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ABSTRACT: 

Contemporary pain adaptation theories predict that motor adaptation occurs to limit pain. Current 

experimental pain models, however, do not allow pain intensity modulation according to one’s 

posture or movements. We developed a task-relevant experimental pain model using low-

frequency sinusoidal electrical stimuli applied over the infrapatellar fat pad. In fourteen 

participants, we compared perceived pain habituation and stimulation-induced artefacts in vastus 

medialis electromyographic recordings elicited by sinusoidal (4, 10, 20 and 50Hz) and square 

electrical waveforms delivered at constant peak stimulation amplitude. Next, we simulated a 

clinical condition where perceived knee pain intensity is proportional to the load applied on the 

leg by controlling sinusoidal current amplitude (4Hz) according to the vertical force the 

participants applied with their right leg to the ground while standing upright. Pain ratings 

habituated over a 60s period for 50Hz sinusoidal and square waveforms but not for low-

frequency sinusoidal stimuli (p<0.001). EMG filters removed most stimulation artefacts for low-

frequency sinusoidal stimuli (4Hz). While balancing upright, participants’ pain ratings were 

correlated with the force applied by the right leg (R
2
=0.65), demonstrating task-relevant changes 

in perceived pain intensity. Low-frequency sinusoidal stimuli can induce knee pain of constant 

intensity for 60s with minimal EMG artefacts while enabling task-relevant pain modulation when 

controlling current amplitude. By enabling task-dependent modulation of perceived pain 

intensity, our novel experimental model replicates key temporal aspects of clinical 

musculoskeletal pain while allowing quantification of neuromuscular activation during painful 

electrical stimulation. This approach will enable researchers to test the predicted relationship 

between movement strategies and pain.



KEY POINT SUMMARY: 

 Motor adaptation is thought to be a strategy to avoid pain. 

 Current experimental pain models do not allow to consistently modulate pain perception 

depending on one’s movements. 

 We showed that low-frequency sinusoidal stimuli delivered at painful intensity result in 

minimal habituation of pain perception (over 60s) and minimal stimulation artefacts on 

electromyographic signals. 

 When the amplitude of the low-frequency sinusoidal stimuli was modulated based on the 

vertical force participants applied to the ground with the right leg while standing upright, we 

demonstrated a strong association between perceived pain and motor adaptation. 

 By enabling task-relevant modulation of perceived pain intensity and the recording 

electromyographic signals during electrical painful stimulation, our novel pain model will 

permit direct experimental testing of the relationship between pain and motor adaptation. 

 

RUNNING TITLE: 

Motor adaptation to task-relevant pain: a novel experimental model. 

 

Keywords: Pain, adaptation, electrical stimulation, EMG, knee 



INTRODUCTION 

It is widely acknowledged that pain changes the way we move. Contemporary pain theories 

predict that motor adaptation occurs to limit pain (Hodges & Tucker, 2011). Experimental pain 

approaches are appropriate to test predictions from these theories and provide insights into motor 

adaptation variability that are difficult to infer from clinical populations. The most commonly 

used experimental pain model consists in the injection of hypertonic saline solution in muscles 

(Zedka et al., 1999; Birznieks et al., 2008; Gallina et al., 2018b; Martinez-Valdes et al., 2020) or 

other soft tissues (Bennell & Hinman, 2005; Birznieks et al., 2008; Tsao et al., 2010; Gallina et 

al., 2018b), which results in tonic pain that is not consistently modulated by how an individual 

moves. The pain experienced by individuals with musculoskeletal disorders, however, is 

alleviated or exacerbated by specific movements or postures (Lewis, 2015; Crossley et al., 2016; 

Karayannis et al., 2016; Madry et al., 2016); this has prompted researchers to investigate 

sensorimotor adaptations during movements that specifically evoke pain (Wang et al., 2018, 

2021). Moreover, as the pain perception induced by hypertonic saline solution is not consistently 

modulated when motor adaptation occurs, motor adaptation may be altered if pain is exacerbated 

by specific movements and/or alleviated when an appropriate alternative motor strategy is 

identified. While hypertonic saline solution injections are appropriate to reproduce the 

physiological effects of tonic muscle pain, the motor adaptations observed following these 

injections may provide only partial information on how the sensorimotor system adapts to pain. 

Hence, there is a critical need for experimental pain models that evoke a pain perception 

modulated with movement/posture to better understand the relationship between pain and motor 

adaptation. 

Electrical stimuli can activate nociceptors in non-muscular tissues (Koga et al., 

2005; Maffiuletti et al., 2008), with stimulus intensity modulating pain perception 

(Laursen et al., 1997). Brief trains of electrical stimuli (square waves; 100-200ms burst of 

200-1000μs impulses delivered at 50-200Hz) enable the characterization of altered 

neuromuscular activation in anticipation or in response to motion-induced pain (Moseley 

et al., 2004; Moseley & Hodges, 2005; Tucker et al., 2012; Schouppe et al., 2020). 

However, repeated application of electrical painful stimuli may lead to habituation in 

pain perception (Ernst et al., 1986; Eitner et al., 2018), hence painful electrical 



stimulation has mostly been used to reproduce phasic pain (Zedka et al., 1999; Moseley et al., 

2004; Moseley & Hodges, 2005; Tucker et al., 2012; Schouppe et al., 2020). In addition, 

electrical stimuli create artefacts in electromyographic (EMG) recordings, preventing the 

quantification of muscle activation during the application of the painful stimuli (Zedka et al., 

1999; Moseley et al., 2004; Moseley & Hodges, 2005; Tucker et al., 2012; Schouppe et al., 

2020). Some of these limitations may be overcome by using low-frequency sinusoidal electrical 

stimuli because: 1- they preferentially activate skin polymodal C-fibres and silent nociceptors 

(Koga et al., 2005; Matsumoto et al., 2006; Jonas et al., 2018) with minimal concurrent 

activation of larger afferents that may contribute to gating of nociceptive inputs (Melzack & 

Wall, 1965; Luz et al., 2014; Löken et al., 2017; Fernandes et al., 2020) and 2- they can be 

delivered at frequencies below the bandwidth of the EMG (i.e.  20Hz (De Luca et al., 2010)), 

which may enable quantification of muscle activation during the painful stimuli after 

conventional filtering. 

Here, we investigated the use of low-frequency sinusoidal electrical stimuli as an 

experimental model to induce task-relevant pain, where pain intensity is modulated by how an 

individual moves, thus reproducing temporal features of pain similar to those experienced by 

individuals with musculoskeletal disorders. Furthermore, we investigated if EMG signals with 

minimal stimulation artefact can be collected during painful stimulation elicited by low-

frequency sinusoidal electrical stimuli. We hypothesized that, compared to high-frequency sine 

waves and square wave stimuli, low-frequency sinusoidal electrical stimuli would result in less 

habituation of pain intensity ratings over time. Second, we hypothesized that EMG signals would 

exhibit smaller stimulation artefacts (after filtering) for low-frequency sinusoidal electrical 

stimuli compared to square wave stimuli. Finally, we modulated the amplitude of low-frequency 

electrical stimuli based on the loading participants applied to the ground while balancing upright. 

We hypothesized that perception of pain would be modulated based on loading applied by 

participants to the ground. 

METHODS 

Participants 



Fourteen healthy adult participants (8 males and 6 females) without lower limb pain and/or 

injury were recruited from the university community. Participants were excluded from the study 

is they had any history of knee surgery or musculoskeletal symptoms for which they sought 

medical care. Participants mean (± SD) age, height and weight were respectively 27.0 ± 4.1 

years, 172±10 cm and 69.3±13.5 kg. The study conformed to the Declaration of Helsinki, except 

for registration in a database, and was approved by the University of British Columbia’s Clinical 

Research Ethics Board (H17-02672). All participants gave written informed consent, 

acknowledging their right to withdraw from the experiment without consequences. 

 

Study design 

To explore the use of low frequency electrical stimuli as a pain model and address our 

hypotheses, three distinct experiments were conducted in the same session. In Experiment 1, we 

assessed the habituation of verbal pain ratings over a 60s period. In Experiment 2, we examined 

the possibility to remove artefacts induced by low frequency electrical stimuli in surface EMG 

signals recorded from the vastus medialis. In Experiment 3, we tested if low frequency sinusoidal 

electrical stimuli could induce task-relevant pain where the intensity of electrical stimuli applied 

to the knee pain depended on the load that participants applied to the ground with their right leg 

during quiet standing. Two participants were excluded from Experiments 2 and 3 due to 

technical issues with the data acquisition software. Data from another participant were excluded 

from Experiment 2 due to the electrical stimuli induced artefacts saturating of the EMG 

amplifier. 

 

Painful electrical stimuli 

Electrical stimuli were delivered through two surface electrodes (2.2 × 3.5 cm, H59P, Kendall, 

Covidien) placed over the skin of the medial (cathode) and lateral (anode) aspects of the 

infrapatellar fat pad of the right knee. The right leg was the preferred leg to kick a ball for 13 out 

14 participants. We identified the infrapatellar fat pad through manual palpation and chose this 

location because the fat pad is densely innervated by nociceptors (Bohnsack et al., 2005) and is 

considered to be one of the potential sources of pain in knee musculoskeletal disorders (Ioan-

Facsinay & Kloppenburg, 2013; Cowan et al., 2015; de Vries et al., 2020). Compared to 

previous studies where both stimulating electrodes were placed on the medial side of the knee 



(Tucker et al., 2012), we positioned the electrodes on the medial and lateral aspects of the fat pad 

to direct the current through a larger portion of the tissue, possibly stimulating a larger number of 

nociceptors. Electrical stimuli were administered using a constant-current stimulator (Digitimer 

DS5 Isolated Bipolar Constant Current Stimulator, Welwyn Garden City, Hertfordshire, UK) 

controlled using an analog signal generated by a NI multifunction data acquisition board (PXI-

6289 National Instruments, Austin, TX, USA). This analog signal was created using a digital-to-

analog port of the data acquisition board and digitized with 16 bits at 2048Hz. Using a custom 

virtual instrument (LabVIEW 2013; National Instruments, Austin, TX, USA), we programmed 

and delivered painful electrical stimuli with 1ms square waves at 40Hz or sinusoidal waveforms 

at four different frequencies (4Hz, 10Hz, 20Hz, and 50Hz). These stimulus parameters were 

chosen to test the effects of waveform type and frequency on 1) the habituation of pain intensity 

ratings over time (Experiment 1) and 2) the induced stimulation artefacts on the EMG signals 

(Experiment 2). For Experiments 1 & 2, the order of the painful electrical stimuli was 

randomized between participants. For Experiment 3, experimental pain was delivered using only 

the 4Hz electrical stimuli because they have been proposed to preferentially activate C-fibers 

(Jonas et al., 2018), and because minimal habituation was observed in preliminary data.  

 

Data collection 

Myoelectric activity was recorded from the right vastus medialis (Figure 1), a muscle commonly 

assessed in clinical and experimental pain studies (Chester et al., 2008; Gallina et al., 2018b). 

The skin over the vastus medialis was cleaned with abrasive gel (Neuprep, Weaver and Co, 

Aurora, CO) and shaved when necessary. Muscle activity was recorded with a high-density 

surface EMG (HDsEMG) of 64 electrodes arranged in 5 columns and 13 rows spaced by 8 mm 

(semi-disposable adhesive matrix; model ELSCH064, OTBioelettronica, Torino, Italy). The 

electrode grid was placed orienting the columns along the approximate muscle fiber orientation. 

The same investigator was responsible for the placement of the grid for all participants to 

minimize variability. Electrodes in the most distal part of the HDsEMG grid were located ~3 cm 

from the cathode electrode. Reference electrodes for the HDsEMG were placed over the right 

iliac crest. HDsEMG signals were amplified (×100 or ×200, to minimize the possibility of 

saturation in EMG signals), filtered (10-500Hz), digitized in monopolar mode at 2048Hz using a 

12-bit A/D converter (128-channel EMG-USB; OTBioelettronica, Torino, Italy). The analog 



signal driving the isolated electrical stimulator was recorded simultaneously with the NI 

multifunction data acquisition board and the HDsEMG amplifier to synchronize the data. 

 

For Experiments 2 & 3, we used force plates (AMTI model OR6-7-1000, Watertown, MA, USA) 

to compute maximal voluntary force exerted by the knee extensors and vertical forces applied by 

the participants while balancing. For Experiment 2, participants were seated comfortably with 

their knee angle at 90 degrees. We secured their right ankle using a strap anchored to the force 

plate with a bolt. We estimated knee extension force using the magnitude of the horizontal forces 

applied to the force plate. In Experiment 3, participants stood upright and maintained standing 

balance. We calculated the force applied by their right leg to the ground using the vertical forces 

acting on the force plates under their feet. Forces plate signals were amplified (×4000, AMTI 

model MSA-6, Watertown, MA, USA) and the voltage signals were digitized at 2048Hz using 

hardware single point data acquisition programmed with a custom LabVIEW virtual instrument 

(LabVIEW, National Instruments; and PXI-6289, National Instruments; 2048Hz). For each 

acquired data point, the custom LabVIEW virtual instrument transformed the voltage signals 

acquired from the force plate into calibrated forces and moments. 

 

Experiment 1: Habituation of pain ratings to electrical stimuli 

The aim of Experiment 1 was to assess the effects of stimulus waveform and frequency on 

habituation of pain ratings to the electrical stimuli. Participants sat comfortably on a wooden box 

without back support and with their knee flexed at ~90 degrees. In this posture, participants 

received five different types of electrical stimuli (1ms square waves at 40Hz and sinusoidal 

stimuli at 4Hz, 10Hz, 20Hz and 50Hz). The intensity of each electrical stimulus was adjusted to 

induce a moderate pain intensity (3/10) measured using a verbal numerical rating scale (NRS), 

anchored between 0 (no pain) and 10 (worst pain possibly imaginable). We targeted a pain level 

of 3/10 because it is the cut-off value commonly used to determine if a participant has 

patellofemoral pain in clinical studies (Esculier et al., 2018; Gallina et al., 2018a; Maclachlan et 

al., 2018). In addition, a pain level of 3/10 is similar to what participants reported in other studies 

where knee pain was induced by injecting hypertonic saline solution in the infrapatellar fat pad 

(Poortvliet et al., 2015; Salomoni et al., 2016; Gallina et al., 2018b). The stimulation intensity 

was determined using an ascending protocol involving 2s of electrical stimulation and ~5s of 



rest. The ascending protocol started with a 0.1 mA baseline stimulus amplitude for all 

participants and increased with steps of 0.5 mA until participants perceived a pain of 1/10. Then, 

the amplitude of the stimulation increased in steps of 0.1 mA until participants reported an 

intensity of 3/10. Verbal pain ratings were collected during continuous painful electrical 

stimulation for 60s. Participants reported their perceived pain intensity using the NRS at 5s, 10s 

after the start of the stimulation and every 10s until the end of the stimulation. At the end of the 

60s stimulation period, participants were asked to draw the localisation of the pain they 

experienced on two knee schematic drawings depicting an anterior and a transversal view of the 

knee (Figure 2). Participants also indicated all of the words that best described their perceived 

pain using the McGill Pain Questionnaire to evaluate the quality of their pain (Melzak, 1975). 

This protocol was repeated for each electrical stimulation type; stimuli were presented in a 

randomized order between participants.  

 

Experiment 2: EMG recordings during the electrical stimuli 

The aim of experiment 2 was to investigate if low frequency sinusoidal electrical stimuli 

delivered at painful intensities enabled the measurement and quantification of EMG signals with 

minimal artefacts. In a seated posture with their knees at 90 degrees, participants performed 

three isometric maximal voluntary contractions (MVC) of their right knee extensors for 

approximately 5s while the experimenter provided verbal encouragement. A 1-min rest period 

was provided between each MVC to limit muscle fatigue. The highest knee extension force value 

was considered the MVC for the rest of the protocol. Participants were asked to generate a 10% 

MVC target force. They were provided visual feedback of their force using a 22 inches computer 

screen positioned approximately 1m in front of them. This 10% MVC target force was chosen to 

elicit consistent but low-level EMG signals to determine if muscle activation could be quantified 

for levels expected for tasks of daily living. For each stimulation waveform and frequency, 

participants performed a 20s trial consisting sequentially of: i) a 5s rest period without 

stimulation; ii) a 5s rest period with moderate pain (3/10 NRS) induced by the electrical 

stimulation; iii) a 5s of active period where participants generate a 10% MVC without 

stimulation; and iv) a 5s active period where participants generated a 10% MVC with moderate 

pain induced by the electrical stimulation. The rest and active periods with and without the 

electrical stimuli were performed to determine the effects of the electrical stimuli during 



background and low-level muscle activation. This protocol was repeated for each waveform 

profile (sinusoidal 4Hz and 10Hz; square waves) and the order of the stimuli was randomized 

between participants. Sinusoidal stimulation at higher stimulation frequencies (20Hz and 50Hz) 

was not considered in this analysis because these frequencies are within the EMG signal 

bandwidth, therefore conventional EMG filtering is not expected to remove the stimulation 

artefact. 

 

Experiment 3: Task-relevant modulation of perceived pain intensity 

The aim of Experiment 3 was to investigate whether 4Hz low-frequency sinusoidal stimuli can 

induce a perception of pain that is modulated in a task-relevant manner. As a secondary aim, we 

examined whether participants adapted their behaviour in response to the painful stimuli 

modulated in a task-relevant manner. In Experiment 3, we used low-frequency painful electrical 

stimulation to induce knee pain during a daily living activity (quiet stance) to understand how 

participants adapt to knee pain in an ecological task where they are not instructed to precisely 

regulate muscle force production (in contrast to force feedback used in Experiment 2). 

Participants stood upright relaxed with their feet on two separate force plates. Stance width was 

standardized to each participant’s foot length. The baseline force applied by their right leg to the 

ground was calculated as the vertical force applied by their right foot on the force plate over 60s 

of quiet standing divided by the total vertical force applied by the two feet on the force plates. 

This measure of relative load applied by the right leg to the ground was used to determine a 

threshold to modulate the painful stimulation intensity in following trials. We chose these tasks 

and procedures to modulate the intensity of the electrical stimuli to induce a perception of pain 

intensity that was graded to the load applied by the painful leg on the ground. As participants 

maintained upright balance, we controlled the amplitude of the painful stimulation to modulate 

perceived pain intensity. For each data sample (digitized at 2048Hz), the amplitude of the 

electrical stimuli was modulated in real-time by multiplying a 4Hz sinusoidal waveform of 

unitary amplitude by a signal proportional to the instantaneous magnitude of the load on the right 

leg (Figure 1). We established two boundaries for the amplitude of the 4Hz electrical stimuli 

based the perception of pain threshold and the 3/10 painful intensity (NRS) quantified for each 

participant in Experiment 1. When the vertical force applied by the right leg to the floor was 

equal to or higher than baseline, the amplitude of the painful electrical stimuli corresponded to 



the one chosen by the participant to induce a pain perception of 3/10 NRS (7.4±2.2 mA). When 

participants shifted their weight to the left leg and reduced the load on the right leg relative to 

load applied by both legs by 2.5% or more (equivalent to a 5% decrease in vertical force applied 

by the right leg on the ground), the amplitude of the electrical stimuli was set at an intensity 10% 

lower than their identified pain threshold (4.5±1.9 mA), hence generating a non-painful sensory 

perception. When the relative loading on the right leg was between 100% and 97.5% of the 

baseline value, the amplitude of the painful electrical stimuli varied linearly between intensities 

required to generate no pain sensation and 3/10 (NRS) according to the instantaneous load 

applied by the participants’ right leg during standing balance.  

 

We asked participants to balance upright under two conditions performed sequentially to explore 

if they could discover that shifting their body weight toward the left leg modulated their pain 

perception. During the first condition, one of the experimenters told participants: “stimulation 

amplitude and pain intensity may change during the trial”, but participants were unaware of the 

possibility to modulate the stimulation amplitude. These instructions were provided to the 

participants in order to avoid them thinking that the experimental procedures were not working 

because they knew they were participating in a pain experiment and expected to experience pain. 

During the second condition, participants received the following instructions: “there is a way for 

you to decrease the pain”. Hence for this trial, participants were aware that there was a strategy 

they could use to reduce their pain intensity, but they were not told what the strategy was. During 

both conditions, participants rated their pain intensity using the NRS after 5s, 10s, and at every 

10s interval thereafter to determine if they modulated the intensity of their pain perception during 

the 60s standing balance trials. At the end of the second trial, participants were also asked to 

report which strategy they used to reduce their perceived pain intensity.  

 

Data analysis 

Drawings of the painful areas were digitized for each participant. We averaged spatial 

distribution of painful areas across participants to create heatmaps to visually describe the 

localization of pain across different electrical stimuli. From the McGill pain questionnaire, we 

reported the percentage of participants choosing specific adjectives to describe their subjective 

pain experience. 



 

As the amplitude of the stimulation-induced artefact on the EMG signals depends on the distance 

from the stimulation to the recording locations (Petrofsky et al., 2009), we simulated two bipolar 

EMG detection sites over the muscle belly. We computed the difference between the average 

monopolar signals from groups of 6 channels in a proximal and a distal location within the 

electrode grid (location described in Figure 1). We digitally band-pass (20–400Hz) filtered (8th-

order dual-pass zero-phase Butterworth) all EMG signals because analog filters typically exhibit 

slow roll-off and we wanted to minimize the presence of the stimulus-induced artefacts in the 

EMG signals using commonly filters (De Luca et al., 2010). We also used a 30-400Hz band-pass 

filter (8th-order dual-pass zero-phase Butterworth) to assess the effects of a high-pass filter with 

a higher cut-off. Notch filters (8th-order dual-pass zero-phase Butterworth; 59-61Hz and 

multiples up to 472-488Hz) were used in all signals to eliminate the 60Hz power line 

interference and its harmonics. We quantified the amplitude of vastus medialis EMG by 

computing the root mean square (RMS) value over a 4s window centered in the middle of the 5s 

stimulation period or with a 4s window ending 500ms before the start of the stimulation. 

Amplitude spectra were also computed using Fast Fourier Transform to visually assess the 

presence of stimulation artefacts. 

 

To quantify changes in load applied by the right leg to the ground through the duration of the 60s 

standing balance trial, we averaged the magnitude of the vertical force applied by the right leg to 

the ground for each 5s period preceding verbal pain rating (5s, 10s, and every 10s thereafter). To 

make the vertical force data relevant to the values used to modulate the amplitude of the 

electrical stimuli, we normalized the magnitude of the vertical force by the average vertical force 

measured during the 60s of quiet standing. We quantified the load applied by the right leg to the 

ground with respect to baseline values because the variations in vertical forces applied by both 

feet to the ground during trials was minimal and to simplify the presentation of the results. 

Hence, vertical forces are presented as percentage of baseline where values higher or lower than 

100% indicate increased or decreased force applied by the right leg to the ground compared to 

baseline, respectively and a 5% modulation of the vertical force applied by the right leg led to a 

current amplitude targeting a non-painful sensation. All data analyses were performed in Matlab 

(2018b version, Mathworks, Natick, MA, USA). 



 

Statistical analysis 

Statistical analyses were performed in SPSS statistics for Windows, version 26 (SPSS Inc., IBM 

Corp., Armonk, N.Y., USA). Parametric and non-parametric tests were chosen based on the data 

distribution (Shapiro-Wilk test). As most participants reported pain intensity values rounded to 

the nearest 0.5, non-parametric statistics were used for the NRS data. A Greenhouse-Geisser 

correction was applied when the assumption of sphericity was violated. We first investigated 

differences in stimulation intensity between electrical stimuli waveforms necessary to induce a 

moderate pain of 3/10 (measured during the ascending protocol) using a one-way repeated 

measures ANOVA. Decomposition of the main effect was performed using pairwise 

comparisons with Bonferroni-corrected paired T-tests (all pairwise comparisons). 

To address our first hypothesis, we assessed the effects of Stimulation waveform and Time on 

pain ratings reported at 5s and every subsequent 10s. As we expected a Stimulation waveform × 

Time interaction, and we are not aware of non-parametric two-way repeated measures ANOVA 

procedures that test interaction effects, we performed an ordinal logistic regression (Generalized 

Estimating Equations for repeated measures in SPSS). When present, we decomposed the 

interaction by identifying which Stimulus waveforms resulted in decrease in pain ratings over 

time using separate Friedman tests for each Stimulus waveform. For Stimulus waveforms 

exhibiting a main effect, we then used Dunn post-hoc tests with Bonferroni correction (6 

comparisons) to determine which Time points were significantly different from the first pain 

rating (5s).  

To address our second hypothesis, we compared the RMS values of EMG signals quantified at 

rest and during a 10% MVC with and without the electrical stimulus. We performed separate 

paired Wilcoxon tests comparing EMG amplitude before and during painful electrical 

stimulation for each electrode location (proximal or distal), muscle contraction (rest or active) 

and high-pass filter cut-off values (20Hz or 30Hz).  

To address our third hypothesis, we first examined if the reported pain ratings during the 

standing balance task were modulated with Awareness of the possibility to modulate pain (aware 

and unaware) and Time (5s, 10s, and every subsequent 10s). We further aimed to characterize if 

a task-relevant painful electrical stimulus modulated the standing balance behaviour across 

Awareness conditions (aware and unaware) and Time (5s, 10s, and every subsequent 10s) by 



comparing the magnitude of vertical force applied by the right leg to the ground during painful 

stimulation. Because the magnitude of vertical force was not normally distributed, we applied a 

rank transformation. For both magnitude of vertical force and reported pain, we used ordinal 

logistic regression to assess the interaction between the Time and Awareness factors 

(Generalized Estimating Equations for repeated measures in SPSS). When an interaction was 

present, we decomposed it using separate Friedman tests to assess which Awareness conditions 

resulted in adaptation over time; then, we used Dunn post-hoc tests with Bonferroni correction (6 

comparisons) to determine which Time points were significantly different from the first pain 

rating (5s). Next, we quantified the association between the vertical force applied by the right leg 

to the ground and reported pain ratings at 60s (when participants were expected to show the 

largest pain modulation) using a Spearman correlation test. A significance level of 0.05 was used 

for all analyses and data are reported as mean and standard deviation when normally distributed, 

or otherwise as median and interquartile range. 

 

RESULTS 

Experiment 1: Habituation of pain ratings to electrical stimuli (N=14 participants) 

The amplitude of the electrical stimuli required for participants to report a pain intensity of 3/10 

was: square waves, 10.5±4.3 mA; 4Hz, 7.4±2.2 mA; 10Hz, 6.5±2.0 mA; 20Hz, 6.2±1.4 mA; 

50Hz, 6.0±2.3 mA. The stimulation intensity was 29.2-42.8% lower for sinusoidal waveforms 

compared to 1ms square waves delivered at 40Hz (F(1.9, 24.4) = 16.7, p<0.0001; Bonferroni-

corrected p values for square waves compared to: 4Hz, p=0.046; 10Hz, p=0.003; 20Hz, p=0.005; 

50Hz, p=0.002). Furthermore, the amplitude of 50Hz sinusoidal electrical stimuli was 

19.1±23.9% lower than 4Hz sinusoidal electrical stimuli to elicit a similar perception of pain 

(Bonferroni-corrected p=0.049).  

To assess the effects of electrical stimulus waveform and frequency on habituation of pain 

ratings, participants rated their perceived pain intensity while exposed to various stimuli for 60s. 

Habituation of perceived pain intensity over 60s was observed only for higher frequency 

electrical stimuli sinusoidal or 1ms square waveforms (Figure 3; Stimulation waveform × Time 



interaction: χ
2
 (13)=153.97, p<0.0001). To characterize these effects, decomposition of the 

interaction for each electrical stimulus waveform revealed habituation in perceived pain intensity 

over time for the 50Hz sinusoidal electrical stimuli (χ
2
 (6)=29.43, p<0.0001) and the 1ms square 

waves at 40Hz (χ
2
 (6)=36.723, p<0.0001). For the 50Hz sinusoidal stimuli, participant reported 

20.5±19.6% lower pain intensity at 40s (z=2.68, Bonferroni-corrected p=0.006) that remained 

stable up to the 60s time point (21.7±24.6% at 60s; z=2.50, Bonferroni-corrected p=0.008). For 

the 1ms square waveforms, participants reported 24.4±26.1% lower pain ratings at 40s after the 

start of the stimulation (z=2.61, Bonferroni-corrected p=0.006); the participants’ average 

reported pain intensity continued to decrease for the rest of the 60s trial until it reached 

64.6±32.9% of the initial value at 60s (z=4.33, Bonferroni-corrected p<0.0001). In contrast, 

participants reported consistent perceived pain intensity, showing on average no clear signs of 

habituation or sensitization, during the 60s application of the 4Hz (χ
2
 (6)=4.79, p=0.570), 10Hz 

(χ
2
 (6)=10.59, p=0.102) and 20Hz (χ

2
 (6)=9.33, p=0.156) sinusoidal electrical stimuli. These 

results show that low frequency sinusoidal electrical stimuli can induce a stable perception of 

pain for at least a 60s duration. 

When describing their pain sensation, participants used most frequently the descriptors 

“flickering, quivering, pulsing, throbbing, beating, pounding” (7/14 square waves; sinusoidal 

stimuli: 8/14 4Hz, 11/14 10Hz, 7/14 20Hz, 6/14 50Hz), followed by “tingling, itchy, smarting, 

stinging” (7/14 square waves; sinusoidal stimuli: 5/14 4Hz, 7/14 10Hz, 5/14 20Hz, 8/14 50Hz) 

categories. Participants reported the temporal aspect of their pain as “rhythmic” for low-

frequency sinusoidal stimulation (8/14 at 4Hz; 7/14 at 10Hz) and “continuous” for 20Hz and 

50Hz sinusoidal electrical stimuli (8/14 for 20Hz; 7/14 for 50Hz). Pain associated with the 1ms 

square wave stimuli was rated as continuous (4/14), transient (3/14) or rhythmic (3/14). The 

average pain drawings (Figure 2) revealed that most participants reported pain localized around 

or just lateral to the electrode placed on skin over the medial fat pad for the 1ms square waves 

and 4Hz sinusoidal electrical stimuli or between the two stimulation electrodes for the 10Hz, 

20Hz and 50Hz sinusoidal stimuli. Drawings to localize pain in the transversal knee section 

showed that most participants reported superficially localized pain, close to the electrode 

location. Up to half of the participants also reported pain areas extending into the medial side of 

the patellofemoral joint, particularly for the 10Hz and 20Hz sinusoidal electrical stimuli. 



 

Experiment 2: EMG recordings during the electrical stimuli (N=11 participants) 

Having established that low frequency sinusoidal electrical stimuli can induce a stable perception 

of pain, we quantified the presence of stimulation artefacts on EMG signals recorded from the 

vastus medialis while participants were at rest. Assessing the presence of stimulation artefact in 

the absence of muscle activation was important to determine changes in amplitude of the EMG 

signal due to stimulation artefact alone, regardless of potential changes in muscle activation 

induced by pain. We also investigated the presence of stimulation artefacts when participants 

performed a 10% MVC knee extension to determine if muscle activation levels could be 

estimated during periods of low frequency electrical stimuli delivered at painful intensities. 

Painful electrical stimulation resulted in large stimulation in the EMG signals before filtering 

both for the proximal (peak-peak values, median [25
th

-75
th

 percentiles]; square waves: 2.1 [1.89-

2.95] mV, 4Hz: 1.94 [1.84-3.17] mV, 10Hz: 2.28 [2.09-2.51] mV) and distal (square waves: 3.02 

[0.78-5.81] mV, 4Hz: 2.82 [0.46-7.75] mV, 10Hz: 4.93 [1.45-5.59] mV) locations. After 

filtering, the presence of stimulation artefacts in the EMG signals depended on the electrical 

stimulus waveform used to induce a painful perception. Visual analysis of the EMG amplitude 

spectra revealed that sinusoidal electrical stimuli induced a peak in power centered around the 

stimulation frequency whereas the 1ms square wave electrical stimuli caused several peaks in 

amplitude across the frequency spectra. Conventional digital high-pass filtering (20Hz or 30Hz) 

of the EMG signals largely attenuated the induced artefacts in EMG amplitude for the sinusoidal 

stimuli but not for the 1ms square wave stimuli (Figure 4). Consequently, regardless of the 

digital high-pass filter used (20Hz or 30Hz), artefacts introduced by the 1ms square wave 

electrical stimuli resulted in notable increases in EMG RMS amplitude for the rest and 10% 

MVC condition (median increase: ~30 µV for the distal location, ~300 µV for the proximal 

location; all data and statistical comparisons are presented in Table 1). In contrast, EMG artefacts 

induced by sinusoidal electrical stimuli were largely removed with digital high pass filters, 

resulting in modest increases ( 1.1 µV or 2.8 µV for the 4Hz and 10Hz stimuli, respectively; 

Table 1) in the median RMS EMG amplitude across conditions. In general, the RMS EMG 

amplitudes estimated during the 4Hz sinusoidal electrical stimuli were similar to those measured 

without electrical stimulation for the rest and 10% MVC conditions. Applying a 30Hz high-pass 



filter to the EMG signals recorded during the 4Hz sinusoidal stimuli resulted in the largest 

reduction in the stimulus-induced artefacts (increase in RMS of 0.5 µV) for both calculated 

recording electrode locations but the differences between EMG RMS amplitude estimated with 

both high-pass filters (20Hz or 30Hz) were small (1 µV; Table 1). These results confirm that 

muscle activation patterns can be evaluated during painful stimuli with minimal interference 

from artefacts induced by 4Hz and 10Hz sinusoidal electrical stimuli in the EMG signals when 

using conventional EMG digital filters.  

 

Experiment 3: Task-relevant modulation of perceived pain intensity (N=12 participants) 

To determine if electrical stimuli can be used as an experimental pain model to replicate the 

movement or posture dependent pain modulation observed in certain clinical disorders, we 

quantified perception of pain of healthy participants standing upright while they were exposed to 

4Hz low-frequency sinusoidal electrical stimuli. The amplitude of the electrical stimuli was 

modulated based on the loading participants applied to the ground with their right leg. A 

significant Awareness × Time interaction (χ
2
 (6)=13.73, p=0.033; Figure 5) indicated that the pain 

ratings decreased differently over time when participants were aware or unaware that they could 

modulate their pain intensity. Although a significant adaptation over time was identified both in 

the aware (χ
2
 (6)=36.30, p<0.0001) and in the unaware (χ

2
 (6)=36.88, p<0.0001) conditions, 

significant decrease in reported pain was observed earlier in the aware condition (51.2±39.2% of 

the initial value at 40s; z=3.02, p=0.012) than in the unaware condition (62.3±37.2% of the 

initial value at 50s; z=3.92, p=0.012). The lower pain ratings observed at 5s during the aware 

condition can be explained by the rapid adaptation observed in two participants who identified 

the correct strategy during the preceding unaware condition and started the task by standing 

mostly on their left leg. When excluding these two participants, the average pain rating at 5s 

during the aware condition was 3.0±0.5 but the general outcomes from statistical analyses did 

not change. At the end of the aware task, we prompted participants to describe the strategy they 

used to modulate their perception of pain. Participants reported using different strategies, 

including increasing the load on their left leg (N=3), contracting their lower limb muscles (N=3), 



relaxing their lower limb muscles (N=2), flexing their knee joint (N=2), bending forward (N=1) 

and positive thinking (N=1). 

We then characterized if the task-relevant painful electrical stimulus modulated the standing 

balance behaviour in participants that were aware or unaware that they could modulate their pain 

intensity. On average, participants decreased the load they applied to the ground with their right 

leg over time (Figure 6). This relative shift in loading between their left and right legs, however, 

occurred with a different time course when participants were aware that pain intensity could be 

modulated (significant Awareness × Time interaction; χ
2
 (6)=22.54, p=0.001). On average, 

participants reduced the load applied by their right leg to the ground over time in the aware 

condition (χ
2
 (6)=26.86, p=0.0001), but not in the unaware condition (χ

2
 (6)=6.71, p=0.348). In the 

aware condition, participants reduced the load on their right leg by at least 13.9±19.9% at all 

time points starting from 40s in the aware condition (40s, p=0.0048; 50s, p=0.084; 60s, 

p=0.0014; Figure 6). To examine if the intensity of pain reported by the participants depended on 

their standing balance behaviour, we quantified the association between their reported pain 

ratings with the vertical force applied by their right leg to the ground (i.e. the signal controlling 

the amplitude of the low frequency sinusoidal electrical stimuli). When using the data from the 

aware condition at 60s (i.e. when participants exhibited the largest pain adaptation), a correlation 

analysis (Figure 5) confirmed that a large portion of the variance (R
2
=0.65, p=0.001) in reported 

pain was associated with the amplitude of the vertical force applied by the right leg to the 

ground.  

 

DISCUSSION 

In the present study, we developed a novel experimental pain model where low-

frequency sinusoidal electrical stimuli were used to induce task-relevant pain. We 

investigated whether sinusoidal electrical stimuli delivered at frequencies ranging from 

4Hz to 50Hz and 1ms square wave stimuli induce a stable pain perception over a 60s 

period, allow the quantification of muscle activity during the application of the painful 

stimuli and induce task-relevant modulation in perceived pain intensity. We showed that 



low-frequency sinusoidal electrical stimuli (4Hz, 10Hz, 20Hz) resulted in minimal or no 

habituation in perceived pain intensity over a 60s period whereas 50Hz sinusoidal electrical 

stimuli and 1ms square waves delivered at 40Hz induced rapid habituation in perceived pain 

rating. Low-frequency sinusoidal electrical stimuli (4Hz or 10Hz) applied at painful intensity 

enabled the quantification of EMG signals amplitude with minimal stimulation artefacts when a 

conventional digital high-pass filter was applied to the signals. When participants stood upright 

and controlled the electrical stimulus amplitude by modulating the vertical force they applied to 

the ground with their right foot, they reduced the load on their right leg only when they were 

aware they could decrease pain perception but rated pain lower over a 60s period in both the 

aware and unaware conditions (pain modulation occurred 10s earlier when aware). In addition, 

we observed an association between the standing balance task (loading on the right leg) and pain 

intensity reported by participants when they were aware they could modulate the painful 

stimulus. Altogether, our results support the use of low-frequency sinusoidal electrical 

stimulation as novel experimental model to induce task-relevant musculoskeletal pain. 

We observed habituation in reported pain ratings over 60s when the painful electrical 

stimuli were delivered using 1ms square waves and 50Hz sinusoidal electrical stimulation, but 

only minimal habituation for frequencies ≤20Hz. Higher frequency sinusoidal electrical stimuli 

may activate a larger number of non-nociceptive afferents, which contribute to gating of the 

nociceptive afferent information (Melzack & Wall, 1965; Luz et al., 2014; Löken et al., 2017; 

Fernandes et al., 2020). Also, nociceptors in rats (Raymond et al., 1990; Gee et al., 1996) and 

humans (Serra et al., 1999) habituate to painful stimuli applied at frequencies higher than 10-

20Hz. These higher frequency electrical stimuli result in the slowing of neural conduction 

velocity and eventually failure of impulse conduction if applied at frequencies above 10-20Hz 

(Herrero et al., 2000). The absence of habituation during low-frequency sinusoidal electrical 

stimulation contrasts with previous reports of progressively lower pain ratings in healthy 

participants during continuous stimulation at 4Hz (Jonas et al., 2018). A possible reason for the 

differences between studies is the location of the painful stimulation and type of receptors 

targeted. Jonas et al. (Jonas et al., 2018) used small (0.04cm
2
) and closely spaced electrodes to 

preferentially stimulate skin nociceptors (Klein et al., 2004; Lelic et al., 2012). We used larger 

electrodes (7.7cm
2
, to minimize the contribution of skin receptors) positioned ~4cm apart to 



direct the current through the infrapatellar fat pad, a tissue highly innervated by 

nociceptors (Bohnsack et al., 2005) and of clinical relevance for knee musculoskeletal 

pathologies (Ioan-Facsinay & Kloppenburg, 2013; Cowan et al., 2015; de Vries et al., 

2020). The observation that several participants reported pain deep within the joint and 

described their pain as ‘throbbing, beating, pounding’ suggests that our methods 

effectively targeted nociceptors in the infrapatellar fat pad, together with more superficial 

skin nociceptors. While our results demonstrate that it is possible to induce moderate 

knee pain intensity (NRS = 3/10) for up to 60s without habituation using low-frequency 

sinusoidal electrical stimuli, we recognize these observations may be specific to the 

location of stimulation (i.e. infrapatellar fat pad). 

Compared to 1ms square waves, sinusoidal electrical stimuli applied at painful 

intensities resulted in negligible stimulation artefacts in the EMG recordings (generally 

<1µV RMS). As expected, the smallest stimulation artefacts were observed for the 

combination of lowest stimulation frequency (4Hz), higher high-pass filter (30Hz) and 

larger distance between recording and stimulating electrodes. The negligible stimulation 

artefact we observed indicates that low-frequency sinusoidal electrical stimuli allows the 

assessment of neuromuscular strategies using surface EMG during painful stimulation, 

even in muscles in close proximity to the electrical stimulus location. Hence, our 

approach provides an important advantage over brief trains (i.e.: 100 ms) of square wave 

electrical stimuli that induce EMG artefacts limiting the analysis of neuromuscular 

activation to periods before or after the stimuli (Moseley et al., 2004; Moseley & Hodges, 

2005; Tucker et al., 2012; Schouppe et al., 2020). Despite this key methodological 

advance for EMG recoding during painful electrical stimuli, careful considerations 

regarding the characteristics of the EMG amplifier, especially gain and input range of the 

A/D board, are needed to avoid its saturation during data acquisition (we excluded data 

from a participant for this reason). Future studies should investigate whether artefacts on 

the EMG signals can be removed when low-frequency sinusoidal stimulation is used to 

induce pain in body regions other than the skin on the fat pad. 

We investigated the possibility to induce task-relevant pain by modulating the 

intensity of the painful electrical stimulation according to the load participants applied on 



the ground with their right leg during quiet standing. This condition was designed to simulate 

clinical disorders where knee pain is exacerbated by joint loading. When participants were not 

aware that the intensity of the painful stimulation could be modulated, the load applied to their 

painful (right) leg did not change over time. Supporting our hypothesis, when participants were 

aware they could decrease their pain sensation, they decreased the vertical force applied by their 

right leg to the ground from 40s onwards (7/12 participants) and this was associated to a decrease 

in reported pain ratings over time. Five participants were unable to adopt a strategy to unload the 

right leg, and hence decrease the intensity of the painful stimulation. These findings are in line 

with the strategy reported by participants to decrease their pain intensity: most of them (9/12) did 

not consciously identify the correct strategy to minimise their pain but they decreased loading on 

the right leg. In line with these differences in motor adaptation, reported pain decreased earlier in 

the aware than in the unaware condition. The strong correlation (R
2
=0.65) between motor 

adaptation (weight on the right leg) and reported pain intensity in aware participants 

demonstrates that low-frequency painful electrical stimuli can induce task-relevant pain, where 

pain intensity is modulated by their standing balance behaviour. This is an important advance for 

experimental pain models attempting to mimic pain modulation commonly observed in 

musculoskeletal disorders (Lewis, 2015; Crossley et al., 2016; Karayannis et al., 2016; Madry et 

al., 2016) that cannot be obtained with standard methods such as injections of hypertonic saline 

solution. While delayed onset muscle soreness and nerve growth factor injections elicit a painful 

sensation that is modulated by muscle contraction/stretching (Svensson et al., 2003; Prasartwuth 

et al., 2005; Hedayatpour et al., 2008; Schabrun et al., 2016; Abboud et al., 2019), these 

experimental pain models are currently limited to muscle pain. In addition, they do not allow the 

investigator to control what drives the painful stimulation (e.g.: weight applied by the right leg in 

our study) and it is challenging (if not impossible) to carefully regulate the intensity and duration 

of the painful stimulation.  

Despite the many advantages and potential applications of low-frequency sinusoidal 

electrical stimulation as a pain model, there are some limitations to this model. First, our 

proposed experimental pain model using electrical stimuli lacks tissue spatial selectivity and it is 

inadequate as a muscle experimental pain model due to the potential occurrence of muscle 

twitches. Both of these issues can be addressed using hypertonic saline solution as a pain model, 



highlighting that careful experimental considerations are required when choosing a pain 

model. Second, despite removing most of the stimulation-related artefacts during the 

painful stimuli, we observed artefacts in the EMG signals at the start and at the end of the 

electrical stimuli (Figure 4). These artefacts are associated with the transition between no 

stimulation and the start/end of the sinusoid, resulting in non-linearities that cannot be 

removed with conventional filtering methods. Further methodological developments are 

needed to remove these EMG artefacts if muscle activation needs to be quantified within 

the first 50ms of a transition to or from painful sinusoidal electrical stimuli. It is 

important to note that participants reported a decrease in pain even in the absence of 

changes in load distribution in the unaware condition, although pain modulation occurred 

earlier in the aware condition. This may have been due to the small whole-body 

movements associated with standing balance, which could have resulted in pain gating 

due to the activation of somatosensory afferents but a large gating of pain perception 

while standing appears unlikely given that others have revealed consistent effects of pain 

on standing balance (Blouin et al., 2003; Corbeil et al., 2004). 

In this study, we described a model to experimentally induce knee pain by using 

low-frequency sinusoidal electrical stimuli. When using a 4Hz stimulation frequency, the 

main characteristics of this experimental pain model include: i) a stable perceived pain 

intensity over a 60s period; ii) EMG signals with minimal stimulation artefacts; iii) task-

relevant pain, where the intensity of the stimulation is modulated by a participants’ motor 

behaviour, resulting in correlation between the observed motor adaptation over time and 

the reported pain ratings. The characteristics of this model allow to overcome several 

major limitations of currently available experimental pain models, while replicating some 

of the temporal features of the pain experienced by people with certain musculoskeletal 

disorders. Low-frequency sinusoidal stimulation provides a novel tool to probe 

neuromechanical adaptations to task-relevant pain and investigate how physiological 

signals modulate pain. 
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FIGURES: 

Figure 1: Experimental setup. Left: illustration of the frontal view of the right knee. 

Representation of the 64-electrode grid (5 columns by 13 rows) used in the recording of vastus 

medialis muscle activity. The rectangles represent the electrodes averaged to obtain simulated 

bipolar recordings in the proximal and distal region of the muscle. The location of the two 

electrical stimulation electrodes ([+], anode; [-], cathode) on the skin over the infrapatellar fat 

pad is represented. Right: representative data from a single participant during the task-relevant 

pain modulation, aware condition. The plot on top shows the change of weight on the right leg in 

time (black line), expressed as percentage of the weight measured during quiet standing (dashed 

gray line). The bottom plot shows the amplitude of the signal that was used to drive the intensity 

stimulation (4Hz sine wave). Stimulation intensities of 4.0 and 6.8 were identified as perceived 

pain intensities of 0/10 and 3/10 (NRS) before the start of the trial. The stimulation induced a 

pain of intensity 3/10 NRS when the weight on the right leg was equal or higher than baseline 

(dark gray panels), a pain of intensity 0/10 when the weight on the right leg was lower than 95% 

of baseline, and scaled proportionally between 95% and 100% (light gray panels). N=1 

representative participant. 

 

Figure 2: Average pain drawing maps. The heatmaps represents the cumulative spatial 

distribution of the areas reported as painful during stimulation with different waveforms. Dark 

red pixels (see colormap on the right) identify that the location was reported as painful by 11 

participants out of 14.  

 

Figure 3: Habituation to electrical painful stimuli. Pain ratings over time during 60s of 

painful electrical stimulation induced with different waveforms. Open circles identify individual 

participants, the black line depicts the median value, and the gray boxes represent the 

interquartile interval. Significant habituation over time was only observed for the square wave 



and the sinusoidal stimulation at 50Hz. The * symbol indicates p<0.05 for Generalized 

Estimating Equations, Friedman tests and Dunn post-hoc tests on N=14 participants. 

 

Figure 4: Effect of waveform on stimulation artefact on the EMG. Left panel: Representation 

of the EMG raw signals of a representative participant without and during painful electrical 

stimulations. The EMG signals shown were filtered 20-400Hz. Stimuli were delivered as square 

waves (top) and 4Hz sinusoids (bottom), both at rest and during a low-force isometric knee 

extension contraction. Note the large increase in amplitude due to artefacts during stimulation 

with square waves, but not with the sinusoidal stimulation. Right panel: EMG amplitude spectra 

for the same signals, before (insets) and after filtering. Note the large peaks introduced by the 

square wave stimuli. N=1 representative participant. 

 

Figure 5: Pain ratings over time during the aware and unaware conditions and correlation 

with motor adaptation. Changes in the pain ratings over time are shown for the unaware (left) 

and aware (middle) conditions. Open circles identify individual participants, the black line 

depicts the median value, and the gray boxes represent the interquartile interval. Although pain 

ratings were higher in the unaware than in the aware condition, the change in pain intensity over 

time was not different between conditions. The scatter plot shows a significant association 

(Spearman correlation) between weight on the right leg and reported pain intensity (aware 

condition, 60s). The * symbol indicates p<0.05 for Generalized Estimating Equations, Friedman 

tests and Dunn post-hoc tests on N=12 participants. 

 

Figure 6: Motor adaptation; baseline, unaware and aware conditions. Top panels: change in 

weight on the right leg over time, expressed as a percentage of the average value at baseline 

(gray dashed line), for the baseline (left), unaware (middle) and aware condition (right). Bottom 

panels: weight on the right leg for individual participants (thin lines) and group average (thick 

lines). Note the small decrease of weight on the right leg at 50s only in the unaware condition, 



and the decrease in most participants starting at 20s in the aware condition. The * symbol 

indicates p<0.05 and the # symbol indicates p=0.08 for Generalized Estimating Equations, 

Friedman tests and Dunn post-hoc tests on N=12 participants. 

 

Table 1: Effect of different stimulation waveform, EMG electrode location, filter and task on 

amplitude of the EMG artefact, measured as change in RMS value measured during painful 

electrical stimulation compared to baseline. SW: square waves; Prox: proximal electrode; Dist: 

distal electrode; Contr: during contraction. P values of individual paired Wilcoxon tests are 

reported on the right column. Bold indicates that RMS amplitude did not increase with the 

painful electrical stimulation, meaning absence of stimulation artefact. N=12 participants.



 

Waveform Location Filter Task Baseline Stimulation Difference P value 

SW Prox 20Hz Rest 8.3 (6.0-11.8) 325.4 (279.5-380.7) 320.9 (269.9-369.3) 0.003 

4Hz Prox 20Hz Rest 7.8 (5.9-7.7) 8.6 (6.1-11.6) 0.8 (0.4-1.3) 0.213 

10Hz Prox 20Hz Rest 6.4 (5.2-7.7) 7.8 (6.9-11.7) 1.5 (1.3-2.0) 0.003 

SW Dist 20Hz Rest 6.3 (4.3-6.4) 36.9 (31.3-48-4) 28.7 (24.9-42.9) 0.003 

4Hz Dist 20Hz Rest 6.3 (4.2-6.7) 7.3 (5.1 – 9.3) 1.1 (0.3-2.0) 0.050 

10Hz Dist 20Hz Rest 6.2 (3.9-6.5) 9.1 (6.1-13.9) 2.8 (1.7-6.1) 0.003 

SW Prox 20Hz Contr 31.7 (20.4-32.9) 321.0 (285.7-368.9 297.1 (259.3-342.7) 0.003 

4Hz Prox 20Hz Contr 30.2 (20.4-36.1) 36.0 (20.9-37.0) 0.7 (-0.1-2.7) 0.131 

10Hz Prox 20Hz Contr 31.2 (0.3-34.8) 32.0 (23.0-36.8) 0.9 (-0.3-4.7) 0.075 

SW Dist 20Hz Contr 17.9 (12.8-32.5) 49.6 (40.1-57.1) 29.7 (19.3-38.3) 0.003 

4Hz Dist 20Hz Contr 18.6 (13.6-30.3) 18.8 (15.3-36.5) 0.8 (-0.9-3.6) 0.248 

10Hz Dist 20Hz Contr 18.3 (12.7-31.0) 18.5 (15.9-49.3) 2.5 (0.1-8.5) 0.033 

SW Prox 30Hz Rest 7.5 (5.5-9.5) 325.4 (279.6-380.7) 321.3 (270.9-370.6) 0.003 

4Hz Prox 30Hz Rest 7.1 (5.4-8.7) 7.5 (5.4-9.9) 0.5 (0.2-1.2) 0.213 

10Hz Prox 30Hz Rest 6.2 (4.9-7.0) 7.1 (6.0-9.5) 0.8 (0.7-1.4) 0.003 

SW Dist 30Hz Rest 6.1 (4.1-6.3) 36.9 (31.3-48.4) 29.5 (24.9-43.1) 0.003 

4Hz Dist 30Hz Rest 6.2 (4.1-6.5) 6.9 (4.6-7.6) 0.7 (0.2-0.9) 0.091 

10Hz Dist 30Hz Rest 6.1 (3.9-6.4) 7.2 (4.9-9.3) 0.8 (0.6-2.6) 0.003 

SW Prox 30Hz Contr 29.6 (19.0-31.0) 321.0 (285.5-368.7) 297.9 (260.7-344.4) 0.003 

4Hz Prox 30Hz Contr 28.2 (19.0-34.3) 32.8 (19.3-35.2) 0.7 (-0.1-1.5) 0.182 

10Hz Prox 30Hz Contr 30.0 (18.8-32.1) 30.5 (20.8-35.2) 0.9 (-0.7-3.6) 0.155 

SW Dist 30Hz Contr 16.5 (11.5-30.9) 48.4 (39.5-56.1) 30.4 (19.8-38.4) 0.003 

4Hz Dist 30Hz Contr 17.1 (12.8-28.1) 17.4 (13.8-34.0) 0.5 (-0.8-2.6) 0.424 

10Hz Dist 30Hz Contr 17.5 (11.6-27.7) 16.8 (12.9-42.9) 1.5 (0.03-5.1) 0.062 

 



REFERENCES: 

Abboud J, Lessard A, Piché M & Descarreaux M (2019). Paraspinal muscle function and pain sensitivity following 

exercise-induced delayed-onset muscle soreness. Eur J Appl Physiol 119, 1305–1311. 

Bennell KL & Hinman RS (2005). Effect of experimentally induced knee pain on standing balance in healthy older 

individuals. Rheumatology 44, 378–381. 

Birznieks I, Burton AR & Macefield VG (2008). The effects of experimental muscle and skin pain on the static 

stretch sensitivity of human muscle spindles in relaxed leg muscles. J Physiol 586, 2713–2723. 

Blouin J, Corbeil P & Teasdale N (2003). Postural stability is altered by the stimulation of pain but not warm 

receptors in humans. BMC Musculoskelet Disord 9, 1–9. 

Bohnsack M, Meier F, Walter GF, Hurschler C, Schmolke S, Wirth CJ & Rühmann O (2005). Distribution of 

substance-P nerves inside the infrapatellar fat pad and the adjacent synovial tissue: a neurohistological 

approach to anterior knee pain syndrome. Arch Orthop Trauma Surg 125, 592–597. 

Chester R, Smith TO, Sweeting D, Dixon J, Wood S & Song F (2008). The relative timing of VMO and VL in the 

aetiology of anterior knee pain: A systematic review and meta-analysis. BMC Musculoskelet Disord 9, 1–14. 

Corbeil P, Blouin JS & Teasdale N (2004). Effects of intensity and locus of painful stimulation on postural stability. 

Pain 108, 43–50. 

Cowan SM, Hart HF, Warden SJ & Crossley KM (2015). Infrapatellar fat pad volume is greater in individuals with 

patellofemoral joint osteoarthritis and associated with pain. Rheumatol Int 35, 1439–1442. 

Crossley KM, Callaghan MJ & Van Linschoten R (2016). Patellofemoral pain. Br J Sports Med 50, 247–250. 

Eitner L, Özgül S, Enax-Krumova EK, Vollert J, Maier C & Höffken O (2018). Conditioned pain modulation using 

painful cutaneous electrical stimulation or simply habituation? Eur J Pain (United Kingdom) 22, 1281–1290. 

Ernst M, Lee MHM, Dworkin B & Zaretsky HH (1986). Pain perception decrement produced through repeated 

stimulation. Pain 26, 221–231. 

Esculier JF, Bouyer LJ, Dubois B, Fremont P, Moore L, McFadyen B & Roy JS (2018). Is combining gait retraining or 

an exercise programme with education better than education alone in treating runners with patellofemoral 

pain? A randomised clinical trial. Br J Sports Med 52, 659–666. 

Fernandes EC, Pechincha C, Luz LL, Kokai E, Szucs P & Safronov B V. (2020). Primary afferent-driven presynaptic 

inhibition of C-fiber inputs to spinal lamina I neurons. Prog Neurobiol 188, 101786. 

Gallina A, Hunt MA, Hodges PW & Garland SJ (2018a). Vastus Lateralis Motor Unit Firing Rate Is Higher in Women 

With Patellofemoral Pain. Arch Phys Med Rehabil 99, 907–913. 

Gallina A, Salomoni SE, Hall LM, Tucker K, Jayne Garland S & Hodges PW (2018b). Location-specific responses to 



nociceptive input support the purposeful nature of motor adaptation to pain. Pain 159, 2192–2200. 

Gee MD, Lynn B & Cotsell B (1996). Activity-dependent slowing of conduction velocity provides a method for 

identifying different functional classes of C-fibre in the rat saphenous nerve. Neuroscience 73, 667–675. 

Hedayatpour N, Falla D, Arendt-Nielsen L & Farina D (2008). Sensory and electromyographic mapping during 

delayed-onset muscle soreness. Med Sci Sports Exerc 40, 326–334. 

Herrero JF, Laird JMA & Lopez-Garcia JA (2000). Wind-up of spinal cord neurones and pain sensation: Much ado 

about something? Prog Neurobiol 61, 169–203. 

Hodges PW & Tucker K (2011). Moving differently in pain: A new theory to explain the adaptation to pain. Pain 

152, S90–S98. 

Ioan-Facsinay A & Kloppenburg M (2013). An emerging player in knee osteoarthritis: The infrapatellar fat pad. 

Arthritis Res Ther 15, 1–9. 

Jonas R, Namer B, Stockinger L, Chisholm K, Schnakenberg M, Landmann G, Kucharczyk M, Konrad C, Schmidt R, 

Carr R, McMahon S, Schmelz M & Rukwied R (2018). Tuning in C-nociceptors to reveal mechanisms in chronic 

neuropathic pain. Ann Neurol 83, 945–957. 

Karayannis N V., Jull GA & Hodges PW (2016). Movement-based subgrouping in low back pain: Synergy and 

divergence in approaches. Physiother (United Kingdom) 102, 159–169. 

Klein T, Magerl W, Hopf HC, Sandkühler J & Treede RD (2004). Perceptual Correlates of Nociceptive Long-Term 

Potentiation and Long-Term Depression in Humans. J Neurosci 24, 964–971. 

Koga K, Furue H, Rashid H, Takaki A, Katafuchi T & Yoshimura M (2005). Selective activation of primary afferent 

fibers evaluated by sine-wave electrical stimulation. Mol Pain 1, 1–13. 

Laursen RJ, Graven-Nielsen T, Jenser TS & Arendt-Nielsen L (1997). Quantification of local and referred pain in 

humans induced by intramuscular electrical stimulation. Eur J Pain 1, 105–113. 

Lelic D, Mørch CD, Hennings K, Andersen OK & M. Drewes A (2012). Differences in perception and brain activation 

following stimulation by large versus small area cutaneous surface electrodes. Eur J Pain (United Kingdom) 

16, 827–837. 

Lewis J (2015). Rotator cuff related shoulder pain: Assessment, management and uncertainties. Man Ther 23, 57–

68. 

Löken LS, Duff EP & Tracey I (2017). Low-threshold mechanoreceptors play a frequency-dependent dual role in 

subjective ratings of mechanical allodynia. J Neurophysiol 118, 3360–3369. 

De Luca CJ, Donald Gilmore L, Kuznetsov M & Roy SH (2010). Filtering the surface EMG signal: Movement artifact 

and baseline noise contamination. J Biomech 43, 1573–1579. 



Luz LL, Szucs P & Safronov B V. (2014). Peripherally driven low-threshold inhibitory inputs to lamina I local-circuit 

and projection neurones: A new circuit for gating pain responses. J Physiol 592, 1519–1534. 

Maclachlan LR, Matthews M, Hodges PW, Collins NJ & Vicenzino B (2018). The psychological features of 

patellofemoral pain: A cross-sectional study. Scand J Pain 18, 261–271. 

Madry H, Kon E, Condello V, Peretti GM, Steinwachs M, Seil R, Berruto M, Engebretsen L, Filardo G & Angele P 

(2016). Early osteoarthritis of the knee. Knee Surgery, Sport Traumatol Arthrosc 24, 1753–1762. 

Maffiuletti NA, Herrero AJ, Jubeau M, Impellizzeri FM & Bizzini M (2008). Differences in electrical stimulation 

thresholds between men and women. Ann Neurol 63, 507–512. 

Martinez-Valdes E, Negro F, Farina D & Falla D (2020). Divergent response of low- versus high-threshold motor 

units to experimental muscle pain. J Physiol 598, 2093–2108. 

Matsumoto M, Inoue M, Hald A, Yamaguchi A & Ueda H (2006). Characterization of three different sensory fibers 

by use of neonatal capsaicin treatment, spinal antagonism and a novel electrical stimulation-induced paw 

flexion test. Mol Pain 2, 1–5. 

Melzack R & Wall PD (1965). Pain mechanisms: a new theory. Science (80- ) 150, 971–979. 

Melzak R (1975). The McGill Pain Questionnaire: major properties and scoring methods. Pain277–299. 

Moseley GL & Hodges PW (2005). Are the changes in postural control associated with low back pain caused by pain 

interference? Clin J Pain 21, 323–329. 

Moseley GL, Nicholas MK & Hodges PW (2004). Does anticipation of back pain predispose to back trouble? Brain 

127, 2339–2347. 

Petrofsky J, Laymon M, Prowse M, Gunda S & Batt J (2009). The transfer of current through skin and muscle during 

electrical stimulation with sine, square, Russian and interferential waveforms. J Med Eng Technol 33, 170–

181. 

Poortvliet PC, Tucker KJ & Hodges PW (2015). Experimental pain has a greater effect on single motor unit discharge 

during force-control than position-control tasks. Clin Neurophysiol 126, 1378–1386. 

Prasartwuth O, Taylor JL & Gandevia SC (2005). Maximal force, voluntary activation and muscle soreness after 

eccentric damage to human elbow flexor muscles. J Physiol 567, 337–348. 

Raymond SA, Thalhammer JG, Popitz-Bergez F & Strichartz GR (1990). Changes in axonal impulse conduction 

correlate with sensory modality in primary afferent fibers in the rat. Brain Res 526, 318–321. 

Salomoni S, Tucker K, Hug F, McPhee M & Hodges P (2016). Reduced maximal force during acute anterior knee 

pain is associated with deficits in voluntary muscle activation. PLoS One 11, 1–14. 

Schabrun SM, Christensen SW, Mrachacz-Kersting N & Graven-Nielsen T (2016). Motor Cortex Reorganization and 



Impaired Function in the Transition to Sustained Muscle Pain. Cereb Cortex 26, 1878–1890. 

Schouppe S, Clauwaert A, Van Oosterwijck J, Van Damme S, Palmans T, Wiersema JR, Sanchis-Sanchéz E & 

Danneels L (2020). Does experimentally induced pain-related fear influence central and peripheral 

movement preparation in healthy people and patients with low back pain? Pain 161, 1212–1226. 

Serra J, Campero M, Ochoa J & Bostock H (1999). Activity-dependent slowing of conduction differentiates 

functional subtypes of C fibres innervating human skin. J Physiol 515, 799–811. 

Svensson P, Cairns BE, Wang K & Arendt-Nielsen L (2003). Injection of nerve growth factor into human masseter 

muscle evokes long-lasting mechanical allodynia and hyperalgesia. Pain 104, 241–247. 

Tsao H, Tucker KJ, Coppieters MW & Hodges PW (2010). Experimentally induced low back pain from hypertonic 

saline injections into lumbar interspinous ligament and erector spinae muscle. Pain 150, 167–172. 

Tucker K, Larsson AK, Oknelid S & Hodges P (2012). Similar alteration of motor unit recruitment strategies during 

the anticipation and experience of pain. Pain 153, 636–643. 

de Vries BA, van der Heijden RA, Poot DHJ, van Middelkoop M, Meuffels DE, Krestin GP & Oei EHG (2020). 

Quantitative DCE-MRI demonstrates increased blood perfusion in Hoffa’s fat pad signal abnormalities in knee 

osteoarthritis, but not in patellofemoral pain. Eur Radiol; DOI: 10.1007/s00330-020-06671-6. 

Wang W en, Ho RLM, Gatto B, van der Veen SM, Underation MK, Thomas JS, Antony AB & Coombes SA (2021). 

Cortical dynamics of movement-evoked pain in chronic low back pain. J Physiol 599, 289–305. 

Wang W en, Roy A, Misra G, Archer DB, Ribeiro-Dasilva MC, Fillingim RB & Coombes SA (2018). Motor-Evoked Pain 

Increases Force Variability in Chronic Jaw Pain. J Pain 19, 636–648. 

Zedka M, Prochazka A, Knight B, Gillard D & Gauthier M (1999). Voluntary and reflex control of human back 

muscles during induced pain. J Physiol 520, 591–604. 

 



MODULATION MINIMAL AMPLITUDE 

5s 

R
IG

H
T

 L
E

G
 V

E
R

T
IC

A
L

 F
O

R
C

E
 

 (
%

 b
a

s
e

lin
e

) 

4.0 

6.8 

E
L

E
C

T
R

IC
A

L
 C

U
R

R
E

N
T

  
 

A
M

P
L

IT
U

D
E

 (
m

A
) 

97.5 

100 

0.0 

MAXIMAL 

AMPLITUDE 

VM 



SQUARE WAVES 4 Hz 10 Hz 20 Hz 50 Hz 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

0 

N
U

M
B

E
R

 O
F

 P
A

R
T

IC
IP

A
N

T
S

 

1 



0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

0 

P
A

IN
 I

N
T

E
N

S
IT

Y
 (

N
R

S
) 

* * * 

5 10 20 30 40 50 60 5 10 20 30 40 50 60 5 10 20 30 40 50 60 5 10 20 30 40 50 60 5 10 20 30 40 50 60 

50 Hz 20 Hz 10 Hz 4 Hz SQUARE WAVES 

TIME (s) 

* * * 



1
0

0
 µ

V
 

5s 

S
Q

U
A

R
E

 W
A

V
E

S
 

R
E

S
T

 
S

Q
U

A
R

E
 W

A
V

E
S

 
C

O
N

T
R

A
C

T
IO

N
 

S
IN

U
S

O
ID

A
L

 4
 H

z
 

R
E

S
T

 
S

IN
U

S
O

ID
A

L
 4

 H
z
 

C
O

N
T

R
A

C
T

IO
N

 

0 200 400 
FREQUENCY (Hz) 

0 200 400 
FREQUENCY (Hz) 

A
M

P
L

IT
U

D
E

 S
P

E
C

T
R

U
M

 (
µ

V
) 

DURING 
STIMULATION 

WITHOUT 
STIMULATION 

A
M

P
L

IT
U

D
E

 S
P

E
C

T
R

U
M

 (
µ

V
) 

A
M

P
L

IT
U

D
E

 S
P

E
C

T
R

U
M

 (
µ

V
) 

A
M

P
L

IT
U

D
E

 S
P

E
C

T
R

U
M

 (
µ

V
) 

DURING 
STIMULATION 

WITHOUT 
STIMULATION 

0 

10 

20 

30 

0 

10 

20 

30 

0 

10 

20 

30 

0 

10 

20 

30 

1000 

0 
0 100 

4Hz 

1000 

0 
0 100 

4Hz 

20 

0 
0 100 

20 

0 
0 100 



RIGHT LEG VERTICAL FORCE (% BASELINE) 

* * * * * 

TIME (s) TIME (s) 



5 10 20 30 40 50 60 

BASELINE UNAWARE AWARE 

* # * 

80 

85 

90 

95 

100 

105 

110 

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 

40 

50 

60 

70 

80 

90 

100 

110 

120 

130 

R
IG

H
T

 L
E

G
 V

E
R

T
IC

A
L

 F
O

R
C

E
 (

%
 B

A
S

E
L

IN
E

) 

5 10 20 30 40 50 60 5 10 20 30 40 50 60 

R
IG

H
T

 L
E

G
 V

E
R

T
IC

A
L

 F
O

R
C

E
 

(%
 B

A
S

E
L

IN
E

) 

TIME (s) 




