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Abstract 
Employing semi-empirical models to estimate some characteristics of a fuel cell (FC) stack, 

such as power and polarization curves, is demanded for efficient design of a power allocation 
strategy in a FC hybrid electric vehicle. However, the multivariate nature of a FC system has made 
the design of an accurate model challenging. Since each semi-empirical model has its own pros 
and cons, this paper puts forward a data fusion approach for online characteristics estimation of a 
FC stack utilizing four well-known models, namely Mann, Squadrito, Amphlett, and Srinivasan. 
Despite the other similar techniques, the suggested one utilizes the strengths of each mentioned 
FC model while avoiding their drawbacks. Kalman filter is employed to identify the parameters of 
the models online to embrace the uncertainties caused by the alteration of operating conditions and 
degradation level. Considering the parameters, the output voltage given by each model as well as 
their covariance are computed. Then, a covariance intersection algorithm is proposed to fuse the 
estimated output voltages. The fusion of the models’ outputs leads to the estimation of fused 
characteristics curves. To underline the effectiveness of the proposed method, it is applied to four 
different experimental datasets extracted from three 500-W Horizon FCs. The obtained results 
demonstrate the superior performance of the suggested estimator in the sense of mean square error. 
On average, the mean square error of the data fusion method is 39.64% and 36.59% lower than 
other studied methods while estimating the polarization curve and power curve, respectively. 

Keywords: Data fusion, Energy management strategy, Modeling, Online identification, Proton 
exchange membrane fuel cell 

1. Introduction
1.1. Motivation 

Transportation division is one of the main causes of human-induced greenhouse gas emissions 
worldwide owing to its dependency on fossil fuels. To deal with this issue, the use of electrified 
vehicles through the development of hybrid electric vehicles (HEVs) and pure electric vehicles 
have received great attentions [1]. Nevertheless, the reliance of HEVs on fossil fuels and the long 
recharging time of batteries have provided the basis for the appearance of other technologies like 
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proton exchange membrane (PEM) fuel cells (FCs) in this domain [2]. Compared to other kinds 
of FC, PEMFC benefits from higher power density and lower temperature and pressure operating 
ranges. While a PEMFC has these distinct virtues, it cannot meet all the requisites for supplying a 
vehicular power demand owing to its incapacity to store energy, slow dynamic response, and so 
forth. Hence, it is normally hybridized with a buffer, like a battery or supercapacitor, to compensate 
for the mentioned weaknesses. Since the intrinsic characteristics of the PEMFC and buffers are 
different, a power allocation strategy (PAS) is necessary to dispense the power between the sources 
in a way to minimize the hydrogen consumption and maximize the lifetime and efficiency of the 
system [3]. Several PASs have hitherto been introduced for FC hybrid electric vehicles (FCHEVs) 
that can be grouped into three categories of rule-based, optimization-based and intelligent-based 
[4, 5]. Most of these strategies are based on PEMFC models designated by static characteristics 
maps (power, efficiency, voltage, etc.) to ascertain the FC voltage/power as the main power source  
in a FCHEV. However, several papers have reported the impact of ambient and/or operating 
conditions variation (current, temperature, humidity, etc.) and ageing on the performance of the 
PEMFC. For instance, in [6], the degradation of the PEMFC is studied after 20 times freezing and 
thaw cycles using different electrochemical tests. In [7], the influence of operating temperature on 
the current density distribution and membrane resistance is studied and concluded that the increase 
of load leads to the inhomogeneity of the current density distribution. In [8], it is demonstrated that 
air relative humidity has a noticeable impact on the PEMFC performance while the hydrogen 
humidity has almost no effect. The study conducted in [9] illustrates that the classical PASs 
confronts mismanagement problems when the PEMFC characteristics vary because of the 
discussed reasons. 
1.2. Literature review  

In the light of the described issues, some solutions have been proposed to enhance the 
performance of a PAS while facing the uncertainties in the PEMFC stack.  

The first one is to integrate a FC degradation model into formulation of the  PAS. It has been 
practiced in several studies. In [10], the degraded FC is modeled based on polarization curve and 
power distribution is tuned adaptively during the whole lifetime of the stack. In [11], an attention 
mechanism is combined with recurrent neural network to perform an accurate prediction of the 
output voltage degradation of PEMFC. While these methods can improve the performance of a 
PAS to a certain level, they do not consider the variation of characteristics owing to the ambient 
conditions. Moreover, the FC degradation phenomenon is an intricate mechanism and its modeling 
regarding the operating conditions of a FCHEV is still an ongoing problem. The second approach 
to deal with the uncertainties of the FC system is the inclusion of an extremum seeking algorithm 
(ESA) in the PAS development [12, 13]. A fractional-order based ESA is proposed in [12] to 
search for the extremum value of a static nonlinear curve. It utilizes a gradient based optimization 
process by imposing a periodic perturbation signal to the input of the system and then changing it 
towards the maximum/minimum point. Another ESA based on bidimensional optimization, taking 
the hydrogen consumption and PEMFC system power into account, is suggested in [13]. Such 
ESAs are of interest due to their simplicity of integration into a PAS formulation. Nevertheless, 
the complication of these algorithms increases when the identification of several operating points 
is required. Indeed, this is the case in a PAS application where several characteristics are sought 
after at the same time.  

To evade the above-mentioned matters, the use of parameter estimation methods has been 
proposed in the PAS formulation of a FCHEV [14]. In this respect, a FC semi-empirical (grey-
box) model is utilized to provide the required characteristics for a PAS while the parameters of the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



model are updated from time to time. Modeling and parameter estimation go hand in hand indeed. 
In [15], six semi-empirical models, proposed by Srinivasan et al., Kim et al., Lee et al., Mann et 
al., Squadrito et al., and Kulikovsky et al., are introduced. Among them, the one put forward by 
Squadrito et al. is selected based on the number of required measurement sensors and the 
considered physical phenomena. Moreover, its parameters are estimated by recursive least squares 
(RLS) method. In [16], three semi-empirical models, namely Squadrito, Amphlett, and Boulon, 
are compared for the automotive cold startup application while using recursive maximum 
likelihood (RML) as the estimator, and Amphlett’s model is selected as the most accurate one. In 
[17], Squadrito and Amphlett models are compared for the PAS application while utilizing three 
parameter estimators (Kalman filter (KF), RLS, and extended KF). The authors show that 
Amphlett is more suitable for online characteristics extraction, and KF and extended KF perform 
marginally better than RLS in terms of precision. In [18], the efficiency-vs.-power curve of the FC 
stack is estimated by means of a third-order polynomial function where its parameters are 
identified online by RLS. In [19], another polynomial model is proposed to estimate the hydrogen 
consumption of the FC stack using RLS. In [20], a supervisory PAS is formulated where a current-
dependent model coupled with RLS is used for the FC system. Ettihir et al. have used square root 
unscented KF for parameters estimation of the model introduced by Squadrito et al. and included 
it into the formulation of a hysteresis and an optimal PAS [21]. In [22], the robustness of two 
methods, namely RLS and RML, are studied while facing additional noise in the system. It is 
concluded that RML has a marginally better performance in the presence of noise. In [23], a 
learning method for the estimation of the unknown measurement noise while identifying the 
parameters of a PEMFC model is proposed. In [24], an adaptive parameter estimator based on 
Lyapunov method is suggested to estimate four parameters of a FC model. While the exponential 
convergence of this method is shown, its asymptotic stability is not guaranteed. 
1.3. Contribution and organization 

With respect to the above-discussed papers, it can be stated that different semi-empirical models 
have different characteristics, capabilities, and levels of trust. For instance, some models consider 
stack temperature while others consider partial pressure of oxygen. Moreover, some models only 
focus on specific regions of a polarization curve while others represent the whole curve. For this 
reason, having a model of PEMFC that can combine all the advantages of the mentioned models 
may result in better estimation of PEMFC characteristics. In this regard, this paper proposes a data 
fusion technique based on covariance intersection (CI) to synthesize the merits of four well-known 
semi-empirical models in the literature. To the best of the authors’ knowledge, this is one of the 
first attempts if any, to fuse the output of several PEMFC semi-empirical models for extracting the 
required characteristics in a PAS design application. To this end, a CI data fusion algorithm has 
been employed. In the proposed algorithm, the parameters of Squadrito, Amphlett, Srinivasan and 
Mann models are identified by KF, which is known as a reliable estimator in the literature. Then, 
the predicted output voltage and its covariance are calculated for each model. Finally, the data are 
fused by the CI. The proposed method has been tested using four different datasets (DSs) obtained 
from a developed experimental setup. The obtained results show that on one hand the estimated 
voltage is as precise as the best estimations of the models. On the other hand, the fused estimation 
is more reliable than that of each model due to reducing the covariance estimation.  

The remainder of this paper is organized as follows: the PEMFC semi-empirical models are 
introduced in section 2. The parameter identification algorithm is represented in section 3. The 
proposed covariance intersection algorithm is discussed in section 4. Section 5 is devoted to the 
simulation and experimental results. At last, the paper is concluded in section 6. 
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2. Models of PEMFC 
Several semi-empirical models are introduced for PEMFCs in the literature. In this paper, four 

models have been selected whose structures lead to regressor linear-in-parameter equations in the 
sense of parameter identification. A linear regression equation has been defined for each model as 
𝑉𝐹𝐶 = ∑ 𝜃𝑖𝑥𝑖

𝑛𝜃
𝑖=1 , where 𝜃𝑖 is the unknown parameters of the model and 𝑥𝑖 is the known values 

(regressors). Assuming 𝜃𝑇 = [𝜃1, … , 𝜃𝑛𝜃
] and 𝑋𝑇 = [𝑥1, … , 𝑥𝑛] leads to 𝑉𝐹𝐶 = 𝑋𝑇𝜃 where 𝑇 

denotes the transpose of a vector. Below, the four considered PEMFC models and the related 
unknown parameters and regressors are presented. The goal of parameter identification is to 
estimate the unknown parameters 𝜃 for each model so that the sum squared error with respect to 
data samples {𝑣𝐹𝐶(𝑡), 𝑖𝐹𝐶(𝑡), 𝑇𝐹𝐶(𝑡)} is minimized. 
2.1. Mann et al. model 

Mann et al. [25] have modeled the cell potential 𝑉𝐹𝐶 as the summation of the ohmic over-voltage 
𝜂𝑜ℎ𝑚, the activation over-voltage 𝜂𝑎𝑐𝑡, and the Nernst potential 𝐸𝑛𝑒𝑟𝑛𝑠𝑡: 

𝑉𝐹𝐶 = 𝐸𝑛𝑒𝑟𝑛𝑠𝑡 + 𝜂𝑎𝑐𝑡 + 𝜂𝑜ℎ𝑚  (1)  
The thermodynamic potential of the chemical reaction inside the PEMFC is called the Nernst 
potential which relies on the PEMFC temperature 𝑇𝐹𝐶 and the partial pressure of oxygen and 
hydrogen, 𝑃𝐻2

 and 𝑃𝑂2
 as: 

𝐸𝑛𝑒𝑟𝑛𝑠𝑡 = 1.229 − 0.85𝑒−5(𝑇𝐹𝐶 − 298.15) + 4.308𝑒−5𝑇𝐹𝐶(log(𝑃𝐻2
) + 0.5 log(𝑃𝑂2

))  (2)  

The summation of the anode and cathode over-voltage determines the activation over potential 
𝜂𝑎𝑐𝑡. It depends on the cell characteristics as: 

𝜂𝑎𝑐𝑡 = 𝜉1 + 𝜉2𝑇𝐹𝐶 + 𝜉3𝑇𝐹𝐶 log(𝐶𝑂2
) + 𝜉4𝑇𝐹𝐶 log(𝑖𝐹𝐶)  (3)  

where the unknown parameters 𝜉𝑖 , 𝑖 = 1, 2, 3, 4 are experimental parameters depending on the 
kinetics of the reaction. Finally, the internal resistance 𝑟𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 specifies the ohmic over-voltage: 

𝜂𝑜ℎ𝑚 = −𝑖𝐹𝐶𝑟𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  (4)  
where 

𝑟𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = µ1 + µ2𝑇𝐹𝐶 + µ3𝑖𝐹𝐶 + µ4𝑇𝐹𝐶𝑖𝐹𝐶 + µ5𝑇𝐹𝐶
2 + µ6𝑖𝐹𝐶

2   (5)  
Putting equations (1) to (5) together results in the regression equation as 

𝑉𝐹𝐶 − 𝐸𝑛𝑒𝑟𝑛𝑠𝑡 = 𝑋𝑇𝜃  (6)  
where 

𝜃𝑇 = [𝜉1, 𝜉2, 𝜉3, 𝜉4, µ1, µ2, µ3, µ4, µ5, µ6]  
𝑋𝑇 = [1, 𝑇𝐹𝐶 , 𝑖𝐹𝐶 , 𝑇𝐹𝐶𝑖𝐹𝐶 , 𝑇𝐹𝐶

2 , 𝑖𝐹𝐶
2 , −𝑖𝐹𝐶 , −𝑖𝐹𝐶𝑇𝐹𝐶 , −𝑇𝐹𝐶𝑖𝐹𝐶

2 , −𝑖𝐹𝐶𝑇𝐹𝐶
2 , −𝑖𝐹𝐶

3 ]  
 

2.2. Squadrito et al. model 
The output voltage of FC in the model proposed by Squadrito et al. [26] relies on the open-

circuit voltage 𝑉0, the current of the FC 𝑖𝐹𝐶 and the FC ohmic resistance 𝑟 as follows: 

𝑉𝐹𝐶 = 𝑉0 − 𝑏 log(𝑖𝐹𝐶) − 𝑟𝑖𝐹𝐶 + 𝛼𝑖𝐹𝐶
𝑘 log(1 − 𝛽𝑖𝐹𝐶)  (7)  

where 𝛼 and 𝑘 are fitting parameters, and 𝑘 is a constant between [1, 4]. Here, the measured values 
are 𝑉𝐹𝐶 and 𝑖𝐹𝐶 while {𝑉0, 𝑟, 𝛼, 𝑘} are unknown parameters. As a result, in the sense of 
identification we have: 
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 𝜃𝑇 = [𝑉0, 𝑏, 𝑟, 𝛼] 
𝑋𝑇 = [1, − log(𝑖𝐹𝐶) , −𝑖𝐹𝐶 , 𝑖𝐹𝐶

𝑘 log(1 − 𝛽𝑖𝐹𝐶)]  
 

where 𝑥𝑖 and 𝜃𝑖 are regressors and regression coefficient (parameter) vectors, respectively. It is 
worth noting that the mass transport over potential is a benefit of Squadrito model. However, the 
temperature dependence of the output voltage is not considered. 
2.3. Amphlett et al. model 

Amphlett et all [27] represent a general formulation of electrochemical PEMFC. This model is 
not only applicable in the situation of series connection of several FCs but also different operating 
conditions are taken into account as it could be seen in (8). In addition, because of its structure in 
the concentration loss calculation, this model creates a great opportunity to compare the impact of 
linear and nonlinear parameter identification. 

𝑉𝐹𝐶 = 𝑁(𝐸𝑛𝑒𝑟𝑛𝑠𝑡 + 𝑉𝑎𝑐𝑡 + 𝑉𝑜ℎ𝑚𝑖𝑐 + 𝑉𝑐𝑜𝑛)  
𝑉𝑎𝑐𝑡 = 𝜉1 + 𝜉2𝑇 + 𝜉3𝑇 ln(𝐶𝑂2

) + 𝜉4𝑇 ln(𝑖𝐹𝐶)   
𝐶𝑂2

=
𝑃𝑂2

5.08×106 exp(−
498

𝑇
)
   

𝑉𝑜ℎ𝑚𝑖𝑐 = −𝑖𝐹𝐶𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = −𝑖𝐹𝐶(µ1 + µ2𝑇 + µ3𝑖𝐹𝐶)  
𝑉𝑐𝑜𝑛 = 𝐵 ln (1 −

𝐽

𝐽𝑚𝑎𝑥
)  

(8)  

where 𝑉𝐹𝐶, 𝑉𝑎𝑐𝑡, 𝑉𝑜ℎ𝑚𝑖𝑐, 𝑉𝑐𝑜𝑛 are the output, activation loss, ohmic loss, and concentration loss 
voltage, respectively. The stack temperature (K) is denoted by 𝑇. 𝑃𝐻2

 and 𝑃𝑂2
 denote the hydrogen 

partial pressure in the anode side (𝑁𝑚−2) and the oxygen partial pressure in the cathode side 
(𝑁𝑚−2). 𝜉𝑛, (𝑛 = 1, … ,4) are the semi-empirical coefficients based on thermodynamics, fluid 
mechanics, and electro chemistry. 𝐶𝑂2

 is the oxygen concentration 𝑚𝑜𝑙𝑐𝑚−3. Moreover, 𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙, 
𝑖, 𝐽, 𝐽𝑚𝑎𝑥, and 𝐵 indicate the internal resistor (Ω), PEMFC operating current (𝐴), actual current 
density (𝐴𝑐𝑚−2), maximum current density (𝐴𝑐𝑚−2), and a parametric coefficient (𝑉), 
respectively. Finally, µ𝑛, (𝑛 = 1, … ,3) are parametric coefficients. The set of unknown parameters 
and regressors could be considered as: 

𝜃𝑇 = [𝜉1, 𝜉2, 𝜉3, 𝜉4, µ1, µ2, µ3, 𝐵]  
𝑋𝑇 = [1, 𝑇, 𝑇 ln(𝐶𝑂2

) , 𝑇 ln(𝑖𝐹𝐶) , −𝑖𝐹𝐶 , −𝑖𝐹𝐶𝑇, −𝑖𝐹𝐶
2  , ln (1 −

𝐽

𝐽𝑚𝑎𝑥
)]  

 

2.4. Srinivasan et al. model 
Srinivasan et al. model [28], founded on experimental data, can be defined as: 

𝑉𝑐𝑒𝑙𝑙 = 𝑉0 − 𝑏 log(𝑖𝐹𝐶) − 𝑟𝑖𝐹𝐶   (9)  

𝑉0 = 𝑉𝑟 + 2.303
𝑅𝑇𝐹𝐶

𝜉
log(𝑖𝐹𝐶)  (10)  

where 𝑟, 𝑏, 𝑖0, 𝜉, 𝑉𝑟 denote the slope of the linear region with nonlinear least square fits, the Tafel 
slope, the exchange current, the transfer coefficient of the oxygen reduction, and the reversible 
potential for the cell, respectively. Since calculating 𝑉0 by (10) requires some information from 
the FC stack, which is not easily accessible, this parameter is considered unknown and estimated 
by the developed methods. So, 

 𝜃𝑇 = [𝑉0, 𝑏, 𝑟]  
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𝑋𝑇 = [1, − log(𝑖𝐹𝐶) , −𝑖𝐹𝐶]  
This model has been used frequently in the literature due to its simplicity. The main drawback of 
this model is that it neglects the mass transport overvoltage. Furthermore, the influence of 
temperature on the output voltage is not considered in this model.  

The main characteristics of the aforementioned models are listed in Table 1. 

Table 1: Comparison of models 
Model Mass transport Temperature No. of Parameters 
Mann No Yes 10 

Squadrito Yes No 4 
Amphlett Yes Yes 8 
Srinivasan No No 3 

 

3. Parameter Identification Algorithm 
Online parameter identification has been performed by numerous algorithms. One of the most 

well-known and widely used algorithms is KF. It consists of predicting one-step ahead of the state 
variables and updating the predicted value with the new measurement. Assuming the actual state 
and measurement model as: 

𝜃(𝑡 + 1) = 𝐹𝑡𝜃(𝑡) + 𝐵𝑡𝑢(𝑡) + 𝑤(𝑡)  
𝑦(𝑡) = 𝐻𝑡𝜃(𝑡) + 𝑛(𝑡)  (11)  

where 𝑦, 𝑢, and 𝜃 denote measurements, control-inputs, and states, respectively. The matrix 𝐹𝑡, 
𝐵𝑡, and 𝐻𝑡 are state, input, and observations matrix. 𝑤 and 𝑛 are zero-mean and normally 
distributed noises with covariance 𝑊𝑡 and 𝑅𝑡, respectively, which contaminate the process and 
measurements. Two alternate phases of the KF are the prediction phase as: 

𝜃(𝑡|𝑡 − 1) = 𝐹𝑡𝜃(𝑡 − 1|𝑡 − 1) + 𝐵𝑡𝑢(𝑡 − 1)  
𝑃(𝑡|𝑡 − 1) = 𝐹𝑡𝑃(𝑡 − 1|𝑡 − 1)𝐹𝑡

𝑇 + 𝑊𝑡  
(12)  

where 𝜃(𝑡|𝑡 − 1) and 𝑃(𝑡|𝑡 − 1) are a priori state estimate and a priori estimate covariance, 
respectively, and the update phase as: 

𝜃(𝑡|𝑡) = 𝜃(𝑡|𝑡 − 1) + 𝐾(𝑡) (𝑦(𝑡) − 𝐻𝑡𝜃(𝑡|𝑡 − 1))  
𝑃(𝑡|𝑡) = (𝐼 − 𝐾(𝑡)𝐻𝑡)𝑃(𝑡|𝑡 − 1)  
𝐾(𝑡) = 𝑃(𝑡|𝑡 − 1)𝐻𝑡

𝑇(𝐻𝑡𝑃(𝑡|𝑡 − 1)𝐻𝑡
𝑇 + 𝑅𝑡)−1  

(13)  

where 𝜃(𝑡|𝑡), 𝑃(𝑡|𝑡), and 𝐾(𝑡) are a posteriori state estimate, a posteriori estimate covariance, 
and Kalman gain, respectively. 

The KF, which has its reputation due to optimally estimating the state of systems, can be utilized 
as a parameter estimator to extract the interesting parameters from the noisy measurements. The 
parameter estimation problem can be adopted to state-space framework as: 

𝜃(𝑡 + 1) = 𝜃(𝑡) + 𝑤(𝑡)  
𝑦(𝑡) = 𝑋𝑡

𝑇𝜃(𝑡) + 𝑛(𝑡)  (14)  

where the states are unknown parameters 𝜃 which need to be estimated. The output is considered 
to be the measured values 𝑦 and the output matrix is the regressors 𝑋𝑡. 𝑤(𝑡) and 𝑛(𝑡) are assumed 
to be parameters and measurement noise with covariance matrices 𝑊 and 𝑅, respectively. 
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Assuming independent parameters, a diagonal covariance matrix are typically chosen. 𝑊 
represents not only the strength of the time variance of parameters but also gives the capability to 
determine the forgetting factor for each parameter individually. This capability of KF outperforms 
the RLS. 𝑊 = 0 is equivalent to forgetting factor equal to one in RLS. Substituting the model (14) 
into the KF algorithm, the prediction phase vanishes and we have: 

𝜃(𝑡) = 𝜃(𝑡 − 1) + 𝐾(𝑡) (𝑦(𝑡) − 𝑋𝑡
𝑇𝜃(𝑡 − 1))  

𝐾(𝑡) = (𝑋𝑡
𝑇𝑃(𝑡 − 1)𝑋𝑡 + 𝑅𝑡)−1𝑃(𝑡 − 1)𝑋𝑡   

𝑃(𝑡) = (𝐼 − 𝐾(𝑡)𝑋𝑡
𝑇)(𝑃(𝑡 − 1) + 𝑊)  

(15)  

The noise covariance 𝑅 is commonly considered as a constant. 

4. Data Fusion 
The process of merging multiple data to produce more accurate and consistent information than 
provided by any individual data source is called data fusion. According to the joint directors of 
laboratories (JDL) model, data fusion could be performed in the level of data, sensor, and 
information [29]. One of the most popular methods of data fusion is based on covariance 
intersection (CI) algorithm that takes convex combination of mean and covariance of estimations. 
CI is naturally endowed with some properties, such as being distributed and decentralized, which 
offer the possibility of plug-and-play data fusion [29, 30]. CI presents a sub-optimal data fusion 
algorithm avoiding the assumption of estimates independence required by standard Bayesian 
filters. CI merges the estimates of different sources by weighing and using a mixing parameter. 
The mixing parameters are usually found through an optimization, such as minimizing the trace 
(or determinant) of the fused covariance matrix [30]. It is equivalent to minimizing the Shannon 
entropy of the fused covariance matrix. This paper mainly concerns providing a better estimation 
for the PEMFC characteristics and output voltage utilizing four semi-empirical models. Employing 
KF and considering any semi-empirical models that was discussed in section 2, the output voltage 
of the FC could be estimated. The more accurate any estimation be the more weight will be given 
to the CI data fusion. Each semi-empirical model may provide the best estimation in a specific 
working situation of FC. The CI follows the best estimation in each time step and in different 
situations. The CI not only attempts to reduce the mean square error (MSE) but also reduces the 
covariance of estimation. Therefore, not only having more accurate models but also having more 
precise estimation can lead to better results. 

The CI fuses 𝑖 = 1, … , 𝑛 data with mean 𝑉𝑖 and covariance 𝑃𝑖 as: 

𝑃𝐷𝐹
−1 = ∑ 𝜔𝑖𝑃𝑖

−1𝑛
𝑖=1    (16)  

𝑃𝐷𝐹
−1𝑉𝐷𝐹 = ∑ 𝜔𝑖𝑃𝑖

−1𝑉𝑖
𝑛
𝑖=1    (17)  

where the weights 𝜔𝑖 are chosen in a way to minimize the trace of 𝑃𝐷𝐹. In this paper, the regression 
vector of each semi-empirical model, defined in section 2, is calculated by using the observations 
𝑖𝐹𝐶 and 𝑇𝐹𝐶. Then, KF identifies the parameters of the model 𝑖 = 1, … , 𝑛 and determines 𝜃𝑖 and 
covariance of the estimated parameters 𝑃𝑖. An estimation for the output voltage could be obtained 
by substituting the estimated parameters into the related model. It is easy to show that the 
covariance of the estimated output voltage is: 

ℙ𝑖 = 𝑋𝑖
𝑇𝑃𝑖𝑋𝑖 + 𝑅𝑖  (18)  
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𝑃𝑖 is affected by the number of parameters of the model. So, the CI algorithm is modified to 
remove the effect of the number of parameters on the estimated output voltage as follows: 

𝑃𝐷𝐹
−1 = ∑ 𝜔𝑖

1

𝑛𝜃𝑖
2 ℙ𝑖

−1𝑛
𝑖=1    (19)  

𝑉𝐷𝐹 = 𝑃𝐷𝐹 ∑ 𝜔𝑖
1

𝑛𝜃𝑖
2 ℙ𝑖

−1𝑉𝑖
𝑛
𝑖=1    (20)  

where 𝑛𝜃𝑖
 is the number of parameters 𝑖 and 𝜔𝑖 is obtained by solving an optimizing problem with 

the following cost function: 

𝜔𝑖 = min
ωi

[trace ∑
𝜔𝑖

𝑛𝜃𝑖
2 ℙ𝑖

−1]  (21)  

The presented algorithm is depicted in Fig. 1. 

 
Figure 1: Structure of the suggested estimation process based on data fusion. 

5. Results and Discussion 
5.1. Experimental set-up 

To validate the performance of the suggested estimator based on data fusion, an experimental 
set-up has been utilized for data collection. Fig. 2 demonstrates this set-up where a Horizon H-500 
PEMFC is connected to some measurement instrumentations for testing the estimation process.  
This air-cooled PEMFC is equipped with two axial fans to provide the oxygen on the cathode side 
and cool down the stack. The maximum stack temperature is 65℃. Typically, open cathode FCs 
are known to have a lower operating stack temperature compared to the closed cathode ones [31, 
32]. Moreover, this FC is self-humidified and operates based on a dead-ended anode (DEA) 
configuration in which the dry hydrogen is regularly supplied at a particular inlet pressure. A 
hydrogen supply valve is utilized in the anode inlet to deliver dry hydrogen to the PEMFC, having 
a flow rate from 0 to 7 l/min with respect to the drawn current. The anode outlet has a purge valve 
to expel the buildup of water and nitrogen out of anode volume and replenish it with fresh 
hydrogen. The purge valve is normally closed and does a cyclic purging every 10 s for a duration 
of 100 ms while the PEMFC is under operation. A manual forward pressure regulator, as shown 
in Fig. 2, is used to maintain the hydrogen partial pressure between 0.45 and 0.6 bar. The pressure 
difference between the anode and cathode sides must not exceed 0.5 bar to decrease the membrane 
damage. Mass flowmeter and a hydrogen tank are the other hydrogen supply subsystems of this 
FC stack.  
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Figure 2: Experimental set-up 

From Fig. 2, the utilized PEMFC stack is connected to a Natural Instrument CompactRIO (NI 
cRIO-9022) through its controller. The fans as well as the inlet/outlet valves are controlled by the 
control unit of the PEMFC. The communication between cRIO and PC is accomplished by an 
Ethernet connection where current, temperature, and voltage are recorded with a sampling 
frequency of 10 Hz. These measured data are utilized for performing the online estimation process 
in Matlab software which is available in the PC. A DC Electronic Load (8514 BK Precision) is 
utilized to draw a load profile from the FC stack. 

For the validation purpose of this work, four different DSs including current, voltage, and 
temperature, are utilized with four different initial ambient temperatures. These four DSs have 
been obtained from three Horizon H-500 FCs with different degradation levels. Since the utilized 
FCs have different ageing milestones and have been produced in different years, they have various 
characteristics in terms of power and voltage delivery. To determine the ageing extent of each FC, 
their voltage-vs.-current (polarization) and power-vs.-current curves are illustrated in Fig. 3 as an 
indicator of their actual health state. To obtain the polarization curve of each stack, a fixed current 
has been applied to the FC and its output voltage value has been recorded after 15 minutes for each 
rising current level. From Fig. 3, it can be observed that two polarization tests have been done on 
the FC1. One test has been done at ambient temperature of 21℃ (𝐹𝐶1: 𝑅𝑒𝑓.𝐷𝑆1), and one test has 
been carried out at ambient temperature of 28℃ (𝐹𝐶1: 𝑅𝑒𝑓.𝐷𝑆3). From these two tests, it can be 
stated that FC1 has reached a maximum power of around 405 W and 384 W in case of 𝑅𝑒𝑓.𝐷𝑆1 
and 𝑅𝑒𝑓.𝐷𝑆3 tests, respectively. This variation of maximum power is due to the difference in 
ambient conditions. Regarding FC2, it can be seen from 𝐹𝐶2: 𝑅𝑒𝑓.𝐷𝑆2 that this FC is in a better 
health state as it can reach a maximum power value of almost 455 W. This test has been performed 
at ambient temperature of 24℃. 𝐹𝐶3: 𝑅𝑒𝑓.𝐷𝑆4 demonstrates the polarization and power curves of 
FC3at ambient temperature of 23℃. It can be seen that this FC can deliver the highest maximum 
power (around 600 W) among the tested FCs. Regarding FC1 and FC2, the polarization tests have 
been continued until the voltage drop due to concentration at high current region is observed. 
However, concerning FC3, the test has been stopped at 40 A in order not to damage the FC system. 
According to the manufacturer, the shut-down current limit for this FC is 42 A. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 
Figure 3: Experimental polarization and power curves. 

 
The acquired polarization and power curves will be used to validate the characteristics estimation 
of the proposed method. The technical specifications of the utilized PEMFCs in this manuscript 
are presented in Table 2. The technical data of FC1 and FC2 have been collected from [33] and 
the technical data of FC3 are available in [34], which are the provided manuals of the employed 
FCs by the manufacturer.    

Table 2: Specifications of the used Horizon H-500 PEMFCs 

Technical Data Utilized FC 
FC1 and FC2 FC3 

Type Open cathode Open cathode 
Number of cells 36 24 

Hydrogen pressure 0.5-0.6 Bar 0.45-0.55 Bar 
Cathode pressure 1 Bar 1 Bar 

Ambient temperature 5-30 °𝐶 5-30 °𝐶 
Maximum stack temperature 65 °𝐶 65 °𝐶 

Hydrogen purity 99.999% dry H2 ≥ 99.995% dry H2 
Size 130 ×  220 ×  122 (mm) 130 ×  268 ×  122.5 (mm) 

Cooling Air (integrated cooling fan) Air (integrated cooling fan) 
 

Fig. 4 presents the current and measured stack temperature of the employed DSs. Figs. 4a and 
4c show the DS1 and DS3 current profiles, respectively, which are applied to FC1. DS1 is a random 
current profile fluctuating almost within the whole operating current of FC1 at ambient 
temperature of 21℃. DS3 has been obtained by means of the Urban Dynamometer Driving 
Schedule (UDDS) which characterizes the driving condition in a city. In this respect, the UDDS 
driving cycle has been used as the input of IEEE VTS Motor Vehicles Challenge in [35], and the 
subsequent demanded current from the FC system has been scaled within the operating range of 
FC1. As this current profile comes from a driving cycle, it can replicate a real situation that may 
occur to a FC system in a vehicular application. Fig. 4b illustrates the requested current from FC2 
(DS2), which is a rising step current profile within the operating range of FC2 at ambient 
temperature of 24℃. Fig. 4d shows the applied current to FC3 (DS4) at ambient temperature of 
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23℃. It is also a step-up current profile with longer step durations compared to DS2. It should be 
reminded that the main idea behind using different DSs and FCs is to impose the estimators to 
various excitation signals and FC technologies and then study the accuracy of the proposed 
estimators accordingly. Indeed, the variation in the conditions of data collection is interesting as it 
can influence the output voltage and power of the PEMFCs and make the characteristic estimation 
problem more challenging for the proposed data fusion based estimator. One worth noting point 
about Fig. 4 is that it shows the current and temperature of the FC are interdependent. This 
interdependency makes the estimation process challenging as most estimators have been 
developed for systems with independent variables. Although FC current and temperature are 
dependent, the dynamic of temperature is much slower than current. Since the measurements are 
received every 100 ms in this work, it is assumed that temperature is constant during each time 
step. Therefore, the measured signals are sent to the estimators at each time step, and they then 
identify the parameters of the model before the next measurement arrives. Table 3 provides more 
information on the utilized experimental data. According to Table3, DS1 has the longest duration 
with 32821 samples which takes around 55 minutes.  The measured voltage along with the 
estimated ones are discussed in the next section. 

 
Figure 4: Experimental DSs, a) DS1 (FC1), b) DS2 (FC2), c) DS3 (FC1), and d) DS4 (FC3) 

Table 3: The collected DSs 
DS No. No. of samples Ambient condition Used FC 

  Temperature (°𝐶) Humidity (%)  
DS1 32821 21 60 FC1 
DS2 8000 24 65 FC2 
DS3 6220 28 63 FC1 
DS4 16585 23 67 FC3 

5.2. Results analysis 
To validate the performance of the proposed estimation method, three analyses are performed 

in this section. Firstly, the online estimation of the PEMFC output voltage is compared with the 
measured one for each of the utilized models. This is a general consideration regarding the 
estimation process. Subsequently, the variance of estimation for each model is investigated as it is 
a good representative of estimation accuracy. Finally, the precision regarding the online extraction 
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of polarization and power curves is inspected to validate the performance of the updated model in 
the whole operating current range of the PEMFC stack. 

Fig. 5 compares the actual measured PEMFC voltage with its estimation by each of the models, 
including Squadrito, Mann, Amphlett, Srinivasan, and the data fusion method. This comparison 
has been done for the four previously-discussed experimental DSs. It should be noted that the 
parameters of all PEMFC models are estimated online by KF and in case of data fusion approach, 
which fuses the capabilities of the four methods, CI algorithm is used for the  

 
Figure 5: FC voltage estimation by the semi-empirical models and the proposed data fusion.  

estimation process. Although this is a good general representation concerning the estimation 
performance, one cannot draw a firm conclusion on the accuracy of the methods by solely this 
figure. Therefore, the MSE of the predicted output voltage of the FC has been calculated for all 
the cases and reported in Table 4. These results demonstrate that the MSE of the Mann and 
Amphlett models are less than Squadrito and Srinivasan ones. Yet, the proposed data fusion 
method gives the least MSE among all the studied cases. It is clear that the MSE has been decreased 
between 7% for DS1 and 20.4% for DS2. The MSE of the other two DSs, DS3 and DS4, have 
been plummeted by 13.3% and 12.3%, respectively.  

Table 4: MSE of identification 
 Model Squadrito Mann Amphlett Srinivasan Data Fusion 
 Algorithm KF KF KF KF CI 

M
SE

 DS1(× 10−1) 5.00 1.74 1.82 8.07 1.62 
DS2(× 10−2) 1.82 0.88 0.99 24.1 0.70 
DS3(× 10−2) 15.9 4.28 6.59 18.2 3.71 
DS4(× 10−3) 6.25 2.29 2.20 6.34 1.93 

(a) DS1 (b) DS2 

(c) DS3 (d) DS4 
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The next analysis is about the variance of estimation for each of the utilized models as illustrated 

in Fig. 6. From this figure, it can be stated that the Srinivasan and Squadrito have the highest 
variance values which mean that their estimation accuracy is less than the others. When it comes 
to data fusion results, on one hand, it follows the best prediction provided by the models, as could 
be deduced from the discussed MSE values. On the other hand, the variance of estimation is also 
close to the best ones. This behavior implies that data fusion takes advantages of the models’ 
potentials while avoiding their drawbacks. 

  

 
Figure 6: Variance of estimations.  

In the last analysis, the capability of the estimation process for online extraction of some 
important characteristics, namely polarization and power curves, is investigated. These 
characteristics are normally utilized in the design of online PASs in FCHEVs. It should be noted 
that since the parameters of all PEMFC semi-empirical models are estimated online by KF, they 
all show acceptable performance regarding the estimation of the output voltage. This is due to the 
fact that they try to minimize one single voltage point at each iteration by changing the parameters. 
However, it is important to check if these models can perform well within the whole operating 
current range. In this regard, one helpful analysis is to check the estimation of polarization and 
power curves. Fig. 7 shows the estimation of polarization and power curves for the semi-empirical 
models and also the fused curves of the data fusion method are depicted in this figure for all DSs. 
According to this figure, the proposed data fusion method has been able to provide good estimation 
of voltage and power in all cases. Regarding the other models, it is seen that Amphlett and Mann 
almost achieve better estimation than Squadrito and Srinivasan. This could be due to the ignorance 
of considering the temperature and/or mass transport in these two models. To quantitatively 
highlight the difference among the estimation methods, the MSE of polarization and power curves 
estimation for each of the discussed cases in Fig. 7 is reported in Table 5. According to this table, 
the obtained MSE values are in agreement with the discussed points and show the great potential 

(a) DS 1 (b) DS 2 

(c) DS 3 (d) DS 4 
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of the proposed data fusion approach in online characteristics estimation of a PEMFC stack. From 
Table 5, the put forward method based on data fusion has had the highest estimation accuracy 
regarding voltage and power curves estimation. Excluding the proposed method from comparison, 
Amphlett’s model has achieved the lowest error in case of DS1 and DS3, Srinivasan’s model has 
reached the minimum error in case of DS2, and Mann’s model has had the lowest error in case of 
DS4. Comparing the data fusion method with the best achieved results, on average, the MSE of 
data fusion method is 39.64% lower while estimating the polarization curve (19.6% and 15.86% 
lower than Amphlett’s model for DS1 and DS3, 62.5% lower than Srinivasan’s model for DS2, 
and 60.6% lower than Mann’s model for DS4) and 36.59% lower while estimating the power 
curve (29.11% and 54.54% lower than Amphlett’s model for DS1 and DS3, 2.43% lower than 
Srinivasan’s model for DS2, and 60.3% lower than Mann’s model for DS4). 

 

 
Figure 7: Estimation of polarization and power curves for the semi-empirical models and the proposed 

method based on data fusion.  

Table 5: MSE of V-I and P-I curve estimation 
 Model Squadrito Mann Amphlett Srinivasan Data Fusion 
 Algorithm KF KF KF KF CI 

M
SE

 o
f V

-I
 DS1(× 10−1) 7.39 1.68 1.53 17.5 1.23 

DS2(× 10−1) 11.1 27.9 6.53 0.08 0.03 

DS3(× 10−1) 29.3 12.7 6.62 26.2 5.57 

DS4(× 10−2) 17.1 2.97 6.49 17.4 1.17 

M
SE

 o
f P

-I
 DS1(× 10+1) 9.02 4.90 4.50 53.3 3.19 
DS2(× 10+1) 60.7 40.4 9.17 0.082 0.080 
DS3(× 10+2) 8.86 4.04 0.22 12.4 0.10 
DS4(× 10+1) 1.94 1.31 5.12 2.98 0.52 

(a) DS 1 (b) DS 2 (c) DS 3 (d) DS 4 
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6. Conclusion 
Estimating the polarization and power curves of a PEMFC stack, as the main source of power 

in a FCHEV, is highly demanded while designing a PAS. To this end, online parameter estimation 
methods have become a vital tool for extracting these curves while the system is under operation. 
This paper proposes an online estimation method based on data fusion to extract the PEMFC 
characteristics. In this regard, KF is utilized to track the variation of the parameters of four PEMFC 
semi-empirical models online. Subsequently, a CI algorithm is suggested to estimate the output 
voltage and the characteristics of the PEMFC stack by fusing the obtained voltage and covariance 
from each of the PEMFC models. Four different experimental DSs collected from three different 
500-W Horizon PEMFCs are utilized to justify the performance of the proposed data fusion 
approach. The final results illustrate the potential of this suggested method quantitatively as it has 
achieved the lowest MSE in all the studied cases. Regarding the estimation of polarization and 
power curves, the MSE of the data fusion method is on average 39.64% and 36.59% lower than 
other studied approaches. Future endeavors should combine the proposed estimation method of 
this work with the design of a PAS in a FCHEV to achieve better performance in the management 
of this vehicle. 
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