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Abstract:  1 

Purpose: The aim of this study was to evaluate the effects of lumbar muscle delayed-onset muscle 2 

soreness (DOMS) on the ability of the trunk muscles to reproduce different levels of force.  3 

Methods: Twenty healthy adults (10 males and 10 females) were recruited for this study. Force 4 

reproduction in trunk extension and flexion was assessed at 50 and 75% of participants’ maximal 5 

isometric voluntary contraction in flexion and extension before and after a lumbar muscle DOMS 6 

protocol. Trunk proprioception was evaluated and compared between these conditions using different 7 

variables such as constant errors (CE), absolute errors (AE), variable errors (VE) and time to peak force 8 

(TPF). For each variable, repeated measure ANOVAs were conducted.  9 

Results: AE were higher when participants had to reach the target post-DOMS protocol in extension 10 

compared to flexion and in presence of higher demand of force (p=0.02). For VE, results showed that 11 

participants were more variable in extension than in flexion when the required force was higher (p=0.04). 12 

CE variable was higher when participants had to reach the force target in extension compared to flexion 13 

under the effect of DOMS (p=0.02). Results also showed that participants took less time to reach the force 14 

target post-DOMS protocol in extension (0.62 ± 0.20 sec) and in flexion (0.53 ± 0.19 sec) than pre-DOMS 15 

protocol in extension (0.55 ± 0.15) and in flexion (0.50 ± 0.20) (p<0.001).  16 

Conclusion: Lumbar muscle DOMS affect trunk proprioception during force reproduction tasks 17 

especially in trunk extension and at higher force.  18 

Keys words: Delayed-onset muscle soreness, lumbar, sensorimotor control, pain, proprioception 19 
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List of abbreviations 27 

DOMS: Delayed-onset muscle soreness 28 

MVC: Maximum voluntary contraction 29 

IPAQ: International physical activity questionnaire 30 

CE: Constant error 31 

AE: Absolute error 32 

VE: Variable error 33 

TPF: Time to peak force 34 
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Introduction 57 
 58 

Delayed-onset muscle soreness (DOMS) can be defined as musculoskeletal pain and soreness and 59 

as a sensation of discomfort (Cleak and Eston 1992) that lasts for several days (Weerakkody et al. 2001) 60 

and that is induced by unusual intense exercises and/or eccentric contractions (Coudreuse et al. 2004; 61 

MacIntyre et al. 1995; Proske et al. 2003). The DOMS effects peak between 24 to 72 hours following 62 

those exercises and disappear progressively in three to five days (Cheung et al. 2003; Coudreuse et al. 63 

2004). DOMS is usually associated with inflammation and muscle damage and individuals presenting 64 

DOMS can experience muscle stiffness, pain and/or movement restrictions (Farias-Junior et al. 2019) and 65 

a decrease of maximal muscle strength (Abboud et al. 2019). Effects of DOMS on proprioception are 66 

characterized by a significant increase in errors in upper limb positioning and force reproduction tasks 67 

(Proske et al. 2003), suggesting that, when muscles become sore in the presence of DOMS or following 68 

paralysis, the motor command sent to muscles is not relevant to the desired outcome. Proprioception 69 

includes the sense of limb position and movement, and the sense of force and effort (Jerosch and Prymka 70 

1996). Proprioception can be evaluated by repositioning tasks and force reproduction tasks, which mainly 71 

assess conscious proprioception (Hagert 2010).    72 

Trunk proprioception in lumbar muscles as well as abdominal muscles can be altered in patients 73 

with chronic or recurrent low back pain (Hodges and Richardson 1999; Rausch Osthoff et al. 2015; Tong 74 

et al. 2017).  However, because of within- and between- patient variability in motor behaviour (van Dieen 75 

et al. 2017), drawing conclusion about the mechanism underlying proprioception alterations in this 76 

population is still challenging. Lumbar muscle DOMS is therefore a relevant experimental pain model 77 

because of its ability to recreate altered motor functions, such as a decrease in lumbar muscles strength 78 

and an increase of fear of pain (Abboud et al. 2019; Bishop et al. 2011), which are also observed in lumbar 79 

muscles of patients with chronic or recurrent non-specific low back pain (Hodges and Danneels 2019). 80 

Furthermore, using DOMS as a pain model may help clarify the mechanism underlying 81 

proprioception alterations in patients with low back pain. Therefore, the aim of this study was to evaluate, 82 

in a healthy adult population, the effects of lumbar muscle DOMS during different force reproduction 83 
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conditions. We hypothesized that trunk proprioception in the direction of extension will be more altered 84 

than in flexion and that this alteration will increase with higher force demand (della Volpe et al. 2006; 85 

Proske et al. 2003).  86 

 87 

Materials and Methods 88 

Study design 89 

We conducted a crossover study at the University [XXX] Laboratory. Recruitment and data 90 

collection were completed from May to July 2018. 91 

Participants 92 

Twenty healthy adults, 10 females and 10 males, were recruited among the university community 93 

and employees and by social medias. To be included in the study, participants had to be back pain free. If 94 

they have experienced recurrent back pain or occasional pain in the last six months, they were not allowed 95 

to participate in this study. Other exclusion criteria were health conditions such as neuromuscular 96 

diseases, uncontrolled hypertension and heart disease, or cancer. Pregnant women were also excluded. 97 

The study was approved by the University humans research ethics board (CER-18-245-07.10) and written 98 

informed consent was obtained from each participant before the beginning of the experiment. Participants 99 

were advised that they had the possibility to withdraw from the study at any moment. 100 

Experimental protocol 101 

The experimental protocol was divided into two sessions separated by 24 to 36 hours. The period 102 

between the first and the second session was based on a previous study showing that pain and soreness 103 

following a lumbar muscle DOMS protocol peaks between 24- and 36 hours (Abboud et al. 2019). In the 104 

first session, participants were asked to fill in one questionnaire. Then, isometric muscles trunk extension 105 

and flexion maximum voluntary contraction (MVC) and different force reproduction tasks were evaluated 106 

for each participant. Finally, participants were asked to perform the lumbar muscle DOMS protocol. In 107 
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the second session, trunk extension and flexion MVC and force reproduction tasks were assessed again. 108 

A timeline for clinical and physical outcome assessment is presented in Figure 1.  109 

 110 

[Insert figure 1. about here] 111 

 112 

Questionnaire 113 

To assess level of physical activity, participants were invited to complete the short version of the 114 

International Physical Activity Questionnaire (IPAQ). Reliability and validity of the IPAQ short form 115 

have been tested in over twelve countries (Craig et al. 2003). This questionnaire is composed of 9 items 116 

assessing the intensity of physical activity habits in the past week (Lee et al. 2011).  117 

Force reproduction tasks 118 

All force reproduction conditions were performed on an isokinetic device (The LIDO Active 119 

Loredan Biomedical, West Sacramento, CA). Participants were semi-seated in a neutral position and they 120 

were attached to the device with four belts (Figure 2). Neutral position was defined as natural spine curve, 121 

hip angle was ~135° and knees were in full extension to minimize the contribution of lower limbs muscles 122 

and to better isolate trunk muscles during the force reproduction tasks. In fact, it has been shown that the 123 

pelvic stabilization increases the recruitment of low back muscles and decreases the contribution of hip 124 

extensors during dynamic lumbar extensions (da Silva et al. 2009). One belt was placed over the chest, 125 

another one was over the upper abdomen and the last two were over the hips and on the thighs. At first, 126 

three MVC were realized for both flexion and extension. The highest value of MVC for flexion and 127 

extension was used for the force reproduction tasks. Participants were free to experiment flexion and 128 

extension on the isokinetic device to familiarize with the equipment before performing MVC. For the 129 

flexion MVC, participants were told to push as hard as they can for 5 seconds against a resistance located 130 

at the sternum. For the extension MVC, the middle of the resistance was placed on the eighth thoracic 131 

vertebra. Then, trunk force reproduction was assessed in four conditions: trunk flexion and extension at 132 
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50% and 75% of MVC. Each condition of the force reproduction task was conducted both with and 133 

without visual feedback. The condition’s order was randomized using computer random number generator 134 

(randomization.com) to minimize possible learning effects and residual muscle fatigue. Prior to recording 135 

the force reproduction task without visual feedback, practice trials within a 10% margin error of the target 136 

goal were allowed to each participant to get familiar with the task. Practice trials were stopped when 10 137 

consecutive trials were performed within the margin of error. Participants were then asked to reproduce 138 

10 trials of the same force level without visual feedback (Figure 3) and analyses were conducted 139 

considering these 10 repetitions without feedback. Participants were given a one-minute rest period 140 

between conditions to limit the occurrence of muscular fatigue. For all trials, participants were asked to 141 

provide a single impulse without correcting the force once the contraction was initiated. Participants were 142 

instructed to perform the task as quickly as possible.  143 

 144 

[Insert figures 2 and 3 about here] 145 

 146 

DOMS protocol 147 

First, participants completed three MVC in trunk extension on a 45-degrees Roman chair to 148 

evaluate lumbar extensors maximal strength (Figure 4; (Lariviere et al. 2011; Parreira et al. 2013). They 149 

had their trunk parallel to the floor in a prone position and were asked to push as hard as possible against 150 

a belt installed over the participant’s shoulders. A load cell (Model IPM250; Futek Advanced Sensor 151 

Technology Inc, Irvine, CA, USA) was connected to the belt and gave indications about peak torque in 152 

trunk extension. The highest MVC value was used to determine a 10% external weight which was used 153 

for the entire endurance DOMS protocol. Then, participants were invited to complete the DOMS protocol 154 

that targeted low back muscles. The lumbar muscle endurance DOMS protocol was performed on the 45-155 

degrees Roman chair in the same position used to establish MVC. In fact, participants initiated the DOMS 156 

protocol in a horizontal position with their trunk parallel to the ground. This protocol consisted of 5 sets 157 

of 20 repetitions of trunk flexion-extension with the 10% external weight in the hands and with two 158 
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minutes of rest between each set. A repetition consisted of (1) three seconds 30-degrees trunk flexion 159 

from horizontal (2) three seconds of isometric contraction and (3) one-second trunk extension starting 160 

from the flexion position to 30-degrees trunk extension from the horizontal (head, trunk and lower limbs 161 

needed to be in a neutral alignment). There were two indicators placed to help participants to complete 162 

the task adequately: one at 30-degrees trunk extension position and one at 30-degrees of trunk flexion. 163 

Participants hips and ankles were stabilized using straps to minimize pelvic tilt movements, which could 164 

limit the contribution of muscle groups other than paraspinal muscles during the DOMS protocol. A visual 165 

and auditory feedback was provided for participants during the protocol to help them following the tempo 166 

(3-3-1). Participants were motivated by verbal encouragements given by the assessors. The validation of 167 

the DOMS protocol was performed in a previous study (Abboud et al. 2019). 168 

 169 

[Insert figures 4 about here] 170 

 171 

Pain and Soreness Assessment 172 

Lumbar muscle pain and soreness were assessed via text messages or emails sent to participants 173 

immediately following the first session (DOMS protocol). Text messages or emails were sent by one 174 

evaluator and this evaluator was not implicated neither in the lumbar muscle DOMS protocol and in force 175 

reproduction tasks. This evaluator was also naïve to expected results of the study. Data collection was 176 

completed over five consecutive days, three times a day. Participants received the message at 9 am, 3 pm 177 

and 9 pm (Figure 1). Participants were asked to rate the intensity of both lumbar muscle pain and lumbar 178 

muscle soreness using a 0-10-point scale. They were also asked to report any other side effects while 179 

answering daily text messages. During these five days, participants were asked to avoid any high intensity 180 

or unusual exercise or medication aiming to reduce pain or soreness. Based on the pain and soreness 181 

scores of each participant, the time it takes to higher level of pain and soreness were computed using the 182 

average time until the occurrence of the highest pain and soreness scores. 183 
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Dependent Variables 184 

Constant error (CE), absolute error (AE), variable error (VE) and time to peak force (TPF) were 185 

calculated and compared between each condition (50% and 75% in extension and flexion) and each 186 

session (pre-DOMS and post-DOMS). These four variables are commonly used to assess trunk 187 

proprioception (Abboud et al. 2018; Boucher et al. 2015; Lee et al. 2010; McNair and Heine 1999). CE 188 

was the positive or the negative difference between the force value deployed by participants and the 189 

targeted force identified based on 50 or 75% of participants’ MVC in extension or in flexion. AE was the 190 

absolute difference between the force value deployed by participants to reach the target and the force 191 

identified as the target. VE was defined by the peak force reach consistency compared with the average 192 

score of participants. TPF represented the time needed by participants to reach the force target. 193 

Statistical Analysis 194 

Analyses were performed using STATISTICA statistical package version 10 (Statsoft, Tulsa, 195 

OK), and the level of significance was set at p ≤0.05. Normality of distribution was assessed with the 196 

Kolmogorov–Smirnov test and by visual inspection. A mixed model three-way repeated measure 197 

ANOVAs were conducted to assess for each dependent variable: (1) the direction effect (flexion versus 198 

extension); (2) the force intensity effect (50 versus 75% MVC); (3) the DOMS effect (pre- versus post-199 

DOMS); and (4) all the interaction effects. When necessary, the Tukey post-hoc test was performed as 200 

the post-hoc analysis for pairwise comparisons. Effects size of significant difference were calculated using 201 

partial eta-squared (0.01 = small effect; 0.06 = medium effect; 0.14 = large effect). 202 

 203 

Results 204 

Baseline demographics 205 

Twenty participants (10 females and 10 males) were included in the study and completed the 206 

protocol. Mean scores and standard deviation were calculated for all clinical and physical outcomes and 207 

are presented in Table 1. All participants experienced pain and/or soreness in the lumbar muscles. The 208 
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highest pain values were observed approximately 20 hours following the DOMS protocol, while the 209 

highest soreness values occurred after 30 hours. Immediately after DOMS protocol, 2 participants 210 

reported a light hyperalgesia in the thigh lasting 2 days due to the contact pressure point on the inclined 211 

Roman bench. 212 

 213 

[Insert table 1. about here] 214 

 215 

Force reproduction task 216 

Dependent variable means and standard deviations for each condition during pre-DOMS and post-217 

DOMS protocol are presented in Table 2. ANOVAs results showed significantly higher values for all 218 

dependent variables (CE, AE, VE and TPF) in extension when compared to flexion (all ps≤0.01; Table 3 219 

and Figure 5). Moreover, a significant DOMS X Direction X Force interaction was found for AE (p=0.02) 220 

as illustrated in Figure 6. Results from the post-hoc test showed significantly higher AE value in extension 221 

post-DOMS in comparison to flexion post-DOMS protocol at 50% (p=0.046) and 75% (p=0.01). Results 222 

also showed a significant influence of force intensities (50% versus 75%), with higher value at 75% MVC 223 

for AE (p=0.03) and VE (p=0.04). A significant decrease was shown in TPF (p<0.001) between pre- and 224 

post-DOMS protocol. There was also a significant main effect of direction (extension versus flexion; 225 

p=0.01) showing that participants were poorer in extension than in flexion to reproduce the task. A 226 

significant Direction X Force intensity interaction effect for VE variable was also found (p=0.04) and 227 

Tukey post-hoc revealed that participants were more variable at 75% than at 50% in extension for VE 228 

(p≤0.003) but not in flexion (p=0.74). Tukey post-hoc also showed that they were more variable in 229 

extension than in flexion for both forces (p=0.02 at 50% and p≤0.001 at 75%). Another significant 230 

Direction X DOMS interaction effect for the CE variable was observed (p=0.02). Tukey post-hoc showed 231 

that CE was higher in extension compared to flexion post-DOMS protocol (p≤0.001). Post-hoc also 232 

showed that CE increased in extension post-DOMS protocol compared to flexion post-DOMS protocol 233 

(p=0.03). All other results were not statistically significant (Table 3).  234 
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 235 

[Insert tables 2 and 3 about here] 236 

 237 
[Insert figures 5 and 6 about here] 238 

 239 

Discussion 240 

The objective of the present study was to evaluate the effect of lumbar muscle DOMS on trunk 241 

proprioception during different force reproduction tasks in a healthy adult population. Our hypothesis was 242 

that trunk proprioception in the direction of extension would be more altered than in flexion and that this 243 

alteration would increase with higher force demand. Results showed that participants (1) were more 244 

variable to reproduce forces (VE) in extension than in flexion regardless of the presence of lumbar muscle 245 

DOMS; (2) larger force production errors occurred for the higher level of force and more variability in 246 

the produced force was present in extension than in flexion; (3) under the influence of DOMS the 247 

performance to reach the force target in trunk extension was altered, while it remained unchanged in trunk 248 

flexion; (4) participants were faster in the force reproduction tasks under the influence of lumbar muscle 249 

DOMS.  250 

Trunk Proprioception 251 

Across all conditions, force production was observed to be more accurate in flexion compared to 252 

extension. Such difference between extension and flexion movement accuracy can be explained by the 253 

fact that participants generated higher MVC contractions in trunk extension than in flexion, leading to 254 

higher target forces in extension during the force reproduction protocol (more than 2 times higher). In line 255 

with this observation, results of the current study also showed differences between force accuracy at 50% 256 

and 75% of MVC for both trunk flexion and extension tasks. Participants were more accurate during the 257 

execution of force reproduction task at 50% of MVC than to during those performed at 75% of MVC. 258 

These results taken together suggest that force variability increases as the target force increases. It has 259 
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been previously shown that, force variability increases linearly with force at moderate levels of force 260 

(Sherwood and A. Schmidt 1980).  261 

DOMS and Trunk Proprioception 262 

Trunk proprioception was altered under the influence of lumbar muscle DOMS, with the 263 

observation of higher AE and CE values in trunk extension in comparison to flexion. These findings 264 

suggest that DOMS had a direct impact on the proprioception of muscles that have undergone eccentric 265 

contractions, while the proprioception of the unaffected muscles (trunk flexors) remained unchanged. 266 

Even if not directly assessed in the current study, these observations support the recent views regarding 267 

the important contribution of peripheral sensory information in the production of force (Luu et al. 2011; 268 

Scotland et al. 2014) and expand it to axial muscles. A recent study showed that, in healthy individuals 269 

under the influence of experimental low back pain triggered by a combination of DOMS and hypertonic 270 

saline solution, the increase in trunk extensor muscle activity was not accompanied by an increase in trunk 271 

flexor muscle activity during postural perturbations (Larsen et al. 2017). These previous results along 272 

with those of the present study suggest that minimal or no change in the control of the trunk flexor muscles 273 

are necessary to achieve a desired motor outcome, such as trunk proprioception or postural control 274 

(Bartlett et al. 2007).   275 

However, VE variable was not affected by lumbar muscle DOMS. Such lack of DOMS effect on 276 

VE could partially be explained by the participants’ overall level of physical activity. Participants were 277 

considered moderately (at least 600 MET-min/week) to highly (3000 MET-min/week) active with a mean 278 

score of 2.7 on the short form of the IPAQ questionnaire. It has been proposed that a higher level of motor 279 

variability that is functionally related to the task is present in individuals that are physically active which 280 

could favour motor performance while limiting the occurrence of muscle fatigue (Bartlett et al. 2007; 281 

Robins et al. 2006). It can be hypothesized that under the influence of lumbar muscle DOMS, participants 282 

were able to find a new strategy, such as variation in muscle activity, to perform the desired task. This 283 

should be addressed in future research to better understand the effect of DOMS in the lumbar region. 284 
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Future studies should also consider exploring the relation between trunk proprioception under DOMS 285 

effects and physical activity by including individuals from each active group (sedentary to very active). 286 

Difference and Similarities Between DOMS and Low Back Pain 287 

As expected, the present results showed that the DOMS protocol induced experimental low back 288 

pain and soreness, which is consistent with previous studies (Abboud et al. 2019; Cheung et al. 2003). 289 

The presence of DOMS was confirmed by lumbar pain and soreness values of 2.8 and 3.8 respectively, 290 

which represent mild pain intensity and moderate soreness intensity. 291 

DOMS has been used as a relevant pain model, which is able to reproduce alteration usually 292 

present in patients with chronic or recurrent low back pain (Abboud et al. 2019; Bishop et al. 2011). As 293 

shown in the present study, mild to moderate pain and soreness in addition to the decrease of 294 

proprioception are features of DOMS, which are similar to characteristics also found in chronic or 295 

recurrent patients with low back pain. DOMS has been associated with a decrease of muscle strength, 296 

muscle power and range of motion due to micro muscle damage (Cheung et al. 2003; Mizumura and 297 

Taguchi 2016). These muscle damages can create temporary muscles dysfunctions and perceptions 298 

(location in the space and/or strength)  and, in the same way, affect performance (Larsen et al. 2017; 299 

Paschalis et al. 2007; Pearcey et al. 2015) such as precision of movement (decrease of joint range of 300 

motion) and proprioception (Vila-Chã et al. 2011), which can affect the recruitment patterns (Larsen et 301 

al. 2017; Pearcey et al. 2015; Vila-Chã et al. 2011). Alteration in trunk proprioception, such as increase 302 

of errors in reproduction force task, has been also observed in patients with chronic low back pain 303 

(Descarreaux et al. 2007).   304 

In the present study, a significant difference in TPF for both flexion and extension tasks were 305 

observed between the pre- and post-DOMS protocol. It was recently reported that movements associated 306 

with pain are performed faster compared to movements without pain (Karos et al. 2017). Even if 307 

participants were statistically faster in pre-DOMS condition, it should be noted that differences between 308 

TPF pre- and post-DOMS protocol varied from 30 to 60 milliseconds in flexion and varied from 60 to 70 309 
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milliseconds in extension. In a previous study, participants had to reproduce 50% and 75% of their MVC 310 

in flexion and in extension in an isometric condition with their eyes closed. The authors showed that 311 

patients with chronic low back pain took ~120 milliseconds longer than the healthy group to reach the 312 

force target (Descarreaux et al. 2007). Therefore, it remains unknown if changes in TPF should be 313 

considered as relevant functional changes for patients with chronic or recurrent low back pain as healthy 314 

participants post-DOMS protocol. Theories of short-term pain adaptations propose that changes in the 315 

motor system are related to a protection mechanism, while in the long-term this adaptive behaviour may 316 

lead to further problems (Hodges and Tucker 2011; van Dieen et al. 2017). Another explanation for the 317 

difference between DOMS and clinical low back pain effects on TPF is the fact that participants in the 318 

current study were moderately to highly active, while the group of patients with chronic low back pain in 319 

Descarreaux et al., (2007) study were considered as moderately disabled.  320 

Limitations and Future Recommendations 321 

Participants were mostly young adults moderately to highly physically active, which could have 322 

minimized the effect of DOMS. However, they reported levels of back muscle pain and soreness similar 323 

to other studies using similar protocol to induce lumbar muscle DOMS (Abboud et al. 2019; Hjortskov et 324 

al. 2005), which suggest the occurrence of DOMS in the lumbar muscles. Having a small group of 325 

participants with similar characteristics can limit the generalization which may lead to an overestimation 326 

of the current results. However, most of the differences of the current results were highly significant 327 

(p=0.02 to p<0.001). Adaptations in the muscle recruitment strategy could have occurred under the 328 

influence of DOMS to perform the task, as observed in patients with chronic low back pain (Abboud et 329 

al. 2019; Falla et al. 2014). In addition, even if there is a rest time between force reproduction task and 330 

that force reproduction tasks were randomized, it was impossible to ensure that participants did not have 331 

residual fatigue during the experimentation. Future studies should assess lumbar muscle recruitment 332 

strategies under the influence of lumbar muscle DOMS to confirm this theory. Future studies also should 333 

assess sex-comparison to evaluate if there is differences in strategies used during force reproduction tasks.  334 
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 335 

Conclusion 336 

Lumbar muscle DOMS affect lumbar muscles proprioception during force reproduction tasks 337 

especially in extension at higher level of force, while this performance was unchanged in trunk flexion. 338 

This study suggests that lumbar muscles proprioception in lumbar muscles has been altered in muscles 339 

that have been directly affected by the DOMS effects, supporting the important contribution of the 340 

peripheral sensory systems in force reproduction. DOMS represent a relevant pain model to better 341 

understand function alterations and pain mechanisms present in complex anatomical systems such as the 342 

trunk in patients with chronic and recurrent low back pain.  343 

 344 

  345 
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Table 1: Participant’s results on clinical and physical outcomes 

 

 

 

 

 

 

 

 

 

 

 

 
F: female, M: Male, BMI: Body Masse Index, IPAQ-SF: International Physical Activity (short-form), 
MVC: Maximal Voluntary Contraction, DOMS: Delayed onset muscle soreness 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Outcomes Experimental Group 
(n=20) 

Mean ± SD 
Demographics Age (years) 25.5 ± 5.2 

F : M 10 : 10 
Weight (kg) 69.6 ± 14.6 
Height (m) 1.7 ± 0.1 

BMI (kg/m2) 23.3 ± 2.7 
IPAQ-SF 2.7 ± 0.5 

Pain Peak intensity (/10) 2.75 ± 2.27 
Days with pain 1.65 ± 1.27 

Soreness Peak intensity (/10) 3.80 ± 2.35 
Days with soreness 2.10 ± 0.91 

MCV  Extension pre-DOMS (Nm) 174.89 ± 78.12 
Extension post-DOM (Nm) 178.53 ± 89.14 
Flexion pre-DOMS (Nm) 79.60 ± 34.03 
Flexion post-DOMS (Nm) 86.18 ± 33.88 
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Table 2: Means of errors and time to peak for pre- and post-DOMS in flexion and extension 

 

 Flexion Extension 

 Pre-DOMS Post-DOMS Pre-DOMS Post-DOMS 

50% force 

 Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

CE (Nm) 0.78 ± 11.09 -4.92 ± 5.78 4.80 ± 7.14 9.46 ± 15.28 

AE (Nm) 8.07 ± 7.82 6.63 ± 4.13 8.15 ± 5.67 13.95 ± 12.01 

VE (Nm) 4.04 ± 2.07 4.07 ± 2.25 6.81 ± 4.49 6.05 ± 2.86 

TPF (sec) 0.54 ± 0.16 0.48 ± 0.14 0.62 ± 0.15 0.56 ± 0.10 

75% force 

CE (Nm) 2.47 ± 6.50 -2.15 ± 11.15 6.05 ± 24.20 11.97 ± 20.13 

AE (Nm) 6.23 ± 4.53 9.71 ± 6.31 18.22 ± 17.07 18.35 ± 14.49 

VE (Nm) 4.42 ± 5.53 5.15 ± 2.86 9.80 ± 7.53 9.06 ± 6.83 

TPF (sec) 0.53 ± 0.19 0.50 ± 0.20 0.62 ± 0.20 0.55 ± 0.15 

CE: constant error, AE: absolute error, VE: variable error, TPF: time to peak force, SD: standard 
deviation, DOMS: Delayed onset muscle soreness 
 
 
 
 Table 3: Statistical analysis for each dependent variable 

CE: constant error, AE: absolute error, VE: variable error, TPF: time to peak force, SD: standard 
deviation, *significant p values based on ANOVA 
 

 

 Direction 
(Di) 

Force (F) DOMS (Do) Di x F Di x Do F x Do Di x F x Do 

CE F=10.75 F=1.32 F=0.001 F=0.003 F=6.32 F=0.22 F=0.0005 
*p≤0.001 
ηp2=0.36 

p=0.26 p=0.97 p=0.95 *p=0.02 
ηp2=0.25 

p=0.64 p=0.98 

AE F=26.96 F=5.61 F=3.17 F=2.76 F=0.57 F=0.02 F=6.18 
*p≤0.001 
ηp2=0.59 

*p=0.03 
ηp2=0.23 

p=0.09 p=0.11 p=0.46 p=0.88 *p=0.02 
ηp2=0.25 

VE F=23.82 F=4.92 F=0.29 F=5.00 F=1.84 F=0.18 F=0.48 
*p≤0.001 
ηp2=0.56 

*p=0.04 
ηp2=0.21 

p=0.59 *p=0.04 
ηp2=0.21 

p=0.19 p=0.67 
 

p=0.50 

TPF F=8.00 F=0.004 F=11.38 F=0.22 F=0.14 F=0.52 F=0.97 
*p=0.01 
ηp2 =0.30 

p=0.95 *p≤0.001 
ηp2 =0.37 

p=0.64 p=0.71 p=0.48 p=0.34 
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Figure captions 

 

Fig. 1. Timeline for clinical and physical outcomes. 

DOMS: delayed-onset muscle soreness, MVC: maximum voluntary contraction. 

 

Fig. 2.  Position of participants on lido for trunk strength reproduction task. 

 

Fig. 3. Example of steps of the force reproduction task. 

 

Fig. 4. Position of participants on the 45 degrees Romain chair during the lumbar muscle DOMS 
protocol. 

 

Fig. 5. Direction effect (extension vs flexion) for each dependent variable (CE, AE, VE and TPF). 

CE: constant error, AE: absolute error, VE: variable error, TP: time to peak, bars indicate standard 
deviation. 

 

Fig. 6. ANOVA for interaction between direction, force and DOMS for the AE. 

Bars indicate standard errors. 
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