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The benefits of the complex microscopic and industrially important group of microalgae
such as diatoms is not hidden and have lately surprised the scientific community
with their industrial potential. The ability to survive in harsh conditions and the
presence of different pore structures and defined cell walls have made diatoms ideal
cell machinery to produce a variety of industrial products. The prospect of using
a diatom cell for industrial application has increased significantly in synch with the
advances in microscopy, metabarcoding, analytical and genetic tools. Furthermore,
it is well noted that the approach of industry and academia to the use of genetic
tools has changed significantly, resulting in a well-defined characterization of various
molecular components of diatoms. It is possible to conduct the primary culturing,
harvesting, and further downstream processing of diatom culture in a cost-effective
manner. Diatoms hold all the qualities to become the alternative raw material for
pharmaceutical, nanotechnology, and energy sources leading to a sustainable economy.
In this review, an attempt has been made to gather important progress in the different
industrial applications of diatoms such as biotechnology, biomedical, nanotechnology,
and environmental technologies.

Keywords: diatoms, microalgae biotechnology, metabolic engineering, metabarcoding, sustainable economy,
biofuel, lipids

INTRODUCTION

The global trend of economy and society is shifting toward building a greener and more sustainable
society to combat climate and health issues. This is a critical issue, which is being approached with
various interdisciplinary strategies to produce a wide range of sustainable products. For instance,
biotechnology research has invested a significant number of resources, time, and money in studying
microorganisms to exploit them for human consumption in multiple ways. Furthermore, the
decades of research and improvisation in cultivation strategies, extraction, and harvesting protocols
strongly support a good return on investment in industrial applications of microbes. A pinch of
soil and a drop of water contain a diversity of microbes that controls major biogeochemical cycles
and subsequently have the potential of producing an abundance of sustainable products. Since
the beginning of this century, a high amount of research work has been published on industrial
applications of microbes such as bacteria, yeast, and microalgae (Figure 1). But, limited attention
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has been paid to diatoms which have the potential of becoming
a robust sustainable industry because diatoms can continuously
grow with an average annual yield of 132 MT dry diatoms ha−1

over almost 5 years (Wang and Seibert, 2017).
Diatoms are dynamic microorganisms with rich diversity

and detailed membrane design. They are the most dominating
phytoplankton with an overall number of around 200,000
species having complex variability in dimensions and shapes
(Round et al., 1990; Smetacek, 1999; Mann and Vanormelingen,
2013). Diatoms’ distinctive characteristic compared to the
phytoplankton community is their silica cell wall, known as
a frustule. This innate ability to uptake silicon from the
environment has made them an interesting community of
microbes since the 19th century. Few studies have stated the role
of frustule biosilicate as pH buffering material which facilitates
shifting of bicarbonate to CO2 dissolved in cell fluids (the latter is
readily metabolized by diatoms) (Milligan and Morel, 2002).

The access to advanced microscopes and modern genetic tools
enabled us to study the detailed frustule structure and validate
metabolic pathways involved in absorption, transportation, and
polymerization of silicon and other biomolecules like lipids
(Knight et al., 2016; Zulu et al., 2018). Furthermore, this
advanced knowledge of metabolic pathways and validation of
diatom structure can be applied to produce a wide range of
renewable products such as optoelectronics, biofuels, nutritional
supplements, ecology tools, etc. (Marella et al., 2020).

Other common factors that have shaped the evolution of
diatoms are their ability to adapt and grow in various natural
resources; fresh and marine water, wastewater, rivers, and oceans.
Their abundance and adaptability in a wide range of climate and
geographical areas make them suitable for different applications
(Jin and Agustí, 2018). It was reported that diatoms are
responsible to produce yearly, 40% of the organic carbon and 20%
of oxygen (Tréguer et al., 1995; Falkowski et al., 1998; Afgan et al.,
2016). Besides, these photoautotrophic organisms are involved
in biogeochemical cycles, which play a significant role in global
carbon fixation, carbon sequestration, and silicon cycle. They are
also suitable candidates to capture nitrogen and carbon from
various sources, which can be exploited by waste management
and the biofuel industry to create carbon-neutral fuels (Singh
et al., 2017). Furthermore, these algae are used to produce
nutraceutical compounds, such as vegetarian proteins, omega,
and other essential fatty acids for pharmaceutical industries (Wen
and Chen, 2001a,b).

Multiple epidemiological, clinical, and pre-clinical studies
have shown that omega fatty acids such as eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) are useful in slowing
down age-related diseases such as cardiovascular diseases and
cancer (Cole et al., 2010; Dyall, 2015; Thomas et al., 2015; Wang
and Daggy, 2017). The development of diatoms strains rich
in omega fatty acids can replace the dependence on fish as a
source of omega oils and reduce the problems associated with
seasonal variations and ocean pollution which might affect the
biochemical composition of fish oil (Alves Martins et al., 2013).
Also, various marine diatoms are considered for the commercial
production of antioxidant pigments such as fucoxanthin and
other carotenoids. It has been reported that these pigments

exhibit various protective effects such as strong antioxidant
activities (Xia et al., 2013).

Thus, the flexible and complex nature of diatoms offers
immense possibilities to develop a wide range of sustainable
products and contributes to carbon neutrality. Because of its
dimensions, pore distributions, and geometries, it is studied to
develop tools for nanotechnology and biomedical industry such
as nanofabrication techniques, chemo and biosensing, particle
sorting, and control of particles in micro- and nano-fluidics
(Mishra et al., 2017). Silica and biosilica can be used to develop
advanced nanomaterial for electronic and optical technologies
which can be employed for ultra-sensitive detection of biological
compounds (Dolatabadi et al., 2011).

Recent accomplishment in diatoms metabarcoding, a
reference database of the global population of diatoms, has
advanced its use extensively in studying ecological problems such
as climate change, acidification, and eutrophication (Nanjappa
et al., 2014). Because of its robust nature and potential to
inhabit different photic regions, from the equator to the poles,
diatoms offer the potential to develop tools and products for
all geographical regions (Medlin, 2016). The technological and
infrastructure advancements of diatoms-based applications
are at a new level. Besides, it requires different kinds of
optimization either in laboratory or large-scale research such
as energy utilization for different steps, financial modeling, and
collaborating with different industries to make diatom-based
products commercially successful. However, the standardization
at various levels such as optimization of culture conditions,
genetic tools, genome and transcriptome sequencing make
diatoms based products commercially viable.

Therefore, this review aims to provide a better understanding
of the potential of diatoms research at a laboratory scale. We
have tried to provide comprehensive information on a variety of
diatoms applications such as energy, biomedical products, and
environment monitoring which are being investigated at different
levels. All these applications have the potential to contribute
toward a greener tomorrow. The purpose of the research
is to increase the sustainable economy while reducing the
dependence on non-renewable resources. Therefore, recovering
and producing various sustainable products like biofuels, feed,
bioactive molecules, and services like environment monitoring
embedded in diatoms is a promising opportunity to be seized as
shown in Figure 2.

BIOFUEL INDUSTRY

Fast globalization and industrialization have impacted the
ecosystem widely but shutting or slowing down the globalization
is not the solution. At the moment, almost 95% of all the
transportation industry is based on a non-renewable source of
energy (Rodrigue and Notteboom, 2013). Therefore, developing
sustainable and carbon-neutral fuels could reduce the existing
dependence on fossil fuels and contribute to bringing back
harmony in nature without disrupting the existing economic
development. Few economic aspects of biofuel production from
microalgae such as biodiesel productivity, land use, and oil
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FIGURE 1 | Approximate number of research articles indexed in Scopus database (September 14, 2020) in the area of industrial application of different microbes
(bacteria, yeast, algae, and diatoms).

FIGURE 2 | Scheme of the different uses of diatoms for green industry.

yield support the use of microalgae for commercial production
as compared to corn and other food crops. The oil yield for
microalgae with high oil content is almost 15-fold more as
compared to corn. Whereas, the land use for corn and maize is
66-fold more as compared to microalgae (Brocks et al., 2003).

The microalgae such as diatoms are the promising feedstock
to replace non-renewable sources of energy. It has been proven
by geochemists that algal lipids are the major feedstocks of
petroleum and these lipids act as the biomarker remaining stable
for millions of years (Brocks et al., 2003). The main biomarker
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for the diatoms is the ratio of C28 and C29 steranes and highly
branched isoprenoid alkenes which are found in high-quality oil
fields around the globe (Katz et al., 2004).

Moreover, targeting the diatom lipids by manipulating and
optimizing the growth and culture conditions such as light,
stress, and nutrients can provide an interesting alternative to help
meet the existing demands of commercial production of biofuel.
Knowing the potential of diatoms to accumulate high lipids and
varied compositions of fatty acids, diatoms are an underexploited
area of the biofuel industry. The most predominant saturated
and unsaturated fatty acids in diatom species are 14:0; 16:0,
16:1, 16:2, 16:3, 18:1, 18:2, 18:3, 20:4, and 20:5 (Dunstan et al.,
1993; Sharma et al., 2020). Various reports have been published
on different species of diatoms regarding the lipid yield and
triacylglycerol accumulation (TAG) under different treatments as
shown in Table 1.

It is possible to improve the quality of biodiesel by optimizing
the content of different fatty acids that impacts biodiesel
properties; cetane number, level of emissions, cold flow, oxidative
stability, viscosity, and lubricity (Knothe, 2005). Fatty acids with
chain lengths from C16 to C18 should contribute the maximum
amount in the final product (Knothe, 2009). Some researchers
have reported that a high percentage of mono-unsaturation is
also desirable for biodiesel (Knothe, 2012). Thus, optimizing the

fatty acid profile along with increased biomass will significantly
enhance their economic value.

Statistical analyses predicted that 100 mt/ha/year biomass
of diatoms is required for commercial biofuel production
(Gallagher, 2011). Over 10 years, productivity range was observed
to be between 29 and 142 mt/ha/year (Sheehan et al., 1998;
Huesemann and Benemann, 2009), these values motivate the
researchers and industry experts to study diatom cell in-depth for
the biofuel industry in both lab-scale and large scale.

Furthermore, the availability of advanced genetic tools can
help to achieve the missing targets in developing diatoms cells
as biofuel machinery (Radakovits et al., 2010; Tibocha-Bonilla
et al., 2018). Based on theoretical calculations about the land
area, lipid production, and photosynthetic energy conversion,
the biofuel demand of the complete United States population
could be met using only 5% of United States land (Levitan
et al., 2014). Although various other factors that define the
efficacy of biodiesel such as engine performance, that is based on
(cylinder pressure, brake mean effective pressure, frictional mean
effective pressure, power, torque, brake specific fuel combustion,
brake thermal efficiency). The statistical data supports the use of
microalgae-based biofuel but there are various limitations at a
technological level for large-scale implementation of this project.
Therefore, one of the alternatives is to use the blended form of

TABLE 1 | Lipid content and productivities of different microalgae diatom species (-: no data).

Microalgae Culture condition Lipid (% dry
weight)

Lipid productivity
mg L−1 day−1

TAG productivity
µ mol L−1 day−1

% of TAG References

Thalassiosira
weissflogii P09

– 29.94 ± 1.17 7.27 ± 0.28 – 51.0 ± 3.2 d’Ippolito et al.
(2015)

Nitrogen limitation – – 19 (+20%) – d’Ippolito et al.
(2015)

Thalassiosira
weissflogii
CCMP 1010

– 38.84 ± 0.78 4.87 ± 0.10 – 53.0 ± 1.9 d’Ippolito et al.
(2015)

Thalassiosira
pseudonana
CCMP 1335

– 29.33 ± 1.17 1.72 ± 0.07 – 19.0 ± 0.9 d’Ippolito et al.
(2015)

High CO2

20,000 ppm
– – 45.5 ± 26

(exponential)
(+285%)

– Jensen et al. (2020)

Cyclotella
cryptica CCMP
331

– 41.97 ± 1.26 2.98 ± 0.09 – 55.0 ± 2.1 d’Ippolito et al.
(2015)

Nitrogen limitation – – 45 (+20%) d’Ippolito et al.
(2015)

Phaeodactylum
tricornutum
CCMP 632

– 9.32 ± 0.28 2.09 ± 0.06 – 19.0 ± 0.6 d’Ippolito et al.
(2015)

Tn19745_1
strain + nitrogen
limitation

– – – 45-fold increase Daboussi et al.
(2014)

Dark +2.3-fold – – – Bai et al. (2016)

High CO2 – – 75.7 ± 9
(stationary) (+50%)

– Jensen et al. (2020)

textitNavicula
pelliculosa
(marine)

High CO2 – – 158.4 ± 29
(stationary) (+35%)

– Jensen et al. (2020)
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biodiesel. It would be more efficient to make a blended version
of petro-diesel and microalgae/diatoms based fuel for large-scale
operation. The comparative studies of blended (20% microalgae
fuel plus 80% petrodiesel) and 100% petrodiesel have no major
performance variations. Furthermore, it was reported that there
was a reduction in the CO, unburnt HC, and smoke emissions in
blended form as compared to pure diesel (Soni et al., 2020).

BIOMEDICAL INDUSTRY

Drug Delivery Systems
The cost required to bring a new drug to the market has
been estimated by the Tufts Centre for the Study of Drug
Development at approximately 2.6 billion dollars (DiMasi et al.,
2016). In addition, the current drug delivery systems have
limited solubility, poor bio-distribution, lack of selectivity,
premature degradation, and unfavorable pharmacokinetics (Aw
et al., 2011a,b). Therefore, these limitations have motivated the
research and development of alternative drug delivery systems
to improve the performance of existing drugs (i.e., increasing
bioavailability), while reducing undesirable effects. There is
no doubt that existing biomedical technologies have increased
the life span but the human society wants to improvise the
quality of life further by adopting environment friendly methods.
Therefore, we should speed up the process and conduct in-
depth research on using diatom frustules, even other bio-inspired
alternatives for biomedical applications.

Among the available drug delivery tools (liposomes, nanogels,
carbon nanotubes), the intricate frustule characteristics of
diatoms such as specific surface area, thermal stability,
biocompatibility, and alterable surface chemistry, have
attracted attention for its use in drug and gene delivery. It
took million years of evolution for diatoms to manufacture
this level of complex and delicate structure to protect from
the unwanted conditions like high temperature and variable
light fluctuations. 3-D section analyses of diatom frustules have
shown the availability of multiple pore patterns that range
from nanometer to micrometer (Chandrasekaran et al., 2014;
Cicco et al., 2015; Ragni et al., 2017). These characteristics are
sufficient to explore alternative and low-priced silica-based
materials for the biomedical industry (Mishra et al., 2017;
Terracciano et al., 2018). Diatoms’ frustule structure changes
its homogenous nature, space, and intricate nature according
to various environmental factors and silicon uptake efficiency
(Knight et al., 2016). This ability can be used to change the
frustule shape and pore size, which has multiple applications
in the biomedical and nanotechnology industry. The process
of biosilicification in diatoms is quite complex, it includes the
role of silicic acid transporters, transportation of silica, and
polymerization of silica monomers among other processes
that have been extensively explained (Martin-Jézéquel et al.,
2000; Knight et al., 2016). Moreover, a detailed investigation
is being conducted to make the natural 3D porous structure
an efficient substitute for delivery systems attributed to its
chemical and mechanical features. For instance, some diatom
species such as Coscinodiscus concinnus sp. (Gnanamoorthy
et al., 2014), Thalassiosira weissflogii sp. (Aw et al., 2011a) are

potential drug carriers candidates due to their amorphous
nature and morphology. Additionally, various studies have
shown that diatoms microcapsules are effective carriers for
poorly soluble and water-soluble drugs, which can be applied
in both oral and implant applications (Aw et al., 2011a;
Ragni et al., 2017).

The defined structural architecture of diatoms, such as pore
volume and controllable particle size, allows the synthesis
of biomolecules at the micro- to nano-scale (Losic et al.,
2005, 2010; Slowing et al., 2008). The growth of fibroblast
and osteoblast has been observed on functionalized frustules
supporting the idea of using biosilica from diatoms as smart
support for cell growth (Ragni et al., 2017). Regarding modified
diatoms, Losic et al. (2010) have designed the magnetically
guided drug carrier via a functional surface of diatoms with
dopamine-modified iron oxide. This modification has shown
the capability of sustained release of poorly soluble drugs
for 2 weeks, presenting an enhanced performance for drug
delivery (Losic et al., 2010). Moreover, genetically modified
biosilica has been used to selectively deliver anticancer drugs
to tumor sites (Delalat et al., 2015). Overall, these findings
have opened the doors to novel drug delivery systems using
renewable material. Therefore, all properties of diatoms such
as uniform pore structure, chemically inert and biocompatible,
non-toxic, easy to transport, filtration efficiency, and specific
drug delivery make it a potential model for drug delivery tools
(Curnow et al., 2012; Milović et al., 2014; Rea et al., 2014;
Vasani et al., 2015).

Analytical Tools
The controlled production of nanostructured silica is possible
through chemical and mechanical treatment for a wide range
of applications. This nanopore structure has a huge potential
to attach the desired biomolecule (enzymes, DNA, antibodies)
and develop label-free analytical tools or enhance the catalytic
properties. It has also been shown that enzymes and DNA
(oligonucleotides) can be conjugated to silica (Losic et al., 2005;
Zamora et al., 2009). The encapsulation of enzymes in diatom
biosilica exhibits improved enzymatic properties as compared to
other immobilization technologies (Kato et al., 2020).

Additionally, luminescent nano- and micro-particles
have gained the attention of the interdisciplinary scientific
community (biology, chemistry, and physics). Current available
fluorescent labeling agents are quantum dots, lanthanide-
doped compounds, and organic fluorophore-tagged nanobeads,
which offer good optical properties and a broad excitation
spectrum. However, these agents have limitations in properties
such as photobleaching and biocompatibility. For instance,
De Stefano et al. (2009) studied diatoms’ potential to
incorporate fluorophores with increased stability used to
study the molecular event of antibody-antigen identification.
Moreover, molecular recognition between antibody and antigen
was observed in relation to the change in the photoluminescence
spectrum of diatoms. Concluding that diatom’s frustules,
due to their high sensitivity, low-cost, and availability are
ideal alternative candidates for lab-on-particle applications
(De Stefano et al., 2008, 2009).
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There is no concrete evidence of diatoms’ presence in land
animal bodies. Although, various studies showed the presence
of diatoms in the internal organs and circulatory system of
alive or dead animals in an aquatic environment (Ludes et al.,
1996; Lunetta et al., 1998; Hürlimann et al., 2000; Lunetta and
Modell, 2005; Horton et al., 2006; Levkov et al., 2017). The
siliceous cell wall of this organism is resistant to degradation
even under high acidic conditions for a long period (Lunetta
and Modell, 2005). The investigation on the occurrence of these
organisms inside dead bodies of aquatic environment that died
from different causalities opened up a new possibility of forensic
analysis through the examination of diatoms called ‘diatom
axiom’ or ‘diatom test’(Lunetta et al., 1998). The diatom test
is based on the hypothesis that the microalgae will not enter
the systemic circulation and reach other internal organs and
tissues such as bone marrow unless the circulation is functional.
A forensic examiner can determine whether the individual was
alive when it was entering the water by checking the presence
of diatoms in various organs and tissues (Levkov et al., 2017).
In addition, since diatoms are highly sensitive to environmental
conditions, different water bodies have different diatom species
abundance which allows forensics to identify the drowning site
(Zhou et al., 2020).

Despite being a distinguishable method, the diatom test has
limitations also. One of the major issues is the occurrence of
diatoms in a drowning medium. The absence or low presence of
diatoms in a water body can lead to a false positive or negative
result. The presence of diatoms in different layers (water base,
deeper, and surface) of the water body also can be varied (Levkov
et al., 2017). Rapid death is another situation where the diatom
test can be wrong. Instant death when an animal or human enters
the water body for various reasons such as cold shock and cardiac
diseases will give a negative result in the diatom test (Smol and
Stoermer, 2010). The use of alcohol or drugs is another factor that
can mislead in the diatom test (Ago et al., 2011). Recent advances
in DNA Barcoding and pyrosequencing opened the possibility
of increasing the accuracy of the diatom test by checking the
presence of plankton specific genes (e.g., Rubisco gene) in animal
tissue (Fang et al., 2019).

Biosensors and Nanomaterials
The advances in biotechnological tools have made it effective
to characterize the frustules of diatoms for the fabrication
of optoelectronics. The uptake of various elements such as
zinc and germanium by diatom like Stephanodiscus hantzschii,
Thalassiosira pseudonana, etc. to change the pore size, shape,
and other characteristics which are being studied for a variety
of functions such as paleolimnological indicator and photonic
device application (Qin et al., 2008; Jaccard et al., 2009). It
has been reported a relationship between the amount of Zn/Si
(zinc/silicon) and free zinc ions which can be used as a proxy
of paleolimnological indicators (Jaccard et al., 2009). The studies
have raised intriguing questions about the uptake and the process
of various elements which need detailed validations. Although,
they have reported that they could only detect Zn and Fe
as chemical elements. The analysis of various trace elements
could be used as an environmental indicator which indeed will

reduce the total workload needed to monitor large water bodies
(Ellwood and Hunter, 2000).

The complex nanobiochemical machinery of diatoms can be
exploited to fabricate a wide range of nanostructures with diverse
optical and electronic properties (Rorrer et al., 2007). The ability
to manufacture different pore size nanostructure molecules
has inspired many research groups and industries to use
diatoms in biosensing (De Tommasi, 2016). The incorporation
of chemical elements such as germanium significantly affects
the structure and size of frustule pores. A study tested the
possibility of using Si-Germanium composite material in living
diatoms in a two-stage photobioreactor cultivation process
which reduced the pore size without disturbing the morphology
(Rorrer et al., 2007). Another study reported that insertion
of germanium in Nitzschia frustulum induces the nanocomb
structure with blue photoluminescence (Qin et al., 2008).
These nanostructure materials exhibit optical properties suitable
for use in semiconductors and optoelectronics. Manufacturing
of these materials combined with the silica frustule will
improve the overall durability and range of applications in
nanotechnology industries. These lab-scale scientific discoveries
have shown that it is possible to create advanced nanomaterials
in living diatoms.

Nanoparticles
The development of well-defined, advanced, and eco-friendly
nanoparticles has attracted the attention of many researchers in
the area of nanotechnology and its applications. Nanoparticles
can be applied to study antimicrobial activity, catalyst, and
filtering waste and chemical compounds. Biosynthesis of metallic
nanoparticles in photoautotrophic organisms has gained the
attention of nanotechnology researchers. Various approaches
such as the sol-gel process, atomic layer deposition, chemical
bath deposition, and inkjet printing process, have been used to
modify the chemical composition of frustules. In this regard,
an inexpensive chemical deposition technique was tested to
deposit cadmium sulfide (CdS) on the surface on Pinnularia sp.
without changing its morphology, since CdS has a wide range of
applications in photodetectors and solar cells (Gutu et al., 2009).

Recently, it has been reported that diatoms can biosynthesize
the nanoparticles such as gold and silver which has shown strong
cytotoxicity against harmful microorganisms. Additionally,
a highly ductile and malleable metal platinum (Pt) has been
introduced in presence of dihydrogen hexachloroplatinate
(IV) hexahydrate (DHH) in the living diatom Melosira
nummuloides, without interfering the native morphology
(Yamazaki et al., 2010). This is due to the platinum’s excellent
resistance to corrosion and stability at high temperatures,
hence having application in a broad spectrum of industries,
besides biomedicine. Other various examples of the on-going
investigation of diatoms silica-based materials and their
applications in biomedicine are shown in Table 2.

We have discussed the major application of diatoms for
established industries such as biofuels, nanomaterials, and
biomedicine. However, diatoms also have other fascinating
applications in environment monitoring, animal feed, and
aquaculture, which indeed have a huge potential considering
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climate change and devastating impacts of globalization on
ecology and environment.

ENVIRONMENTAL TECHNOLOGIES

River Ecology
Environment monitoring is an important aspect that is
considered a necessity to deal with irregular changes or
disturbances in our ecosystem. Therefore, researchers are
developing tools using biotechnology and informatics to monitor
the environment cost-effectively. Water resources are always
under the influence of damaging anthropogenic pressures such
as plastic waste and industrial sewage, which ultimately change
or disturb the biogeochemical cycles and biodiversity. Besides,
water is a universal solvent that holds the industries and
economies together.

It is a well-established fact that diatoms hold the primary role
in maintaining the aquatic ecosystem. Therefore, biodiversity
assessment of diatom species in an environmental sample is
one of the well-known strategies for biomonitoring. Presently,
morphological assessment of the diatoms using microscopy is
largely used which is time-consuming and requires special
expertise (Larras et al., 2014). However, environmental
metabarcoding has opened a quick way of analyzing the
microbial DNA diversity in a natural environment such as
flora and fauna (Bik et al., 2012; Taberlet et al., 2012). The
metabarcoding approach is based on DNA sequencing a
specific region (barcode) of the whole DNA extracted from an
environmental sample (eDNA). For example, the sequencing
data obtained from diatom metabarcoding are then used to
assign precise taxonomic identification of the diatoms present
in the eDNA sample, which are further compared with the
conventional morphological database to confirm the efficacy of
metabarcoding results. Diatoms metabarcoding tool has been
optimized significantly to quantify the diversity of diatoms at the
genus and species level (Vasselon et al., 2017; Kelly et al., 2018).

Currently, this approach is still in development, since various
questions have been raised especially when deciding which are

the most suitable barcodes. The barcodes that had been used
are the ribosomal small subunit, cytochrome c, and the internal
transcribed spacer region combined with the 5.8S rRNA gene
(Zimmermann et al., 2011; Luddington et al., 2012).

Another main issue is processing the sequencing output
data through computing. This method must be consistent with
government policies for environmental regulation. For instance,
MOTHUR is a comprehensive and efficient platform to study
microbial diversity, but there are other bioinformatics software
such as R, QIIME2 (Caporaso et al., 2010), LotuS (Hildebrand
et al., 2014), and PIPITS (Gweon et al., 2015) that can be used to
process a larger amount of data.

Additionally, various other research studies have supported
the use of the diatoms metabarcoding approach as an alternative
strategy to monitor river ecology on a timely basis. The
results provide an estimated number of abundant and scarce
species in samples obtained from different locations. Also,
they give great insights into the fundamental status of the
aquatic ecosystem (Larras et al., 2014). For instance, detailed
evidence has been published by the Environmental Agency
of the United Kingdom using diatoms indexes for river
classification (Kelly et al., 2018). A similar study on detailed
information on diatom biodiversity using metabarcoding has
been conducted using environmental samples from Mayotte
Island, France (Vasselon et al., 2017). Moreover, a recently
published work studied the impact of treated effluents on
benthic diatom communities that showed a systematic change
in diatom community composition (Chonova et al., 2019).
Concluding that detailed information about diatom diversity
will give in-depth insights into climate change, micropollutants,
and other organic pollutants, to study the disturbing effects of
anthropogenic pressure on rivers. The use of metabarcoding for
analyzing biodiversity is rapidly increasing and has been adopted
by academic institutes and various companies/industries like
Spygen (Canada), Naturemetrics (United Kingdom), IGAtech
(Italy), Sinsoma (Austria), to name a few. This particular
strategy has been adopted by public authorities as well and
has shown the potential to be used as an additional screening
tool to replace the existing methods, which require excessive

TABLE 2 | Biomedical applications of diatom silica-based materials using different diatom species.

Application Organism References

Specific nanoporous biosilica delivery system of chemotherapeutic drug, consisting in the
attachment of antibodies and hydrophobic drug molecules, without using cross-linking, to the
diatoms biosilica.

T. pseudonana Delalat et al. (2015)

Modified frustule with self-assembled antibacterial aromatic amino acid conjugates Tyr−ZnII as a
zinc carrier for its controlled release to bacteria and inhibiting the bacterial growth.

N. palea Singh et al. (2020)

Genetically modified frustule with chimeric fusion proteins: diatom-derived silica targeting peptide
Sil3T8 and a small synthetic antibody derivative to detect Bacillus anthracis

T. pseudonana Ford et al. (2020)

Rapid and selective detection of typhoid using cross-linked amine-functionalized diatom
photoluminescent biosensor.

Amphora sp. Selvaraj et al.
(2018)

Nano composite of nanoporous diatom-ZrO2 selective and highly sensitive sensor for
non-enzymatic detection of methyl parathion.

P. tricornutum Gannavarapu et al.
(2019)

Biomaterial for negative electrode composed by a 3D-structured diatom biosilica for lithium-ion
batteries, showing increased charge capacity compared to graphite.

P. trainorii Nowak et al. (2019)

Improved capacitor performance of in situ coating of FeOx on live diatoms as a potential material for
super capacitor electrodes.

P. tricornutum Karaman et al.
(2019)
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infrastructure and human resources. It is indeed possible to
make it a primary and permanent tool for river monitoring
with advancements in sequencing, big data science, and artificial
intelligence tools.

Phytoremediation
Besides the monitoring of river quality, water treatment is one
of the major concerns for many countries around the world. In
fact, human consumption has undoubtedly increased in the last
few decades, subsequently, incrementing waste products presence
in aquatic communities (Walker, 1983). Globally, almost 80%
of the wastewater generated worldwide is discharged on rivers
creating health and environmental hazards. The rise of nutrient
accumulation in the aquatic system needs to be neutralized
to maintain the balance in the environment. Increasing of
pollution is disturbing the basic biogeochemical cycles, killing
fish, depleting the dissolved oxygen, and producing different
toxins, i.e., neurotoxins (Boyd, 1990). Hence, there is an urgent
need to explore new ways and upscale the existing systems to test
reports and mitigate pollution from rivers and lakes worldwide.

The use of microalgae for wastewater treatment has been a
subject of research for a long period which could be applied
in collaboration with small- and large-scale industries. The
excess of industrial waste discharged in the aquatic system
can be used as nutrient supply by diatoms. Different kinds
of wastewater such as brewery (Choi, 2016), aquaculture
(Tossavainen et al., 2019), and textile (El-Kassas and Mohamed,
2014) have been studied for phytoremediation capability and
have shown interesting results. The published studies have
established that diatoms and microalgae can treat the wastewater
to an extent, therefore, it would be less damaging to treat
the wastewater with microalgae/diatoms before discharging
in water bodies. In addition, use the harvested biomass for
different industrial products such as biofuel. It is safe to
assume that it is possible to develop small scale business
in collaboration with restaurants, breweries, textile industries,
to name a few, to treat wastewater, and use the biomass

for the production of valuable products such as fertilizers
(Suleiman et al., 2020).

Heavy metal pollution is one of the major challenges which
comes from the industries working with chemicals and dyes.
Diatoms species are desirable organisms to study heavy metal
pollution because of the simplicity of metal exposure, absorption,
and detoxification of metal ions by single cells. This is a unique
detoxification process of diatoms and microalgae due to metal-
binding peptides known as phytochelatins (PCs) that protect
photosynthetic organisms from heavy metals (Grill et al., 1985).
Some intracellular PCs have been characterized in cultures of
P. tricornutum exposed to different metals such as Cd, Pb, or Zn.
Besides, they are used widely in waste degradation considering
the unique structure of diatoms and their ability to respond to
the changing environment (Glazer and Nikaido, 2007).

A study published in 2015 have reported a novel diatom
Bacillariophyta sp. (BD1IITG) from petroleum biorefinery
wastewater that can degrade phenol in a concentration range
of 50−250 mg/L in Fog’s media (Das et al., 2016). Another
example of the degradation of toxic molecules like phenylalanine
hydroxylase into less toxic compounds using simple enzymatic
oxidation has been identified in diatoms during the metabolism
of phenanthrene and pyrene (Wang and Zhao, 2007). These
results are relevant considering that around seven billion kg
of phenol is produced for oil refining, pesticide production,
and to use in the pharmaceutical industry. Traditional phenol
removal techniques involve several steps including the generation
of by-products, which increments the cost of the treatment
(Senthilvelan et al., 2014). However, there are very few reports
available on exploiting the potential of diatoms in biodegrading
waste materials. It is interesting to note that the studies have
shown interesting results but the field of algae biotechnology
requires more entrepreneurs to join the pieces of industrial
and academic research to build a successful circular economy.
Furthermore, there are some upcoming and growing ventures
and companies in microalgae working in diverse applications
and producing valuable products such as healthcare, animal feed,
water management, chocolates, etc. (Table 3).

TABLE 3 | Different industries producing variety of products from microalgae and diatoms around the world.

Company Products/services Country Website

Algae Biotechnologia Wastewater treatment, animal nutrition, carbon
dioxide fixation, biofuels, human health

Brazil http://www.algae.com.br/site/pt/

Algae Farm Omega3, diatom, water treatment and reuse,
nutraceuticals, cosmeceuticals, algae based
solar fuels cell, die sensitized solar panel,
bioplastics

Canada https://www.algaefarm.us/

Algorigin Nutritional supplements Switzerland https://algorigin.com/en/

Algaetoomega Omega 3, astaxanthin, animal feed United States https://algae2omega.com/

Algae Control Canada Pond and lake water management Canada https://www.algaecontrol.ca/

The Algae Factory Chocolate Netherlands http://thealgaefactory.com/

Algae Health Antioxidants United States https://www.algaehealthsciences.com/

Swedish Algae Factory Personal care products Sweden https://swedishalgaefactory.com/

Sabrtech Recombinant proteins, fuel, nutraceuticals,
aquaculture, etc.

Canada https://www.sabrtech.ca/

Pondtech Astaxanthin, aquaculture Canada https://www.pondtech.com/
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DIATOMS AS NUTRACEUTICALS
AND FEEDS

Multiple epidemiological and clinical trials have shown the health
benefits of omega fatty acids from fish oils and algae extracts
(Cole et al., 2010; Cottin et al., 2011; Thomas et al., 2015;
Wang and Daggy, 2017). Besides, there are few publications on
cardio-protective and cognitive performance of omega fatty acids
which have led to the commercial production of infant foods,
infant formula, fortified snack bars, and other dairy products
supplemented with omega fatty acids (Arterburn et al., 2007;
Cottin et al., 2011).

Diatoms have an immense nutritional value that can be used to
produce novel compounds such as antioxidants, vitamins, animal
feed, and vegetarian protein supplements. Several photosynthetic
pigments have been identified in diatoms including carotenoids
such as fucoxanthin (Kuczynska et al., 2015). Additionally,
Nitzschia laevis, Nitzschia inconspicua, Navicula saprophila, and
Phaeodactylum tricornutum extracts have a noticeable amount of
EPA and DHA that can be used as a nutritional feed in human
diet and animal feed (Kitano et al., 1997; Wen and Chen, 2001a,b;
Wah et al., 2015; Tocher et al., 2019).

Moreover, diatoms are known to have diverse defense
mechanisms in form of chemical substances for them to be
protected against pathogens. For instance, P. tricornutum has
a high amount of omega-7 monounsaturated fatty acids such
as palmitoleic acid (C16:1) and other bioactive compounds that
are active against gram-positive pathogens (Desbois et al., 2009).
Furthermore, the EPA-rich marine diatom, Odontella aurita,
used as a dietary supplement has shown antioxidant effects in
rats (Haimeur et al., 2012). O. aurita has been approved to be
commercialized as food in France by following EC regulation
258/97 in 2002 (Pulz and Gross, 2004; Buono et al., 2014).

Increasing the content of these bioactive molecules in diatoms
has attracted a large amount of research. Some studies have
managed to enhance the production of flavonoid and polyphenol
content by culture modifications, for instance, cultivation
temperature and nutrient supplementation in Amphora sp.
(Chtourou et al., 2015). The general tendency when changing
the culture temperature is an increase in lipid content in most
species, while the chemical composition varied between species
(Renaud et al., 2002). For example, the total amount of saturated

and monounsaturated fatty acids increases with temperature
in Rhodomonas sp. (NT15) and Cryptomonas sp. (CRFI01).
Whereas, there was a comparative decrease in polyunsaturated
fatty acids in both Rhodomonas sp. (NT15) and Cryptomonas sp.
(CRFI01) (Renaud et al., 2002).

GENETIC ENGINEERING OF DIATOMS

The debate on using genetically modified microalgae and diatoms
is on-going. However, it is a more controlled alternative for the
production of recombinant proteins or any precursor molecules,
considering the use of bioreactors for their production. The
employment of genetic engineering tools in diatoms, to produce
or increase the yield of compounds, allows the companies
to optimize their use in the applications mentioned above.
Therefore, genetic engineering is a promising method and
an important branch to be used in the diatoms industry to
further enhance the economic value of diatoms. However, it
comes with two big challenges, firstly, to redesign the natural
metabolic pathways in order to increase the production of
desired endogenous compounds, and secondly, producing new
heterologous compounds.

In the last 20 years, several projects have shown that
these challenges can be solved at lab scale, by optimization
of transformation methods, utilization of different gene
promoters, expression of recombinant proteins, gene silencing,
and genome editing methods; such as targeted mutagenesis
techniques using meganucleases, gene knockouts, TALENS, and
CRISPR/Cas9. Marketable bioproducts like lipids, pigments,
nanomaterials, food supplements, fuel, syntheses of chemicals,
drugs, and metabolites have been produced in P. tricornutum,
T. pseudonana, and other diatoms species. While most of these
analyses are related to lipid production for biofuel or bioenergy
purposes, other studies showed that diatoms are biological
factories that can generate a wide range of products from food
to pharmaceutics biomaterial industry (Lauritano et al., 2016;
Mishra et al., 2017; Slattery et al., 2018; Dhaouadi et al., 2020;
Sharma et al., 2020). In addition, there are few companies
such as Algenol Biofuels, Synthetic Genomics, which have
reported the use of genetically modified microalgae for the
production of biofuels.

TABLE 4 | Sequence Database of different diatoms species.

Species Genome database

Phaeodactylum tricornutum CCAP 1055/1 http://protists.ensembl.org/Phaeodactylum_tricornutum/Info/Index

Thalassiosira pseudonana CCMP 1335 https://genome.jgi.doe.gov/Thaps3/Thaps3.home.html

Thalassiosira oceanica CCMP 1005 https://genome.jgi.doe.gov/Thaoce1/Thaoce1.info.html

Thalassiosira weissflogii CCMP1030 https://genome.jgi.doe.gov/portal/

Fragilariopsis cylindrus CCMP 1102 https://genome.jgi.doe.gov/Fracy1/Fracy1.info.html

Pseudo-nitzschia multiseries CLN-47 https://genome.jgi.doe.gov/Psemu1/Psemu1.home.html

Pseudo-nitzschia multistriata B856 http://apollo.tgac.ac.uk/Pseudo-nitzschia_multistriata_V1_4_browser/sequences

Seminavis robusta D6 https://genome.jgi.doe.gov/portal/Semrobnscriptome/Semrobnscriptome.info.html

Fistulifera solaris JPCC DA058 https://trace.ddbj.nig.ac.jp/DRASearch/submission?acc5DRA002403

Cyclotella cryptica CCMP332 http://genomes.mcdb.ucla.edu/Cyclotella/download.html
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TABLE 5 | Diatoms genetic engineering.

Species/strain Genetic and molecular tools

Transformation methods and
target compartment

Promoters: (S) strong, (I)
inducible and (H) heterologous

Reporters (R) and resistance
(Re) genes

Expression of recombinant
proteins

Genome editing
methods and gene

silencing

Phaeodactylum
tricornutum CCAP
1055/1

Biolistic (Cho et al., 2015)
Electroporation (Niu et al., 2012)
Conjugation (Zaboikin et al., 2017)
Nuclear and chloroplast
transformation (Xie et al., 2014)

(S): Lhcf (Fcp), light responsive
(Karas et al., 2015), EF-1a,
40SRPS8, g-tubulin, RBCMT
(Erdene-Ochir et al., 2019) and EF2
(Nymark et al., 2013), h4 (Fabris
et al., 2020), HASP1 (De Riso et al.,
2009). (I): rbcL (Xie et al., 2014),
NR, low NO3 induce
(Schellenberger Costa et al., 2012),
V-ATPase C, AP1 low P induce (Lin
et al., 2017) Fbp1, Fld, Isi1
iron-responsive (Yoshinaga et al.,
2014) ca1, ca2 CO2-responsive
(Harada et al., 2005; Tanaka et al.,
2016), U6, RNA polymerase III
transcribed (Nymark et al., 2016)
(H): CdP1, ClP1, ClP2, TnP1, TnP2
(Erdene-Ochir et al., 2016), CMV,
RSV-LTR, PCMV, CaMV35S
(Sakaue et al., 2008)

(R): GUS, GFP (Zhang and Hu,
2014), YFP, CFP (Zaboikin et al.,
2017) cat (Karas et al., 2015), LUC
(Cho et al., 2015), Aequorin
(Falciatore et al., 2000) (Re): Zeocin
and Phleomycin/sh ble,
Nourseothricin/nat,
Blasticidin-S/bsr, Streptothricin/sat,
Neomycin/nptII (Karas et al., 2015)

Expression of Acyl-ACP
thioesterases, increased
accumulation of shorter chain
(Radakovits et al., 2011). Malic
enzyme (Trentacoste et al., 2013).
G6PD (Wu et al., 2019), enhanced
lipid productivity. Heterologous
biosynthesis of the MIAs by CrGES
expression under phototrophic
conditions (Slattery et al., 2018),
Vanillin production (Erdene-Ochir
et al., 2019). PHBs for Bioplastics
production (Hempel et al., 2011a).
Human IgGαHBsAg:(Hempel et al.,
2011b) and IgG1/kappa Ab
CL4mAb: antibody to hepatitis B
virus surface protein against the
nucleoprotein of Marburg virus
(Hempel and Maier, 2012). Over
expression of DXS increased
fucoxanthin synthesis (Eilers et al.,
2016).

Targeted mutagenesis
methods:
meganucleases, gene
knockouts, TALENS,
and CRISPR/Cas9
(Poulsen and Kröger,
2005). Development of
auxotrophic strains of
P. tricornutum by
CRISPR/Cas9
(Sakaguchi et al.,
2011). A lipid producing
strain through the
disruption of the
UDP-glucose
pyrophosphorylase
gene (Daboussi et al.,
2014).

Thalassiosira
pseudonana CCMP
1335

Biolistic (Poulsen et al., 2006)
Electroporation (Buggé, 2015)
Conjugation (Zaboikin et al., 2017)

(S): Lhcf9 (I): nr (161) SIT1,
Si-starvation inducible (Davis et al.,
2017), Thaps3_9619, Si-starvation
inducible (Shrestha and Hildebrand,
2017), U6, RNA polymerase III
transcribed (Weyman et al., 2015)

(R): YFP (Zaboikin et al., 2017)
(Re): sh ble, nat (Poulsen et al.,
2006)

Overexpression a multiple plasmids
can be cotransformed; cloning
multiple genes of interest Secretion
of recombinant proteins has been
shown. Localization of SiMat1-GFP
(Kotzsch et al., 2016). Expression of
the protective HsIbpA DR2 antigen
for the production of a vaccine
against bovine respiratory disease
(Davis et al., 2017), scFvTNT scFv
and sdAbEA1 to detected Bacillus
anthracis (Ford et al., 2016).

Targeted mutagenesis
methods:
meganucleases,
TALENS, and
CRISPR/Cas9
(Weyman et al., 2015).
Gene silencing and
gene knockouts are
well established
(Shrestha and
Hildebrand, 2015).

Thalassiosira weissflogii
(CCMP1030)

Biolistics (Cho et al., 2015) (S): Lhcf2 (Cho et al., 2015) (R): GUS (Cho et al., 2015)
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TABLE 5 | Continued

Species/strain Genetic and molecular tools

Transformation methods and
target compartment

Promoters: (S) strong, (I)
inducible and (H) heterologous

Reporters (R) and resistance
(Re) genes

Expression of recombinant
proteins

Genome editing
methods and gene
silencing

Pseudo-nitzschia
multistriata B856

Biolistics (Sabatino et al., 2015) (S): h4 (Sabatino et al., 2015) (Re): sh ble (Sabatino et al., 2015)

Pseudo-nitzschia
arenysensis B858

Biolistics (Sabatino et al., 2015) (R): GUS, GFP (Sabatino et al.,
2015)

Fistulifera solaris JPCC
DA058

Biolistics (Muto et al., 2015) (S): Lhcf2 and h4 (H): RSV and
CaMV35S (Muto et al., 2015)

(R): GFP (Re): nptII (Muto et al.,
2015)

Overexpression of the endogenous
GK improve lipid productivity (Muto
et al., 2015)

Cylindrotheca
fusiformis CCAP
1017/2 –CYL

Biolistics (Kong et al., 2019) (I): nr (Kong et al., 2019) (R): GFP (Re): sh ble (Kong et al.,
2019)

Navicula saprophila
NAVICI

Biolistics (Dunahay et al., 1995) (S): ACCase (Dunahay et al., 1995) (Re): nptII (Dunahay et al., 1995)

Chaetoceros gracilis
UTEX LB2658

Biolistics (Ifuku et al., 2015) (S): Lhcr5 (I): nr (Ifuku et al., 2015) (R): GFP, LUC (Re): nat (Ifuku et al.,
2015)

DXS, 1-deoxy-D-xylulose 5-phosphate synthase; 40SRPS8, 40S ribosomal protein S8; ACCase, acetyl-CoA carboxylase; Acyl-ACP thioesterases, acyl–acyl carrier protein thioesterases; AP1, alkaline phosphatase
1; bsr, blasticidin-S resistance gene; Ca1, carbonic anhydrase 1; CaMV35S, cauliflower mosaic virus 35S; CdP, Chaetoceros debilis-infecting DNA virus; ClP, Chaetoceros lorenzianus-infecting DNA virus; cat,
chloramphenicol acetyl transferase conferring resistance to chloramphenicol; CRISPR, clustered regularly interspaced short palindromic repeats; CFP, cyan fluorescent protein gene; CMV, cytomegalovirus; Fcp,
diatom light-regulated promoters of the fucoxanthin chlorophyll a/c-binding protein genes Lhcf; EF-1α, elongation factor 1 alpha; EF2, elongation factor 2; Fbp1, ferrichrome binding protein1; Fld, flavodoxin; CrGES,
Catharanthus roseus geraniol synthase; G6PD, glucose-6-phosphate dehydrogenase; GK, glycerol kinase; GFP, green fluorescent protein gene; HASP1, highly abundant secreted protein 1; h4, histone H4; human
IgGαHBsAg, antibody against hepatitis B virus surface IgG1/kappa Ab CL4mAb; HsIbpA DR2, IbpA DR2 antigen from Histophilus somni; Isi1, iron-starvation-induced gene 1; MIAs, monoterpenoid indole alkaloids;
nptII, neomycin phosphotransferase II; NR, nitrate reductase; nat, nourseothricin acetyl transferase; P, phosphate; PHBs, polyhydroxybutyrate; PCMV, promoter sequences of the cytomegalovirus; psba, PSII reaction
center core 2 quinones are associated with D1; Lhcr5, red algal-like LHCRs; RBCMT, ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit N-methyltransferase I; RSV-LTR, Rous sarcoma virus long
terminal repeat; rbcL, Rubisco large subunit; SiMat1, silica matrix protein; SIT1, silicon transporter; scFvTNT, single chain antibodies; sdAbEA1, single domain antibodies; U6, small nuclear RNA of the U6 complex; sh
ble, Streptoalloteichus hindustanus bleomycin resistance gene; TnP, Thalassionema nitzschioides-infecting DNA virus; TALENs, transcription activator-like effector nucleases; sat, treptothricin acetyl transferase; TAG,
triacylglycerol; g-tubulin, tubulin gamma chain; GUS, uidA b-glucuronidase-encoding gene; V-ATPase C, vacuolar H+-ATPase; YFP, yellow fluorescent protein gene.
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Moreover, the approach of synthetic biology along with
high throughput sequencing technologies open the doors to
understanding the whole genome, the proteins that it encodes,
and the regulatory elements of the cell during cellular growth
and division (Hildebrand and Lerch, 2015; Huang and Daboussi,
2017). Several sequencing projects have been performed in
P. tricornutum and T. pseudonana strains (Armbrust et al.,
2004; Bowler et al., 2008; Koester et al., 2018; Rastogi
et al., 2018), generating the transcriptomic and proteomic data
sets that make possible precise reconstructions of metabolic
networks (Fabris et al., 2012; Levering et al., 2016). Recently,
the Synthetic Diatoms Project website has been launched
as a platform to provide information to grow, transform,
edit, and analyze P. tricornutum and T. pseudonana1 These
projects have been used as a springboard to facilitate genome
annotation for other diatoms species: T. oceanica, T. weissflogii,
Fragilariopsis cylindrus, Pseudo-nitzschia multiseries, Pseudo-
nitzschia multistriata, Seminavis robusta, Fistulifera solaris,
Cyclotella cryptica (Table 4).

Diatoms are a robust model for genome editing and cell
transformation. Optimized methods of DNA delivery have
been developed using biolistic or via electroporation. In both
techniques, the transgenes are randomly integrated into the
genome, with multiple integration events, variable transgene
copy numbers, and chromosomal positions. The biolistic gene
transfer method affects genome integrity due to the break
and repair of the DNA double-strand by non-homologous end
joining (NHEJ) (Zaboikin et al., 2017). However, this method is
needed if the aim is to transform the chloroplast genome. An
alternative transformation technique is the extrachromosomal-
based expression approach that depends on vectors containing a
yeast-derived sequence, which can be delivered through bacterial
conjugation using E. coli (Karas et al., 2015).

An important element for genetic engineering is the promoter.
The most commonly used are the light-regulated promoters
of the fucoxanthin chlorophyll a/c-binding protein genes
fcpA/B/C/D (LHCF) (Zaslavskaia et al., 2000; Nymark et al.,
2013). Alternatively, the elongation factor 2 (EF2) promoter
sequence is a constitutive promoter (Seo et al., 2015). Recently,
the most abundant secreted protein in P. tricornutum was
identified, named “highly abundant secreted protein 1” (HASP1),
and the activities of its promoter and the signal peptide were
characterized using green fluorescent protein (GFP) as a reporter
(Erdene-Ochir et al., 2019). A couple of inducible promoters
have been reported: like nitrate reductase (NR) and alkaline
phosphatase gene promoters in P. tricornutum, which are
induced under nitrogen or phosphate starvation respectively
(Slattery et al., 2018; Fabris et al., 2020) and glutamine
synthetase gene promoter, induced by a blue light pulse (De Riso
et al., 2009; Erdene-Ochir et al., 2016). In addition, promoter
regions containing diatom-infecting viruses (DIVs) mediated a
significantly higher level expression of the reporter gene in cells
in the stationary phase compared to the exponential phase of
growth (Kadono et al., 2015). Other elements needed for genetic
engineering are reporter genes and selection markers. Among

1https://www.syntheticdiatoms.org/

reporter genes, beta-glucuronidase uidA (GUS), fluorescent
proteins like GFP/YFP/CFP, chloramphenicol acetyltransferase
conferring resistance to chloramphenicol (CAT) and luciferase
(LUC) are the most employed, other reporter proteins are
listed in Table 5. The classic selection markers in diatoms
are genes that confer resistance to zeocin, phleomycin, and
nourseothricin, as shown in Table 5 are the most used. An
alternative to using selective markers is the use of auxotrophic
strains, such as uracil, histidine, and tryptophan auxotrophs
(Sakaguchi et al., 2011; Slattery et al., 2020). Moreover, it is
considered that the urease gene, either in an inactive or edited
form, is an interesting tool for the selection of P. tricornutum
and T. pseudonana strains (Weyman et al., 2015; Hopes et al.,
2016; Slattery et al., 2018). An endogenous selectable marker
in diatoms was generated by point mutations at a conserved
residue Gly290 to Ser/Arg in the phytoene desaturase (PDS1)
gene, which confers resistance to the herbicide norflurazon
(Taparia et al., 2019).

Concerning heterologous recombinant protein expression,
diatom gene codon optimization is required for optimal
expression; to avoid silencing expression and better protein
translation. Although it has not been reported in diatoms,
different projects which were done in green algae, have shown
that including introns in the expression cassette can increase
transcript abundance (Baier et al., 2018, 2020; Kong et al.,
2019). In addition, 5′-UTR and 3′-UTR of nitrate reductase (NR)
allow the control of timing and level of transgene expression in
C. fusiformis (Poulsen and Kröger, 2005). Down-regulation of
gene expression can be achieved through silencing by expressing
antisense repeat sequences of target genes (Table 5).

Industrial processes using diatoms are cost-effective and
have performed well in large-scale cultures (Benedetti et al.,
2018). This is supported by the plasticity to adapt to
extreme environmental conditions of diatoms, making them
great candidates for sustainable biofactories (Kung et al.,
2012; Cho et al., 2015; d’Ippolito et al., 2015). Altogether,
these developments in metabolic pathways and synthesis of
heterologous compounds represent promising insights for the
improvement of yield, quality of products, and sustainability in
the use of diatoms as cell factories.

CONCLUSION AND FUTURE
PERSPECTIVES

The documented studies stated the astounding nature and
possible all-round use of diatoms. This is one of the approaches
to increase human consumption of renewable products and
contributes toward reducing carbon emissions. Although the
commercial application of diatoms still needs improvements, it is
indeed a crucial research area for human wellbeing. For example,
developments in diatoms research can lead to innovative
products in domains of drug delivery, sensing, and detection
parts to build complex biomedical devices and nanoparticles
for waste degradation. Moreover, recent advancements in
sequencing technology and processing large biological datasets
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have made it possible to label and store the global biodiversity of
diatoms in all geographical locations.

One of the major challenges in diatom-based industries is
scaling up the process for large-scale manufacturing which is
dependent on many micro and macro factors such as cultivation,
harvesting, drying, genetic modification, lack of genomic,
proteomic, and metabolic information, etc. However, it is possible
to overcome these challenges in near future with advancements
in genetic tools, bioreactors, and other infrastructure changes.
In general, there are many challenges in bio-based industries
at different levels; academic/industrial research, infrastructure,
policies, education, and information gaps. The advancements in
academic research and discoveries are consistent considering the
publications but it requires support from other domains such as
the development of infrastructure, reducing the knowledge gaps
between scientific researcher and entrepreneurs, changes in the
policies at both national and international level. And to conclude,
the recent research phenomenon blasted in the last decade,
which is diatoms’ industrial potential, still leaves many unsolved
questions. Major questions will involve studying the extent of
genetic or artificial manipulation without compromising its intact
structure and delicate silica pattern. The unfolding of various
missing links in genetic engineering, cultivation, and harvesting
will make it possible to replicate complex plant pathways in
diatoms. These tools have opened the door to study diatoms for
eco-friendly processes.

Although the use of silica for food and agriculture has
been approved by the FDA and is also labeled/classified as
non-carcinogenic by the International Agency for Research
on Cancer, this could be a big step toward accelerating
its use at the biomedical level. It is not yet approved for
biomedicine as it requires long-term evidence (Terracciano
et al., 2018). All the biomedical inventions are scrutinized by
multiple stakeholders like research leaders, public authorities
such as provincial and federal government, before they reach
the stage of commercial distribution. It is understandable
considering that it will be used directly in the human body.
Therefore, an innovative and different approach is required
to bring in the academic researchers and bio-entrepreneurs to

speed up the innovation rate in biomedical industry without
harming the screening process set by public health authorities.
The collaboration between entrepreneurs and researchers will
allow thorough evaluation of the market for new inventions,
manufacturing, investment, and globalization of the product.
It seems plausible considering the rapid advancements in
the biomedical infrastructure around the world. This has
been demonstrated by the quick inventions in response to
COVID-19 and should be adopted to be applied in other
biotech based industries (Harris et al., 2020). The simultaneous
advancements in the use of silica-based support system
for drug delivery along with the change in infrastructure
in pharmaceutical industries and hospitals to deliver these
technologies to the users is possible in the near future. The
other requirement is to join the gap of vast and complex
scientific information and knowledge between entrepreneurs and
academic researchers.
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