A sensitivity analysis will be continuing to be carried out by varying several realistic 

parameters especially sorne national policies, such as carbon tax, etc. 

We will update the CanmetENERGY Center software I-BIOREF with our research 

results, which will help us to develop this project more systematically in the future. 
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