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Abstract: This paper presents a fully-automated reconstruction of beam-like CAD solid 
structures from 3D topology optimization (TO) results. Raw TO results are first processed to 
generate a triangulation that represents boundaries of the optimal shape derived. This 
triangulation is then smoothed and a curve skeletonization procedure is carried out to recover 
meaningful characteristics of this smoothed triangulation. The resulting skeleton, made with 
curvilinear geometry, is transformed into straight lines through a normalization process. These 
straight lines are used to generate a 3D beam structure. Thus, following these steps, a 3D beam 
structure is automatically derived from TO results. This 3D beam structure is meshed with beam 
finite elements and since TO non-design material is represented by 3D solid geometry, which is 
meshed using tetrahedron, the FEA beam structure needs to be rigidly connected with these 
tetrahedrons. Rigid connections between beam elements and 3D solid elements are ensured using 
specific FEA beam elements referred to as mini-beams. This results in a mixed-dimensional FEA 
model with beam and solid finite elements. Results obtained with this mixed-dimensional FEA 
model allow validating the beam structure obtained from TO results. Performance of the 
approach is demonstrated on several TO examples.  

Keywords: topology optimization, geometry reconstruction, curve skeletons, beam structures, 
mixed-dimensional analysis. 

1 Introduction 

The aim of applying topology optimization (TO) in structural engineering [1] is to determine the 
optimal topology and geometry of a structural design which is submitted to specific constraints. 
It has become a very powerful tool in activities related to product design since it allows 
generating stiffer, lighter and more original shapes within a shorter time. The most popular TO 
approaches include homogenization methods [2], level sets methods [3], Evolutionary Structural 
Optimization (ESO) methods [4], and the Solid Isotropic Material with Penalization (SIMP) 
method [5]. Density-based approaches such as homogenization and SIMP algorithms result in an 
optimal distribution of material inside the space of an initially defined design domain. While 
composite microstructures are allowed as optimal solutions in homogenization-type methods, in 
the SIMP method, a penalization coefficient is introduced to reduce intermediate density values 
and force the optimal design into a discrete 0 − 1 solution, where 1 represents fully solid 
material, and 0 represents the void. In level-set methods, a function describing the structural 
interface between solid material and void is used to parameterize geometry. Finally, ESO 
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methods look for uniformly stressed designs by gradually removing inefficient material along the 
optimization process. Most of TO methods developed to this day are based on using finite 
element analysis (FEA) as numerical method along optimization iterations. To circumvent 
numerical instabilities that occur when using standard FEA, meshfree TO approaches have also 
been developed, especially when dealing with geometrically nonlinear structures [6]. 

Although most optimal designs resulting from TO consist of binary solid-void results, it remains 
that generating a CAD solid model for design optimization purposes from raw TO results still 
represents a major challenge. Indeed, optimal designs should be interpreted not only visually, but 
also quantitatively [5]. Moreover, the reconstructed CAD model should facilitate geometry 
modifications and reduce manufacturing constraints. In this context, manufacturability of the 
optimized designs provided by TO methods is a major concern. A very interesting survey and 
classification of manufacturing oriented topology optimization methods can be found in [7]. To 
avoid tedious manual interpretation and reconstruction operations, TO result reconstruction 
should be as automatic as possible to reduce time, limit designer intervention and facilitate the 
integration of TO methods into the overall design process. In this direction, this paper presents a 
new and fully-automated approach to reconstruct 3D CAD solid models from TO results. It is 
important to note that the approach presented in this paper is specifically intended for processing 
TO results that tend towards beam-like structures. From raw TO results, our method 
automatically generates CAD models composed with sets of straight beams. In this paper, TO 
results are obtained using the SIMP method but it is worth mentioning that the principles in 
which the proposed reconstruction approach are based can be applied to other TO schemes. 

The paper is organised as follows. In the next section (section 2) previous work on interpreting 
3D TO results is presented and discussed along with a brief review on curve skeletonization 
techniques. After presenting how TO results are generated in section 3, section 4 describes in 
detail the proposed reconstruction approach. Section 4 also introduces so-called mini-beams, 
which are standard FEA beam elements used to ensure rigid connection between beam and solid 
finite elements. In section 5, TO examples are used to illustrate the effectiveness of our 
approach. The paper ends with a conclusion about potential improvements of the approach and 
directions for further research on the subject. 

2 Related work  

Raw results provided by TO methods cannot be used as is for design purposes, and various 
techniques have been proposed to address the automatic conversion into CAD models of TO 
results. These methods can be categorized into two main strategies. The first strategy is based on 
iso-line (in 2D) and iso-surface (in 3D) reconstruction techniques. These methods use the relative 
density distribution, which means that they cannot be applied to TO approaches that are not 
based on relative density distributions. The second strategy involves black and white image 
interpretation methods.  

With respect to the first strategy introduced just above, Youn et al. [8] extracted optimal shapes 
from density distributions provided by 2D TO simulations. In their approach, the shape of 
optimized models is extracted as an iso-line. This principle has been later extended to 3D models 
by Hsu et al. [9]. The basic idea of their work is to start the process by improving quality of TO 
results based on transforming intermediate densities into solid material or void. Then, 



representative cross sections are computed using iso-density contours that are represented as B-
Spline curves. A smoothed CAD representation is then obtained by sweeping through these cross 
sections. Koguchi et al. [10] applied a surface reconstruction algorithm on 3D TO results to 
obtain parametric CAD solid models using B-Spline surfaces. In their approach, iso-surfaces are 
first extracted from TO results, which is followed by feature detection, and biquartic surface 
splines reconstruction. Similarly, Tang et al. [11, 12] also used cross sections combined with B-
spline surfaces extraction and geometric reconstruction to interpret TO results. However, 
because the reconstruction process is based on B-spline curves/surfaces, the optimized shape is 
complex and not easy to manufacture when using traditional machining processes. Moreover, 
most of these methods are semi or not automatic, since they rely on human intervention. 
According to the second strategy, Papalambros et al. [13, 14] have been among the first authors 
to use black and white image-interpreting techniques to convert TO results into CAD data. Their 
work is limited to 2D TO results and is based on B-Spline curves reconstruction. In their 
approach, the optimized 2D model is remeshed for further analysis and for subsequent sizing or 
shape optimization. Bremicker et al. [15] used image processing to interpret 2D truss structures. 
The medial axis transformation (MAT) is used to extract the skeleton of a truss-like structure 
generated by the TO process. The skeleton is later thinned and the result is reconstructed using 
bars. They are, to the best of our knowledge, the first to propose a skeleton extraction of truss 
and frame structures to interpret TO results. However, their implementation is limited to 2D 
optimization and requires designer interactions. Another effort to interpret TO result was 
presented by Lin and Chao [16]. They parameterized 2D TO results by using two shape 
characteristics, namely mean length and standard deviation from the centroid of each hole to its 
boundary. Values obtained for each interior hole are compared with characteristic values of 
seven predefined templates to interpret hole shapes. A shape optimization algorithm is finally 
applied after interpretation of the model. Since geometry reconstruction from TO results is only 
based on fitting predefined shapes, this reconstruction process is limited and very sensitive to the 
geometric complexity TO results. Later, Chou et al. [17] suggested to replace the shape 
characteristic value-based by polygons. Following the same idea, Larsen and Jensen [18] created 
smooth parametric CAD model from TO results. Each 3D feature of the model is obtained after 
fitting predefined 2D default templates to the optimization result, and sweeping the surface 
through the shape obtained. However, most of these methods are limited to 2D problems and 
they are not fully automated. In fact, the complete automation of these techniques is not yet 
achieved since operations such as the shape of templates and their number depends on the 
individual interpretation of the designer. Moreover, template approximation is not 
straightforward to extend to 3D TO problems, and templates used for geometric approximation 
are often inaccurate. This is why a shape optimization step is often necessary for refining and 
eventually restoring the design due to information loss. 

The approach presented in this paper focusses on reconstructing CAD solid models from TO 
results that tend to 3D beam-like structures without any user intervention. The reconstruction 
process is fully automatic, and results in CAD models of beam structures with high 
manufacturability potential and that can be easily modified and manipulated for further editing in 
a CAD system. Since this work focuses on beam-like structures, automatic skeletonization 
methods are of a great interest [15]. Moreover, as mentioned in [19], processing and analysing 
the skeleton of a 3D shape can be an appropriate solution to assess its topology. Indeed, the 
skeletonization of a 3D model supplies a simplified and compact representation that is locally 
equidistant to points on the boundary of the model  [19, 20]. Automatic skeletonization 



techniques arouse a growing interest with recent advances in 3D acquisition devices and 
computer graphics. The main interest of these techniques is that they intuitively capture 
meaningful information (e.g. symmetry, adjacency, local complexity, number of branches and 
local width) of the topology of a model. A large number of methods can be found in the literature 
for skeletonizing 2D models, which is not the case for the skeletonization of 3D models. In 
general, the skeleton of a 3D shape can be a surface skeleton, such as the medial axis [21, 22], or 
a curve skeleton [23, 24]. In the medial axis extraction, a medial function is used to assign high 
weights to skeletal points, and small weights to non-skeletal points. Then, the associated distance 
from skeletal points to the closest boundary is computed. This is achieved by using algorithms 
such as distance transform, potential functions, thinning erosion and Voronoï diagrams. Even if 
effective, the medial axis is highly sensitive to small perturbations on boundaries of the shape, 
difficult and expensive to extract in 3D [25], and hard to store and manipulate [24]. Adding to 
this the fact that, in this work, we focus on beam-like structures, our attention is attracted by 
curve skeletons. The curve skeleton of an object can be defined as its thinned curvilinear 
representation [23]. It has been applied in many domains that include computer graphics, 3D 
animation, and medical visualization because of its intuitive description of the topological 
characteristics of a model [26-28]. Although well documented in the literature, curve 
skeletonization algorithms have been mostly implemented in a context of image processing and 
object recognition where the topology of the model was known a priori, but lost during the data 
acquisition process. In this study, curve skeletonization is used to simplify the topology of the 
optimized 3D shape obtained and to reconstruct manufacturable structures from beam-like TO 
solutions. 

3 Generating structural TO results  

Beam-like structures are likely to be obtained in TO results when using refined meshes and small 
volume fractions [15, 29]. In this paper, structural TO results are obtained using the SIMP 
method in 3D. It is a choice among others since other TO methods could have been considered. 
Indeed, the methodology proposed in this paper operates on any 3D optimized shape with a 
boundary that can be represented as a triangulation or even as a point cloud. 

The SIMP method consists in minimizing the compliance �̃� of a 3D model subjected to a volume 
fraction constraint. This volume fraction represents the percentage of the initial design material 
that is kept along SIMP iterations. The method uses a finite element calculation at each iteration 
and it converges when the relative difference in global compliance between two successive 
iterations is less than a given threshold (∆𝑐𝑜𝑛𝑣= 0,5% in this study). Finite element calculations 
are used to update a material relative density distribution 𝜌(𝑥, 𝑦, 𝑧) which is constant within each 
element of the mesh. The relative density 𝜌(𝑥, 𝑦, 𝑧) (𝜌𝑒 in each finite element 𝑒) is related to the 
distribution of a virtual elastic modulus according to the penalization law: 

�̃�(𝑥, 𝑦, 𝑧) = 𝐸 ∙ (𝜌(𝑥, 𝑦, 𝑧))𝑝     (1) 

Where 𝑝 is a penalization coefficient (𝑝 = 3 is considered in this work). 

In the following equations, all parameters that are affected by 𝜌(𝑥, 𝑦, 𝑧) are noted using a ~. The 

global stiffness matrix [�̃�] derived from local matrices [�̃�𝑒] for 𝑁 finite elements 𝑒 is given by: 



[�̃�] = ∑ [�̃�𝑒]
𝑁
𝑒=1 = ∑ (𝜌𝑒(𝑥, 𝑦, 𝑧))

𝑝 ∙ [𝐾𝑒]
𝑁
𝑒=1      (2) 

A classical formulation of the SIMP topology optimization method is: 
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    (3) 

Where �̃�, {�̃�} and {𝐹} are respectively the global compliance of the whole domain, the global 
displacement vector and the global load vector. 𝑓 is the volume fraction, which is a constraint 
imposed on the TO process. It is calculated as the ratio of �̃�, the prescribed design material 
volume that is kept constant along SIMP iterations, and 𝑉𝑑, the actual total design material 
volume. Practically, global compliance is computed as �̃� = 2 ∙ �̃�, where �̃� is the total strain 
energy inside the whole model as obtained in the FEA calculation associated with the last SIMP 
iteration. 

Once convergence is achieved, the raw SIMP result obtained is the final relative density 
distribution 𝜌(𝑥, 𝑦, 𝑧). The rough shape of the optimized model derived from this relative density 
distribution consists, as explained in [30], in a set of finite elements with a density value that is 
over a user-specified threshold 𝜌𝑡ℎ. Details on the SIMP method and its implementation can be 
found in [5, 31], and improvements in the description of the optimal shape boundary through 
adaptive TO are addressed in [32, 33]. Our implementation of the SIMP method is based on FEA 
with linear tetrahedral elements and Code_AsterTM [34] is used as FEA solver. Note that all 
figures shown in this paper are generated using GmshTM [35]. 

An initial sample part (overall dimensions are 304,8𝑚𝑚 × 355,6𝑚𝑚 × 762𝑚𝑚) with boundary 

conditions and loads (17,2 𝑘𝑁 𝑚2⁄  and 8,0 𝑘𝑁 𝑚2⁄  in respectively 𝑌 and 𝑍 directions) is 

illustrated in Figure 1a. Figure 1b shows the 3D uniform tetrahedral mesh (mesh size 𝑑𝑔 =

13 𝑚𝑚) of this sample part with design material (material that will be optimized) in blue and  

non-design material (that is kept intact along the optimization) in red. Young’s modulus is 𝐸 =
69 GPa, Poisson’s ratio is 𝜈 = 0,33, and the volume fraction is 𝑓 = 8% (thus targeted design 
material volume is �̃� = 4,72 ∙ 10−3𝑚3). The optimal density distribution obtained at 

convergence is illustrated in Figure 1c. Compliance reached at convergence is �̃� = 9,6 ∙
10−3 𝐽𝑜𝑢𝑙𝑒𝑠, which corresponds to an optimized material volume �̃�𝑜𝑝 = 4,71 ∙ 10−3𝑚3. �̃� is the 

volume target before SIMP optimization while �̃�𝑜𝑝 is the optimized material volume obtained 

after SIMP optimization. 

Figure 2a illustrates the 3D shape obtained from the relative density distribution at convergence 
shown in Figure 1c. This optimized shape is based on keeping elements for which relative 

density 𝜌 ≥ 𝜌𝑡ℎ = 0,45. The threshold value is based on two aspects: the target volume derived 
from volume fraction and material continuity. Indeed, while reconstructing TO results, continuity 
in the distribution of the optimized material is of great importance. The compliance of a 



continuous structure is lower (the structure is stiffer) than that of a discontinuous structure [9]. 
Thus, in [9] it is suggested that the extraction threshold value 𝜌𝑡ℎ should be chosen with respect 
to continuity of the optimized design. Consequently, in our approach, 𝜌𝑡ℎ is chosen so that the 
target volume is achieved and that model continuity is respected. 

 

Figure 1 : Chair (a) geometry, loads and boundary conditions (b) design (in blue) and non-design 

(in red) material using a uniform mesh size (𝑑𝑔 = 13 𝑚𝑚) (c) relative density distribution after 

convergence of SIMP optimization. 

Figure 2b illustrates the rough optimal shape extracted, as a triangulation, from the result shown 
in Figure 2a where the non-design domain is in yellow, and the optimized design domain is in 
grey. Figure 2c shows the resulting optimized shape only, where non-design material has been 
removed. In this figure, triangles that are at the interface between non-design and design material 
are in yellow. The volume of the optimized design domain (shown in Figure 2c) is 𝑉𝑠ℎ = 4,8 ∙
10−3𝑚3. This volume also represents the 3D shape that has to be reconstructed through the next 
steps, since non-design material remains unaffected by the optimization process.  

As outlined earlier and as illustrated in Figure 2b and Figure 2c, the outcome of TO requires 
substantial post-optimization processing before being able to be used in the CAD process. If 
CAD model reconstruction from TO results is fully automated, integration of TO in the overall 
product development process is optimized. Thus, a new approach to the automatic reconstruction 
of 3D solid models from TO results is proposed and validated through a set of illustrative case 
tests. As mentioned before, the proposed approach is based on using curve skeletonization 
methods. 



 

Figure 2 : Chair (a) raw optimized shape using 𝜌𝑡ℎ = 0,45, (b) rough optimal design as a 

triangulation with the optimized shape (in grey) and non-design material (in yellow) (c) rough 

optimized shape to be reconstructed (non-design material excluded). 

4 Automatic reconstruction of 3D beam-like structures from TO results 

Integrating TO into an automated structural design procedure represents a highly promising 
outcome of using TO for computer aided design. However, it also represents a major challenge 
since, as introduced just above, optimized results cannot be used as is for design purposes. This 
section details the proposed reconstruction approach and starts with an overview of our method. 

4.1 Overview of the approach  

The input of our reconstruction approach is the boundary triangulation that represents the 
optimized shape derived from TO result as illustrated in Figure 2b. A workflow of our approach 
is proposed in Figure 3. The reconstruction process starts with smoothing this boundary 
triangulation to remove the noise that is present on the rough boundary of the optimized model. 
Since, as illustrated in Figure 2b, the rough boundary of the optimized model is affected by high 
amplitude noise, this requires using very specific smoothing procedures. Noise smoothing is 
followed by curve skeletonization and by the computation of cross-section parameters of the 
skeleton segments. These segments are then transformed into straight beams through a 
normalization process which takes place once the skeleton and associated cross section 
parameters are generated. These segments are meshed with beam finite elements and are then 
connected rigidly with non-design material. Since non-design material is represented by 3D solid 
geometry and meshed with solid finite elements (tetrahedrons in our case) a specific connection 
strategy needs to be used to rigidly connect 3D beam elements with tetrahedrons. The connection 
between the mesh of the normalized skeleton (the reconstructed optimized design material) and 



3D solid elements (non-design material) is ensured using conventional beam finite elements 
referred to as mini-beams. As shown in Figure 3, the reconstructed model is finally validated 
with FEA simulations. This validation aims at assessing performance of the 3D structure that has 
been automatically reconstructed. It is performed using a mixed-dimensional FEA model made 
of beam and solid tetrahedral finite elements, which is automatically generated from 
reconstruction results.  

 

Figure 3 : Flow chart of the proposed TO data reconstruction approach. 

In the proposed approach, non-design material remains unchanged along the overall 
reconstruction procedure. Non-design material typically represents functional zones of the model 
that are often associated with boundary conditions and loads. Moreover, this non-design material 
is not modified during the optimization process and hence does not require reconstruction. 

The approach proposed in this workflow may seem similar to that in [15].  However, the work 
presented in [15] is limited to 2D cases and does not feature any validation of reconstructed 
structures. Furthermore, compared with other TO results reconstruction methods such as image-
based interpretation strategies [16, 17] or iso-density-based interpretation [9, 10], the proposed 
algorithm is fully-automatic, is applied to 3D problems, can be applied regardless the 
optimization method utilized, and is designed for the reconstruction of 3D TO results that 
contain beam-like structures. The different steps of the workflow presented in Figure 3, for both 
reconstruction and validation modules, are described in the next sections. 

4.2 Reconstruction module  

4.2.1 Boundary smoothing  

As presented in Figure 3, in the objective of automatically reconstructing CAD solid models 
from TO results, the first step is to smooth boundaries of optimized domains generated by TO. 
These boundaries are extracted from the rough optimized shape as triangulations. Smoothing 
triangulations of arbitrary topology has been studied for decades in different fields such as 
computer aided design, computer vision, 3D animation, 3D scanners, medical imaging, etc. 



Indeed, in many applications, input triangulations feature noisy data (such as noisy point clouds 
coordinates acquired from 3D scanners) and this noisy data requires smoothing so that the output 
is a smoothed mesh, where high frequencies are filtered out. Many triangulation smoothing 
methods are available in literature. Among these methods, some target preserving features while 
removing noise from the mesh [36], and others are more focussed on quality of smoothed 
triangulation, such as Laplacian-based methods [37]. Smoothing methods are used in many fields 
(CAD, FEA, computer graphics, medical imaging, animation, etc.). However, none of these 
methods can successfully process very noisy triangulations provided by TO processes (such as 
the triangulation shown in Figure 2b). Indeed, noise on the surface of a TO result is not a 
mathematical function injected in the model, or a noise resulting from data acquisition. 
Moreover, its amplitude is very high, which makes it difficult to smooth efficiently. Ideally a 
good smoothing procedure for processing TO results should produce smooth surfaces, preserve 
some of the features generated by TO and meet TO volume targets. Designing a smoothing 
algorithm that is well suited for processing TO results remains a challenge that needs to be 
addressed. We achieved a satisfactory solution by combining two smoothing methods [37, 38] to 
have high quality in the representation of the optimal shape surface while preserving volume and 
shape of the optimized material. It is worth noting that, in this work, the main objective of 
smoothing is to facilitate curve skeletonization and the computation of beam cross section 
parameters, as described in the next section. Figure 4a illustrates the results obtained after 
smoothing the boundaries of results shown in Figure 2b. 

 

Figure 4 : Chair (a) smoothed optimized shape (in grey) with non-design material (in yellow) (b) 

the smoothed optimized shape to be reconstructed (non-design material excluded). 

If smoothed results shown in Figure 4a are compared with the raw TO shape shown in Figure 2b, 
it is obvious that high frequencies have been filtered out and that the triangulation representing 
the smoothed shape is more regular. Since no reconstruction is needed for non-design material, 



smoothing is only applied to the boundaries of the optimized design material and not to 
boundaries of non-design material. Figure 4b presents the smoothed optimal shape (non-design 
material excluded). The volumes of the optimized design material before and after smoothing are 
respectively 𝑉𝑠ℎ = 4,84 ∙ 10−3𝑚3 and 𝑉𝑠𝑚 = 4,83 ∙ 10−3𝑚3. 

 

4.2.2 Curve skeletonization 

The objective of this work is to process beam-like 3D TO results in order to automatically 
generate 3D beam structures. This is performed using a curve skeletonization method. Compared 
to other skeletonization techniques such as the medial axis [21, 28], curve skeletonization has 
been chosen in this work since it is a powerful shape abstraction tool that is particularly well 
fitted for processing beam-like shapes [24]. Using curve skeletonization techniques simplifies the 
reconstruction of beam-like structures and makes the proposed approach more easily extendable 
to any other TO method and more easily automated. The skeletonization method used in this 
work is based on a mesh-contraction Laplacian-based algorithm presented in [27, 39]. This 
method is fully automated and has been initially designed for retrieving 3D models from 
scanning devices point clouds. The main principle on which it is based is to iteratively contract 
the model’s boundary until it reaches zero-volume. The contracted shape is then converted into a 
curvilinear skeleton. This curve skeleton is obtained by sub-sampling the contracted skeletal 
point cloud and by connecting sub-samples with their 1-ring neighbors. A segment collapse 
thinning process is finally applied to obtain the final curve skeleton. Figure 5 shows the curve 
skeleton obtained from the smoothed optimized shape presented in Figure 4a.  

 

Figure 5 : Chair (a) curve skeleton with design material as curves (in blue) and non-design 

material (in yellow) (b) curve skeleton (c) distribution of beam radius along each beam of the 

curve skeleton. 



It also shows that, if compared with the smoothed TO shape, topology of the optimized structure 
is well captured using such a curve skeletonization process. In Figure 5a, non-design material (in 
yellow) is represented by solid tetrahedral finite elements while design material is represented by 
wireframe elements (in blue). Figure 5b represents wireframe elements only, which means with 
non-design material excluded. The curve skeleton consists of 184 segments (in blue in the 
zoom), 10 end points (like the green point in the enlarged view), 4 junction points (like the 
yellow point in the enlarged view), and 10 branches (like branch B1 in the enlarged view which 
is composed of 11 branch points in grey and 12 segments). The first and last points of a branch 
correspond to junction or end points. This information will be later used in the normalization 
process to transform each branch into a straight beam. 

4.2.3 Computation of cross section parameters  

Once a curve skeleton is extracted, each beam segment of this skeleton is approximated as a 
beam with circular cross section. This means that only one parameter, the section radius, needs to 
be computed. The radius of each beam cross section is calculated by computing, along each 
curvilinear segment of the skeleton, the mean local Euclidian distance between the segment and 
the smoothed triangulation. Actually, as shown in Figure 6a, considering a beam segment (in 
blue), the two end points of a skeleton segment (in pink) are used to select nodes of the smoothed 
triangulation that will be considered for the calculation of the cross section radius. Selected 
nodes are in black in the figure while discarded nodes are in red. Each selected node Pi, is 
orthogonally projected onto the beam segment as Qi. The Euclidian distance PiQi, is then 
calculated, and stored as a local radius Ri. Finally, the beam cross section radius is computed as 
the average value of local radii Ri. The result obtained after this radius computation is shown in 
Figure 6b. 

 

Figure 6 : (a) Illustration of the cross section calculation process and (b) the resulting distribution 

of beam radius along each beam of curve skeleton for the chair (in 𝑚). 



4.2.4 Normalization of the skeleton 

As introduced in section 4.1, normalization is a tuning process that simplifies the curve skeleton 
into a set of straight beams with uniform circular sections. 3D designs produced by the 
optimization process usually feature shapes and topologies that increase the manufacturing cost 
when feasible [12]. In most cases, it is very difficult to transform raw TO results into 3D solid 
models that can be easily manufactured without a significant loss of the optimization benefits. 
Moreover, since manufacturability is one of the main factors that influence the final cost of a 
design, it is of major importance since early design stages [9]. Being able to reduce 
manufacturing difficulties (especially when using traditional manufacturing processes) without 
losing the benefits of TO is among main objectives of this normalization step. Figure 7 shows the 
result obtained after normalization of the result shown in Figure 5. Each branch of the skeleton, 
previously composed with a curvilinear beam, is transformed into a straight beam with a uniform 
cross section along its length. The cross section of each of these straight beams is calculated as 
the average of cross section radii of beam segments along the curvilinear beam of a branch. As 
an example, the 12 beam segments of branch B1 (see the zoom in Figure 5b) are transformed into 
one straight beam as shown in the enlarged view in Figure 7b. Radius of this new straight beam 
is calculated as the average value of cross section radii of the 12 beam segments. Thus, 10 
straight beams are generated from the 10 branches of the curve skeleton. Figure 7a and Figure 7b 
respectively correspond to Figure 5a and Figure 5b after normalization. Radii associated with 
each branch after normalization are shown in Figure 8a. As explained just above, cross-section 
radius along each straight branch is constant (see Figure 8a), which was not the case along 
curvilinear branches before normalization (see Figure 6b). The reconstructed CAD model is 
shown in Figure 8b. As detailed in the next section and as illustrated in Figure 7a, a particular 
attention must be paid on connections between wireframe elements (design geometry) and solid 
elements (non-design geometry). 

 

Figure 7 : Chair (a) normalized skeleton with the optimized structure (in blue) and non-design 

material (in yellow) (b) normalized skeleton (non-design excluded). 



 

Figure 8 : (a) Radii of normalized skeleton beams (in 𝑚) and (b) the reconstructed beam-like 

CAD chair model. 

4.3 Validation module 

Validating the reconstructed model is the second module in our methodology. It can be 
performed by applying, to the mixed-dimensional FEA finite element model generated in the 
previous step, the same boundary conditions and loads as those applied in the TO process itself 
(shown in Figure 1a for our illustration example). Thus, strength of the optimized beam structure 
model generated with our approach from TO results can be assessed. 

4.3.1 Connection between beam and solid finite elements 

The connection between the normalized skeleton and non-design material is the last step of our 
reconstruction process. Indeed, once we meshed the normalized skeleton (with beam finite 
elements) and non-design material (with linear tetrahedrons), some of the beam elements of the 
normalized skeleton need to be rigidly connected with tetrahedrons of non-design material. This 
requires specific processing since these finite elements do not feature the same number of 
degrees of freedom (DOF) per node. Indeed, beam elements usually feature 6 DOF while solid 
elements used in linear elasticity only feature 3 DOF. Various solutions have been proposed for 
handling this type of inconsistency between degrees of freedom of beam and solid elements at 
solid-wireframe interfaces. In our case, as described with details in [40], it is solved using so-
called mini-beams. As explained in [40], these mini-beams ensure a rigid connection between 
beam and solid finite elements 3D in the final FEA model. This solution has proven to be both 
simple and effective since these mini-beams are standard FEA beam elements used for 
connection purposes, which means that it does not require using neither specific finite elements 
nor additional constraints [40]. The rigid connection between beam and solid elements is made at 
each interface by connecting straight beams to a node on the surface of the 3D mesh, which is 



connected to a set of mini-beams. Figure 9a illustrates a connection with such mini-beams for the 
result shown in Figure 7a. In the figure, mini-beams (in blue) are added on all the adjacent 
segments of the connecting node localized on the surface of the 3D mesh (in yellow). This 
ensures a rigid connection instead of a ball joint connection in the FEA model. One of the main 
advantages of this approach is that, since it uses standard finite elements only, it can be used with 
any FEA package. The result obtained is a mixed-dimensional FEA finite element model that 
will be used to validate the optimal structure design obtained throughout the process. 

4.3.2 Mixed-dimensional FEA model 

The mixed-dimensional FEA model used for validation is obtained by meshing beams with 
standard beam elements and meshing 3D non-design geometry with tetrahedral elements. 
Practically, only straight beams need to be meshed at this stage, since non-design geometry was 
already meshed for TO. Thus, we keep the same mesh for non-design geometry and uniformly 
mesh wireframe geometry using the same element size. Accordingly, straight beams are meshed 
using the same uniform mesh size as the initial tetrahedral mesh used for TO (𝑑𝑔 = 13 𝑚𝑚, see 
Figure 1b), as illustrated in Figure 9b. 

 

Figure 9 : Mixed-dimensional FEA model of the chair (a) illustration of mini-beams (b) mesh. 

4.3.3 FEA validation of the optimal structure obtained 

Figure 10 shows results obtained with the mixed-dimensional FEA model introduced just above. 
Figure 10a illustrates the distribution of the norm of displacement vector (in 𝑚𝑚) while Figure 
10b illustrates the distribution of elementary strain energy (in 𝐽𝑜𝑢𝑙𝑒𝑠). From this elementary 
strain energy distribution, we can compute the strain energy of the whole reconstructed structure 
𝑊𝑟, computed as the sum of the energy in each beam and tetrahedral element (thus including 
non-design material). For this example 𝑊𝑟 = 4,40 ∙ 10−3 𝐽𝑜𝑢𝑙𝑒𝑠, which can be related to an 
equivalent compliance 𝐶𝑟 = 2 ∙ 𝑊𝑟 = 8,80 ∙ 10−3 𝐽𝑜𝑢𝑙𝑒𝑠. Let us remind that SIMP optimization 



iterations are basically intended to minimize global compliance �̃�. As introduced in section 3, 
this global compliance is affected by the relative density field 𝜌(𝑥, 𝑦, 𝑧) (the symbol ~ is used) 
and it is theoretically defined as �̃� = {�̃�}

𝑡
. [�̃�]. {�̃�}. Practically, it is calculated as �̃� = 2 ∙ �̃� 

from the total strain energy at the last SIMP iteration �̃�. It is thus computed as the sum of 
elementary strain energies over the whole initial model as shown in Figure 11a. These 
elementary strain energies are affected by the SIMP relative density distribution 𝜌(𝑥, 𝑦, 𝑧) 
(symbol ~ is used). In this case, �̃� = 9,6 ∙ 10−3 𝐽𝑜𝑢𝑙𝑒𝑠  as introduced in section 3, which 
obviously, is significantly higher than 𝐶𝑟. 

 

Figure 10 : Chair mixed-dimensional FEA model with the distribution of (a) elementary strain 
energy in 𝐽𝑜𝑢𝑙𝑒𝑠 and (b) norm of displacement vector in 𝑚𝑚. 

These two compliances �̃� and 𝐶𝑟 can finally be compared with a third compliance, referred to in 
this paper as the effective compliance 𝐶, as defined just below. It is important to remind here 
that, when comparing �̃� with 𝐶 and 𝐶𝑟, it is only the order of magnitude of this comparison that 
is meaningful since �̃� is affected by the relative density distribution 𝜌(𝑥, 𝑦, 𝑧) and by then, it 
does not have a physical meaning. Moreover, �̃� takes into account the compliance associated 
with elements that are not considered (for which 𝜌 < 𝜌𝑡ℎ) in the optimized model, which is not 
the case for 𝐶 and 𝐶𝑟. On the other hand, the comparison between 𝐶 and 𝐶𝑟 assesses how close, 
particularly in term of the objective function (here the compliance), the reconstructed structure is 
to the optimized shape provided by SIMP iterations before reconstruction. 

The optimized shape is based on keeping tetrahedral elements for which 𝜌 ≥ 𝜌𝑡ℎ and on 
associating to these tetrahedrons material properties of the actual material (not affected by the 
relative density distribution 𝜌(𝑥, 𝑦, 𝑧)). The computation of the effective compliance is based on 
performing a new FEA simulation on the volume defined by these tetrahedrons along with non-



design tetrahedrons. Thus, a new FEA simulation (with the same boundary conditions and loads) 
is performed on the volume shown in Figure 2b. In this new FEA simulation, Young’s modulus 
(𝐸 = 69 𝐺𝑃𝑎) of the actual material is considered across the whole optimized domain. This 
means that results of this new FEA simulation are not affected by the relative density distribution 
𝜌(𝑥, 𝑦, 𝑧) (symbol ~ is not used). Figure 11b-c show respectively the distribution of elementary 
strain energy and norm of the displacement vector obtained from this new FEA simulation. The 
effective total strain energy 𝑊 is computed as the sum of these elementary strain energies over 
the optimized model (including non-design material) and the effective compliance 𝐶 is defined 
as 𝐶 = 2 ∙ 𝑊. In this case, 𝐶 = 5,46 ∙ 10−3 𝐽𝑜𝑢𝑙𝑒𝑠, which can be compared with 𝐶𝑟 = 8,80 ∙
10−3 𝐽𝑜𝑢𝑙𝑒𝑠. These results show that, in this case, the reconstructed structure (Figure 7a) is more 
compliant than the optimized shape before reconstruction (Figure 2b), since 𝐶𝑟 is higher than 𝐶. 
This outcome is substantiated by the displacement (Figure 10b and Figure 11c) distribution in 
both optimized and reconstructed models. Indeed on these figures, it is observed for the 
displacement field that maximum value 𝛿𝑟 = 0,0273 𝑚𝑚 is obtained for the reconstructed 
model, if compared with 𝛿 = 0,0059 𝑚𝑚 for the optimized model. Figure 12 shows maximum 
and minimum signed 𝜎𝑥 stress distributions across the wireframe geometry (expressed in beams 
local frame). These stress distributions cumulate bending and axial stresses, which are dominant 
stress components for all cases studied. For this example, the maximum 𝜎𝑥 stress is 1,28 𝑀𝑃𝑎. 

 

Figure 11 : Strain energy distribution in 𝐽𝑜𝑢𝑙𝑒𝑠 in (a) the whole model after convergence of 
SIMP optimization, (b) the optimized model after removing void elements and (c) distribution of 

the norm of displacement vector in the optimized model in 𝑚𝑚. 

Volumes obtained at different stages of the process can also be compared. It is important to 
remind that, unlike what is done when comparing compliances, all volumes are computed and 
compared without taking non-design material into account. As introduced in section 3, this is due 



to the fact that non-design material is not affected by SIMP optimization and that, consequently, 
non-design volume remains constant. In this example, as introduced in section 3, the target 
optimized volume is �̃� = 4,72 ∙ 10−3𝑚3 and the optimized material volume obtained at the end 
of SIMP iterations is �̃�𝑜𝑝 = 4,71 ∙ 10−3𝑚3. Volume of the optimized shape is 𝑉𝑠ℎ = 4,84 ∙

10−3𝑚3  after processing non-manifold patterns as explained by [41] and before smoothing 

(Figure 2c) and 𝑉𝑠𝑚 = 4,83 ∙ 10−3𝑚3 after smoothing (Figure 4b). Then, volume of the 
reconstructed structural design once section properties are calculated (Figure 8a) is 𝑉𝑟 = 4,2 ∙
10−3𝑚3. This last result confirms that the reconstructed structure represents a good 
approximation of TO results. 

 

Figure 12 : Distribution of (a) maximum and (b) minimum 𝜎𝑥 stress (in 𝑁/𝑚2). 

5 Results and discussions 

The effectiveness of our reconstruction strategy is demonstrated through 3 structural design 
examples (a cantilever beam, a footbridge and a L-bracket). In these examples, Young’s modulus 
is 69 GPa, Poisson’s ratio is 0,30. Volume fractions imposed at the beginning of SIMP 
optimization for these 3 cases are respectively 5%, 10% and 4%. These volume fractions are 
low, which makes that beam-like results are expected at the end of SIMP optimization. As 
explained in section 3, the threshold for SIMP convergence is ∆𝑐𝑜𝑛𝑣= 0,5% for all cases. As for 
the illustrative chair model, compliances �̃�, 𝐶 and 𝐶𝑟 as well as volumes �̃�𝑜𝑝, �̃�𝑠ℎ, 𝑉𝑠𝑚, and 𝑉𝑟 are 
given for each example. 
 
 
 
 



5.1 A Cantilever beam 

The first example considered is a cantilever beam. This model has been studied by several 
authors in 2D [9, 13, 16-18]. The beam is shown in Figure 13a along with loads and boundary 
conditions applied. It is loaded with a downward pressure (10 𝑘𝑁 𝑚2⁄  in the 𝑌 direction ) in the 
middle of its free end and null displacements (in 𝑋, 𝑌 and 𝑍 directions) are imposed at its other 
end. The beam model features a square section (50 𝑚𝑚 × 50 𝑚𝑚) and 250 𝑚𝑚 length. Figure 
13b presents design material (in blue) and the non-design material (in red). The uniform 
tetrahedral mesh size used is 𝑑𝑔 = 3,0 𝑚𝑚 and the volume fraction is 𝑓 = 5%. SIMP 
optimization reached convergence after 36 iterations and the global compliance obtained after 
convergence is �̃� = 3,26 ∙ 10−6𝐽𝑜𝑢𝑙𝑒𝑠. The optimal relative density distribution and the raw 
optimized result (only tetrahedrons for which relative density 𝜌 ≥ 𝜌𝑡ℎ = 0,35 are considered) 
are respectively shown in Figure 14a and Figure 14b. 

 

Figure 13 : Cantilever (a) geometry, loads and boundary conditions (b) design (in blue) and non-

design (in red) material using a uniform mesh size (𝑑𝑔 = 3,0 𝑚𝑚). 

 

Figure 14 : Cantilever (a) relative density distribution after convergence of SIMP optimization 

(b) raw optimized shape. 



The volume at the end of the SIMP process and the volume of the rough optimal design after 
processing non-manifold patterns, are respectively �̃�𝑜𝑝 = 2,9 ∙ 10−5𝑚3 and �̃�𝑠ℎ = 3,0 ∙ 10−5𝑚3. 
The optimal shape is illustrated in Figure 15a. The volume of the smoothed shape (non-design 
material excluded) is 𝑉𝑠𝑚 = 2,7 ∙ 10−5𝑚3, and the associated reconstructed volume is 𝑉𝑟 = 2,4 ∙
10−5𝑚3. Figure 15b-c illustrate the skeleton structure before and after normalization along with 
non-design material schematized as solid geometry in yellow. 

 

Figure 15 : Cantilever (a) rough optimized shape (b) skeleton before normalization (c) skeleton 

after normalization and connection with mini-beams. 

It can be seen from Figure 15 that instead of 11 beams, as expected from the rough TO result, 
the curve skeleton features 14 beams. As a matter of fact, 3 beams have been reconstructed in 
place of junction points in the skeleton. This configuration illustrates a potential improvement of 
our strategy. Indeed, as suggested in [15], rules, such as closest nodes merging and discarding 
specific nodes or beams, could be introduced in our approach to generate more meaningful curve 
skeletons. 

Figure 16a-b show results obtained (norm of displacement vector in mm and elementary strain 
energy in 𝐽𝑜𝑢𝑙𝑒𝑠) from the mixed-dimensional FEA model. Compliances of the reconstructed 
beam-solid structure and after 3D FEA applied to the rough optimized model are respectively 
𝐶𝑟 = 2,40 ∙ 10−6 𝐽𝑜𝑢𝑙𝑒𝑠 and 𝐶 = 9,14 ∙ 10−7 𝐽𝑜𝑢𝑙𝑒𝑠. It is worth noting that these values are 
quite close, despite the fact that, as introduced just above, topologies of the rough optimized 
model (Figure 15a) and of the reconstructed structure (Figure 15c) are not exactly the same. 

 



 

Figure 16 : Cantilever mixed-dimensional FEA model with the distribution of (a) norm of 
displacement vector in mm (b) elementary strain energy in Joules. 

5.2 A Footbridge  

The second example features a footbridge. The initial dimensions are 80𝑚𝑚 × 90𝑚𝑚 ×
400𝑚𝑚. As shown in Figure 17a, it is loaded with a downward pressure (10 𝑘𝑁 𝑚2⁄  in the 𝑌 
direction) and null displacements (in 𝑋, 𝑌 and 𝑍 directions) are imposed at the anchors. Non-
design (in red) and design material (in blue) are presented in Figure 17b, using a uniform size for 
the tetrahedral mesh used for TO (𝑑𝑔 = 4,5 𝑚𝑚). In this case, we set 𝑓 = 10% as volume 
fraction. Figure 18a-b respectively present the optimal relative density distribution after TO, and 
the raw optimized shape where only elements for which relative density 𝜌 ≥ 𝜌𝑡ℎ = 0,40 are 
considered. 

 

Figure 17 : Footbridge (a) geometry, loads and boundary conditions (b) design (in blue) and non-

design (in red) material using a uniform mesh size (𝑑𝑔 = 4,5 𝑚𝑚). 



 

Figure 18 : Footbridge (a) the relative density distribution after convergence of SIMP 

optimization (b) raw optimized shape. 

Figure 19a shows the rough shape of the optimized result (in grey) and the non-design domain 
(in yellow). Volumes at the end of the optimization and after the rough shape extraction are 
respectively �̃�𝑜𝑝 = 1,6 ∙ 10−4𝑚3 and �̃�𝑠ℎ = 1,6 ∙ 10−4𝑚3. In addition, the volume after 
smoothing (also with non-design material excluded) and the associated reconstructed volume are 
respectively 𝑉𝑠𝑚 = 1,5 ∙ 10−4𝑚3 and 𝑉𝑟 = 1,4 ∙ 10−4𝑚3. SIMP optimization converged after 24 
iterations and the global compliance obtained is �̃� = 1,68 ∙ 10−3𝐽𝑜𝑢𝑙𝑒𝑠. 

 

Figure 19 : Footbridge (a) rough optimized shape (b) skeleton before normalization (c) skeleton 

after normalization and connection with mini-beams. 



Figure 20 shows results obtained (norm of displacement vector in mm and elementary strain 
energy in 𝐽𝑜𝑢𝑙𝑒𝑠) from the mixed-dimensional FEA model. Compliances of the reconstructed 
beam-solid structure and after the 3D FEA applied to the rough optimized model are respectively 
𝐶𝑟 = 7,45 ∙ 10−4 𝐽𝑜𝑢𝑙𝑒𝑠 and 𝐶 = 5,97 ∙ 10−4 𝐽𝑜𝑢𝑙𝑒𝑠. In this case, reconstructed compliance 𝐶𝑟 
is about half of effective compliance 𝐶. 

 

Figure 20 : Footbridge mixed-dimensional FEA model with the distribution of (a) norm of 
displacement vector in 𝑚𝑚 (b) elementary strain energy in 𝐽𝑜𝑢𝑙𝑒𝑠. 

5.3 A L-bracket 

The third example considered is a L-bracket (see Figure 21).  

 

Figure 21 : L-bracket (a) geometry, loads and boundary conditions (b) design (in blue) and non-

design (in red) material using a uniform mesh size (𝑑𝑔 = 40 𝑚𝑚). 



The initial dimensions are 2 𝑚 × 2 𝑚 × 1 𝑚. It is loaded with a downward pressure 
(106  𝑁 𝑚2⁄ ) in the 𝑌 direction and null displacements (in 𝑋, 𝑌 and 𝑍 directions) are imposed at 
its upper left side (see Figure 21a). As shown in Figure 21b, non-design material (in red) is 
distributed around anchored and loaded surfaces. Tetrahedrons with a uniform mesh size (𝑑𝑔 =
40 𝑚𝑚) are used for SIMP optimization. As introduced above, 𝑓 = 4% is used as volume 
fraction. SIMP optimization reached convergence after 28 iterations and compliance of the 
whole model obtained is �̃� = 1100 𝐽𝑜𝑢𝑙𝑒𝑠. The optimal relative density distribution at the end 
of SIMP iterations and the raw optimized result (only tetrahedrons for which relative density 𝜌 ≥
𝜌𝑡ℎ = 0,40 are considered) are respectively shown in Figure 22a-b.  

 

Figure 22 : L-bracket (a) relative density distribution after convergence of SIMP optimization (b) 

raw optimized shape. 

Volume at the end of SIMP optimization is �̃�𝑜𝑝 = 1,19 ∙ 10−1𝑚3. After discarding elements for 
which relative density is lower than 𝜌𝑡ℎ, volume of the rough optimal design (in grey in Figure 
23a) is 𝑉𝑠ℎ = 1,25 ∙ 10−1𝑚3. Volume of the smoothed optimal shape (non-design material 
excluded) is 𝑉𝑠𝑚 = 1,09 ∙ 10−1𝑚3, and the associated reconstructed volume is 𝑉𝑟 = 1,18 ∙
10−1𝑚3. Figure 23b-c respectively illustrate skeletons before and after normalization along with 
non-design material as solid geometry in yellow. 

Figure 24 shows results obtained (norm of displacement vector in 𝑚𝑚 and elementary strain 
energy in 𝐽𝑜𝑢𝑙𝑒𝑠) from the mixed-dimensional FEA model (see Figure 23c) when applying the 
same boundary conditions and loads as in Figure 21a. This figure reveals that for the 
displacement field, a maximum value 𝛿𝑏𝑟 = 5,6 𝑚𝑚 is obtained. Compliance of the 
reconstructed beam-solid structure is 𝐶𝑟 = 2 ∙ 𝑊𝑟 = 753 𝐽𝑜𝑢𝑙𝑒𝑠, and compliance obtained after 
performing 3D FEA on the rough optimized model (with the same boundary conditions and 
loads applied) is 𝐶 = 528 𝐽𝑜𝑢𝑙𝑒𝑠. The same trend as for previous examples can be seen, the 



reconstructed structure is more flexible than the optimized structure. Main results of this last case 
are also summarized in Table 1. 

 

Figure 23 : L-bracket (a) rough optimized shape (b) skeleton before normalization (c) skeleton 

after normalization and connection with mini-beams. 

 

Figure 24 : L-bracket mixed-dimensional FEA model with the distribution of (a) norm of 
displacement vector in 𝑚𝑚 (b) elementary strain energy in Joules. 

5.4 Summary of results  

Table 1 provides data for quantitative validation of all examples proposed in this section. This 
table include skeleton characteristics, volumes, and compliances for each example used to 
illustrate our approach.  



 Chair Cantilever Footbridge L-Bracket 
Some characteristics of the beam-solid model 

Number of junction points  2 3 8 20 
Number of branches (straight beams) 10 14 18 34 
Number of beam-solid connections  12 3 12 6 
Total number of mini-beams  70 17 74 36 

Volume of design material (non-design material excluded) in 𝒎𝟑 
Extraction threshold : 𝜌𝑡ℎ 0,45 0,35 0,40 0,40 
Volume of the initial design material : 𝑉𝑑 5,90 ∙ 10−2 6,00 ∙ 10−4 1,60 ∙ 10−3 3,00 
Volume objective of the optimization : �̃� 4,72 ∙ 10−3 3,00 ∙ 10−5 1,60 ∙ 10−4 1,20 ∙ 10−1 
Volume at the end of the optimization : 𝑉𝑜𝑝 4,71 ∙ 10−3 2,98 ∙ 10−5 1,60 ∙ 10−4 1,19 ∙ 10−1 
Volume after shape extraction at 𝜌𝑡ℎ : 𝑉𝑠ℎ 4,84 ∙ 10−3 3,07 ∙ 10−5 1,60 ∙ 10−4 1,25 ∙ 10−1 
Volume after smoothing : 𝑉𝑠𝑚 4,83 ∙ 10−3 2,74 ∙ 10−5 1,50 ∙ 10−4 1,09 ∙ 10−1 
Volume after reconstruction : 𝑉𝑟 4,21 ∙ 10−3 2,40 ∙ 10−5 1,40 ∙ 10−4 1,18 ∙ 10−1 
Ratio 𝑉𝑠ℎ 𝑉𝑟⁄  1,15 1,28 1,14 1,06 
Volume fraction prescription 8,0% 5,0% 10,0% 4,0% 

Volume fraction after smoothing 8,2% 4,6% 9,4% 3,6% 

Volume fraction after reconstruction 7,1% 4,0% 8,8% 3,9% 

Compliance of the structure (non-design material included) in 𝑱𝒐𝒖𝒍𝒆𝒔 
Global compliance : �̃� 9,60 ∙ 10−3 3,26 ∙ 10−6 1,68 ∙ 10−3 1100 
Effective compliance : 𝐶 5,46 ∙ 10−3 9,14 ∙ 10−7 5,97 ∙ 10−4 528 
Reconstructed compliance : 𝐶𝑟 8,80 ∙ 10−3 2,40 ∙ 10−6 7,45 ∙ 10−4 753 
Ratio 𝐶 𝐶𝑟⁄  0,62 0,40 0,80 0,70 

Table 1 : Summary of results. 

In the 4 cases presented, the rough optimized shape is well interpreted into a beam-like CAD 
solid design using our strategy. A look at values obtained for the ratio 𝑉𝑠ℎ 𝑉𝑟⁄  for each case, 
shows that reconstructed volumes are consistent with rough optimized design volumes. It can 
also be observed that there is a difference between 𝐶𝑟 and 𝐶. Indeed, since 𝐶 < 𝐶𝑟, reconstructed 
beam structures tend to be less stiff than rough optimized 3D results, which is not surprising. 
Indeed, the normalization approximates each branch of the optimized model as a straight beam 
with a constant mean circular section along its length when in fact, the optimized shape is, in 
general, neither straight nor circular, nor with constant section along its length. This adds to the 
fact that the real cross section shape of the beam can be stiffer than the simplistic circular shape, 
and that approximating a curve as a straight line results in a loss of length, which means in a loss 
of volume. Moreover, when connecting normalized skeletons with non-design material, mini-
beams are introduced only at a connection node, while it should be at the whole interface 
between the optimized and the non-design domains. This influences rigidity of the reconstructed 
structure. Furthermore, cross section calculation for each beam of curve skeletons (before 
normalization) considers skeletons as centered, which is not the case at junction and end points 
[42]. In fact, curve skeletons are generally not ideally generated at junction and end points. This 
affects cross-section computation and, by the way, compliance in each beam. Besides, one 
should not expect reconstructed and rough optimal structures to behave identically since one is 



made with straight uniform beams and the other with general 3D solid shapes that do not 
withstand stresses exactly in the same way. 

6 Stress-based design after SIMP optimization 

Considering the last example (L-Bracket) we introduce, in this section, a new strategy, based on 
adjusting SIMP volume fraction to fulfill maximum stress objectives (see Figure 26 below).  
Figure 25 shows distributions of  𝜎𝑥 maximum and minimum stress (cumulative of axial and 
bending stress components) along with that of τxy and τxz shear stress.  

 

Figure 25 : L-bracket with 𝑓 = 4%. Distribution of (a) maximum 𝜎𝑥 stress (b) minimum 𝜎𝑥 
stress (c) and (d) 𝜏𝑥𝑦 and 𝜏𝑥𝑧 shear stress (in 𝑁/𝑚2). 

Since these stress components are computed for beam elements, all stress components are 
expressed in beams local frames. For the L-Bracket with 4% volume fraction, maximum 𝜎𝑥 



stress is 79𝑀𝑃𝑎 while maximum shear stress is 7,9𝑀𝑃𝑎. Since, in this case, shear stress can be 
neglected with respect to axial and bending stress, von Mises stress 𝜎𝑉𝑀 is assimilated with 𝜎𝑥 
stress. Thus 𝜎𝑉𝑀 ≈ |𝜎𝑥|. Thus, maximum von Mises stress is considered as 𝜎𝑉𝑀𝑚𝑎𝑥 ≈ 79 𝑀𝑃𝑎 
since maximum 𝜎𝑥 stress is 75 𝑀𝑃𝑎 (see Figure 25a) and minimum 𝜎𝑥 stress is −79 𝑀𝑃𝑎 (see 
Figure 25b) which makes that maximum |𝜎𝑥| is 79 𝑀𝑃𝑎. Considering that yield stress is 𝑆𝑦 =
135 𝑀𝑃𝑎 (aluminum) and that targeted safety factor is  2, the allowable stress is 𝜎𝑎 = 𝑆𝑦 𝑆𝐹⁄ =

0,5 ∙ 135 = 67,5 𝑀𝑃𝑎. Thus, for this design, max von Mises stress obtained (79 𝑀𝑃𝑎) is too 
high since it exceeds allowable stress 𝜎𝑎 = 67,5 𝑀𝑃𝑎.  
From this result, two options can be considered to fulfill stress objective. The first option is using 
a classical beam structure optimization process (like the one presented in [5]) based on keeping 
the same structure topology and applying an optimization based on adjusting beam cross section 
properties (in this case radii of normalized beam cross sections) to fulfill stress objectives.  
In this paper, we introduce a second option, which consists in automatically adjusting SIMP 
volume fraction and re-applying the whole process to fulfill these stress objectives. This new 
iterative process is presented in Figure 26. In the case of the L-Bracket example, SIMP volume 
fraction is increased from 𝑓 = 4% to 𝑓2 = 5%.  

 

Figure 26 : Loop on the volume fraction based on stress results. 

For 𝑓2 = 5%, SIMP optimization converges after 27 iterations and compliance of the whole 
model obtained is �̃�2 = 784 𝐽𝑜𝑢𝑙𝑒𝑠 (compared to �̃� = 1100 𝐽𝑜𝑢𝑙𝑒𝑠 for 𝑓 = 4%). The optimal 
relative density distribution at the end of SIMP iterations and the raw optimized result (only 
tetrahedrons for which relative density 𝜌 ≥ 𝜌𝑡ℎ = 𝜌𝑡ℎ2 = 0,40 were considered) are respectively 
shown in Figure 27a-b. Volume at the end of the SIMP optimization, volume of the rough 
optimal design, volume of the smoothed optimal shape (non-design material excluded), and 
volume of the reconstructed beam geometry are respectively �̃�𝑜𝑝2 = 1,49 ∙ 10−1𝑚3, 𝑉𝑠ℎ2 =
1,59 ∙ 10−1𝑚3, 𝑉𝑠𝑚2 = 1,48 ∙ 10

−1𝑚3, and 𝑉𝑟2 = 1,52 ∙ 10
−1𝑚3. Compliance of the 

reconstructed beam-solid structure is 𝐶𝑟2 = 2 ∙ 𝑊𝑟2 = 569 𝐽𝑜𝑢𝑙𝑒𝑠 (compared with 𝐶𝑟 =



753 𝐽𝑜𝑢𝑙𝑒𝑠 for 𝑓 = 4%), and the compliance obtained after performing 3D FEA on the rough 
optimized model is 𝐶2 = 405 𝐽𝑜𝑢𝑙𝑒𝑠 (compared with  𝐶 = 528 𝐽𝑜𝑢𝑙𝑒𝑠 for 𝑓 = 4%).  
 

 

Figure 27 : L-bracket problem with 𝑓2 = 5%. (a) Relative density distribution after convergence 

of SIMP optimization (b) raw optimized shape. 

For comparison with results with 𝑓 = 4%, Figure 28 shows distributions of displacement and 
elementary strain energy. This figure shows that the displacement field reaches a maximum 
value 𝛿𝑏𝑟2 = 4,1 𝑚𝑚 , which can be compared with 𝛿𝑏𝑟 = 5,6 𝑚𝑚 for 𝑓 = 4%. 

 

Figure 28 : L-bracket problem with 𝑓2 = 5%. Mixed-dimensional FEA model with the 
distribution of (a) norm of displacement vector in 𝑚𝑚 (b) elementary strain energy in 𝐽𝑜𝑢𝑙𝑒𝑠. 



Figure 29 shows maximum and minimum 𝜎𝑥 stress distributions, which shows that maximum 
von Mises stress is 𝜎𝑉𝑀2𝑚𝑎𝑥 ≈ 66 𝑀𝑃𝑎 (compared with 𝜎𝑉𝑀𝑚𝑎𝑥 ≈ 79 𝑀𝑃𝑎 for 𝑓 = 4%). Since the 
allowable maximum von Mises stress is 𝜎𝑎 = 67,5 𝑀𝑃𝑎, 𝜎𝑉𝑀2𝑚𝑎𝑥 < 𝜎𝑎, which makes that stress 
objective is met with 𝑓 = 4%.  
 
It must be pointed out that, at this point of our research, this strategy for stress-based SIMP 
optimization is rather intuitive since increasing 𝑓 results in increasing material volume in the 
reconstructed structure which results in reducing stress. However, this result opens the path for 
further research work towards fully automating stress-based optimization.   
 

 

Figure 29 : L-bracket with 𝑓 = 5%. Distribution of (a) maximum 𝜎𝑥 stress (b) minimum 𝜎𝑥 
stress. 

7 Conclusion 

In this paper, we have proposed an automatic process for reconstructing straight beam structures 
from topology optimization (TO) results that tends to beam-like structures. The optimization 
process is based on the SIMP method and the model reconstruction strategy includes a curve 
skeletonization process. Curve skeletons are approximated as straight beams with basic 
geometric circular cross sections. A mixed-dimensional beam-solid finite element analysis 
(FEA) is conducted to validate the optimized model topology and geometry. This mixed-
dimensional FEA features mini-beams elements to couple beam and 3D solid elements. With our 
approach, we are able to automatically reconstruct rough optimized results into CAD designs, 
which are then easier to modify, to manipulate, and to manufacture. The proposed approach 
offers capabilities for fully integration of a TO method in the overall structural design procedure 
in 3D. Even if promising and applicable regardless the TO method used, the current method is, at 
this point of our research, limited to beam-like structures and to constant cross section beams. 
Therefore, reconstructing 3D structures made of standard beams with various cross section 



shapes is a natural potential extension of this work. Using alternative curve skeletonization 
techniques such as those suggested in [27] could also be investigated to improve efficiency of the 
approach. Also, further processing could be foreseen to improve the consistency of 
reconstruction results. As suggested in the result shown in Figure 30a (taken from Figure 15c), 
constraints could be applied in the process to improve consistency of the optimized structure and 
automatically generate the result shown in Figure 30b. For this example, 3 pairs of joints are 
merged and 2 groups of nearly aligned beams are merged into 2 straight beams. In this case, this 
is performed manually and automating this type of operations represents a very interesting 
extension of the work presented in this paper. The application of the reconstruction approach 
presented in this paper to other 3D TO methods, such as ESO, BESO, level sets, etc., or to 
adapted TO as proposed in [33] is another potential extension of this work. 

 

Figure 30 : Cantilever normalized skeleton (a) before and (b) after improvement. 
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