UNIVERSITÉ DU QUÉBEC

MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES

COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN SCIENCES DE L'ENVIRONNEMENT

PAR ANTHONY POTHIER CHAMPAGNE

COMPARAISON DE L'INFLUENCE DES INTENSITÉS DES ÉPISODES EL NIÑO ET LA NIÑA SUR LES CARACTÉRISTIQUES DES DÉBITS JOURNALIERS EN HIVER ET AU PRINTEMPS AU QUÉBEC MÉRIDIONAL

Université du Québec à Trois-Rivières Service de la bibliothèque

Avertissement

L'auteur de ce mémoire ou de cette thèse a autorisé l'Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse.

Cette diffusion n'entraîne pas une renonciation de la part de l'auteur à ses droits de propriété intellectuelle, incluant le droit d'auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d'une partie importante de ce mémoire ou de cette thèse requiert son autorisation.

REMERCIEMENTS

Je tiens à remercier mon directeur de maîtrise, M. Ali A. Assani, professeur au Département des sciences de l'environnement de l'Université du Québec à Trois-Rivières, de m'avoir offert ce projet de recherche et de m'avoir permis, du fait même, de poursuivre mes études aux cycles supérieurs. Je le remercie aussi pour ses conseils et son support tout au long du projet.

Je remercie également mon codirecteur, M. Christophe Kinnard, professeur au Département des sciences de l'environnement de l'Université du Québec à Trois-Rivières, pour ses conseils, son support et ses suggestions depuis le début du projet.

Finalement, je remercie messieurs Guy Samson, professeur au Département des sciences de l'environnement de l'Université du Québec à Trois-Rivières et Jean-François Quessy, professeur au Département de mathématiques et d'informatique de l'Université du Québec à Trois-Rivières d'avoir accepté de siéger sur mon comité d'orientation et d'évaluer ce travail.

RÉSUMÉ

L'oscillation australe est l'un des phénomènes climatiques causant le plus de variabilité interannuelle au niveau des précipitations et des températures dans le monde. En modifiant les régimes de ces variables hydroclimatiques, ce phénomène a également un impact sur les débits de plusieurs grands cours d'eau à travers le monde. Cela s'observe aussi au Canada. Au Québec, peu d'études se sont intéressées à l'effet des épisodes El Niño et La Niña sur les débits à l'échelle saisonnière. Ces quelques études concluent qu'il n'y a que peu ou pas d'effet, et ce, bien que l'oscillation australe induise bel et bien des anomalies au niveau des précipitations et des températures au Québec. Cela peut s'expliquer par le fait que leurs auteurs ont considéré l'ensemble des épisodes sans distinction selon l'intensité. En effet, dû à l'éloignement du Québec de la côte Ouest sud-américaine, il est probable que seulement l'effet des épisodes de plus forte intensité puisse avoir un impact sur nos cours d'eau. Il est peut-être pertinent d'émettre l'hypothèse que le signal des épisodes de plus forte intensité pourrait être masqué par les épisodes de moindre intensité.

Nous avons donc sélectionné 17 rivières du Québec méridional dont les données de débit sont disponibles depuis 1950 et qui sont peu ou pas affectées par l'activité anthropique. À partir de cet échantillonnage et des données recueillies sur les sites internet du Centre d'expertise hydrique du Québec (CEHQ) et de la National Oceanic and Atmospheric Administration (NOAA), nous avons calculé sept variables hydrologiques qui définissent trois caractéristiques fondamentales des débits pour chacune de ces 17 rivières, et ce, tant à l'hiver qu'au printemps. Pour quantifier l'intensité des épisodes El Niño et La Niña, nous avons utilisé l'Oceanic Niño Index (ONI). Nous avons par la suite classé les épisodes El Niño et La Niña selon leur intensité. Dans un premier temps, nous avons testé la relation entre l'indice ONI et les sept variables hydrologiques pour l'ensemble des années grâce à des analyses de corrélation simple pour chacune des rivières et toujours pour les deux saisons. Ensuite, nous avons répété cette analyse en utilisant seulement les épisodes El Niño et La Niña séparément. Finalement, nous avons discriminé les épisodes de faible intensité.

À la lumière des résultats obtenus, il est démontré un lien entre les épisodes El Niño et La Niña de forte intensité et les débits printaniers et hivernaux au Québec méridional. C'est avec les épisodes El Niño qu'on obtient les meilleurs résultats. La méthode classique, qui ne distingue pas les phases de l'oscillation australe ou encore leur intensité, masque donc plus l'effet des épisodes El Niño que l'effet des épisodes La Niña. Lors des épisodes El Niño, on note une hausse des magnitudes moyennes, maximales et minimales en plus de la variabilité des débits tant à l'hiver qu'au printemps. On observe aussi que les débits maximums surviennent plus tard à l'hiver et plus tôt au printemps. Quant aux débits minimums, ceux-ci sont plus hâtifs à l'hiver et plus tardifs au printemps. Ceci pourrait s'expliquer par le fait que les épisodes El Niño provoquent des hivers plus chauds et plus pluvieux. Pour les épisodes La Niña, les effets se concentrent au printemps. La magnitude des débits moyens et minimums augmente alors que la variabilité diminue. Cela pourrait s'expliquer par des hivers plus froids et plus neigeux.

TABLE DES MATIÈRES

REN	MERCI	EMENTS	ii
RÉS	SUMÉ		iii
LIS	TE DE	S TABLEAUX	vii
LIS	TE DE	S FIGURES	xiii
	APITR		
PRÉ	SENT	ATION DU PROJET	1
1.1	Mise	en contexte	1
1.2	État d	es connaissances	3
	1.2.1	Origine de l'oscillation australe	3
	1.2.2	Effets de l'OA sur les variables hydroclimatiques	7
	1.2.3	Effets de l'oscillation australe sur les débits	15
	1.2.4	Effets de l'oscillation australe au Québec	20
	1.2.5	Variabilité spatiale de l'intensité de la relation entre les épisodes de l'OA et les variables hydroclimatiques	22
1.3	Problé	Ematique	25
1.4	Objec	tifs et hypothèses	27
	APITRI THODO	E II OLOGIE	29
2.1		cation du choix des rivières à l'étude	29
2.2		itution des séries statistiques des débits	31
	2.2.1	Définition des variables hydrologiques liées à la caractéristique	
		magnitude	32
	2.2.2	Définition des variables hydrologiques liées à la période d'occurrence.	33
	2.2.3	Définition des variables hydrologiques liées à la caractéristique variabilité de l'écoulement	33
2.3	Consti	tution des séries statistiques de l'oscillation australe (OA)	33
2.4	Séries	des épisodes El Niño et La Niña	35
	241	Série complète	35

		Séries de l'ensemble des épisodes El Niño et La Niña en fonction de différentes intensités	35
	2.4.3	Séries des épisodes d'El Niño et La Niña les plus intenses	36
2.5	Analy	ses statistiques	37
CO! SUR	R LES	E III AISON DE L'INFLUENCE DES INDICES OCÉANIQUES NIÑO CARACTÉRISTIQUES DES DÉBITS EN HIVER ET AU PS	38
3.1		on entre les débits moyens journaliers saisonniers et les indices iques Niño	38
3.2		on entre les débits maximums journaliers saisonniers et les indices iques Niño	39
3.3		on entre les périodes d'occurrence des débits maximums journaliers niers et les indices océaniques Niño	41
3.4		on entre les débits minimums journaliers saisonniers et les indices iques Niño	42
3.5		on entre les périodes d'occurrence des débits minimums journaliers niers et les indices océaniques Niño	43
3.6		on entre les indices de variabilité de l'écoulement et les indices	
	océan	iques Niño	45
CON EL I AU 1	APITRI MPARA NIÑO S PRINT	E IV AISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES SUR LES CARACTÉRISTIQUES DES DÉBITS EN HIVER ET EMPS	48
CON EL I AU 1	APITRI MPARA NIÑO S PRINT Analy	E IV AISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES BUR LES CARACTÉRISTIQUES DES DÉBITS EN HIVER ET EMPS se de l'influence des épisodes El Niño d'intensité faible à très forte	48
CON EL I	APITRI MPARA NIÑO S PRINT	E IV AISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES BUR LES CARACTÉRISTIQUES DES DÉBITS EN HIVER ET EMPS se de l'influence des épisodes El Niño d'intensité faible à très forte	48 48
CON EL I AU 1	APITRI MPARA NIÑO S PRINT Analy	E IV AISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES BUR LES CARACTÉRISTIQUES DES DÉBITS EN HIVER ET EMPS se de l'influence des épisodes El Niño d'intensité faible à très forte Relation entre les débits moyens journaliers saisonniers et les épisodes	48 48
CON EL I AU 1	APITRI MPARA NIÑO S PRINT Analy 4.1.1	E IV AISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES SUR LES CARACTÉRISTIQUES DES DÉBITS EN HIVER ET EMPS se de l'influence des épisodes El Niño d'intensité faible à très forte Relation entre les débits moyens journaliers saisonniers et les épisodes d'El Niño d'intensité faible à très forte Relation entre les débits maximums journaliers saisonniers et	48 48 48 51
CON EL I AU 1	APITRI MPARA NIÑO S PRINT Analy 4.1.1	AISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES SUR LES CARACTÉRISTIQUES DES DÉBITS EN HIVER ET EMPS	48 48
CON EL I AU 1	APITRI MPARA NIÑO S PRINT Analy 4.1.1 4.1.2	AISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES SUR LES CARACTÉRISTIQUES DES DÉBITS EN HIVER ET EMPS se de l'influence des épisodes El Niño d'intensité faible à très forte Relation entre les débits moyens journaliers saisonniers et les épisodes d'El Niño d'intensité faible à très forte Relation entre les débits maximums journaliers saisonniers et les épisodes d'El Niño d'intensité faible à très forte Relation entre les périodes d'occurrence des débits maximums journaliers saisonniers et les épisodes d'El Niño d'intensité faible à très forte	48 48 48 51
CON EL I AU 1	APITRI MPARA NIÑO S PRINT Analy 4.1.1 4.1.2 4.1.3	AISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES BUR LES CARACTÉRISTIQUES DES DÉBITS EN HIVER ET EMPS	48 48 48 51 54

4.2	Analy	se de l'influence des épisodes El Niño d'intensité modérée à très forte
	4.2.1	Relation entre les débits moyens journaliers et les épisodes El Niño d'intensité modérée à très forte
	4.2.2	Relation entre les débits maximums journaliers et les épisodes El Niño d'intensité modérée à très forte
	4.2.3	Relation entre les périodes d'occurrence des débits maximums journaliers et les épisodes El Niño d'intensité modérée à très forte
	4.2.4	Relation entre les débits minimums journaliers et les épisodes El Niño d'intensité modérée à très forte
	4.2.5	Relation entre les périodes d'occurrence des débits minimums journaliers et les épisodes El Niño d'intensité modérée à très forte
	4.2.6	Relation entre les indices de la variabilité d'écoulement et les épisodes El Niño d'intensité modérée à très forte
CON DE	LA	AISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES NIÑA SUR LES CARACTÉRISTIQUES DES DÉBITS JERS EN HIVER ET AU PRINTEMPS
5.1	Analy	se de l'influence des épisodes de La Niña d'intensité faible à forte
	5.1.1	Relation entre les débits moyens journaliers saisonniers et les épisodes de La Niña d'intensité faible à forte
	5.1.2	Relation entre les débits maximums journaliers saisonniers et les épisodes de La Niña d'intensité faible à forte
	5.1.3	Relation entre les périodes d'occurrence des débits maximums journaliers saisonniers et les épisodes de La Niña d'intensité faible à forte
	5.1.4	Relation entre les débits minimums journaliers saisonniers et les épisodes de La Niña d'intensité faible à forte
	5.1.5	Relation entre les périodes d'occurrence des débits minimums journaliers saisonniers et les épisodes de La Niña d'intensité faible à forte
	5.1.6	Relation entre les indices de variabilité de l'écoulement et les épisodes de La Niña d'intensité faible à forte
5.2	Analy	se de l'influence des épisodes de La Niña d'intensité modérée à forte
	5.2.1	Relation entre les débits moyens journaliers saisonniers et les épisodes de La Niña d'intensité modérée à forte
	5.2.2	Relation entre les débits maximums journaliers saisonniers et les épisodes de La Niña d'intensité modérée à forte

	5.2.3	Relation entre les périodes d'occurrence des débits maximums journaliers saisonniers et les épisodes de La Niña d'intensité modérée	
		à forte	103
	5.2.4	Relation entre les débits minimums journaliers saisonniers et les épisodes de La Niña d'intensité modérée à forte	106
	5.2.5	Relation entre la période d'occurrence des débits minimums journaliers saisonniers et les épisodes de La Niña d'intensité modérée à forte	109
	5.2.6	Relation entre les indices de la variabilité de l'écoulement et les épisodes de La Niña d'intensité modérée à forte	111
	APITRI ITHÈSI	E VI E DES RÉSULTATS ET DISCUSSION	116
6.1	Comp	araison des séries	117
	•		117
6.2		araison de l'influence de degrés d'intensité des épisodes El Niño et	118
6.3		araison de l'influence des épisodes El Niño et La Niña en fonction des saisonniers d'ONI et des caractéristiques des débits journaliers	120
6.4	Influe	nce des saisons	123
6.5	Influe	nce des régions hydroclimatiques	123
6.6		se de la nature de l'influence des épisodes El Niño et La Niña sur ractéristiques des débits journaliers	126
	APITRI NCLUS	E VII ION	131
KIK	1.10)(\$R	APHIF	134

LISTE DES TABLEAUX

Tableau		Page
1.1	Effet d'El Niño sur les précipitations mondiales	9
1.2	Effet d'El Niño sur les températures mondiales	12
1.3	Analyse de corrélation entre les indices climatiques et les débits annuels canadiens (Coulibaly et Burn, 2004)	24
2.1	Rivières à l'étude	30
2.2	Classification des épisodes El Niño et La Niña en fonction de leur intensité	36
2.3	Nombre d'épisodes par séries de 1950 à 2017	37
3.1	Coefficients de corrélation calculés entre les débits moyens journaliers saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017	39
3.2	Coefficients de corrélation calculés entre les débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017	40
3.3	Coefficients de corrélation calculés entre les périodes d'occurrence des débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017	42
3.4	Coefficients de corrélation calculés entre les débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017	43
3.5	Coefficients de corrélation calculés entre les périodes d'occurrence des débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017	44
3.6	Coefficients de corrélation calculés entre les coefficients de variation saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017	46
3.7	Coefficients de corrélation calculés entre les coefficients d'immodération saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017	47

4.1	Coefficients de corrélation calculés entre les débits moyens journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017	49
4.2	Coefficients de corrélation calculés entre les débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017	52
4.3	Coefficients de corrélation calculés entre les périodes d'occurrence des débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017	55
4.4	Coefficients de corrélation calculés entre les débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017	58
4.5	Coefficients de corrélation calculés entre les périodes d'occurrence des débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017	61
4.6	Coefficients de corrélation calculés entre les coefficients de variation saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017	64
4.7	Coefficients de corrélation calculés entre les coefficients d'immodération saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017	66
4.8	Coefficients de corrélation calculés les débits moyens journaliers saisonniers (hivernaux et printaniers) et les épisodes El Niño d'intensité modérée à très forte pendant la période 1950-2017	69
4.9	Coefficients de corrélation calculés les débits maximums journaliers saisonniers (hivernaux et printaniers) et les épisodes El Niño d'intensité modérée à très forte pendant la période 1950-2017	72
4.10	Coefficients de corrélation calculés de la période d'occurrence des débits maximums journaliers saisonniers (hivernaux et printaniers) et les épisodes El Niño d'intensité modérée à très forte pendant la période 1950-2017	75
4.11	Coefficients de corrélation calculés entre les débits minimums journaliers saisonniers (hivernaux et printaniers) et les épisodes El Niño d'intensité modérée à très forte pendant la période 1950-2017	77

4.12	débits minimums journaliers saisonniers (hivernaux et printaniers) et les épisodes El Niño d'intensité modérée à très forte pendant la période 1950-2017	80
4.13	Coefficients de corrélation calculés entre les coefficients de variation saisonniers (hivernaux et printaniers) et les épisodes d'El Niño d'intensité modérée à très forte	83
4.14	Coefficients de corrélation calculés entre les coefficients d'immodération saisonniers (hivernaux et printaniers) et les épisodes d'El Niño d'intensité modérée à très forte	85
5.1	Coefficients de corrélation calculés entre les débits moyens journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017	88
5.2	Coefficients de corrélation calculés entre les débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017	89
5.3	Coefficients de corrélation calculés entre les périodes d'occurrence des débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017	91
5.4	Coefficients de corrélation calculés entre les débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017	93
5.5	Coefficients de corrélation calculés entre les périodes d'occurrence des débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017	94
5.6	Coefficients de corrélation calculés entre les coefficients de variation saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017	97
5.7	Coefficients de corrélation calculés entre les coefficients d'immodération saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017	99
5.8	Coefficients de corrélation calculés entre les débits moyens journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017	101

5.9	saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017	103
5.10	Coefficients de corrélation calculés entre les périodes d'occurrence des débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017	104
5.11	Coefficients de corrélation calculés entre les débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017	107
5.12	Coefficients de corrélation calculés entre les périodes d'occurrence des débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017	110
5.13	Coefficients de corrélation calculés entre les coefficients de variation saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017	112
5.14	Coefficients de corrélation calculés entre les coefficients d'immodération saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017	114
6.1	Pourcentage (%) des rivières significativement corrélées en fonction des séries des indices ON1 pendant la période 1950-2017	117
6.2	Pourcentage (%) de rivières significativement corrélées selon le degré d'intensité des épisodes El Niño pendant la période 1950-2017	119
6.3	Pourcentage de rivières significativement corrélées (%) en fonction de degré d'intensité des épisodes La Niña pendant la période 1950-2017 (α = 0.1)	119
6.4	Pourcentage (%) de rivières significativement corrélées aux épisodes El Niño en hiver pendant la période 1950-2017	121
6.5	Pourcentage (%) de rivières significativement corrélées aux épisodes El Niño au printemps pendant la période 1950-2017 (α = 0.1)	121
6.6	Pourcentage (%) de rivières significativement corrélées aux épisodes La Niña en hiver pendant la période 1950-2017	122
6.7	Pourcentage (%) de rivières significativement corrélées aux épisodes La Niña au printemps pendant la période 1950-2017 (α = 0.1)	122

6.8	Pourcentage de rivières significativement corrélées (%) par saison pendant la période 1950-2017 ($\alpha = 0.1$)	123
6.9	Comparaison des pourcentages des coefficients de corrélation significatifs entre les trois régions hydroclimatiques lors des hivers El Niño pendant la période 1950-2017	124
6.10	Comparaison des pourcentages des coefficients de corrélation significatifs entre les régions hydroclimatiques lors des printemps El Niño pendant la période 1950-2017	125
6.11	Comparaison des pourcentages des coefficients de corrélation significatifs entre les régions hydroclimatiques lors des hivers La Niña pendant la période 1950-2017 (α = 0.1)	125
6.12	Comparaison des pourcentages des coefficients de corrélation significatifs entre les trois régions hydroclimatiques lors des printemps La Niña pendant la période 1950-2017 (α = 0.1)	126
6.13	Comparaison des pourcentages (%) des valeurs positives et négatives des coefficients de corrélation calculés entre les épisodes El Niño et les caractéristiques des débits journaliers pendant la période 1950-2017	127
6.14	Comparaison des pourcentages (%) des valeurs positives et négatives des coefficients de corrélation calculés entre les épisodes La Niña et les caractéristiques des débits journaliers pendant la période 1950-2017	128

LISTE DES FIGURES

Figure		Page
1.1	Cellule de Walker en période normale (NOAA, 2014)	. 4
1.2	Cellule de Walker en période El Niño (NOAA, 2014)	. 4
1.3	Cellule de Walker en période La Niña (NOAA, 2014)	. 5
1.4	Anomalie de température des océans en période El Niño (décembre 1997) (NOAA, 2014)	. 5
1.5	Anomalie de température des océans en période La Niña (décembre 1988) (NOAA, 2014)	6
1.6	Représentation des effets d'El Niño sur les régimes de précipitation mondiaux (Ropelewski et Halpert, 1987)	. 7
1.7	Représentation des effets d'El Niño sur les températures à travers le monde (Halpert et Ropelewski, 1992)	11
1.8	Distribution des anomalies de températures moyennes (janvier-mars) pour l'Ouest canadien (Shabbar, 1996)	13
1.9	Anomalies de température hivernale au Canada en période El Niño (1951-2000) (Shabbar, 1996)	14
1.10	Anomalies de précipitation hivernale en mm/jour au Canada en période El Niño (1951-2000)	15
1.11	Pourcentage d'anomalie de la magnitude du débit maximum médian entre les années El Niño (a) et La Niña (b) et l'ensemble des années (Ward et al., 2014)	17
1.12	Distribution spatiale des coefficients de corrélation entre SOI DJF et les anomalies de précipitation DJF au Canada (Shabbar et al., 1997)	23
2.1	Localisation des rivières	31
4.1	Relation entre la magnitude des débits moyens journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	50

4.2	Relation entre la magnitude des débits moyens journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	51
4.3	Relation entre la magnitude des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	53
4.4	Relation entre la magnitude des débits maximums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	54
4.5	Relation entre la période d'occurrence des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	56
4.6	Relation entre la période d'occurrence des débits maximums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	57
4.7	Relation entre la magnitude des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	59
4.8	Relation entre la magnitude des débits minimums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	60
4.9	Relation entre la période d'occurrence des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	62
4.10	Relation entre la période d'occurrence des débits minimums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	62
4.11	Relation entre les coefficients de variation hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	65
4.12	Relation entre les coefficients de variation printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.	65
4.13	Relation entre les coefficients d'immodération hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017	67

4.14	l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	70
4.15	Relation entre la magnitude des débits moyens journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	71
4.16	Relation entre la magnitude des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	73
4.17	Relation entre la magnitude des débits maximums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	74
4.18	Relation entre la période d'occurrence des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	76
4.19	Relation entre la magnitude des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	78
4.20	Relation entre la magnitude des débits minimums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	78
4.21	Relation entre la période d'occurrence des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	81
4.22	Relation entre la période d'occurrence des débits minimums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	81
4.23	Relation entre les coefficients de variation printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	84
4.24	Relation entre les coefficients d'immodération printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017	86
5.1	Relation entre la magnitude des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017	90

5.2	Relation entre la période d'occurrence des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017	92
5.3	Relation entre la période d'occurrence des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017	95
5.4	Relation entre la période d'occurrence des débits minimums journaliers printaniers et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017	95
5.5	Relation entre les coefficients de variation hivernaux et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017	98
5.6	Relation entre les coefficients de variation printaniers et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017	98
5.7	Relation entre les coefficients d'immodération hivernaux et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017	100
5.8	Relation entre la magnitude des débits moyens journaliers printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée à forte pour la période 1950-2017	102
5.9	Relation entre la période d'occurrence des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017	105
5.10	Relation entre la période d'occurrence des débits maximums journaliers printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017	106
5.11	Relation entre la magnitude des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017	108
5.12	Relation entre la magnitude des débits minimums journaliers printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017	108
5.13	Relation entre la période d'occurrence des débits minimums journaliers printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017	111
5.14	Relation entre les coefficients de variation printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017	113

5.15	Relation entre les coefficients d'immodération hivernaux et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017	115
5.16	Relation entre les coefficients d'immodération printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017	115
6.1	Schéma conceptuel de l'influence des épisodes d'El Niño sur les caractéristiques des débits en hiver et au printemps au Québec	129
6.2	Schéma conceptuel de l'influence des épisodes de La Niña sur les caractéristiques des débits en hiver et au printemps au Québec	130

CHAPITRE I

PRÉSENTATION DU PROJET

1.1 Mise en contexte

Dans le contexte actuel de réchauffement climatique, notamment attribuable à la hausse des gaz à effet de serre d'origine anthropique, il faut s'attendre à une augmentation de la température des eaux océaniques. À l'échelle mondiale, une hausse de 0,6 °C à 2,0 °C des 100 premiers mètres de la colonne d'eau des océans au cours du XXI^e siècle est prévue (GIEC, 2013). Environ les deux tiers de la superficie de la terre étant recouverts par les océans, leur réchauffement entraînera des impacts majeurs sur la planète, dont la hausse du niveau moyen des mers et l'augmentation de la quantité de CO₂ dans l'atmosphère. En effet, lorsque les océans se réchauffent, leur capacité à absorber les gaz à effet de serre diminue. Cela engendrera donc une augmentation du CO₂ atmosphérique, une accumulation qui amplifiera le réchauffement planétaire par effet de rétroaction positive.

Néanmoins, la hausse de température des océans, parfois importante, est un phénomène bien connu qui survient périodiquement dans certaines régions du monde, indépendamment de la hausse de la concentration de CO₂ d'origine anthropique. Le réchauffement des eaux océaniques le plus reconnu est celui qui survient épisodiquement dans le bassin Pacifique tropical dans l'Hémisphère Sud. En effet, dans cette région, les eaux chaudes de l'océan Pacifique accumulées en Asie et en Océanie migrent périodiquement vers les côtes occidentales de l'Amérique du Sud. Ce phénomène a lieu aux 2 à 7 ans. Ce courant chaud, baptisé El Niño (l'Enfant) en raison de son avènement en décembre, provoque des bouleversements climatiques, hydrologiques et écologiques profonds en Amérique du Sud. Sur le plan hydroclimatique, ces bouleversements se traduisent par des pluies diluviennes et des températures plus élevées que la moyenne climatique, provoquant souvent des inondations exceptionnelles.

En revanche, en Asie et en Océanie, la migration des eaux chaudes vers l'Est entraîne des épisodes de sécheresse et des étiages très sévères (Kovats et al., 1999).

Les changements soudains dans les régimes de précipitations et des températures associés à El Niño peuvent engendrer de nombreux impacts au niveau de la santé humaine. Par exemple, cet événement climatique est associé à une hausse des cas de maladie transmise par le biais des moustiques, comme la malaria ou la dengue, et à de nombreux autres problèmes de santé (Kovats et al., 1999). Ces auteurs notent qu'on observe une hausse de plus du tiers des cas de malaria en Colombie et au Venezuela. On note aussi une augmentation des cas de cette même maladie au sud-ouest du Sri Lanka et au nord du Pakistan, au niveau de l'Himalaya, notamment. El Niño est aussi associé à de nombreux cas de problèmes respiratoires qui ont été observés en Malaisie, en Indonésie et au Brésil lors de l'épisode de 1997-1998. Il est aussi lié à des périodes de famines et des crises alimentaires puisqu'il est associé à des périodes de sécheresse, notamment dans certaines régions de l'Asie et de l'Afrique (Kovats et al., 1999).

El Niño peut aussi représenter une perturbation écologique. En plus des nombreux feux de forêt et des sécheresses qu'il provoque, la masse d'eaux chaudes sur la côte Ouest sud-américaine bloque momentanément la remontée des eaux froides riches en nutriments. Cela a pour effet de réduire la production de plancton et affecte l'ensemble de la chaîne trophique qui en dépend, tant pour les populations de poissons que d'oiseaux (Kovats et al., 1999; Trenberth, 1997).

Jusqu'au milieu du siècle dernier, on pensait que les impacts de ce courant marin chaud épisodique se limitaient exclusivement à ces deux régions du globe directement touchées par ce phénomène océano-atmosphérique. Les études effectuées plus tard ont démontré leurs impacts dans des régions de plus en plus éloignées de la région de naissance d'El Niño. Depuis plus d'une trentaine d'années, *El Niño – Southern Oscillation* (ENSO), aussi appelé l'oscillation australe (OA) est connu comme l'un des principaux facteurs de la variabilité climatique à l'échelle de toute la planète (p. ex., Bonsal et Shabbar, 2010; Dubeau, 2014; Guay et al., 1999; Kovats et al., 1999; Shabbar, 2006;

Trenberth et Stepaniak, 2001; Xu et Zhang, 2007). Cette reconnaissance découle des conclusions des études qui ont établi un lien entre El Niño et des variables hydroclimatiques (précipitation, température, vent, débit, etc.) dans de nombreuses régions du globe.

1.2 État des connaissances

1.2.1 Origine de l'oscillation australe

El Niño et La Niña sont respectivement les phases chaude et froide de l'oscillation australe (OA) (NOAA, 2016). C'est l'une des principales sources de variabilité interannuelle climatique dans le monde (Bonsal et Shabbar, 2010; Dubeau, 2014; Guay et al., 1999; Merle et Hisard, 1990; Shabbar, 2006; Trenberth et Stepaniak, 2001; Trenberth, 1997; Xu et Zhang, 2007). Il provient de l'effet couplé de l'atmosphère et de l'océan. L'oscillation australe est un phénomène climatique quasi cyclique qui naît dans le Pacifique Sud, près de la côte Ouest sud-américaine. Sa récurrence n'est pas fixe: un épisode d'El Niño ou de La Niña se produit tous les 2 à 7 ans (Bonsal et Shabbar, 2010; NOAA, 2016).

L'OA est une téléconnexion climatique résultant d'un changement de l'intensité des vents alizés (Clarke, 2008; Merle et Hisard, 1990). La variation de l'intensité de ces vents est associée à la cellule de Walker, c'est-à-dire une boucle convective qu'on retrouve au niveau du Pacifique équatorial (Bjerknes, 1969; Lau et Yang, 2002; Wang, Deser, et Yu, 2012). Cette cellule est imagée à la figure 1.1. Bjerknes explique que cette cellule redistribue l'excédent d'énergie au niveau de l'équateur vers la haute troposphère. En temps normal, elle pousse la chaleur latente du Pacifique Ouest vers le Pacifique Central puis la soulève dans la haute troposphère où elle se refroidira. Cette chaleur latente en moins, l'air de la côte Ouest sud-américaine est plus froid et sec. En période El Niño, cette cellule se déplace vers l'est et la force des alizés faiblit (Figure 1.2). La chaleur s'accumule dans le Pacifique Ouest, près de la côte péruvienne, et réchauffe les eaux de surface. En période La Niña, les alizés gagnent en intensité, la cellule de Walker est

poussée plus loin vers l'ouest (Figure 1.3) et il en résulte des eaux de surface encore plus froides (Lau et Yang, 2002).

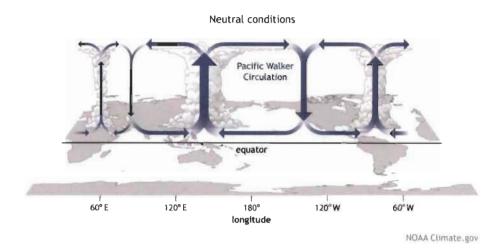


Figure 1.1 Cellule de Walker en période normale (NOAA, 2014).

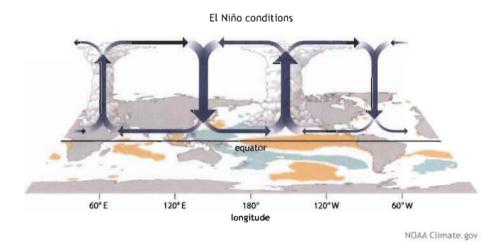


Figure 1.2 Cellule de Walker en période El Niño (NOAA, 2014).

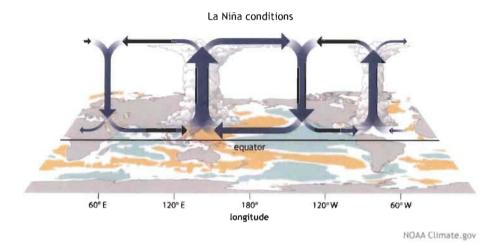


Figure 1.3 Cellule de Walker en période La Niña (NOAA, 2014).

Une phase El Niño est caractérisée par une anomalie de température de surface de 1'est du Pacifique équatorial de +0,5 °C, alors qu'il s'agit, pour La Niña, d'une anomalie de -0,5 °C par rapport à la moyenne climatique sur 30 ans (NCEI, 2016). En temps normal, ces vents soufflant d'est en ouest poussent une énorme quantité d'eau chaude et d'air humide provenant de la côte Ouest sud-américaine vers l'Océanie. Il se forme une remontée d'eau froide riche en nutriments le long de la côte sud-américaine (Clarke, 2008).

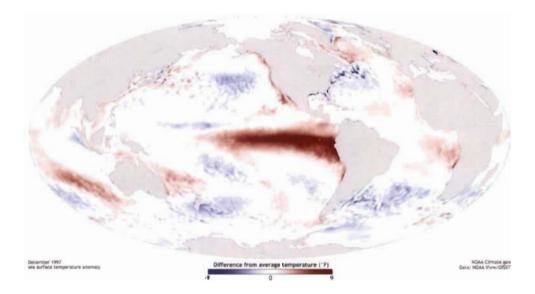


Figure 1.4 Anomalie de température des océans en période El Niño (décembre 1997) (NOAA, 2014).

La figure 1.4 illustre les anomalies de température de surface des océans induites par El Niño en décembre 1997. Lorsque les alizées faiblissent, l'eau chaude et l'air humide demeurent près de la côte, réchauffant ainsi les eaux de surface et empêchant la remontée d'eau froide riche en nutriments. La thermocline à l'est du Pacifique central remonte alors plus près de la surface (Zelle et al., 2004) et le niveau de l'eau est légèrement plus bas dans le Pacifique Ouest, provoquant une migration des eaux chaudes d'ouest en est. L'avancée d'eau plus chaude que la normale dans le Pacifique, le long de l'équateur, peut dépasser le quart de la circonférence de la Terre (Clarke, 2008). Cette anomalie chaude est nommée El Niño.

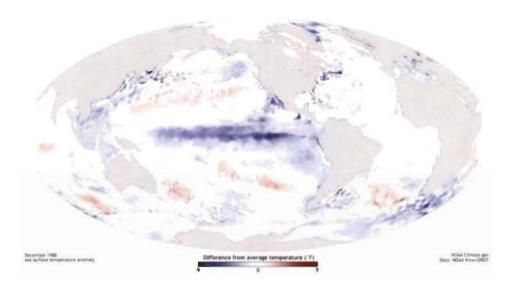


Figure 1.5 Anomalie de température des océans en période La Niña (décembre 1988) (NOAA, 2014).

La figure 1.5 montre les anomalies de température observées dans l'océan Pacifique en décembre 1988, en épisode La Niña. Cette phase froide de l'oscillation australe est provoquée par la mécanique inverse: lorsque les alizés gagnent en intensité, ils poussent l'eau chaude et l'humidité vers l'Océanie encore plus loin qu'à l'habitude. La remontée d'eau froide peut donc se faire et s'accentue, refroidissant ainsi l'eau de surface près de la côte Ouest sud-américaine. Cette eau refroidie est accompagnée d'air froid et sec. Le niveau de l'eau au niveau de la côte péruvienne augmente, créant un courant marin qui transporte l'eau froide vers l'Ouest (Clarke, 2008).

1.2.2 Effets de l'OA sur les variables hydroclimatiques

1.2.2.1 Précipitations

Ropelewski et Halpert (1987 et 1989) ont étudié la relation entre les phénomènes El Niño/ La Niña et les précipitations à l'échelle de la planète. Dans l'article publié en 1987, ceux-ci s'intéressent plus particulièrement à l'effet des épisodes El Niño sur les régimes de précipitations. Quant à l'étude publiée en 1989, c'est à la phase froide de l'OA, c'est-à-dire La Niña, qu'ils s'intéressent. À partir de mesures de précipitations mensuelles remontant parfois jusqu'à 1875 provenant de 1700 stations à travers le monde, ils ont démontré que les épisodes El Niño modifient bel et bien le régime des précipitations de plusieurs régions du monde. Puis, ils se sont intéressés à la spatialisation de ces anomalies de précipitations. Ainsi, ils ont délimité 19 régions montrant une certaine homogénéité au niveau de l'effet qu'El Niño produit sur leur régime de précipitations. Les résultats sont exposés au tableau 1.1 avec leur niveau de cohérence. Celui-ci est un indicateur d'homogénéité de la réponse à l'intérieur même de la région. Lorsqu'il est élevé, les stations d'observation de la région réagissent dans le même sens à chacun des épisodes observés (Ropelewski et Halpert, 1986). Parmi l'ensemble des régions, sept connaissent une hausse de leurs précipitations lors d'un épisode El Niño.

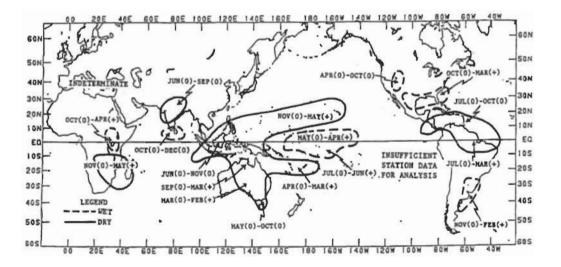


Figure 1.6 Représentation des effets d'El Niño sur les régimes de précipitation mondiaux (Ropelewski et Halpert, 1987).

La figure 1.6, tirée de l'article de Ropelewski et Halpert, 1987, présente la répartition des effets d'El Niño sur les régimes de précipitation mensuelle à travers le monde selon les 19 régions montrant une réponse homogène. Les périodes associées à chaque région sont celles auxquelles l'anomalie se mesure. Par exemple, si l'on considère un épisode de l'année 1982, SEP(0) – MAR(+) représente la période de septembre 1982 jusqu'à mars 1983. Si la région est délimitée avec un trait discontinu, El Niño induit une hausse des précipitations, alors qu'un trait continu signifie une diminution. On observe d'abord que les zones affectées se concentrent principalement près de l'Équateur. Les relations entre El Niño et les précipitations trouvées aux latitudes les plus éloignées de l'Équateur sont toutes dans l'Hémisphère Sud. D'abord, pour le secteur du bassin du Pacifique, deux régions montrent une réponse positive, le Pacifique central et le sud du Pacifique central, les quatre autres montrant une réponse négative. Ensuite, dans le secteur de l'Australie, les précipitations des quatre régions diminuent en période El Niño. Pour le sous-continent indien, celles de l'Inde diminuent alors qu'à Minicoy - Sri Lanka, légèrement au Sud, elles augmentent. La région de l'est de l'Afrique équatoriale montre une réponse positive, alors que pour celle plus au sud, on note une diminution. En ce qui concerne l'Amérique du Sud, les précipitations diminuent au nord-est alors que l'inverse se produit au sud-est. En Amérique centrale, elles tendent à diminuer. Finalement, on observe une hausse des précipitations dans les deux régions de l'Amérique du Nord. Pour celles couvrant une partie de l'est du continent, c'est-à-dire le Golfe et Nord du Mexique, cette hausse des précipitations s'observe pendant la saison froide (Ropelewski et Halpert, 1987).

Tableau 1.1
Effet d'El Niño sur les précipitations mondiales

Régions	Effet sur les précipitations*	Cohérence**
<u> </u>	Bassin du Pacifique	
Pacifique central	(+)	0,98
Sud du Pacifique central	(+)	0,88
Indonésie-Nouvelle Guinée	(-)	0,82
Fiji-Nouvelle Calédonie	(-)	0,95
Micronésie - Pacifique Ouest	(-)	0,91
Hawaii	(-)	0,88
	Australie	
Nord de l'Australie	(-)	0,95
Est de l'Australie	(-)	0,89
Sud de l'Australie – Tasmanie	(-)	0,94
Centre de l'Australie	(-)	0,86
So	ous-continent indien	
Inde	(-)	0,86
Minicoy - Sri Lanka	(+)	0,92
Afrique	e tropicale et méridionale	
Est de l'Afrique équatoriale	(+)	0,93
Sud de l'Afrique	(-)	0,90
	Amérique du Sud	
Nord-Est de l'Amérique du Sud	(-)	0,91
Sud-Est de l'Amérique du Sud	(+)	0,82
	Amérique centrale	
Caraïbe américaine centrale	(-)	0,77
4	Amérique du Nord	
Grand bassin des États-Unis	(+)	0,80
Golfe et Nord du Mexique	(+)	0,93

Issu des résultats de Ropelewski et Halpert, 1987.

Le tableau 1.1 expose le type de lien entre El Niño et les précipitations pour les 19 régions ainsi que leur niveau de cohérence. C'est en Amérique centrale qu'on note le

^{*} Lorsque (+), El Niño induit une hausse des précipitations.

^{**} La cohérence est un indicateur d'homogénéité de la réponse à l'événement à l'intérieur de la région. Lorsque celle-ci est élevée, la réponse est homogène entre les stations (Ropelewski et Halpert, 1986).

plus d'hétérogénéité au niveau des réponses entre les stations. Puisque le niveau de cohérence de cette région se situe sous 0,80, les auteurs ont jugé les résultats non significatifs. Les régions avec les réponses les plus homogènes se retrouvent principalement au centre et à l'ouest du Pacifique équatorial.

Puis, le cas de La Niña est analysé dans l'article paru en 1989. Des 19 régions utilisées précédemment, 15 montrent que La Niña induit des anomalies au niveau des précipitations. Dans chacune de ces régions, les effets de cette phase froide de l'OA sur les précipitations sont opposés à ceux de la phase chaude. Ils s'observent généralement à la même période, à plus ou moins un mois de décalage. Finalement, pour 13 régions, les effets des deux phases de l'OA surviennent à la même période de l'année, soit la période d'octobre à décembre (Ropelewski et Halpert, 1989).

1.2.2.2 Températures

Avec une méthodologie similaire à celle utilisée dans l'analyse de la relation entre les précipitations et le cycle de l'OA, Halpert et Ropelewski (1992) ont étudié l'effet de ce même phénomène climatique sur les températures de surface, tant au niveau des continents que des océans. Ils mettent d'abord en lumière qu'El Niño et La Niña affectent les températures de plusieurs régions du monde. Cette fois, ils ont délimité 12 régions démontrant des réponses significatives et homogènes aux variations de la phase chaude de l'oscillation australe.

Figure 1.7 Représentation des effets d'El Niño sur les températures à travers le monde (Halpert et Ropelewski, 1992).

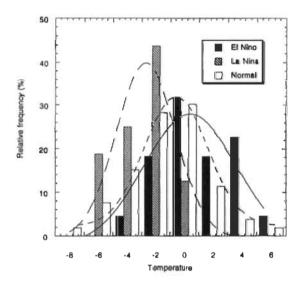
La figure 1.7 (Halpert et Ropelewski, 1992) schématise les effets d'El Niño sur les températures mondiales. À chaque région est associée une période à laquelle l'anomalie est mesurée. La nomenclature utilisée pour ces périodes est la même que celle de la figure 1.6. Comme dans le cas des précipitations, c'est autour de l'Équateur qu'on observe le plus de régions montrant une réponse homogène. Contrairement aux précipitations, les effets sur les températures s'observent à un plus grand nombre d'emplacements dans l'Hémisphère Nord et à des latitudes plus grandes. Pour l'ensemble de l'Amérique, sauf dans le cas du sud-est des États-Unis, El Niño engendre une augmentation des températures. Dans le secteur de l'Afrique – Australie, la phase chaude de l'OA provoque une hausse des températures pour le sud-est de l'Afrique, le centre de l'Australie et le nord de l'Australie, mais seulement pour la période de décembre durant l'année de l'épisode jusqu'à juin de l'année suivante. Cependant, pour cette dernière région, les mois de mai à octobre suivant l'avènement, les températures tendent à diminuer, tout comme au sud centre et à l'ouest de l'Australie.

Tableau 1.2Effet d'El Niño sur les températures mondiales

Régions	Effet sur les températures*	Cohérence**
Amérique o	du Nord/du Sud	
Amérique centrale – Caraïbes	(+)	0,96
Centre de l'Amérique du Sud	(+)	0,93
Côte Ouest sud-américaine	(+)	0,94
Est du Canada	(+)	0,93
Nord-Ouest de l'Amérique du Nord	(+)	0,93
Sud-Est des États-Unis	(-)	0,94
	Asie	
Sud-Est asiatique – Inde	(+)	0,92
Japon	(+)	0,65
Afrique	– Australie	
Sud-Est de l'Afrique	(+)	0,88
Centre de l'Australie	(+)	0,87
Nord de l'Australie (décembre (0) – juin (+))	(+)	0,89
Nord de l'Australie (mai (0) – octobre (0))	(-)	0,89
Sud centre – Ouest du Pacifique	(-)	0,92

Issu des résultats de Halpert et Ropelewski, 1992.

Les résultats sont résumés au tableau 1.2. Encore une fois, les niveaux de cohérence sont élevés, jusqu'à 0,96, sauf pour la région du Japon qui est jugée non significative puisqu'elle y est inférieure à 0,80 (0,65). Notons que treize régions sont montrées, le nord de l'Australie étant représenté deux fois : ce secteur montre deux réponses homogènes selon la saison. Aussi, des douze régions, neuf connaissent une hausse de leur température. Notons que les effets d'El Niño sur les températures pour les trois régions de l'Amérique du Nord, c'est-à-dire l'est du Canada, le nord-ouest de l'Amérique du Nord et le sud-est des États-Unis, s'observent en saison froide. Les deux régions en plus haute latitude de l'Amérique du Nord voient leur température augmenter pendant la saison froide.


^{*} Lorsque (+), El Niño induit une hausse des températures.

^{**} La cohérence est un indicateur d'homogénéité de la réponse à l'événement à l'intérieur de la région. Lorsque celle-ci est élevée, la réponse est homogène entre les stations (Ropelewski et Halpert, 1986).

Quant à La Niña, onze régions montrent des relations significatives, seulement l'est du Canada ne l'est pas. Les réponses de la phase chaude de dix des régions étudiées sont opposées à celles de la phase froide (Halpert et Ropelewski, 1992).

1.2.2.3 Au Canada

L'oscillation australe affecte aussi le Canada, notamment au niveau des températures, des précipitations et de la force des vents (Bonsal et Shabbar, 2010; Guay et al., 1999). C'est à la saison froide que le lien le plus fort entre le climat canadien et les téléconnexions, comme l'OA, est observé (Bonsal et Shabbar, 2010; Shabbar et Khandekar, 1996). L'OA serait en fait le phénomène causant le plus de variabilité interannuelle du climat à l'hiver au Canada (Bonsal et Shabbar, 2010; Shabbar, 2006).

Figure 1.8 Distribution des anomalies de températures moyennes (janvier-mars) pour l'Ouest canadien (Shabbar, 1996).

La figure 1.8, issue de Shabbar (1996), illustre la distribution des anomalies de températures moyennes entre janvier et mars enregistrées pour une période allant de 1900 à 1990 dans l'ouest du Canada. Cette période regroupe 23 épisodes El Niño représentés en noir uni et 17 épisodes La Niña représentés par des barres rayées. Les années « normales » sont présentées en blanc. Une courbe gaussienne est appliquée à chacune des distributions. Les auteurs concluent que les moyennes des distributions des phases

chaudes et froides sont significativement différentes des années normales. De plus, El Niño induit des hivers plus chauds alors que La Niña, des hivers plus froids.

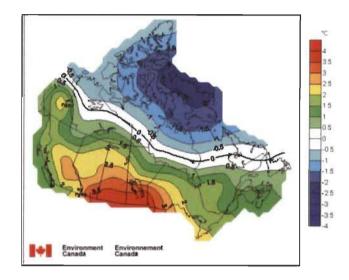
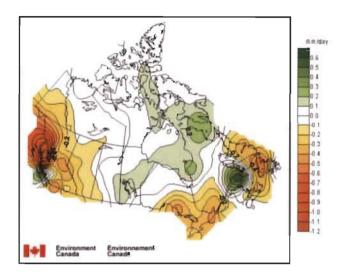



Figure 1.9 Anomalies de température hivernale au Canada en période El Niño (1951-2000) (Shabbar, 1996).

La figure 1.9, issue de l'étude de Shabbar sur les effets de l'OA sur le climat canadien réalisée en 2006, illustre comment El Niño affecte les températures hivernales au Canada. Sur la plus grande superficie du pays, El Niño provoque une augmentation des températures. C'est dans le centre du Canada, plus particulièrement au sud, que l'oscillation australe provoque le plus grand réchauffement, allant jusqu'à +3,5 °C. Cet effet s'atténue vers le nord. Les anomalies de température de l'Ouest canadien sont similaires à celles de l'est du Canada. Au Nord du pays, le courant-jet polaire conserve l'air froid de l'Arctique vers le nord-est du Canada, causant des températures plus froides que la normale pour cette période (Shabbar, 2006). Dans le cas de La Niña, celle-ci cause une diminution des températures hivernales (Bonsal et Shabbar, 2010; Guay et al., 1999; Shabbar et Khandekar, 1996; Shabbar, 2006), mais cette anomalie négative s'observe principalement dans l'Ouest et le centre du pays (Shabbar et Khandekar, 1996).

Figure 1.10 Anomalies de précipitation hivernale en mm/jour au Canada en période El Niño (1951-2000).

Au niveau des précipitations, El Niño est associé à une diminution significative des précipitations hivernales. La figure 1.10 provient aussi de l'étude de Shabbar réalisée en 2006. On y observe les effets d'un épisode chaud de l'OA sur les précipitations de décembre à février au Canada. Les anomalies ne sont pas uniformes au pays, plusieurs patrons se distinguent. Les précipitations tendent à diminuer pour une grande partie de l'ouest du pays, dans le sud de l'Ontario, le sud-ouest du Québec et l'extrême est du pays. Le centre du Canada est moins influencé, mais les précipitations tendent tout de même à diminuer. On observe deux importants centres où les précipitations augmentent grandement : l'île de Vancouver et le golfe du Saint-Laurent. Somme toute, le sud du Canada est principalement plus sec en hiver pendant un épisode El Niño que pendant un hiver normal (Bonsal et Shabbar, 2008; Shabbar, 2006).

1.2.3 Effets de l'oscillation australe sur les débits

1.2.3.1 À travers le monde

En modifiant le régime des précipitations et de températures dans le monde, l'oscillation australe fait aussi varier la dynamique hydrologique des rivières à travers le monde. Ward et ses collaborateurs ont mené de vastes études sur l'effet de l'OA sur les

débits de plusieurs rivières à travers le monde. La première est parue en 2010 et traite de l'effet de cette téléconnexion sur les débits extrêmes journaliers sur la période de 1921 à 1980. Dans cette étude, les auteurs concluent que l'OA a un impact significatif sur les débits extrêmes et moyens de nombreux cours d'eau à travers le monde. De plus, les corrélations mises en lumière sont plus fortes avec les débits maximums que les débits moyens, particulièrement pour les régions à l'extérieur des tropiques (Ward et al., 2010).

Pour faire suite à cette étude, ils ont publié en 2014 un article traitant de la sensibilité à l'oscillation australe des débits maximums et moyens annuels de rivière, à l'échelle mondiale, sur la période de 1958 à 2000. Pour cette étude, les débits utilisés sont simulés à partir du modèle *WaterGAP*. D'abord, ils identifient une influence significative de l'OA sur les débits des rivières sur plus du tiers des surfaces continentales, excluant l'Antarctique. Puis, ils soulignent que la sensibilité est à son maximum pour les mois d'octobre à février, et qu'elle décline à partir de mars. Dans plus de la moitié des cas, La Niña induit une hausse des débits maximums annuels alors qu'El Niño induit une diminution. Les auteurs soulignent aussi que pour beaucoup de régions, les forces des relations varient dans la période à l'étude. Finalement, la relation observée est plus grande sur les débits maximums que les débits moyens (Ward et al., 2010, 2014).

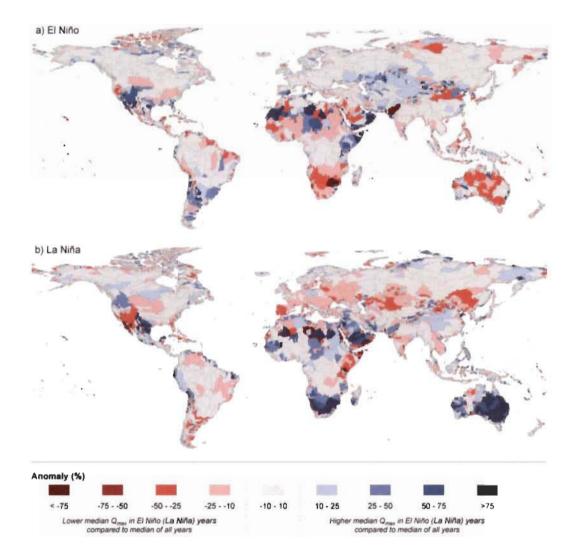


Figure 1.11 Pourcentage d'anomalie de la magnitude du débit maximum médian entre les années El Niño (a) et La Niña (b) et l'ensemble des années (Ward et al., 2014).

La figure 1.11, issue de l'étude de Ward et al. (2014) expose l'anomalie induite par El Niño (a) et La Niña (b) comparativement à l'ensemble des années de la période 1958-2000. Faisant abstraction de l'Antarctique, l'OA influence les débits maximums annuels sur 37 % des surfaces continentales. Sur 23 % des surfaces continentales, la corrélation est positive. Sur les 14 % restant, elle est négative. Encore une fois, les régions autour de l'Équateur sont largement influencées. Au niveau des surfaces identifiées au Québec, El Niño induit une diminution de la magnitude des débits maximums annuels et La Niña, une baisse.

Dans une étude s'intéressant au lien entre des indicateurs de l'oscillation australe, les précipitations et le débit du fleuve Jaune en Chine, les chercheurs ont trouvé que ce phénomène climatique est significativement corrélé aux précipitations et au débit du fleuve Jaune. Les précipitations le sont pour les périodes du mois de janvier, de mars, et de septembre à novembre. Quant aux débits mensuels, ils sont significativement corrélés aux indices de ce phénomène climatique pour trois périodes, soit de janvier à mars, le mois de juin, et d'octobre à décembre. Pour ce fleuve, un épisode El Niño est associé à une diminution de la magnitude du débit pour les périodes de janvier à mars et d'octobre à décembre alors qu'au mois de juin, il est associé à une hausse (Jia et al., 2011). Toujours en Chine, on démontre un lien significatif entre l'OA et le débit du fleuve Yangtze. Lorsque l'intensité d'un épisode El Niño est forte, la magnitude des débits de ce fleuve est plus basse : en situation inverse, lors d'un épisode La Niña puissant, le débit devient plus grand (Wei et al., 2014).

Une multitude de grands cours d'eau ailleurs dans le monde sont aussi affectés par l'oscillation australe. Amarasekera et al. (1997) se sont attardés aux liens entre l'OA et la variabilité des débits des rivières tropicales. Les fleuves Amazone, Congo, Paraná et Nil ont été étudiés. Pour les deux plus grands de ces fleuves, l'Amazone et le Congo, les auteurs ont observé des coefficients de corrélations négatifs entre la magnitude des débits et l'indice d'anomalie de température de surface des océans au niveau du Pacifique Est et Centrale. Cependant, ceux-ci sont relativement faibles. Un épisode El Niño est tout de même associé à une diminution des débits de ces deux grands fleuves. Dans le cas du Nil et du Paraná, l'OA est positivement et fortement corrélée à la magnitude de leur débit. Quant à la variance des débits de l'Amazone et du Congo, l'OA n'en explique qu'environ 10 %. Dans le cas du Paraná et du Nil, l'oscillation australe explique entre 20 et 25 % de la variance de leur débit. (Amarasekera et al., 1997).

Ces études suggèrent donc que les dynamiques hydrologiques de plusieurs grands cours d'eau à travers le monde sont affectées par l'OA. Cependant, l'effet de cette téléconnexion varie dans le temps et dans l'espace en plus de dépendre de certaines caractéristiques des bassins versants, comme la taille dans le cas des fleuves tropicaux.

1.2.3.2 États-Unis

Redmond et Koch (1991) se sont intéressés à l'effet de différentes téléconnexions sur les précipitations, les températures et la variabilité des débits des cours d'eau à l'ouest des États-Unis. Les auteurs identifient d'abord deux secteurs où les effets sont opposés : la région au nord-ouest près du Pacifique et la région désertique au sud-ouest. Les plus fortes relations mises en évidence sont observées durant les mois d'octobre à mars suivant l'épisode. C'est dans la région du nord-ouest que le lien le plus fort est observé. Les auteurs suggèrent que ce serait dû à la combinaison de la hausse des températures et la baisse des précipitations en période El Niño. Cette association diminue le couvert neigeux, qui est un facteur prédominant dans le débit des cours d'eau de cette région. Un épisode El Niño provoquera une diminution dans le nord-ouest et une augmentation des débits des cours d'eau dans le sud-ouest. La Niña, quant à elle, est associée à une réponse inverse, soit une diminution des débits dans le sud-ouest et une augmentation dans le nord-ouest de la région à l'étude (Redmond et Koch, 1991).

1,2,3,3 Canada

Au Canada, des études ont mis en lumière que l'OA affecte bel et bien les cours d'eau (Assel, 1998; Bonsal et Shabbar, 2008; Coulibaly et Burn, 2004; Sellars, Garrett, et Woods, 2008). Par l'analyse de 79 stations hydrométriques réparties à travers le pays sur une période de 1911 à 1999, Coulibaly et Burn (2004) s'intéressent à l'effet de différentes téléconnexions sur les débits canadiens. Ils démontrent que l'indice de l'OA est significativement corrélé aux débits des rivières canadiennes. Selon leurs résultats, un épisode El Niño induit des débits plus faibles pour l'ensemble du Canada.

En 2008, Bonsal et Shabbar se sont intéressés aux études antérieures traitant de l'effet de grandes téléconnexions sur la variabilité des débits minimums au Canada. C'est dans l'ouest du pays que le signal se remarque le plus. Un épisode El Niño fort provoque des événements d'étiage plus fréquents. Cela est associé aux hivers plus chauds causés par la phase chaude de l'OA. Dans le nord du pays, les auteurs soulignent que trop peu d'études ont été menées sur la question et que lorsque des relations sont détectées

entre les débits de cette région et les anomalies climatiques, celles-ci sont plus faibles qu'ailleurs au Canada.

Les variations au niveau des variables hydroclimatiques qu'induisent les cycles de l'oscillation australe peuvent affecter les cours d'eau, notamment par le couvert de glace des Grands Lacs. En effet, durant l'épisode El Niño de l'hiver 1997-1998, considéré particulièrement puissant, le couvert maximum annuel de glace était à son plus bas niveau depuis 35 ans pour chacun des Grands Lacs. Trois des quatre lacs ont atteint un niveau minimum historique (Assel et al., 2000). On attribue cela aux températures automnales et hivernales plus élevées qu'en temps normal et une moindre quantité de précipitations nivales (Assel et al., 2000; Shabbar et Khandekar, 1996). Non seulement cela affecte l'écologie de ces lacs, les activités récréotouristiques et la navigation, mais cela influence aussi les débits des cours d'eau, dont celui du fleuve Saint-Laurent qui prend sa source au lac Ontario. L'absence de glace favorise notamment l'évaporation pendant l'hiver, ce qui induit au printemps des crues plus faibles et des niveaux d'étiage plus bas (Croley, 2003; Lofgren et al., 2002).

1.2.4 Effets de l'oscillation australe au Québec

1.2.4.1 Variables hydroclimatiques

Au Québec, on sait que l'OA peut affecter les régimes de température et de précipitation; les anomalies qu'il induit sont cependant relativement faibles (Anctil et Coulibaly, 2004; Guay et al., 1999). Au niveau des températures, en période El Niño, on note que les températures du sud du Québec tendent à être plus froides à l'automne, mais significativement plus chaudes à l'hiver. Pendant un épisode La Niña, les températures printanières tendent à être plus basses dans le sud et l'est du Québec. Cette tendance est plus significative au niveau du nord-est du Saint-Laurent. La région du nord du Québec est la plus sensible à la phase froide de l'OA, les températures y sont généralement plus froides pendant l'ensemble de l'année (Guay et al., 1999).

Quant aux précipitations, la phase chaude de l'oscillation australe induit normalement des hivers légèrement plus humides, sauf pour les villes de Mont-Joli et de Québec. Dans le Nord québécois, les hivers sont plus humides et les étés plus secs en période El Niño comparativement à La Niña (Guay et al., 1999). Cependant, Dubeau (2014) note une diminution des précipitations hivernales de près de 20 % pour l'épisode El Niño de 2009-2010.

1.2.4.2 Débits

Anctil et Coulibaly se sont intéressés à l'effet de différentes téléconnexions, dont l'OA, sur la variabilité interannuelle des débits des rivières du Québec dans une étude parue en 2004. Au moyen d'une analyse en ondelettes, ils ont déterminé que l'OA est négativement corrélé aux débits de l'est de la province : un épisode El Niño fort induit donc une baisse des débits alors que La Niña induit une hausse. Le lien identifié est toutefois plutôt faible.

Dans l'étude de Dubeau (2014) consacrée aux effets de l'épisode El Niño 2009-2010 au Québec sur les rivières et leurs écosystèmes, l'auteur énonce que cet événement aura causé l'hiver le plus sec jamais enregistré au Canada. En effet, les températures hivernales auraient augmenté de 2 °C comparativement à la normale alors que les précipitations auraient diminué de 20 % lors de cet épisode (Dubeau, 2014). Un épisode El Niño au Québec serait associé à une baisse des débits due à un déficit en précipitations et à des températures plus élevées (Dubeau, 2014; Shabbar, 2006). Quelques études identifient donc un lien entre les débits des rivières au Québec et l'OA (Anctil et Coulibaly, 2004; Bonsal et Shabbar, 2010; Coulibaly et Burn, 2004; Shabbar, 2006).

Récemment, une étude arrive à la conclusion que l'OA influence très peu les débits journaliers hivernaux au Québec (Beauchamp et al., 2015). Son influence est de beaucoup moindre à d'autres téléconnexions comme *North Altantic Oscillation* (NAO) ou *Pacific Decadal Oscillation* (PDO) malgré que d'autres études avancent que l'oscillation australe

est la principale source de variabilité interannuelle du climat à l'hiver au Canada (Bonsal et Shabbar, 2010; Shabbar, 2006).

Assani et al. (2006) ont comparé l'effet de différents indices climatiques sur la dynamique des rivières québécoises, s'intéressant autant à l'échelle annuelle qu'à l'échelle hivernale et estivale. Cette fois-ci, les auteurs énoncent qu'en été, une phase La Niña induirait une hausse des débits. Cependant, les corrélations mises en lumière sont plus faibles pour l'oscillation australe que pour les autres téléconnexions décrites dans leur étude.

1.2.5 Variabilité spatiale de l'intensité de la relation entre les épisodes de l'OA et les variables hydroclimatiques

Dans leur étude s'intéressant notamment à la régionalisation des effets d'El Niño sur les précipitations dans le monde, Ropelewski et Halpert (1987) soulignent que l'essentiel des régions influencées par les épisodes de l'OA se concentrent autour de l'Équateur. Ils ont aussi observé cette tendance dans l'étude parue en 1992 s'intéressant aux températures. Puis, à l'échelle nord-américaine, Ropelewski et Halpert (1986) ne détectent aucun signal de l'OA sur les précipitations aux hautes latitudes, alors qu'ils détectent de fortes relations dans le sud des États-Unis.

Pour le Canada, Shabbar (2006) observe que dépendamment des régions du Canada, le sens de la corrélation entre les variables hydroclimatiques et l'OA varie. En effet, au niveau des précipitations hivernales, El Niño induit une diminution dans le sud du Québec et de l'Ontario alors qu'il est accompagné d'une augmentation dans le nord du Québec et dans la région du golfe du Saint-Laurent, tel qu'illustré par la figure 1.10.

Au Canada, Bonsal et Shabbar (2008) soulignent que les relations entre les téléconnexions, dont l'OA, et les températures sont normalement plus robustes à l'ouest du pays qu'à l'est. Puis, au niveau des relations avec les débits minimums, ils soulignent que c'est aussi dans l'ouest qu'elles sont les plus fortes. Celles trouvées dans le nord et dans l'est du pays sont plus faibles.

Figure 1.12 Distribution spatiale des coefficients de corrélation entre SOI DJF et les anomalies de précipitation DJF au Canada (Shabbar et al., 1997).

Dans leur étude de 1997 consacrée aux effets de l'oscillation australe sur les patrons de précipitations canadiens, Shabbar et ses collaborateurs ont produit une cartographie représentant la distribution spatiale des coefficients de corrélation entre la valeur de l'indice SOI, un indicateur de l'OA, pour les mois de décembre, janvier et février (SOI DJF) et les précipitations pour les mêmes mois (Figure 1.12). Sur cette figure, les secteurs ombragés dénotent un coefficient de corrélation significatif au seuil de 5 %. On note que le coefficient de corrélation est positif pour la majeure partie du sud du pays, qu'il s'affaiblit pour ensuite devenir négatif au fur et à mesure que les latitudes augmentent. De plus, on note que d'ouest en est, le coefficient de corrélation s'affaiblit. Cela démontre que la relation diffère spatialement et que l'intensité du signal diminue selon les régions. Au niveau des températures, on observe une dynamique similaire: l'intensité du lien est plus forte dans l'Ouest que dans l'est (Shabbar et Khandekar, 1996). Cela suggère que plus on s'éloigne de la zone d'occurrence de l'OA, plus son impact sur les températures et les précipitations s'atténue.

Tableau 1.3

Analyse de corrélation entre les indices climatiques et les débits annuels canadiens (Coulibaly et Burn, 2004)

Climate Indices	≤1950	≥1950	≤1970	≥1970	1911-1999
		Wes	1		
ENSO3	0.15	-0.48	-0.08	-0.63	0.04
NAO.	0.48	-0.69	-0.38	-0.67	-0.12
NAM	10.0 -	-0.20	-0.04	-0.56	-0.14
PNA		-0.59	-0.62	-0.64	-0.56
		Centi	ral		
ENSO3	-0.22	0.03	-0.08	-0.18	0.14
NAO	-0.11	-0.05	-0.20	-0.46	-0.18
NAM	-0.38	-0.34	-0.28	-0.20	-0.26
PNA		0.01	0.75	-0.35	0.01
		Eas	t		
ENSO3	0.04	-0.66	-0.08	-0.70	-0.17
NAO	0.36	-0.73	0.20	-0.79	0.14
NAM	-0.18	-0.26	-0.21	-0.19	-0.20
PNA		-0.47	-0.84	-0.32	-0.45
		All			
ENSO3	-0.65	-0.70	-0.61	-0.62	-0.58
NAO	-0.64	-0.52	-0.62	-0.58	-0.61
NAM	-0.45	-0.09	-0.37	-0.38	-0.34
PNA		-0.53	0.40	-0.40	-0.53

"Except for the PNA index, where time series are available for 1950-

Au niveau de l'effet de l'oscillation australe sur les débits au Canada, l'intensité du signal varie aussi spatialement. Le tableau 1.3, issu de l'analyse de Coulibaly et Burn (2004), montre les coefficients de corrélations entre les indices climatiques et les débits de 79 rivières canadiennes selon certaines périodes et différents secteurs. On note d'abord que le coefficient de corrélation entre l'indice ENSO3 et les débits pour tout le pays et l'ensemble de la période est de -0,58 alors que, pour la période suivant 1950, il est de -0,70. Pour la période 1950 à 1999, c'est étonnamment dans l'est du pays qu'on a observé le coefficient le plus élevé, soit -0,66 (versus -0,48 pour l'Ouest canadien). Il faut cependant souligner que ces coefficients de corrélation sont issus de la bande spectrale de 3-7 ans d'une analyse à ondelettes. Cette méthode est différente de celle utilisée dans les autres études. Les résultats ne sont pas directement comparables.

Au Québec, les travaux consacrés à l'influence de l'oscillation australe sur la variabilité temporelle des cours d'eau au Québec trouvent des liens faibles ou inexistants

(Anctil et Coulibaly, 2004; Assani et al., 2006; Assani, Charron, et al., 2010; Assani, Landais, et al., 2010; Beauchamp et al., 2015; Coulibaly et Burn, 2004, 2005; Coulibaly et al., 2000). Par exemple, Anctil et Coulibaly (2004) identifient des coefficients de corrélation entre les débits moyens de 18 rivières au Québec et l'OA pour la période de 1938-2000 allant jusqu'à -0,61 dans l'est de la province et jusqu'à -0,42 dans l'ouest.

1.3 Problématique

Les études de Ropelewski et Halpert de 1987, 1989 et 1992 ont démontré que les impacts d'El Niño et La Niña sur les précipitations et sur les températures s'observent un peu partout sur le globe. Bien que leurs effets diffèrent selon les régions, ils s'observent généralement à la même période de l'année, soit à l'hiver et au printemps suivant un épisode. En affectant le régime des précipitations et de température, l'OA est reconnu pour affecter les débits des rivières dans plusieurs régions du monde (Ward et al., 2010, 2014). Ils soulignent que c'est pendant les mois d'octobre à février que son effet est à son maximum.

Les effets de l'oscillation australe se mesurent aussi au Canada et ce serait même le phénomène causant le plus de variabilité interannuelle climatique (Bonsal et Shabbar, 2010; Guay et al., 1999; Shabbar et Khandekar, 1996). Au Québec, on observe aussi des anomalies au niveau des températures et des précipitations, mais celles-ci sont relativement faibles (Anctil et Coulibaly, 2004; Guay et al., 1999).

Puisque l'OA affecte les variables hydroclimatiques au Québec, on doit s'attendre à ce que nos cours d'eau soient aussi influencés. Peu d'études se sont penchées sur les impacts de l'OA sur les rivières au Québec, particulièrement à l'échelle saisonnière. Beauchamp et al. (2015) l'ont fait en 2015 et ont mesuré un effet plus faible sur les débits journaliers hivernaux de l'OA comparativement à d'autres téléconnexions alors que celui-ci est la principale source de variabilité interannuelle climatique pendant la saison hivernale au Canada (Bonsal & Shabbar, 2010; Shabbar, 2006). L'importance de l'influence de l'oscillation australe sur les rivières au Québec est donc encore à définir.

De plus, ces études s'intéressent plutôt à la variabilité interannuelle; elles étudient donc le phénomène à une échelle annuelle plutôt que saisonnière. L'échelle saisonnière permet de distinguer la variation intra annuelle au niveau de l'influence des téléconnexions comme La Niña ou El Niño. Dans leur étude de 2006, Assani et ses collaborateurs s'intéressent notamment à l'effet de différentes téléconnexions sur les débits à une échelle saisonnière. Ils ont mesuré que La Niña influence significativement les débits estivaux, mais les corrélations observées sont plus faibles pour cette phase de l'oscillation australe que pour les autres téléconnexions à l'étude. Les influences de ce phénomène climatique pour la saison hivernale sont cependant plus faibles malgré que ce soit à cette saison que les effets de l'OA seraient les plus ressentis à nos latitudes (Bonsal et Shabbar, 2010; Shabbar et Khandekar, 1996). Il est important de noter que ces études prennent en compte tous les événements de l'OA. Ainsi, elles ne font pas la distinction entre les épisodes plus faibles et les épisodes les plus extrêmes. Le signal des épisodes les plus forts pourrait être brouillé par celui des épisodes les plus faibles et ainsi induire des coefficients de corrélation plus faibles.

Au niveau de la spatialisation des anomalies de précipitations et de températures causées par l'oscillation australe, on note que l'effet faiblit d'ouest en est ou lorsque les latitudes augmentent (Shabbar, Bonsal, & Khandekar, 1997; Shabbar & Khandekar, 1996). Ainsi, plus on s'éloigne de l'Équateur, plus les effets sont difficiles à détecter. L'influence de l'OA faiblit donc avec l'éloignement de sa source.

Au Québec, l'eau recouvre environ 21 % du territoire, tant sous forme de lacs que de rivières. Grâce à cette richesse, le Québec est le troisième producteur mondial d'hydroélectricité (Astrade, 1998). Par le biais d'Hydro-Québec, les rivières ont rapporté pour 2 360 millions de dollars en dividendes à l'État québécois en 2015 (Hydro-Québec, 2015). La recherche au niveau des cours d'eau est donc très importante pour l'économie québécoise. Or, on sait que l'oscillation australe affecte le climat et les cours d'eau du monde entier, mais on connaît très peu son effet sur les cours d'eau du Québec du fait que les études déjà effectuées sur ce sujet n'ont mis en évidence qu'un très faible lien entre les indices de l'OA et les variables hydroclimatiques au Québec comme on l'a déjà mentionné.

1.4 Objectifs et hypothèses

L'objectif principal du projet de recherche est de mesurer les impacts des événements d'El Niño et de La Niña sur les caractéristiques de débits hivernaux et printaniers au Québec méridional en fonction de l'intensité de ces épisodes et, ce contrairement à toutes les études antérieures qui n'en ont jamais tenu compte. L'hypothèse générale qui sous-tend cet objectif est la suivante : l'influence des épisodes El Niño et La Niña sur les débits hivernaux et printaniers ne se manifeste que lors des épisodes de plus forte intensité. Cela serait attribuable à l'éloignement du Québec par rapport à la région source de l'OA, c'est-à-dire la région Pacifique tropicale, qui atténuerait le signal. Il s'ensuit que l'absence ou le faible lien observé entre les épisodes de l'OA et les variables hydroclimatiques au Québec résulte du fait qu'on n'a jamais analysé séparément les événements El Niño et La Niña en fonction de leur intensité respective.

La question générale qui découle de cet objectif est la suivante : existe-t-il au Québec un lien significatif entre les caractéristiques des débits journaliers et l'intensité des épisodes El Niño et La Niña en hiver et au printemps? Cette question générale soulève six autres questions suivantes :

- 1) En cas d'existence de ce lien, l'influence de l'intensité des épisodes sur les caractéristiques des débits est-elle la même pour El Niño et pour La Niña?
- 2) Quelle est la nature de l'influence des épisodes El Niño et La Niña?
- 3) Quelles sont les caractéristiques des débits qui sont les plus influencées par l'intensité des épisodes d'El Niño et de La Niña au Québec méridional?
- 4) Quelle est la saison où cette influence se manifeste le plus au Québec méridional?
- 5) Quel(s) est (sont) le(s) indice(s) saisonnier(s) des épisodes El Niño et La Niña qui a (ont) une forte influence sur les caractéristiques des débits en hiver et au printemps au Québec méridional?

6) L'influence de l'intensité des épisodes El Niño et La Niña est-elle spatialement homogène à l'échelle de tout le Québec méridional?

CHAPITRE II

MÉTHODOLOGIE

2.1 Justification du choix des rivières à l'étude

Le choix des rivières a été effectué en fonction de la disponibilité des données de débit dans l'optique de maximiser la fenêtre temporelle de l'étude. De plus, les rivières sélectionnées devaient être très peu ou pas influencées par les activités anthropiques. Ainsi, 17 rivières du Québec méridional dont les données de débits sont disponibles pour la période de 1950 à 2017 ont été sélectionnées. Les débits journaliers proviennent du site web du Centre d'Expertise Hydrique du Québec (CEHQ, https://www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/index.asp). Le tableau 2.1 présente les rivières à l'étude et la figure 2.1 montre leur localisation. Celles-ci sont regroupées en trois régions hydroclimatiques homogènes (Assani et al., 2010; Assani et al., 2010): Est, Sud-Est et Sud-Ouest.

Tableau 2.1Rivières à l'étude

Code	Rivière	Superficie (km²)	Latitude (N)	Longitude (W)
	 Régio	n hydroclimatique a	le l'Est	
Εl	Blanche	208	48°46'	67°39′
E2	Du Loup	1050	47°49'	69°31′
E3	Matane	826	48°46'	67°32'
E4	Ouelle	802	47°25'	69°56'
E5	Rimouski	1610	48°24'	68°33'
E6	Trois-Pistoles	932	48°05'	69°11'
	Région	hydroclimatique du	Sud-Est	
SEI	Beaurivage	709	46°39'	71°17′
SE2	Châteauguay	2500	45°17'	73°48'
SE3	Du Sud	826	46°49'	-70°45'
SE4	Eaton	642	45°28'	-71°39'
SE5	Etchemin	1130	46°38'	-71°02'
SE6	Nicolet Sud-Ouest	544	45°47′	-71°58'
	Région h	ydroclimatique du S	ud-Ouest	
SWI	De la Petite Nation	1330	45°47'	-75°05'
SW2	Du Nord	1170	45°47'	-74°00'
SW3	L'Assomption	1340	46°00'	-73°25'
SW4	Matawin	1390	46°41'	-73°54'
SW5	Vermillon	2670	47°39'	-72°57'

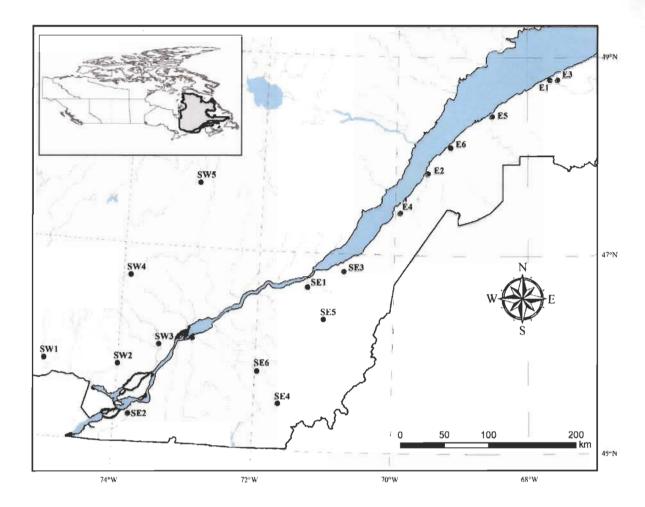


Figure 2.1 Localisation des rivières.

La région hydroclimatique de l'Est est située en rive sud du fleuve Saint-Laurent au nord du 47°N. Elle est caractérisée par un climat tempéré maritime. Localisée au sud de ce parallèle en rive sud aussi, la région hydroclimatique du Sud-Est est caractérisée par un climat mixte (maritime et continental). Enfin, la région hydroclimatique du Sud-Ouest est située en rive nord. Son climat est de type tempéré continental. (Assani et al., 2010; Assani et al., 2010).

2.2 Constitution des séries statistiques des débits

À partir des débits journaliers, plusieurs séries des variables hydrologiques qui définissent les caractéristiques fondamentales des débits ont été constituées pour chaque rivière. Comme mentionné précédemment, l'influence des épisodes El Niño et La Niña se

manifeste principalement en hiver et au printemps au Québec. On s'est donc limité à l'analyse des séries saisonnières hivernales (de janvier à mars) et printanières (d'avril à juin). Pour chacune de ces deux saisons et pour chaque rivière, on a constitué sept variables hydrologiques qui définissent trois caractéristiques fondamentales des débits. Rappelons que selon le concept du « régime des débits naturels », les débits d'une rivière peuvent être définis par cinq caractéristiques ou composantes fondamentales suivantes : la magnitude ou volume d'écoulement, la durée, la fréquence, la période d'occurrence et la variabilité (Poff et al. 1997). Cependant, le nombre de caractéristiques à définir dépend de l'échelle d'analyse et du type de débits (Assani et al. 2010). Chaque caractéristique fondamentale est définie par des variables hydrologiques dont le nombre varie d'une caractéristique à une autre (Assani et al. 2010). Sur la base de ces considérations, on a donc défini trois caractéristiques fondamentales suivantes : magnitude, période d'occurrence et variabilité. Chacune de ces caractéristiques a été définie par au moins deux variables hydrologiques.

2.2.1 Définition des variables hydrologiques liées à la caractéristique magnitude

La caractéristique magnitude a été définie par trois variables hydrologiques suivantes :

- Les débits moyens journaliers (Qm) sont la moyenne des débits journaliers mesurés au cours d'une saison. En hiver, c'est la moyenne des débits journaliers mesurés de janvier à mars de chaque année de 1950 à 2017, et au printemps, c'est la moyenne des débits journaliers mesurés d'avril à juin de chaque année de 1950 à 2017.
- Le débit maximum journalier saisonnier (Qmax) est la valeur du débit le plus élevé mesuré en hiver ou au printemps de chaque année.
- Le débit minimum journalier saisonnier (Qmin) est la valeur du débit le plus bas mesuré en hiver ou au printemps de chaque année.

2.2.2 Définition des variables hydrologiques liées à la période d'occurrence

On a calculé les dates d'occurrence des débits maximums (POmax) et minimums (POmin) en hiver et au printemps. Ces dates calendaires ont été converties en jours juliens.

2.2.3 Définition des variables hydrologiques liées à la caractéristique variabilité de l'écoulement

La caractéristique variabilité de l'écoulement a été définie par deux indices hydrologiques suivants :

Le coefficient de variation (CV) mesure la variabilité des débits d'un jour à l'autre durant une saison. Il s'agit tout simplement du quotient entre l'écart-type et la moyenne des débits journaliers de la saison considérée. Il s'exprime en pourcentage.

$$CV = \frac{\sigma}{\mu} \times 100 \tag{1}$$

 Le coefficient d'immodération (CI) mesure l'amplitude maximale de la variabilité des débits durant la saison considérée. Il s'agit du quotient entre le débit maximum (Qmax) et le débit minimum (Qmin) journaliers.

$$CI = \frac{Qmax}{Qmin} \tag{2}$$

2.3 Constitution des séries statistiques de l'oscillation australe (OA)

Il existe plusieurs indices permettant de quantifier l'intensité de l'OA. Ceux-ci se basent notamment sur la température de surface de l'océan, la pression atmosphérique, l'intensité et la direction des vents ou encore les précipitations (Guay et al. 1999). L'indice qui est utilisé dans le cadre de ce travail est l'*Oceanic Niño Index* (ONI) ou l'indice océanique Niño (ION). C'est maintenant l'indice le plus utilisé par la National Oceanic and Atmospheric Administration (NOAA). Cet indice est en fait la moyenne de

la température de surface de trois mois enregistrés dans l'est du Pacifique central. Cette zone est nommée *Niño 3.4*. Un épisode El Niño correspond à une hausse de plus 0,5 °C de la température des eaux de l'est de l'océan Pacifique au niveau de l'Équateur alors que pour La Niña, c'est une diminution de plus 0,5 °C dans la même zone (Dahlman, 2009).

On a donc constitué quatre séries saisonnières (hiver et printemps) à partir de trois indices d'ONI en hiver et quatre au printemps :

- JAS-1 correspond à la moyenne des températures de surface des mois juillet, août et septembre de l'année précédant l'hiver et le printemps qui surviennent l'année suivante au Québec.
- 2) OND-1 est la moyenne des températures de surface des mois d'octobre, novembre et décembre de l'année précédant l'hiver et le printemps qui surviennent l'année suivante au Québec.
- 3) JFM correspond à la moyenne des températures de surface des mois de janvier, février et mars de l'année, c'est-à-dire le même hiver qu'au Québec.
- 4) AMJ correspond à la moyenne des températures de surface des mois d'avril, mai et juin de l'année, c'est-à-dire le même printemps qu'au Québec. Cette variable ne sera comparée qu'aux débits printaniers.

Les valeurs de ces indices ont été tirées du site web de la NOAA (http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php, 5 mai 2018).

2.4 Séries des épisodes El Niño et La Niña

2.4.1 Série complète

Une première série est constituée des indices décrits ci-dessus pour l'ensemble des 67 années. Elle ne tient pas compte de l'intensité des épisodes El Niño et La Niña. Cette série est utilisée afin de vérifier si on obtient de meilleurs résultats en sélectionnant seulement les épisodes de la phase de l'OA qui nous intéresse.

2.4.2 Séries de l'ensemble des épisodes El Niño et La Niña en fonction de différentes intensités

Pour répondre à notre objectif principal, on a constitué deux autres séries. La première série est composée exclusivement des épisodes El Niño de faible à très forte intensité alors que la seconde est formée exclusivement par ceux de la Niña de faible à forte intensité (Golden Gates Weather, 2017). Les années d'occurrence de ces différents épisodes sont consignées dans le tableau 2.2. Le nombre d'épisodes ainsi que l'étendue des valeurs d'ONI sont présentés au tableau 2.3.

Tableau 2.2

Classification des épisodes El Niño et La Niña en fonction de leur intensité

EI	Niño	La	Niña
Années	Intensité	Années	Intensité
1951-1952	Modérée	1954-1955	Faible
1952-1953	Faible	1955-1956	Modérée
1953-1954	Faible	1964-1965	Faible
1957-1958	Forte	1970-1971	Modérée
1958-1959	Faible	1971-1972	Faible
1963-1964	Modérée	1973-1974	Forte
1965-1966	Forte	1974-1975	Faible
1968-1969	Modérée	1975-1976	Forte
1969-1970	Faible	1983-1984	Faible
1972-1973	Forte	1984-1985	Faible
1976-1977	Faible	1988-1989	Forte
1977-1978	Faible	1995-1996	Modérée
1979-1980	Faible	1998-1999	Forte
1982-1983	Très forte	1999-2000	Forte
1986-1987	Modérée	2000-2001	Faible
1987-1988	Forte	2005-2006	Faible
1991-1992	Forte	2007-2008	Forte
1994-1995	Modérée	2008-2009	Faible
1997-1998	Très forte	2010-2011	Forte
2002-2003	Modérée	2011-2012	Modérée
2004-2005	Faible	2016-2017	Faible
2006-2007	Faible		
2009-2010	Modérée		
2014-2015	Faible		
2015-2016	Très forte		

2.4.3 Séries des épisodes d'El Niño et La Niña les plus intenses

Finalement, on a exclu tous les épisodes de faible intensité de deux phases de l'OA. On a ainsi obtenu deux autres séries constituées seulement des épisodes d'intensité modérée à très forte. L'hypothèse sous-jacente à cette analyse est de démontrer l'absence

de l'influence des épisodes de faible intensité sur les caractéristiques des débits en hiver et au printemps au Québec. Le nombre d'épisodes ainsi que l'étendue des valeurs d'ONI sont présentés au tableau 2.3.

Tableau 2.3Nombre d'épisodes par séries de 1950 à 2017

Séries	Étendue des valeurs d'ONI	Nombre d'épisodes
El Niño d'intensité faible à très forte	0,5 à 2,5	25
El Niño d'intensité modérée à très forte	1 à 2,5	15
La Niña d'intensité faible à forte	-0,5 à -1,9	21
La Niña d'intensité modérée à forte	-1 à -1,9	11
Série complète	-1,9 à 2,5	67

2.5 Analyses statistiques

Dans un premier temps, la série complète des variables de l'OA est corrélée aux variables de débits pour l'hiver et le printemps grâce à des corrélations simples. Ces résultats sont comparés à ceux obtenus en utilisant seulement les épisodes El Niño et La Niña. Ceci permettra de répondre à l'hypothèse selon laquelle qu'on obtient de meilleurs résultats en utilisant les épisodes El Niño ou La Niña.

Dans un second temps, les séries discriminant les épisodes de faible intensité sont analysées par des analyses de corrélation simple afin de vérifier l'hypothèse que le signal des épisodes de plus faible intensité brouille le signal des épisodes les plus intenses à modérés. La méthode de corrélation utilisée est celle des corrélations de Pearson.

CHAPITRE III

COMPARAISON DE L'INFLUENCE DES INDICES OCÉANIQUES NIÑO SUR LES CARACTÉRISTIQUES DES DÉBITS EN HIVER ET AU PRINTEMPS

3.1 Relation entre les débits moyens journaliers saisonniers et les indices océaniques Niño

Les tableaux subséquents des chapitres III à V présentent les coefficients de corrélation obtenus grâce aux analyses de corrélation simple entre les différentes variables hydrologiques et les indices d'ONI pour l'hiver et le printemps. Les coefficients de corrélation calculés entre les débits moyens journaliers et les indices océaniques Niño sont présentés au tableau 3.1. Il ressort de ce tableau que ces coefficients de corrélation sont statistiquement significatifs dans les régions hydroclimatiques du Sud-Est en rive sud et du Sud-Ouest en rive nord au printemps seulement. Aucun coefficient de corrélation n'est significatif dans la région hydroclimatique de l'Est. Dans les deux premières régions, tous les coefficients de corrélation sont négatifs. Les valeurs positives de ces indices océaniques sont ainsi associées aux débits moyens journaliers faibles. Ce sont les indices océaniques hivernaux (JFM) qui sont mieux corrélés aux débits moyens journaliers dans les deux régions. Les indices océaniques estivaux (JAS-1) et automnaux (OND-1) sont aussi mieux corrélés aux débits moyens journaliers dans la région du Sud-Est.

Tableau 3.1

Coefficients de corrélation calculés entre les débits moyens journaliers saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017

			Hiver			Printe	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	égion hydro	oclimatique	du Sud-Est			
SE1	Châteauguay	0,060	0,106	0,042	-0,191	-0,214*	-0,208*	-0,108
SE2	Eaton	0,022	0,117	0,100	-0,241**	-0,245**	-0,246**	-0,108
SE3	Nicolet SW	0,058	0,109	0,095	-0,285**	-0,311**	-0,326**	-0,111
SE4	Etchemin	-0,079	-0,028	-0,042	-0,174	-0,173	-0,194	-0,128
SE5	Beaurivage	0,027	0,076	0,059	-0,212*	-0,215*	-0,247**	-0,187
SE6	Du Sud	0,022	0,064	0,037	-0,155	-0,167	-0,194	-0,107
			Région hyd	lroclimatiqu	ue de l'Est			
E1	Ouelle	0,007	0,064	0,062	-0,080	-0,074	-0,054	-0,027
E2	Du Loup	0,058	0,079	0,055	0,031	0,050	0,022	-0,062
E3	Trois-Pistoles	0,041	0,065	0,018	0,054	0,054	0,037	-0,009
E4	Rimouski	0,019	0,054	-0,009	-0,048	-0,076	-0,097	-0,111
E5	Matane	-0,092	-0,075	-0,100	-0,054	-0,020	-0,046	-0,081
E6	Blanche	-0,023	-0,025	-0,098	0,031	0,023	-0,033	-0,076
		Ré	gion hydroc	limatique o	lu Sud-Oues	st		
SW1	De La Petite Nation	0,132	0,123	0,073	-0,182	-0,211*	-0,224*	-0,109
SW2	Du Nord	0,158	0,198	0,179	-0,171	-0,210*	-0,253**	-0,104
SW3	L'Assomption	0,088	0,121	0,107	-0,158	-0,175	-0,215*	-0,090
SW4	Matawin	0,020	0,032	-0,026	-0,179	-0,183	-0,242**	-0,115
SW5	Vermillon	0,096	0,134	0,101	-0,151	-0,144	-0,186	-0,131

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

3.2 Relation entre les débits maximums journaliers saisonniers et les indices océaniques Niño

Contrairement aux débits moyens journaliers, il n'existe qu'un seul lien statistiquement significatif entre les débits maximums journaliers printaniers et les indices océaniques Niño (Tableau 3.2). À l'hiver, on observe cependant que deux rivières montrent des relations significatives, soit la rivière Châteauguay et la rivière Vermillon.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Pour la première, les coefficients sont négatifs alors que pour la seconde, ils sont positifs.

Tableau 3.2

Coefficients de corrélation calculés entre les débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017

			Hiver			Print	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	Région hydro	climatique c	lu Sud-Est			
SE1	Châteauguay	-0,398**	-0,352**	-0,357**	0,034	-0,024	-0,086	-0,084
SE2	Eaton	-0,092	-0,150	-0,128	0,095	0,186	0,208*	0,110
SE3	Nicolet SW	0,012	-0,066	-0,069	0,167	0,105	0,132	0,016
SE4	Etchemin	0,131	0,147	0,144	-0,153	-0,091	-0,043	0,160
SE5	Beaurivage	-0,003	-0,033	-0,066	0,042	0,026	0,030	0,107
SE6	Du Sud	0,169	0,150	0,119	-0,157	-0,145	-0,121	-0,031
		,	Région hyd	roclimatique	de l'Est			
ΕI	Ouelle	-0,153	-0,108	-0,153	-0,106	-0,099	0,005	0,131
E2	Du Loup	0,105	0,028	0,002	-0,132	-0,136	-0,058	-0,008
E3	Trois-Pistoles	-0,004	-0,038	-0,028	0,119	0,099	0,105	0,080
E4	Rimouski	-0,056	0,002	0,064	-0,114	-0,083	-0,033	0,046
E5	Matane	-0,095	-0,070	-0,137	-0,173	-0,124	-0,089	0,003
E6	Blanche	-0,023	-0,001	-0,124	0,095	0,148	0,144	0,085
		Ré	gion hydroc	limatique du	Sud-Ouest			
SWI	De La Petite Nation	0,141	0,121	0,136	0,136	0,175	0,108	-0,012
SW2	Du Nord	-0,065	-0,088	-0,105	-0,162	-0,135	-0,090	0,051
SW3	L'Assomption	0,018	0,027	-0,014	-0,151	-0,131	-0,015	0,141
SW4	Matawin	-0,150	-0,126	-0,080	0,170	0,145	0,109	-0,055
SW5	Vermillon	0,227*	0,315**	0,323**	-0,146	-0,097	-0,115	0,001

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

3.3 Relation entre les périodes d'occurrence des débits maximums journaliers saisonniers et les indices océaniques Niño

Les coefficients de corrélation entre les périodes d'occurrence des débits maximums journaliers et les indices océaniques Niño sont principalement significatifs dans la région du Sud-Est en rive nord au printemps (Tableau 3.3). Ces coefficients de corrélation sont tous négatifs. Ainsi, les valeurs positives des indices océaniques sont associées à des occurrences hâtives des débits maximums journaliers au printemps dans cette région hydroclimatique. Les périodes d'occurrence sont mieux corrélées aux indices océaniques estivaux, automnaux et hivernaux.

Tableau 3.3

Coefficients de corrélation calculés entre les périodes d'occurrence des débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017

			Hiver			Print	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
			Région hydro	oclimatique	du Sud-Est			
SE1	Châteauguay	0,180	0,248**	0,205*	0,049	0,016	-0,014	-0,076
SE2	Eaton	0,084	0,074	0,082	0,054	0,032	0,040	-0,084
SE3	Nicolet SW	0,060	0,073	0,055	-0,014	-0,005	-0,004	-0,059
SE4	Etchemin	-0,094	-0,059	-0,073	-0,071	-0,089	-0,138	-0,073
SE5	Beaurivage	-0,038	0,024	0,020	0,048	0,006	0,015	-0,007
SE6	Du Sud	-0,015	0,058	0,076	-0,086	-0,120	-0,080	-0,053
			Région hyd	droclimatiqu	ie de l'Est			
Εl	Ouelle	0,018	0,038	0,080	-0,032	-0,060	-0,102	-0,167
E2	Du Loup	0,026	0,046	0,058	-0,120	-0,197	-0,206*	-0,199
E3	Trois-Pistoles	0,057	0,069	0,079	-0,190	-0,188	-0,201	-0,128
E4	Rimouski	0,053	0,060	0,051	-0,099	-0,076	-0,129	-0,214*
E5	Matane	0,162	0,150	0,158	-0,091	-0,121	-0,140	-0,082
E6	Blanche	0,026	0,072	0,108	-0,116	-0,137	-0,131	-0,108
		F	Région hydrod	climatique d	u Sud-Ouest			
SWI	De La Petite Nation	-0,045	-0,028	0,024	-0,114	-0,095	-0,074	0,003
SW2	Du Nord	0,021	0,018	-0,001	-0,181	-0,164	-0,153	-0,041
SW3	L'Assomption	0,141	0,116	0,120	-0,224*	-0,258**	-0,282**	-0,289**
SW4	Matawin	-0,048	0,001	-0,009	-0,369**	-0,328**	-0,302**	-0,182
SW5	Vermillon	-0,039	0,043	0,031	-0,349**	-0,325**	-0,297**	-0,130

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

3.4 Relation entre les débits minimums journaliers saisonniers et les indices océaniques Niño

Il existe très peu de lien significatif entre la magnitude des débits minimums journaliers et les indices océaniques à l'échelle du Québec. De fait, ce lien a été observé seulement dans deux bassins versants dans la région hydroclimatique du Sud-Est et un seul dans la région hydroclimatique du Sud-Ouest (Tableau 3.4).

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Tableau 3.4

Coefficients de corrélation calculés entre les débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017

			Hiver			Printe	mps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	égion hydro.	climatique	du Sud-Est			
SE1	Châteauguay	-0,061	-0,056	-0,074	-0,047	-0,087	-0,083	-0,016
SE2	Eaton	-0,003	0,033	0,056	-0,029	-0,121	-0,144	-0,022
SE3	Nicolet SW	0,036	0,043	0,048	-0,128	-0,211*	-0,206*	-0,117
SE4	Etchemin	0,008	-0,029	-0,012	0,020	-0,059	-0,077	-0,018
SE5	Beaurivage	0,038	0,054	0,100	-0,107	-0,165	-0,139	0,005
SE6	Du Sud	0,207*	0,236*	0,194	-0,021	-0,130	-0,117	-0,033
			Région hyd	roclimatiqu	ie de l'Est			
E1	Ouelle	-0,012	-0,015	-0,012	-0,099	-0,195	-0,142	-0,026
E2	Du Loup	0,032	0,059	0,055	0,018	0,023	-0,016	0,035
E3	Trois-Pistoles	0,047	0,027	0,026	0,149	0,085	0,087	0,079
E4	Rimouski	0,042	0,074	0,001	-0,003	-0,005	-0,046	-0,090
E5	Matane	-0,149	-0,111	-0,159	0,153	0,133	0,142	0,006
E6	Blanche	-0,038	-0,031	-0,126	0,184	0,158	0,161	0,056
		Ré	gion hydroc	limatique d	u Sud-Ouest			
SW1	De La Petite Nation	0,091	0,078	0,016	-0,061	-0,047	-0,098	-0,112
SW2	Du Nord	0,086	0,069	0,048	-0,178	-0,255**	-0,251**	0,032
SW3	L'Assomption	0,008	0,019	0,010	-0,071	-0,101	-0,143	0,008
SW4	Matawin	-0,032	-0,031	-0,124	-0,141	-0,130	-0,203	-0,053
SW5	Vermillon	0,112	0,129	0,078	-0,005	0,023	-0,074	-0,128

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

3.5 Relation entre les périodes d'occurrence des débits minimums journaliers saisonniers et les indices océaniques Niño

À l'instar de la magnitude, il existe très peu de lien significatif entre les périodes d'occurrence des débits minimums et les indices océaniques au Québec. De fait, le lien significatif a été observé seulement dans deux bassins versants de la région

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

hydroclimatique du Sud-Est et deux autres situés dans la région hydroclimatique du Sud-Ouest (Tableau 3.5).

Tableau 3.5

Coefficients de corrélation calculés entre les périodes d'occurrence des débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017

			Hiver			Printe	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		F	Région hydro	climatique	du Sud-Est			
SE1	Châteauguay	0,046	0,072	0,039	-0,042	-0,013	0,016	-0,027
SE2	Eaton	0,149	0,162	0,187	-0,138	-0,162	-0,178	-0,219*
SE3	Nicolet SW	-0,029	0,053	0,088	0,047	0,035	100,0	-0,198
SE4	Etchemin	0,174	0,219*	0,151	-0,011	-0,004	-0,045	-0,051
SE5	Beaurivage	0,008	0,032	0,013	0,101	0,189	0,095	0,053
SE6	Du Sud	0,065	0,100	0,039	0,072	0,124	0,089	0,027
			Région hyd	roclimatiqu	ie de l'Est			
E1	Ouelle	-0,052	-0,027	-0,009	0,024	0,058	0,102	0,019
E2	Du Loup	-0,015	-0,036	-0,065	0,017	0,035	0,028	0,077
E3	Trois-Pistoles	0,010	-0,029	-0,023	0,003	0,062	0,089	0,120
E4	Rimouski	-0,005	-0,015	-0,023	0,143	0,198	0,187	0,104
E5	Matane	-0,129	-0,053	-0,049	0,098	0,107	0,086	-0,040
E6	Blanche	0,017	0,033	0,007	0,060	0,077	0,058	-0,022
		Ré	gion hydroc	limatique d	u Sud-Ouest	į		
SW1	De La Petite Nation	0,013	-0,015	-0,074	0,119	0,151	0,144	0,119
SW2	Du Nord	-0,008	-0,019	0,013	0,119	0,142	0,096	-0,085
SW3	L'Assomption	0,030	0,035	0,019	0,213*	0,231*	0,228*	0,067
SW4	Matawin	0,006	-0,036	-0,012	0,164	0,233*	0,205*	0,053
SW5	Vermillon	0,015	0,001	0,036	0,137	0,175	0,141	0,024

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

3.6 Relation entre les indices de variabilité de l'écoulement et les indices océaniques Niño

En ce qui concerne les coefficients de variation (CV), on observe une corrélation significative dans la moitié des bassins versants de la région hydroclimatique de l'Est au printemps seulement (Tableau 3.6). Cette corrélation est positive, c'est-à-dire que les valeurs positives des indices océaniques sont associées à une forte variabilité des débits interjournaliers printaniers. C'est l'indice océanique printanier (AMJ) qui est mieux corrélé aux coefficients de variation. Cette corrélation a été aussi observée dans deux bassins respectivement dans les régions hydroclimatiques du Sud-Est et du Sud-Ouest.

Quant aux coefficients d'immodération (CI), il existe très peu de corrélation significative à l'échelle du Québec (Tableau 3.7). En effet, cette corrélation est observée exclusivement au printemps dans deux bassins versants dans les régions hydroclimatiques du Sud-Est et du Sud-Ouest et dans un seul bassin versant dans la région de l'Est. Cette corrélation est aussi positive.

Tableau 3.6

Coefficients de corrélation calculés entre les coefficients de variation saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017

			Hiver			Printe	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	égion hydro	climatique d	lu Sud-Est			
SE1	Châteauguay	0,108	0,091	0,046	-0,009	-0,026	-0,015	-0,015
SE2	Eaton	-0,011	-0,007	-0,055	0,151	0,122	0,133	-0,036
SE3	Nicolet SW	0,038	0,018	0,021	0,137	0,175	0,158	0,037
SE4	Etchemin	0,026	0,086	0,112	0,045	0,117	0,168	0,236*
SE5	Beaurivage	-0,006	0,040	0,017	0,098	0,130	0,135	0,109
SE6	Du Sud	-0,019	0,002	0,041	0,063	0,169	0,177	0,320**
			Région hydr	oclimatique	de l'Est			
E1	Ouelle	0,024	0,052	0,069	0,049	0,146	0,219*	0,292**
E2	Du Loup	-0,018	0,031	0,046	0,008	0,086	0,130	0,206*
E3	Trois-Pistoles	0,048	0,085	0,075	-0,019	0,088	0,126	0,218*
E4	Rimouski	-0,051	-0,019	-0,015	-0,101	-0,023	0,053	0,161
E5	Matane	0,054	0,082	0,110	-0,167	-0,080	-0,041	0,070
E6	Blanche	-0,015	0,036	0,040	-0,136	-0,064	-0,040	0,034
		Rég	gion hydrocl	imatique du	Sud-Ouest			
SWI	De La Petite Nation	0,142	0,193	0,219*	0,002	0,000	0,007	-0,008
SW2	Du Nord	0,062	0,124	0,145	0,189	0,213*	0,198	0,071
SW3	L'Assomption	0,030	0,103	0,139	0,139	0,177	0,177	0,085
SW4	Matawin	0,057	0,100	0,133	-0,027	0,033	0,090	0,098
SW5	Vermillon	0,008	0,060	0,068	-0,087	0,000	0,060	0,150

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Tableau 3.7

Coefficients de corrélation calculés entre les coefficients d'immodération saisonniers (hivernaux et printaniers) et les indices océaniques Niño pendant la période 1950-2017

			Hiver			Prin	temps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		j	Région hyd	roclimatiqu	e du Sud-E	st		
SEI	Châteauguay	0,127	0,124	0,083	-0,034	-0,002	-0,014	-0,051
SE2	Eaton	0,034	0,084	0,062	0,032	0,061	0,054	-0,059
SE3	Nicolet SW	0,043	0,059	0,042	0,013	0,072	0,060	0,016
SE4	Etchemin	0,041	0,101	0,076	-0,115	-0,038	-0,002	0,050
SE5	Beaurivage	-0,085	-0,041	-0,100	0,042	0,079	0,056	0,005
SE6	Du Sud	-0,096	-0,070	-0,064	0,067	0,131	0,182	0,225*
			Région hy	droclimatio	que de l'Est			
Εl	Ouelle	0,070	0,106	0,107	0,166	0,265**	0,343**	0,345**
E2	Du Loup	0,027	0,052	0,067	-0,034	-0,023	0,060	0,114
E3	Trois-Pistoles	-0,001	0,045	0,045	-0,081	0,011	0,014	-0,003
E4	Rimouski	-0,052	-0,039	-0,018	0,027	0,079	0,148	0,226*
E5	Matane	-0,013	0,013	0,049	-0,174	-0,146	-0,125	0,048
E6	Blanche	-0,043	-0,010	0,020	-0,018	0,031	0,048	0,101
		R	égion hydro	oclimatique	du Sud-Ou	est		
SW1	De La Petite Nation	0,122	0,170	0,189	-0,018	-0,044	-0,022	0,013
SW2	Du Nord	0,144	0,171	0,144	0,266**	0,308**	0,285**	0,085
SW3	L'Assomption	0,038	0,069	0,064	0,169	0,206*	0,187	0,108
SW4	Matawin	0,109	0,119	0,129	0,028	0,054	0,095	0,043
SW5	Vermillon	-0,025	0,006	0,014	-0,122	-0,102	-0,044	0,144

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

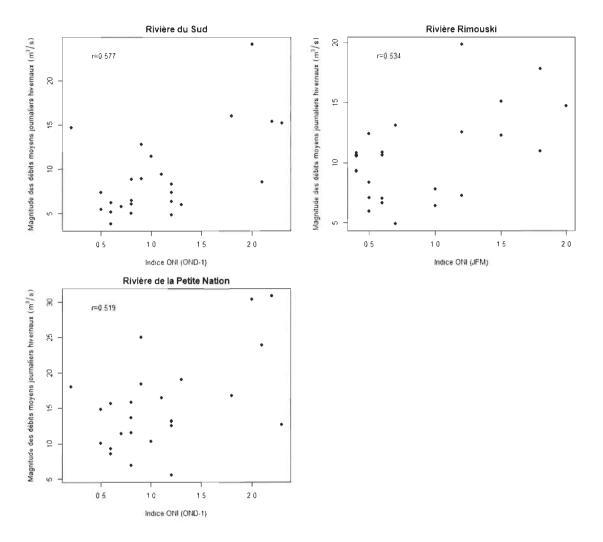
^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

CHAPITRE IV

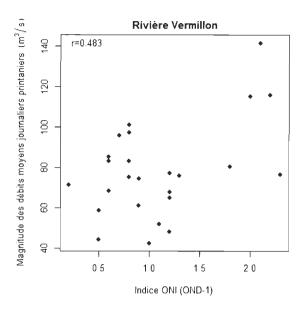
COMPARAISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES EL NIÑO SUR LES CARACTÉRISTIQUES DES DÉBITS EN HIVER ET AU PRINTEMPS

- 4.1 Analyse de l'influence des épisodes El Niño d'intensité faible à très forte
- 4.1.1 Relation entre les débits moyens journaliers saisonniers et les épisodes d'El Niño d'intensité faible à très forte

Les coefficients de corrélation calculés entre les deux variables en hiver et au printemps sont présentés au tableau 4.1. Il ressort de ce tableau que 13 des 17 rivières à l'étude montrent une corrélation significative entre les débits moyens hivernaux et les épisodes El Niño d'intensité faible à très forte. C'est avec la variable JFM qu'on note le plus grand nombre de relations significatives. Sur le plan spatial, ce sont les rivières des régions hydroclimatiques de l'Est en rive sud au nord de 47°N et du sud-ouest en rive nord qui sont majoritairement corrélées aux épisodes El Niño. Dans la première région, seuls les débits moyens journaliers de la rivière Ouelle ne sont corrélés à aucun épisode d'El Niño. Au printemps, on observe moins de relations significatives qu'en hiver. Cependant, il y a tout de même quatre des cinq rivières de la région hydroclimatique du Sud-Ouest qui montrent au moins un coefficient de corrélation significatif. Ceux-ci sont tous positifs. Il ressort clairement de cette analyse que la hausse de l'intensité des épisodes El Niño se traduit par celle de la magnitude des débits moyens journaliers aussi bien en hiver qu'au printemps (Figures 4.1 et 4.2). Toutefois, cette relation est inversée au printemps pour la rivière Eaton, la seule rivière dont les débits moyens journaliers sont corrélés significativement aux épisodes El Niño dans la région hydroclimatique du Sud-Est.


Tableau 4.1

Coefficients de corrélation calculés entre les débits moyens journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017


			Hiver			Print	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	Région hydro	climatique du	ı Sud-Est			
SE1	Châteauguay	0,353*	0,494**	0,308	-0,021	-0,050	-0,035	-0,092
SE2	Eaton	0,053	0,222	0,200	-0,362*	-0,385*	-0,380*	-0,088
SE3	Nicolet SW	0,308	0,482**	0,394*	-0,220	-0,274	-0,331	-0,013
SE4	Etchemin	0,182	0,308	0,298	-0,172	-0,186	-0,237	-0,035
SE5	Beaurivage	0,275	0,439**	0,429**	-0,034	0,044	-0,025	-0,059
SE6	Du Sud	0,420**	0,577**	0,448**	-0,048	-0,034	-0,060	0,009
			Région hydi	roclimatique	de l'Est			
El	Ouelle	0,181	0,271	0,280	0,206	0,255	0,245	0,081
E2	Du Loup	0,115	0,292	0,381*	0,238	0,278	0,305	0,141
E3	Trois-Pistoles	0,204	0,413**	0,524**	0,062	0,072	0,169	0,130
E4	Rimouski	0,300	0,492**	0,534**	0,039	-0,007	-0,002	-0,135
E5	Matane	0,108	0,209	0,418**	-0,252	-0,193	-0,177	-0,089
E6	Blanche	0,266	0,285	0,380*	-0,058	-0,100	-0,148	-0,121
		Ré	gion hydrocl	limatique du	Sud-Ouest			
SWI	De La Petite Nation	0,307	0,519**	0,483**	0,298	0,351*	0,272	0,038
SW2	Du Nord	0,167	0,401**	0,427**	0,236	0,172	0,079	0,018
SW3	L'Assomption	0,084	0,266	0,307	0,340*	0,350*	0,222	0,095
SW4	Matawin	0,238	0,389*	0,330	0,391*	0,425**	0,324	0,119
SW5	Vermillon	0,204	0,399**	0,411**	0,382*	0,483**	0,380*	0,100

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Figure 4.1 Relation entre la magnitude des débits moyens journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

Figure 4.2 Relation entre la magnitude des débits moyens journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

4.1.2 Relation entre les débits maximums journaliers saisonniers et les épisodes d'El Niño d'intensité faible à très forte

À l'instar des débits moyens journaliers saisonniers, les débits maximums journaliers sont aussi significativement corrélés aux indices des épisodes El Niño d'intensité faible à très forte pour de nombreuses rivières en hiver (Tableau 4.2). Dans les régions hydroclimatiques de l'Est et du Sud-Ouest, les débits de toutes les rivières sont corrélés aux épisodes El Niño alors que dans la région hydroclimatique du Sud-Est, plus de la moitié des rivières le sont. Cette corrélation est positive dans les trois régions hydroclimatiques (Figures 4.3 et 4.4). C'est aussi l'indice hivernal (JFM) qui est mieux corrélé aux débits maximums journaliers hivernaux. Au printemps, il y a très peu de rivières dont les débits maximums journaliers sont corrélés significativement aux indices des épisodes El Niño. De fait, on dénombre seulement trois rivières dont deux sont situées dans la région hydroclimatique de l'Est et une seule, dans la région hydroclimatique du Sud-Ouest. Contrairement aux débits moyens journaliers, les débits maximums journaliers d'aucune rivière dans la région hydroclimatique du Sud-Est ne sont corrélés significativement à aucun indice des épisodes El Niño.

Tableau 4.2

Coefficients de corrélation calculés entre les débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017

		Hiver			Printemps			
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
Région hydroclimatique du Sud-Est								
SE1	Châteauguay	0,431**	0,512**	0,406**	0,259	0,222	0,103	-0,080
SE2	Eaton	0,092	0,219	0,161	-0,111	-0,201	-0,213	-0,142
SE3	Nicolet SW	0,348*	0,511**	0,435**	-0,030	-0,085	-0,066	0,023
SE4	Etchemin	0,041	0,181	0,295	-0,103	0,063	0,212	0,282
SE5	Beaurivage	0,254	0,454**	0,461**	-0,139	0,027	0,156	0,207
SE6	Du Sud	0,136	0,269	0,356*	-0,208	-0,006	0,163	0,329
Région hydroclimatique de l'Est								
El	Ouelle	0,192	0,372*	0,381*	-0,074	0,217	0,449**	0,430**
E2	Du Loup	0,371*	0,512**	0,540**	0,096	0,241	0,437**	0,346*
E3	Trois-Pistoles	0,231	0,380*	0,423**	-0,088	0,117	0,238	0,269
E4	Rimouski	0,164	0,250	0,444**	-0,004	0,007	0,218	0,154
E5	Matane	0,079	0,196	0,364*	-0,153	-0,066	0,028	0,084
E6	Blanche	0,249	0,267	0,348*	0,035	0,047	-0,022	-0,160
Région hydroclimatique du Sud-Ouest								
SW1	De La Petite Nation	0,246	0,454**	0,505**	0,207	0,239	0,243	0,141
SW2	Du Nord	0,264	0,474**	0,552**	0,157	0,155	0,204	0,257
SW3	L'Assomption	0,092	0,255	0,402**	0,096	0,227	0,195	0,231
SW4	Matawin	0,368*	0,491**	0,523**	0,221	0,370*	0,311	0,169
SW5	Vermillon	0,351*	0,559**	0,530**	0,121	0,297	0,280	0,223

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

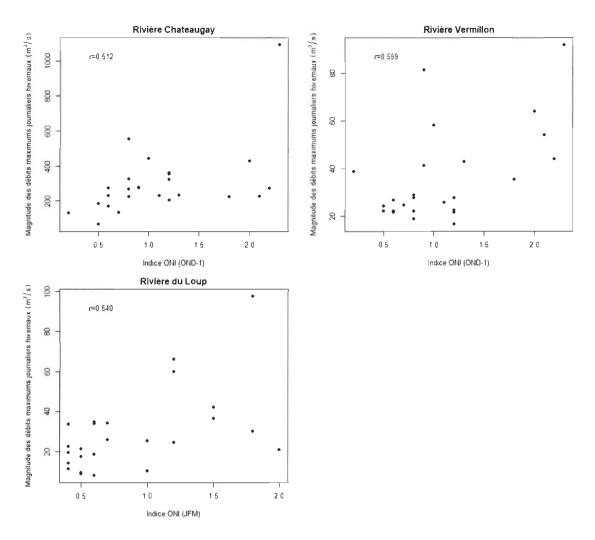


Figure 4.3 Relation entre la magnitude des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

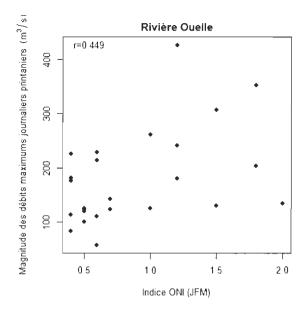
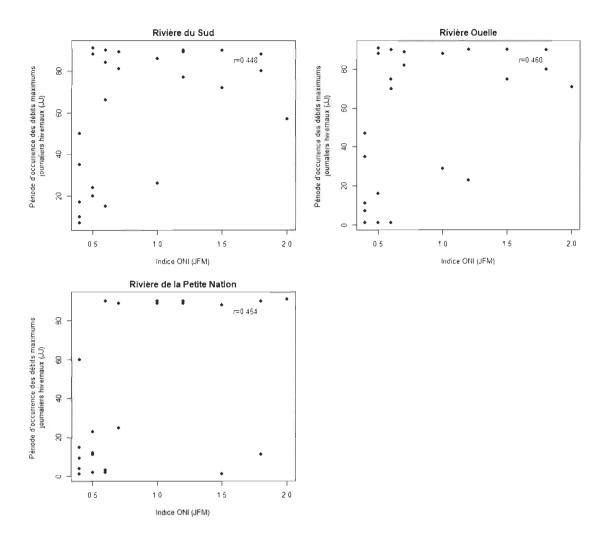


Figure 4.4 Relation entre la magnitude des débits maximums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

4.1.3 Relation entre les périodes d'occurrence des débits maximums journaliers saisonniers et les épisodes d'El Niño d'intensité faible à très forte

Les coefficients de corrélation calculés entre les deux variables sont consignés dans le tableau 4.3. Encore une fois, les épisodes El Niño sont mieux corrélés aux périodes d'occurrence des débits maximums journaliers en hiver qu'au printemps. En hiver, les coefficients de corrélation sont tous positifs. Ainsi, plus les épisodes El Niño sont intenses, les débits maximums journaliers surviennent tard dans la saison hivernale (Figure 4.5). En revanche, c'est le contraire au printemps. En effet, durant cette saison, les coefficients de corrélation sont tous négatifs. Les épisodes d'El Niño les plus intenses sont associés à une occurrence hâtive des débits maximums journaliers dans la saison (Figure 4.6). Sur le plan spatial, les périodes d'occurrence des débits maximums journaliers de toutes les rivières de la région hydroclimatique du Sud-Ouest sont corrélées significativement aux indices des épisodes El Niño, en particulier l'indice hivernal JFM. Dans la région hydroclimatique de l'Est, deux rivières seulement ne le sont pas. Il s'agit des rivières Trois-Pistoles et Rimouski. Enfin, dans la région hydroclimatique du Sud-Est, la corrélation est significative seulement pour la moitié des rivières.


Tableau 4.3

Coefficients de corrélation calculés entre les périodes d'occurrence des débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017

			Hiver			Prin	temps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	égion hydro	climatique d	u Sud-Est			
SE1	Châteauguay	0,038	-0,064	-0,058	-0,018	0,041	-0,059	-0,222
SE2	Eaton	0,208	0,038	0,084	-0,090	0,073	0,008	-0,115
SE3	Nicolet SW	0,388*	0,327	0,439**	-0,187	-0,212	-0,246	-0,026
SE4	Etchemin	0,235	0,335	0,374*	-0,236	-0,276	-0,401**	-0,091
SE5	Beaurivage	0,052	0,163	0,198	-0,112	-0,209	-0,267	-0,005
SE6	Du Sud	0,376*	0,408**	0,448**	-0,213	-0,239	-0,304	-0,093
			Région hydr	oclimatique	de l'Est			
E1	Ouelle	0,324	0,371*	0,460**	0,081	-0,056	-0,212	-0,281
E2	Du Loup	0,282	0,380*	0,444**	0,183	-0,006	-0,242	-0,344*
E3	Trois-Pistoles	0,282	0,309	0,225	-0,036	-0,025	-0,166	-0,170
E4	Rimouski	0,121	0,085	0,118	0,207	0,138	-0,119	-0,358*
E5	Matane	0,338*	0,402**	0,291	-0,051	-0,086	-0,298	-0,166
E6	Blanche	0,273	0,336	0,413**	0,180	0,095	-0,077	-0,199
		Ré	gion hydrocl	imatique du	Sud-Ouest			
SW1	De La Petite Nation	0,128	0,306	0,454**	-0,044	-0,023	-0,070	-0,001
SW2	Du Nord	0,421**	0,443**	0,384*	0,008	-0,069	-0,347*	-0,283
SW3	L'Assomption	0,350*	0,432**	0,353*	0,091	0,047	-0,236	-0,302
SW4	Matawin	0,262	0,417**	0,396*	-0,048	0,027	-0,046	-0,032
SW5	Vermillon	0,071	0,337*	0,426**	-0,068	-0,073	-0,163	-0,132

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Relation entre la période d'occurrence des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

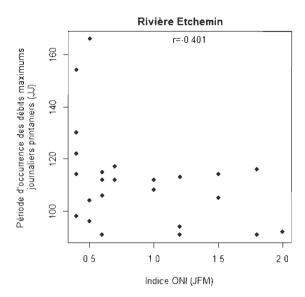
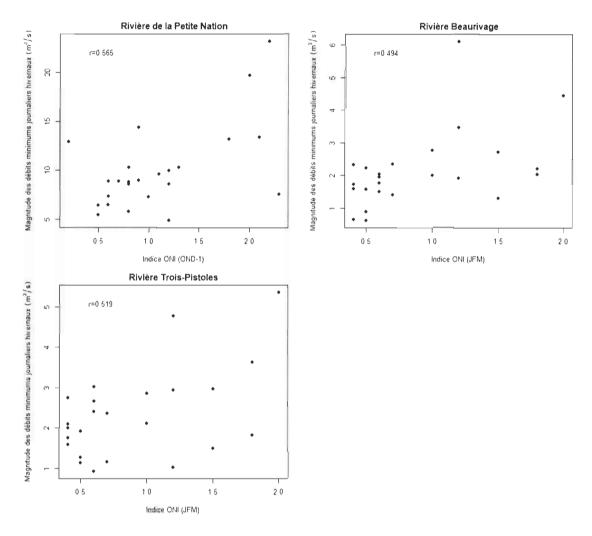


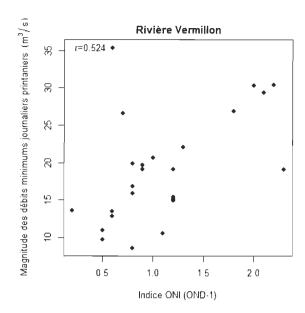
Figure 4.6 Relation entre la période d'occurrence des débits maximums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

4.1.4 Relation entre les débits minimums journaliers saisonniers et les épisodes d'El Niño d'intensité faible à très forte

À l'instar des débits moyens et maximums, la magnitude des débits minimums journaliers tendent à augmenter avec l'intensité des épisodes El Niño aussi bien en hiver qu'au printemps (Figures 4.7 et 4.8). En effet, tous les coefficients de corrélation sont positifs durant les deux saisons dans les trois régions hydroclimatiques (Tableau 4.4). De plus, l'influence d'El Niño se manifeste davantage en hiver qu'au printemps. C'est l'indice hivernal JFM qui est mieux corrélé aux débits minimums journaliers de nombreuses rivières. Sur le plan spatial, contrairement aux débits maximums journaliers, ce sont les rivières de la région hydroclimatique du Sud-Est qui présente majoritairement des corrélations significatives entre les épisodes El Niño et les débits minimums journaliers. Dans la région hydroclimatique de l'Est, seulement le tiers de rivières qui présentent des corrélations significatives et la moitié dans la région hydroclimatique du Sud-Ouest.


Tableau 4.4

Coefficients de corrélation calculés entre les débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017


			Hiver			Print	temps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		F	Région hydro	climatique d	u Sud-Est			
SEI	Châteauguay	0,132	0,244	0,250	0,140	0,163	0,046	-0,246
SE2	Eaton	0,272	0,383*	0,408**	-0,244	-0,326	-0,332	-0,097
SE3	Nicolet SW	0,223	0,349*	0,408**	-0,007	-0,020	0,000	0,017
SE4	Etchemin	0,134	0,112	0,216	-0,068	-0,144	-0,118	-0,101
SE5	Beaurivage	0,196	0,367*	0,494**	-0,089	0,045	0,221	0,235
SE6	Du Sud	0,360*	0,464**	0,403**	0,141	-0,016	0,051	-0,013
			Région hyd	roclimatique	de l'Est			
El	Ouelle	0,086	0,049	0,266	0,138	0,013	-0,051	-0,058
E2	Du Loup	-0,214	0,092	0,292	0,053	0,234	0,108	0,094
E3	Trois-Pistoles	0,150	0,357*	0,519**	0,105	-0,082	-0,001	0,026
E4	Rimouski	0,222	0,325	0,362*	0,177	0,134	0,136	-0,019
E5	Matane	-0,020	0,107	0,204	0,226	0,192	0,254	0,053
E6	Blanche	-0,005	0,174	0,113	0,160	0,131	0,241	0,068
		Ré	égion hydroc	limatique du	Sud-Ouest			
SW1	De La Petite Nation	0,404**	0,565**	0,502**	0,261	0,411**	0,215	-0,091
SW2	Du Nord	0,234	0,288	0,280	-0,017	-0,138	0,018	0,193
SW3	L'Assomption	0,245	0,361*	0,338*	0,200	0,162	0,143	0,144
SW4	Matawin	0,244	0,317	0,118	0,149	0,307	0,189	0,114
SW5	Vermillon	0,400**	0,542**	0,514**	0,410**	0,524**	0,412**	0,117

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Figure 4.7 Relation entre la magnitude des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

Figure 4.8 Relation entre la magnitude des débits minimums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

4.1.5 Relation entre les périodes d'occurrence des débits minimums journaliers saisonniers et les épisodes d'El Niño d'intensité faible à très forte

Les valeurs des coefficients de corrélation entre les deux variables sont présentées au tableau 4.5. Contrairement aux périodes d'occurrence des débits maximums journaliers, les indices des épisodes El Niño sont globalement peu corrélés aux périodes d'occurrence des débits minimums journaliers. Il existe aussi une nette opposition entre les saisons. En hiver, tous les coefficients de corrélation sont négatifs alors qu'ils sont tous positifs au printemps. Il s'ensuit que contrairement aux périodes d'occurrence des débits maximums journaliers, la hausse d'intensité des épisodes El Niño provoque une occurrence hâtive des débits minimums journaliers en hiver, mais, en revanche, une occurrence tardive des débits minimums journaliers au printemps (Figures 4.9 et 4.10). Sur le plan spatial, les indices des épisodes El Niño sont mieux corrélés aux périodes d'occurrence des débits minimums journaliers dans la région hydroclimatique de l'Est. Cette corrélation est inexistante dans la région hydroclimatique du Sud-Ouest située en rive nord. En effet, aucun coefficient de corrélation n'est statistiquement significatif dans cette région hydroclimatique.

Tableau 4.5

Coefficients de corrélation calculés entre les périodes d'occurrence des débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017

			Hiver		Printemps				
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ	
		R	égion hydro	climatique c	lu Sud-Est				
SE1	Châteauguay	-0,233	-0,109	-0,096	0,172	0,172	0,200	-0,038	
SE2	Eaton	-0,176	-0,138	0,073	0,267	0,170	0,033	-0,218	
SE3	Nicolet SW	-0,407**	-0,209	-0,038	0,237	0,159	0,017	-0,247	
SE4	Etchemin	-0,145	-0,117	-0,221	0,311	0,296	0,362*	0,156	
SE5	Beaurivage	-0,292	-0,067	0,042	0,127	0,243	0,054	0,047	
SE6	Du Sud	-0,292	-0,281	-0,347*	0,354*	0,334	0,358*	0,033	
	-		Région hyd	roclimatique	de l'Est				
Εl	Ouelle	-0,394*	-0,321	-0,119	0,221	0,283	0,329	0,169	
E2	Du Loup	-0,411**	-0,515**	-0,518**	0,224	0,313	0,349*	0,228	
E3	Trois-Pistoles	-0,209	-0,226	-0,191	0,206	0,388*	0,379*	0,160	
E4	Rimouski	-0,065	-0,131	-0,209	0,292	0,479**	0,480**	0,187	
E5	Matane	-0,348*	-0,312	-0,312	0,323	0,354*	0,346*	0,044	
E6	Blanche	-0,077	-0,034	0,026	0,231	0,309	0,359*	0,187	
		Ré	gion hydroc	limatique du	Sud-Oues	t			
SWI	De La Petite Nation	-0,178	-0,244	-0,213	0,169	0,328	0,281	0,097	
SW2	Du Nord	-0,118	-0,186	-0,166	0,236	0,146	0,056	-0,198	
SW3	L'Assomption	-0,222	-0,302	-0,311	0,269	0,297	0,246	0,003	
SW4	Matawin	-0,019	-0,055	-0,019	0,109	0,270	0,280	-0,027	
SW5	Vermillon	-0,160	-0,296	-0,251	0,255	0,301	0,329	-0,058	

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

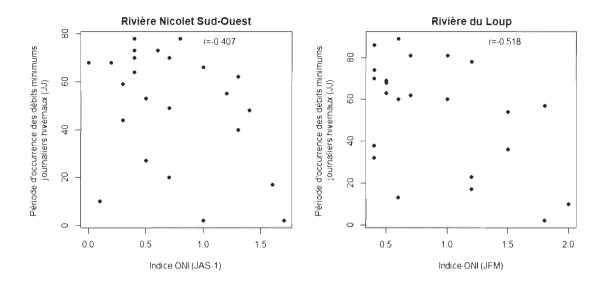


Figure 4.9 Relation entre la période d'occurrence des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

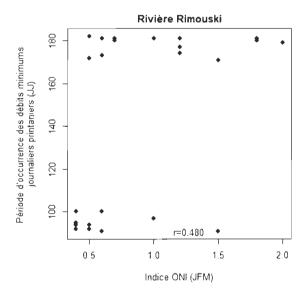


Figure 4.10 Relation entre la période d'occurrence des débits minimums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

4.1.6 Relation entre les indices de la variabilité de l'écoulement et les épisodes d'El Niño d'intensité faible à très forte

Peu de relations significatives sont observées pour les coefficients de variation et coefficient d'immodération (Tableaux 4.6 et 4.7). C'est encore en hiver que l'influence des épisodes El Niño se manifeste plus qu'au printemps. Elle se manifeste particulièrement dans la région hydroclimatique du Sud-Ouest. Dans les deux autres régions hydroclimatiques, les deux indices de variabilité d'écoulement sont très peu corrélés aux épisodes El Niño. Enfin, il importe de noter que tous les coefficients de corrélation statistiquement significatifs sont positifs. Ainsi, la hausse de l'intensité des épisodes El Niño provoque globalement une forte variabilité interjournalière des débits et une forte amplitude saisonnière aussi bien en hiver qu'au printemps (Figures 4.11, 4.12 et 4.13). Enfin, encore une fois, c'est l'indice hivernal JFM des épisodes El Niño qui est mieux corrélé aux deux indices de variabilité de l'écoulement.

Tableau 4.6

Coefficients de corrélation calculés entre les coefficients de variation saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017

			Hiver			Prin	temps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		Re	égion hydroc	limatique du	ı Sud-Est	·		
SEI	Châteauguay	0,169	0,147	0,133	0,209	0,089	0,114	0,116
SE2	Eaton	0,027	0,064	0,023	0,353*	0,196	0,209	-0,056
SE3	Nicolet SW	0,142	0,231	0,203	0,261	0,126	0,201	0,075
SE4	Etchemin	0,055	0,190	0,222	0,017	0,137	0,376*	0,334
SE5	Beaurivage	0,063	0,183	0,229	-0,048	-0,013	0,196	0,196
SE6	Du Sud	0,061	0,154	0,247	-0,209	0,051	0,288	0,426**
)	Région hydro	oclimatique	de l'Est			
El	Ouelle	0,155	0,206	0,137	-0,226	0,028	0,297	0,351*
E2	Du Loup	0,358*	0,377*	0,311	-0,127	0,084	0,300	0,329
E3	Trois-Pistoles	-0,002	0,065	0,070	-0,277	-0,024	0,110	0,268
E4	Rimouski	0,002	0,067	0,181	-0,249	-0,044	0,162	0,274
E5	Matane	0,026	0,067	0,197	-0,152	0,042	0,041	0,125
E6	Blanche	0,056	0,051	0,104	-0,188	-0,007	0,028	0,127
		Rég	ion hydrocli	matique du	Sud-Ouest			
SW1	De La Petite Nation	-0,146	0,035	0,142	-0,063	-0,063	0,048	0,086
SW2	Du Nord	0,070	0,267	0,391*	-0,070	-0,144	-0,070	-0,015
SW3	L'Assomption	-0,064	0,151	0,341*	-0,194	-0,113	-0,017	0,052
SW4	Matawin	0,168	0,299	0,439**	-0,093	0,085	0,161	0,138
SW5	Vermillon	0,101	0,286	0,292	-0,245	-0,104	0,072	0,183

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

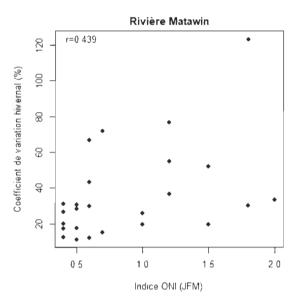


Figure 4.11 Relation entre les coefficients de variation hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

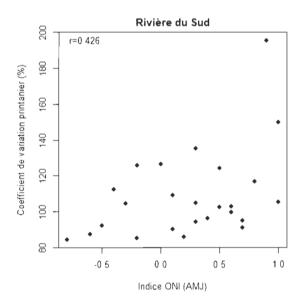


Figure 4.12 Relation entre les coefficients de variation printaniers et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

Tableau 4.7

Coefficients de corrélation calculés entre les coefficients d'immodération saisonniers (hivernaux et printaniers) et les indices des épisodes El Niño d'intensité faible à très forte pendant la période 1950-2017

			Hiver			Prin	temps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	égion hydro	climatique o	du Sud-Est			
SE1	Châteauguay	0,284	0,308	0,213	0,093	0,086	-0,007	-0,019
SE2	Eaton	-0,141	-0,083	-0,071	0,220	0,141	0,056	-0,162
SE3	Nicolet SW	0,220	0,307	0,197	-0,055	-0,151	-0,103	0,018
SE4	Etchemin	0,219	0,337	0,229	0,030	0,174	0,343*	0,355*
SE5	Beaurivage	0,124	0,255	0,228	-0,079	-0,171	-0,162	-0,109
SE6	Du Sud	0,041	0,164	0,241	-0,148	-0,029	0,141	0,285
			Région hydi	roclimatique	e de l'Est			
EI	Ouelle	0,273	0,386*	0,321	-0,177	0,015	0,315	0,353*
E2	Du Loup	0,475**	0,422**	0,310	0,107	0,041	0,275	0,189
E3	Trois-Pistoles	0,069	0,146	0,198	-0,107	0,249	0,250	0,158
E4	Rimouski	0,069	0,145	0,294	-0,054	0,155	0,271	0,276
E5	Matane	0,058	0,124	0,250	-0,314	-0,298	-0,285	-0,061
E6	Blanche	0,243	0,171	0,305	-0,228	-0,149	-0,070	0,170
		Ré	gion hydroc	limatique du	ı Sud-Oues	t		
SWI	De La Petite Nation	-0,016	0,123	0,231	0,032	-0,018	0,068	0,132
SW2	Du Nord	0,246	0,402**	0,461**	0,299	0,306	0,212	0,020
SW3	L'Assomption	0,092	0,251	0,392*	0,009	0,055	-0,001	0,002
SW4	Matawin	0,335	0,417**	0,488**	0,038	0,050	0,073	0,081
SW5	Vermillon	0,203	0,353*	0,365*	-0,223	-0,201	-0,179	0,034

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

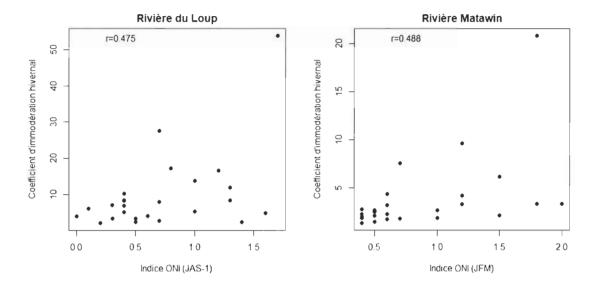


Figure 4.13 Relation entre les coefficients d'immodération hivernaux et l'indice ONI lors des épisodes El Niño d'intensité faible à très forte pour la période 1950-2017.

4.2 Analyse de l'influence des épisodes El Niño d'intensité modérée à très forte

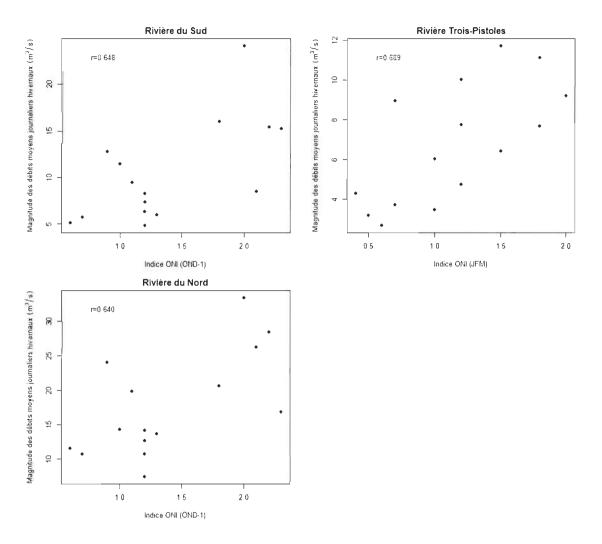
Dans cette section, on a exclu les épisodes El Niño de faible intensité afin de pouvoir vérifier si ces épisodes peuvent « brouiller » l'influence d'El Niño sur les caractéristiques des débits en hiver et au printemps.

4.2.1 Relation entre les débits moyens journaliers et les épisodes El Niño d'intensité modérée à très forte

Les valeurs des coefficients de corrélation sont présentées au tableau 4.8. Il ressort de ce tableau trois faits significatifs suivants :

 Par rapport au tableau 4.1, les valeurs des coefficients de corrélation ont globalement augmenté dans les trois régions hydroclimatiques. Cette hausse confirme l'influence de l'intensité des épisodes El Niño sur les débits moyens journaliers. Ces relations restent toujours positives aussi bien en hiver qu'au printemps (Figures 4.14 et 4.15).

- Dans la région hydroclimatique du Sud-Est, le nombre de rivières, dont les débits moyens journaliers corrélés aux indices des épisodes El Niño, a augmenté.
- Dans la région hydroclimatique du Sud-Ouest, le nombre de rivières, dont les débits moyens journaliers corrélés aux indices des épisodes El Niño, a augmenté au printemps. Il s'ensuit que les épisodes d'El Niño de faible intensité affaiblissent l'influence de cet événement au printemps dans cette région hydroclimatique contrairement aux deux autres régions.


Tableau 4.8

Coefficients de corrélation calculés les débits moyens journaliers saisonniers (hivernaux et printaniers) et les épisodes El Niño d'intensité modérée à très forte pendant la période 1950-2017

			Hiver			Prir	itemps		
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ	
			Région hydro	oclimatique	du Sud-Est				
SE1	Châteauguay	0,264	0,508*	0,260	0,123	0,164	0,367	0,269	
SE2	Eaton	-0,062	0,232	0,120	-0,399	-0,411	-0,161	0,213	
SE3	Nicolet SW	0,283	0,584**	0,320	-0,196	-0,278	-0,224	0,175	
SE4	Etchemin	0,278	0,562**	0,273	-0,098	-0,099	-0,015	0,176	
SE5	Beaurivage	0,258	0,548**	0,357	-0,061	0,021	0,128	0,170	
SE6	Du Sud	0,418	0,648**	0,333	-0,032	0,042	0,139	0,234	
Région hydroclimatique de l'Est									
E1	Ouelle	0,182	0,374	0,316	0,099	0,274	0,314	0,290	
E2	Du Loup	0,129	0,402	0,426	0,090	0,241	0,318	0,305	
E3	Trois-Pistoles	0,075	0,536**	0,689**	-0,106	-0,050	0,128	0,225	
E4	Rimouski	0,214	0,542**	0,597**	-0,058	-0,109	-0,085	-0,148	
E5	Matane	0,189	0,374	0,651**	-0,244	-0,142	-0,122	-0,067	
E6	Blanche	0,320	0,413	0,550**	-0,041	-0,086	-0,148	-0,099	
		R	égion hydro	climatique di	u Sud-Oues	st			
SW1	De La Petite Nation	0,284	0,569**	0,461*	0,350	0,495*	0,467*	0,240	
SW2	Du Nord	0,229	0,640**	0,480*	0,148	0,136	0,107	0,226	
SW3	L'Assomption	0,157	0,513*	0,372	0,347	0,464*	0,352	0,315	
SW4	Matawin	0,168	0,409	0,209	0,455*	0,586**	0,490*	0,303	
SW5	Vermillon	0,081	0,355	0,309	0,312	0,545**	0,447*	0,271	

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Figure 4.14 Relation entre la magnitude des débits moyens journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

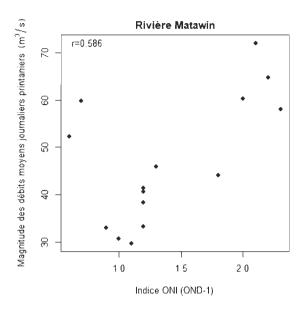
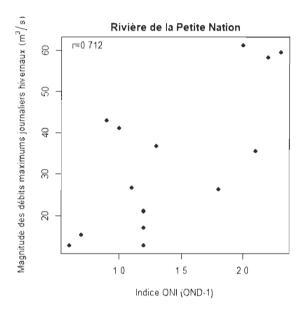


Figure 4.15 Relation entre la magnitude des débits moyens journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

4.2.2 Relation entre les débits maximums journaliers et les épisodes El Niño d'intensité modérée à très forte

L'influence printanière des épisodes El Niño se confirme dans les trois régions hydroclimatiques et plus particulièrement dans la région du Sud-Ouest (Tableau 4.9). Cependant, on note un affaiblissement de l'influence de ces épisodes dans les deux régions hydroclimatiques situées en rive sud. L'ensemble des relations sont positives (Figures 4.16 et 4.17).


Tableau 4.9

Coefficients de corrélation calculés les débits maximums journaliers saisonniers (hivernaux et printaniers) et les épisodes El Niño d'intensité modérée à très forte pendant la période 1950-2017

		_	Hiver			Prin	itemps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
			Région hydr	oclimatique	du Sud-Est			
SE1	Châteauguay	0,373	0,462*	0,376	0,495*	0,452*	0,392	0,133
SE2	Eaton	0,109	0,327	0,102	-0,273	-0,435	-0,250	-0,015
SE3	Nicolet SW	0,191	0,458*	0,217	-0,013	-0,121	0,056	0,170
SE4	Etchemin	0,060	0,350	0,295	-0,226	0,007	0,427	0,584**
SE5	Beaurivage	0,111	0,383	0,344	-0,122	0,015	0,427	0,333
SE6	Du Sud	0,096	0,265	0,295	-0,267	-0,009	0,373	0,551**
			Région hy	droclimatiqu	e de l'Est			
El	Ouelle	0,077	0,323	0,324	-0,336	0,094	0,483	0,626
E2	Du Loup	0,281	0,501*	0,503*	-0,205	0,104	0,524**	0,652**
E3	Trois-Pistoles	0,034	0,312	0,413	-0,409	-0,089	0,327	0,659**
E4	Rimouski	0,074	0,248	0,407	-0,305	-0,201	0,283	0,434
E5	Matane	-0,032	0,158	0,319	-0,361	-0,202	0,142	0,380
E6	Blanche	0,436	0,476*	0,512*	-0,266	-0,257	-0,084	0,125
		R	tégion hydro	climatique di	u Sud-Oues	it	_	
SW1	De La Petite Nation	0,433	0,712**	0,642**	0,311	0,394	0,496*	0,356
SW2	Du Nord	0,252	0,577**	0,552**	0,167	0,189	0,360	0,454*
SW3	L'Assomption	0,245	0,590**	0,562**	0,296	0,537**	0,647**	0,545**
SW4	Matawin	0,318	0,490*	0,449*	0,393	0,655**	0,724**	0,471*
SW5	Vermillon	0,216	0,491*	0,417	0,131	0,425	0,543**	0,497*

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Figure 4.16 Relation entre la magnitude des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

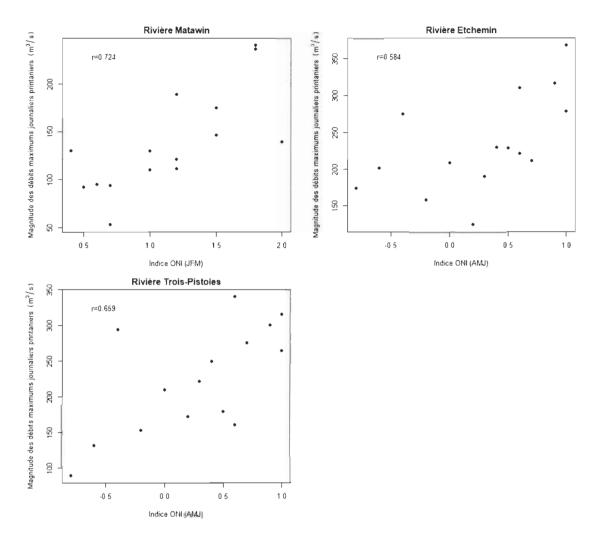
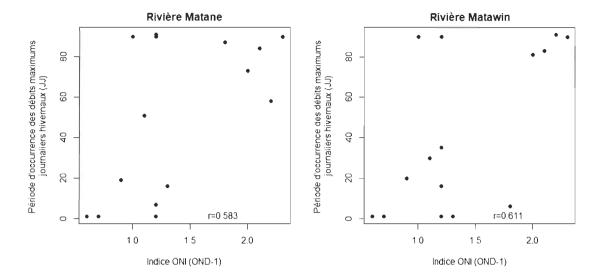


Figure 4.17 Relation entre la magnitude des débits maximums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

4.2.3 Relation entre les périodes d'occurrence des débits maximums journaliers et les épisodes El Niño d'intensité modérée à très forte

Les valeurs des coefficients de corrélation calculés entre les deux variables sont présentées dans le tableau 4.10. Il ressort de ce tableau que les périodes d'occurrence de nombreuses rivières dans les trois régions hydroclimatiques sont très peu corrélées aux épisodes El Niño. En effet, dans chacune des régions hydroclimatiques du Sud-Est et du Sud-Ouest, deux rivières seulement sont corrélées aux épisodes El Niño. Dans la première région, cette corrélation est observée seulement au printemps alors que dans la

seconde région, elle est observée seulement en hiver. Au printemps, la corrélation est négative alors qu'elle est positive en hiver (Figure 4.18).


Tableau 4.10

Coefficients de corrélation calculés de la période d'occurrence des débits maximums journaliers saisonniers (hivernaux et printaniers) et les épisodes El Niño d'intensité modérée à très forte pendant la période 1950-2017

			Hiver			Prin	temps	_		
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ		
]	Région hydro	climatique	du Sud-Est					
SE1	Châteauguay	0,275	0,085	0,083	-0,350	-0,275	-0,345	-0,244		
SE2	Eaton	0,165	-0,211	-0,183	-0,275	-0,025	-0,110	-0,125		
SE3	Nicolet SW	0,310	0,286	0,335	-0,228	-0,224	-0,388	-0,057		
SE4	Etchemin	-0,101	0,140	0,072	-0,263	-0,334	-0,461*	0,044		
SE5	Beaurivage	-0,241	-0,081	-0,013	-0,373	-0,398	-0,463*	0,074		
SE6	Du Sud	0,284	0,381	0,236	0,003	-0,009	-0,192	-0,010		
	Région hydroclimatique de l'Est									
ΕI	Ouelle	0,135	0,244	0,288	0,233	-0,083	-0,265	-0,224		
E2	Du Loup	-0,046	0,215	0,251	0,266	-0,111	-0,266	-0,230		
E3	Trois-Pistoles	0,302	0,365	0,116	-0,125	-0,140	-0,138	0,027		
E4	Rimouski	0,119	0,088	0,006	0,238	0,080	-0,209	-0,395		
E5	Matane	0,462*	0,583**	0,243	0,123	-0,061	-0,318	-0,188		
E6	Blanche	0,186	0,318	0,335	0,369	0,148	0,022	-0,136		
	-	R	égion hydroc	limatique d	u Sud-Oues	t				
SWI	De La Petite Nation	-0,086	0,243	0,385	0,027	0,066	0,196	0,294		
SW2	Du Nord	0,099	0,201	-0,026	0,034	-0,132	-0,380	-0,209		
SW3	L'Assomption	0,312	0,492*	0,214	0,213	0,099	-0,145	-0,132		
SW4	Matawin	0,275	0,611**	0,493*	-0,119	-0,002	0,086	0,227		
SW5	Vermillon	-0,230	0,219	0,250	-0,097	-0,061	-0,063	0,068		

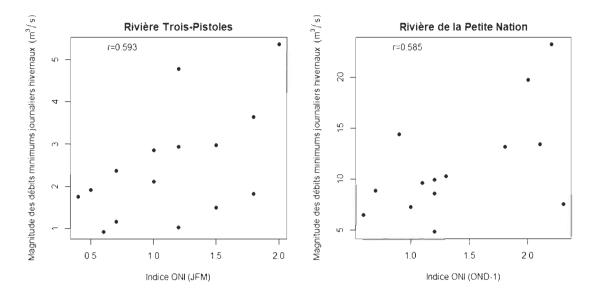
^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

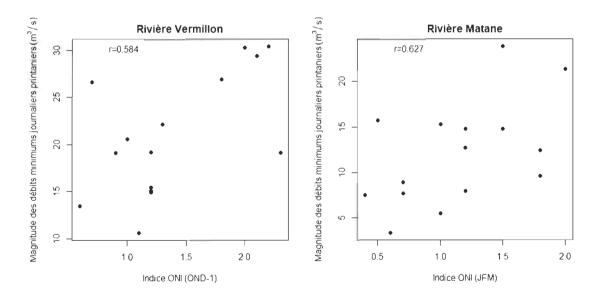
Figure 4.18 Relation entre la période d'occurrence des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

4.2.4 Relation entre les débits minimums journaliers et les épisodes El Niño d'intensité modérée à très forte

Le nombre des rivières dont les débits minimums journaliers sont corrélés aux épisodes El Niño a augmenté par rapport au tableau 4.4 dans la région hydroclimatique du Sud-Est, mais, en revanche, a diminué dans les autres deux autres régions hydroclimatiques (Tableau 4.11). Cependant, dans les trois régions hydroclimatiques, ce nombre reste plus élevé en hiver qu'au printemps. Toutes ces corrélations sont positives (Figures 4.19 et 4.20). Dans la région hydroclimatique du Sud-Ouest, c'est l'indice automnal OND-1 qui devient le mieux corrélé aux débits moyens journaliers en hiver.


Tableau 4.11

Coefficients de corrélation calculés entre les débits minimums journaliers saisonniers (hivernaux et printaniers) et les épisodes El Niño d'intensité modérée à très forte pendant la période 1950-2017


			Hiver			Print	temps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	égion hydro	climatique	du Sud-Est			
SE1	Châteauguay	0,073	0,238	0,247	-0,028	0,091	-0,001	-0,163
SE2	Eaton	0,030	0,217	0,305	-0,230	-0,298	-0,251	0,037
SE3	Nicolet SW	0,243	0,442*	0,384	-0,174	-0,202	-0,175	0,002
SE4	Etchemin	0,282	0,325	0,197	-0,090	-0,087	0,062	0,237
SE5	Beaurivage	-0,006	0,241	0,390	-0,109	-0,018	0,302	0,241
SE6	Du Sud	0,291	0,417	0,223	0,098	-0,092	0,110	0,170
			Région hyd	roclimatiqu	e de l'Est			
El	Ouelle	0,048	0,012	0,201	0,130	-0,109	-0,015	0,235
E2	Du Loup	-0,144	0,271	0,477*	0,135	0,069	-0,113	0,055
E3	Trois-Pistoles	0,030	0,356	0,593**	0,279	0,064	0,318	0,284
E4	Rimouski	0,121	0,356	0,466*	0,379	0,360	0,388	0,063
E5	Matane	0,011	0,176	0,356	0,555**	0,593**	0,627**	0,220
E6	Blanche	-0,014	0,290	0,273	0,359	0,319	0,538**	0,252
		Ré	gion hydroc	limatique d	u Sud-Oues	t		
SW1	De La Petite Nation	0,340	0,585**	0,406	0,059	0,275	0,063	0,029
SW2	Du Nord	0,366	0,501*	0,355	-0,110	-0,128	0,035	0,246
SW3	L'Assomption	0,378	0,528**	0,369	0,057	0,103	0,107	0,371
SW4	Matawin	0,411	0,512*	0,070	0,233	0,576**	0,406	0,388
SW5	Vermillon	0,208	0,390	0,326	0,411	0,584**	0,432	0,293

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Figure 4.19 Relation entre la magnitude des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

Figure 4.20 Relation entre la magnitude des débits minimums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

4.2.5 Relation entre les périodes d'occurrence des débits minimums journaliers et les épisodes El Niño d'intensité modérée à très forte

Globalement, les périodes d'occurrence des débits minimums journaliers saisonniers et les indices d'ONI sont mieux corrélées en hiver qu'au printemps (Tableau 4.12). Cependant, il existe des disparités régionales relativement fortes. En effet, cette corrélation est bien présente dans la région hydroclimatique de l'Est alors qu'elle est quasiment absente dans la région hydroclimatique du Sud-Ouest en rive nord. En hiver, cette corrélation est négative alors qu'elle devient positive au printemps. Il s'ensuit que les épisodes intenses d'El Niño sont associés à une occurrence précoce des débits minimums journaliers en hiver, mais tardive au printemps (Figures 4.21 et 4.22).

Tableau 4.12

Coefficients de corrélation calculés entre les périodes d'occurrence des débits minimums journaliers saisonniers (hivernaux et printaniers) et les épisodes El Niño d'intensité modérée à très forte pendant la période 1950-2017

			Hiver			Print	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		F	Région hydro	oclimatique	du Sud-Est			
SE1	Châteauguay	-0,400	-0,289	-0,195	-0,107	-0,039	-0,002	-0,043
SE2	Eaton	-0,118	-0,111	0,165	0,001	0,006	-0,248	-0,160
SE3	Nicolet SW	-0,664**	-0,367	-0,039	-0,203	-0,149	-0,323	-0,120
SE4	Etchemin	-0,205	-0,206	-0,229	-0,236	-0,188	-0,354	-0,041
SE5	Beaurivage	-0,556**	-0,245	0,017	0,069	0,193	-0,113	0,006
SE6	Du Sud	-0,333	-0,370	-0,395	-0,147	0,141	-0,128	-0,116
			Région hyd	lroclimatiqu	e de l'Est			
ΕI	Ouelle	-0,749**	-0,706**	-0,387	-0,082	0,082	0,228	0,404
E2	Du Loup	-0,451*	-0,572**	-0,560**	-0,132	0,083	0,013	0,109
E3	Trois-Pistoles	0,008	-0,100	0,018	0,283	0,570**	0,466*	0,094
E4	Rimouski	0,211	0,020	-0,050	0,195	0,526**	0,329	-0,008
E5	Matane	-0,570**	-0,624**	-0,472*	0,286	0,460*	0,335	0,080
E6	Blanche	0,019	-0,028	0,231	-0,129	0,117	0,074	0,182
		Ré	gion hydroc	limatique di	u Sud-Ouest			
SW1	De La Petite Nation	0,180	-0,028	-0,026	0,346	0,568**	0,394	0,082
SW2	Du Nord	-0,098	-0,265	-0,233	-0,147	-0,148	-0,261	0,005
SW3	L'Assomption	-0,136	-0,346	-0,443*	0,224	0,302	-0,007	-0,140
SW4	Matawin	-0,054	-0,295	-0,173	0,166	0,373	0,267	-0,208
SW5	Vermillon	-0,021	-0,257	-0,152	0,209	0,273	0,158	-0,308

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

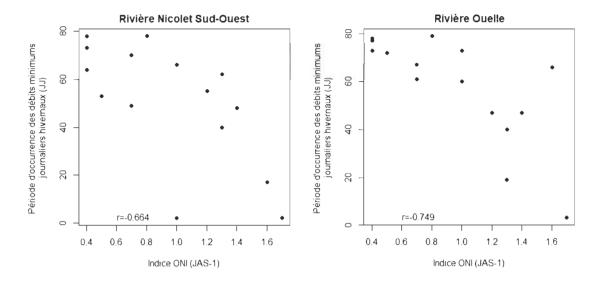


Figure 4.21 Relation entre la période d'occurrence des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

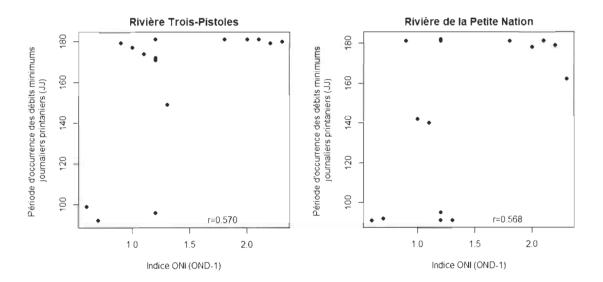


Figure 4.22 Relation entre la période d'occurrence des débits minimums journaliers printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

4.2.6 Relation entre les indices de la variabilité d'écoulement et les épisodes El Niño d'intensité modérée à très forte

En ce qui concerne les coefficients de variation dont les coefficients de corrélation sont consignés dans le tableau 4.13, on observe un lien significatif dans la région hydroclimatique de l'Est au printemps. Dans la première région hydroclimatique, les coefficients de variation sont corrélés positivement à l'indice printanier AMJ (Figure 4.23) de l'année courante, mais négativement corrélés à l'indice estival JAS-1 de l'année précédente. Dans les deux autres régions hydroclimatiques, ce lien entre les deux variables est quasi inexistant. Il en est de même en hiver dans les trois régions hydroclimatiques. Durant cette saison, la corrélation entre les deux variables a été significative pour la rivière de La Petite Nation située en rive nord.

ţ

Tableau 4.13

Coefficients de corrélation calculés entre les coefficients de variation saisonniers (hivernaux et printaniers) et les épisodes d'El Niño d'intensité modérée à très forte

			Hiver			Print	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		F	Région hydro	oclimatique	du Sud-Est			
SE1	Châteauguay	0,054	0,010	0,104	0,473*	0,281	0,307	0,185
SE2	Eaton	-0,067	-0,010	-0,112	0,167	-0,080	0,030	-0,027
SE3	Nicolet SW	-0,084	0,016	-0,074	0,234	0,032	0,189	0,127
SE4	Etchemin	-0,104	0,080	0,063	-0,133	0,025	0,379	0,405
SE5	Beaurivage	-0,104	0,068	0,086	0,101	0,071	0,365	0,115
SE6	Du Sud	0,051	0,161	0,187	-0,326	-0,033	0,359	0,511*
			Région hyd	roclimatiqu	e de l'Est			
E1	Ouelle	0,081	0,134	0,039	-0,355	-0,043	0,387	0,452*
E2	Du Loup	0,234	0,300	0,203	-0,373	-0,070	0,345	0,533**
E3	Trois-Pistoles	-0,131	-0,002	0,005	-0,450*	-0,124	0,233	0,508*
E4	Rimouski	-0,040	0,066	0,123	-0,514**	-0,198	0,247	0,521**
E5	Matane	-0,046	0,058	0,139	-0,490*	-0,197	0,147	0,561**
E6	Blanche	0,138	0,135	0,072	-0,511*	-0,263	0,083	0,474*
		Re	égion hydroc	limatique d	u Sud-Ouest			
SW1	De La Petite Nation	0,170	0,349	0,448*	0,248	0,222	0,427	0,204
SW2	Du Nord	0,027	0,323	0,376	0,099	-0,038	0,135	0,035
SW3	L'Assomption	-0,020	0,317	0,415	-0,105	-0,091	0,177	0,075
SW4	Matawin	0,162	0,343	0,429	0,000	0,184	0,470*	0,314
SW5	Vermillon	0,160	0,374	0,341	-0,131	0,066	0,494*	0,392

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

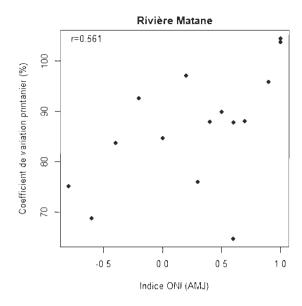


Figure 4.23 Relation entre les coefficients de variation printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

Quant aux indices d'immodération, la tendance est similaire (Figure 4.24). De fait, le lien entre cette variable hydrologique et les épisodes El Niño est observé principalement au printemps dans la région hydroclimatique de l'Est (Tableau 4.14). Ce lien est quasi inexistant dans les deux autres régions hydrologiques. On observe quelques relations négatives dans la région de l'Est avec les indices JAS-1 et OND-1.

Tableau 4.14

Coefficients de corrélation calculés entre les coefficients d'immodération saisonniers (hivernaux et printaniers) et les épisodes d'El Niño d'intensité modérée à très forte

			Hiver	_		Printemps			
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ	
		F	Région hydro	climatique	du Sud-Est				
SE1	Châteauguay	0,277	0,307	0,240	0,601**	0,448*	0,332	0,015	
SE2	Eaton	-0,147	-0,072	-0,155	0,036	-0,136	-0,147	-0,182	
SE3	Nicolet SW	0,087	0,197	-0,011	0,272	0,092	0,010	-0,165	
SE4	Etchemin	0,131	0,285	0,074	-0,155	0,082	0,283	0,351	
SE5	Beaurivage	0,062	0,231	0,158	0,013	-0,099	-0,247	-0,295	
SE6	Du Sud	-0,038	0,089	0,165	-0,351	-0,181	0,052	0,316	
			Région hyd:	roclimatiqu	e de l'Est				
E1	Ouelle	0,126	0,267	0,201	-0,529**	-0,198	0,224	0,443*	
E2	Du Loup	0,449*	0,424	0,291	-0,138	-0,152	0,215	0,321	
E3	Trois-Pistoles	-0,132	0,014	0,126	-0,385	0,107	0,189	0,240	
E4	Rimouski	-0,057	0,057	0,198	-0,259	0,102	0,315	0,408	
E5	Matane	-0,115	-0,001	0,122	-0,598**	-0,585**	-0,420	-0,017	
E6	Blanche	0,187	0,067	0,219	-0,632**	-0,544**	-0,375	0,153	
		Re	gion hydroc	limatique d	u Sud-Ouest				
SW1	De La Petite Nation	0,261	0,372	0,434	0,318	0,230	0,402	0,169	
SW2	Du Nord	0,170	0,378	0,406	0,412	0,337	0,302	0,062	
SW3	L'Assomption	0,108	0,341	0,405	0,295	0,250	0,228	-0,124	
SW4	Matawin	0,258	0,361	0,416	0,264	0,255	0,505*	0,240	
SW5	Vermillon	0,123	0,312	0,303	-0,239	-0,091	0,301	0,318	

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

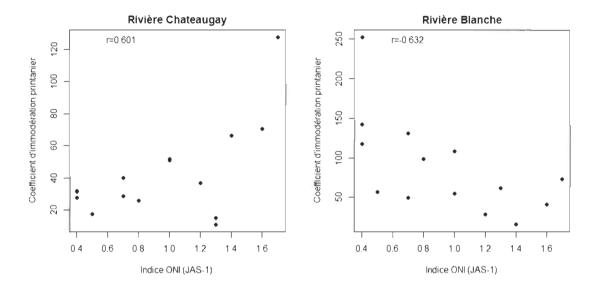


Figure 4.24 Relation entre les coefficients d'immodération printaniers et l'indice ONI lors des épisodes El Niño d'intensité modérée à très forte pour la période 1950-2017.

CHAPITRE V

COMPARAISON DE L'INFLUENCE DE L'INTENSITÉ DES ÉPISODES DE LA NIÑA SUR LES CARACTÉRISTIQUES DES DÉBITS JOURNALIERS EN HIVER ET AU PRINTEMPS

- 5.1 Analyse de l'influence des épisodes de La Niña d'intensité faible à forte
- 5.1.1 Relation entre les débits moyens journaliers saisonniers et les épisodes de La Niña d'intensité faible à forte

Les coefficients de corrélation calculés entre les débits moyens journaliers saisonniers et les différents indices des épisodes La Niña sont présentés au tableau 5.1. Contrairement à El Niño, les épisodes La Niña ne sont quasi pas corrélés aux débits moyens journaliers en hiver et au printemps dans les trois régions hydroclimatiques. À l'échelle de tout le Québec, seulement deux rivières sont corrélées significativement à ces épisodes. Il s'agit des rivières Nicolet du Sud-Ouest en rive sud et Vermillon en rive nord. Cette corrélation s'observe seulement au printemps. Elle est négative. Il s'ensuit que pour ces deux rivières, les épisodes intenses de la Niña sont associés aux débits moyens journaliers relativement élevés. Rappelons que les indices océaniques Niño associés aux épisodes La Niña sont négatifs.

Tableau 5.1

Coefficients de corrélation calculés entre les débits moyens journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017

			Hiver		Printemps							
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ				
Région hydroclimatique du Sud-Est												
SE1	Châteauguay	-0,166	-0,109	-0,276	-0,199	-0,098	-0,203	-0,012				
SE2	Eaton	-0,173	-0,067	-0,246	-0,249	-0,287	-0,327	-0,129				
SE3	Nicolet SW	-0,139	-0,141	-0,200	-0,36	-0,407*	-0,362	-0,114				
SE4	Etchemin	-0,306	-0,236	-0,286	-0,265	-0,307	-0,271	-0,217				
SE5	Beaurivage	-0,219	-0,180	-0,206	-0,202	-0,276	-0,299	-0,171				
SE6	Du Sud	-0,262	-0,236	-0,147	-0,066	-0,177	-0,199	-0,087				
Région hydroclimatique de l'Est												
El	Ouelle	-0,083	0,030	-0,001	-0,05	-0,108	-0,162	-0,086				
E2	Du Loup	0,127	0,128	0,019	-0,105	-0,048	-0,208	-0,196				
E3	Trois-Pistoles	-0,024	0,036	0,076	-0,063	-0,066	-0,155	-0,158				
E4	Rimouski	0,021	0,148	0,056	-0,064	-0,152	-0,105	-0,124				
E5	Matane	0,065	0,116	0,049	-0,1	-0,175	-0,228	-0,244				
E6	Blanche	-0,079	0,044	-0,002	0,089	0,012	-0,123	-0,269				
Région hydroclimatique du Sud-Ouest												
SW1	De La Petite Nation	0,216	0,112	-0,018	-0,094	-0,123	-0,104	0,121				
SW2	Du Nord	0,116	0,010	-0,025	-0,066	-0,071	-0,087	0,177				
SW3	L'Assomption	0,081	0,017	0,006	-0,147	-0,173	-0,177	0,088				
SW4	Matawin	-0,060	-0,042	-0,096	-0,314	-0,257	-0,282	0,011				
SW5	Vermillon	-0,020	0,154	0,130	-0,384*	-0,358	-0,314	-0,054				

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

5.1.2 Relation entre les débits maximums journaliers saisonniers et les épisodes de La Niña d'intensité faible à forte

Les débits maximums journaliers sont corrélés significativement aux indices automnaux (OND-1) et hivernaux (JFM) des épisodes La Niña seulement dans la région hydroclimatique du Sud-Est en hiver et ces relations sont négatives (Tableau 5.2).

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

La figure 5.1 montre un exemple de ce type de relation. Puisque les indices de La Niña sont négatifs, un coefficient de corrélation négatif, comme celui de la rivière Etchemin avec JAS-1, un épisode La Niña intense se traduit par une hausse de la magnitude des débits maximums à l'hiver (Figure 5.1).

Tableau 5.2

Coefficients de corrélation calculés entre les débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017

		Hiver			Printemps						
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ			
Région hydroclimatique du Sud-Est											
SE1	Châteauguay	-0,308	-0,452**	-0,444**	-0,171	-0,087	-0,151	-0,029			
SE2	Eaton	-0,335	-0,261	-0,382*	-0,215	-0,283	-0,147	-0,106			
SE3	Nicolet SW	-0,216	-0,414*	-0,291	-0,327	-0,077	-0,210	-0,243			
SE4	Etchemin	-0,454**	-0,400*	-0,304	-0,182	-0,166	-0,237	-0,179			
SE5	Beaurivage	-0,415*	-0,426*	-0,419*	0,137	0,139	-0,020	-0,131			
SE6	Du Sud	-0,287	-0,289	-0,160	-0,097	-0,126	-0,242	-0,050			
Région hydroclimatique de l'Est											
E1	Ouelle	-0,172	-0,149	-0,051	0,133	0,006	-0,146	-0,017			
E2	Du Loup	-0,142	-0,142	-0,130	-0,075	-0,111	-0,223	-0,155			
E3	Trois-Pistoles	-0,109	-0,109	-0,053	0,021	-0,125	-0,226	-0,126			
E4	Rimouski	-0,094	-0,069	-0,014	-0,065	-0,130	-0,092	-0,024			
E5	Matane	-0,003	-0,011	0,026	-0,158	-0,226	-0,193	-0,055			
E6	Blanche	-0,145	-0,086	-0,006	0,041	-0,034	-0,146	-0,066			
		Ré	gion hydroc	limatique du	ı Sud-Ouest						
SW1	De La Petite Nation	0,068	-0,007	-0,037	0,147	0,187	0,112	0,097			
SW2	Du Nord	-0,075	-0,155	-0,149	0,165	0,151	0,063	0,146			
SW3	L'Assomption	-0,117	-0,149	-0,137	0,022	-0,003	-0,103	0,034			
SW4	Matawin	-0,159	-0,144	-0,089	-0,068	-0,005	-0,116	-0,026			
SW5	Vermillon	-0,116	-0,068	-0,011	-0,275	-0,189	-0,220	-0,044			

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

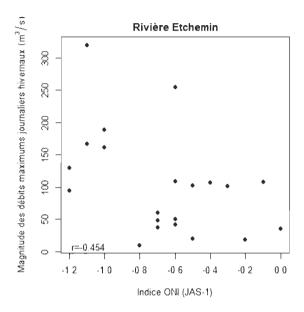
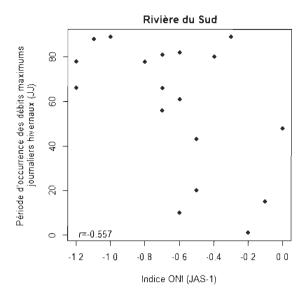


Figure 5.1 Relation entre la magnitude des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017.

5.1.3 Relation entre les périodes d'occurrence des débits maximums journaliers saisonniers et les épisodes de La Niña d'intensité faible à forte

Les indices des épisodes de La Niña sont corrélés aux périodes d'occurrence des débits maximums journaliers de trois rivières seulement : deux rivières dans la région hydroclimatique du Sud-Est en hiver et une seule dans la région hydroclimatique du Sud-Ouest au printemps. Cette corrélation est négative pour les trois rivières (Tableau 5.3). Ainsi, les épisodes intenses de la Niña sont associés à une occurrence tardive des débits maximums journaliers en hiver et au printemps (Figure 5.2).


Tableau 5.3

Coefficients de corrélation calculés entre les périodes d'occurrence des débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017

			Hiver		Printemps				
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ	
		R	égion hydro	oclimatique	du Sud-Est		-		
SE1	Châteauguay	-0,379*	-0,033	-0,161	0,098	0,124	0,011	0,109	
SE2	Eaton	0,011	0,198	0,077	0,286	0,102	0,036	-0,101	
SE3	Nicolet SW	-0,117	0,169	-0,038	-0,36	-0,224	-0,34	-0,33	
SE4	Etchemin	-0,192	0,086	-0,178	-0,08	-0,139	-0,097	-0,019	
SE5	Beaurivage	-0,083	0,194	-0,037	0,08	0,017	0,241	-0,017	
SE6	Du Sud	-0,557**	-0,146	-0,216	0,202	0,008	0,292	0,1	
			Région hyd	roclimatiqu	e de l'Est				
E1	Ouelle	-0,357	-0,237	-0,289	0,144	0,127	0,311	0,138	
E2	Du Loup	-0,066	-0,013	-0,192	0,01	-0,098	0,216	0,146	
E3	Trois-Pistoles	-0,077	0,088	0,154	0,057	0,046	0,282	0,166	
E4	Rimouski	-0,345	-0,309	-0,304	-0,116	-0,045	0,095	-0,007	
E5	Matane	-0,197	-0,323	-0,178	0,047	0,011	0,187	0,066	
E6	Blanche	-0,335	-0,109	-0,151	-0,025	0,084	0,237	0,115	
		Ré	gion hydroc	limatique d	u Sud-Ouest	t		_	
SW1	De La Petite Nation	0,101	-0,120	0,046	-0,167	-0,104	-0,07	-0,038	
SW2	Du Nord	-0,113	-0,055	-0,088	-0,127	-0,05	-0,122	-0,119	
SW3	L'Assomption	0,154	-0,082	-0,134	-0,255	-0,425*	-0,311	-0,266	
SW4	Matawin	-0,269	-0,187	-0,242	-0,313	-0,261	-0,018	0,13	
SW5	Vermillon	-0,247	-0,207	-0,338	-0,323	-0,162	-0,004	0,279	

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Figure 5.2 Relation entre la période d'occurrence des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017.

5.1.4 Relation entre les débits minimums journaliers saisonniers et les épisodes de La Niña d'intensité faible à forte

La corrélation entre les deux variables a été observée dans cinq bassins versants seulement : deux dans chacune de deux régions hydroclimatiques de la rive sud et un seul dans la région hydroclimatique de la rive nord (Tableau 5.4). Le signe de cette corrélation varie d'un bassin versant à un autre d'une part, selon les saisons, d'autre part.

Tableau 5.4

Coefficients de corrélation calculés entre les débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017

			Hiver			Print	temps		
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ	
		F	Région hydro	climatique	du Sud-Est				
SE1	Châteauguay	0,122	0,130	-0,058	-0,079	-0,185	-0,135	0,236	
SE2	Eaton	0,221	0,276	0,097	0,117	-0,133	-0,158	0,073	
SE3	Nicolet SW	0,217	0,061	-0,093	-0,144	-0,424*	-0,419*	-0,136	
SE4	Etchemin	0,267	0,126	0,017	0,289	-0,007	0,042	0,076	
SE5	Beaurivage	0,154	-0,054	-0,048	0,110	-0,203	-0,214	0,056	
SE6	Du Sud	0,004	-0,024	-0,101	0,391*	0,063	0,056	0,115	
Région hydroclimatique de l'Est									
El	Ouelle	0,175	0,193	-0,039	0,280	-0,028	0,217	0,238	
E2	Du Loup	0,354	0,232	0,039	0,318	0,252	0,125	0,171	
E3	Trois-Pistoles	0,401*	0,227	0,126	0,35	0,177	0,158	0,107	
E4	Rimouski	0,103	0,279	-0,019	-0,023	0,007	-0,175	-0,169	
E5	Matane	0,020	0,265	-0,005	-0,012	-0,223	0,049	-0,152	
E6	Blanche	0,046	0,105	-0,139	0,307	0,403*	0,184	-0,063	
		Ré	gion hydroc	limatique di	u Sud-Ouest				
SW1	De La Petite Nation	0,132	0,081	-0,212	-0,22	-0,205	-0,178	0,053	
SW2	Du Nord	0,138	-0,014	-0,220	-0,195	-0,254	-0,257	0,147	
SW3	L'Assomption	0,060	0,006	-0,193	-0,181	-0,228	-0,319	-0,128	
SW4	Matawin	-0,109	-0,087	-0,294	-0,31	-0,374*	-0,428*	-0,016	
SW5	Vermillon	-0,038	0,140	-0,069	-0,181	-0,101	-0,331	-0,149	

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

5.1.5 Relation entre les périodes d'occurrence des débits minimums journaliers saisonniers et les épisodes de La Niña d'intensité faible à forte

La corrélation entre les deux variables a été observée seulement dans deux bassins versants situés tous dans la région hydroclimatique du Sud-Est (Tableau 5.5). Cette corrélation y est négative (Figures 5.3 et 5.4).

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Tableau 5.5

Coefficients de corrélation calculés entre les périodes d'occurrence des débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017

			Hiver			Print	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		F	Région hydro	climatique	du Sud-Est			
SE1	Châteauguay	0,165	0,177	0,227	-0,139	0,002	0,029	-0,011
SE2	Eaton	-0,161	0,024	-0,012	-0,239	0,039	0,133	0,017
SE3	Nicolet SW	0,047	0,232	0,029	-0,053	-0,119	-0,214	-0,533**
SE4	Etchemin	-0,115	0,192	0,244	-0,025	0,166	-0,24	-0,308
SE5	Beaurivage	-0,375*	-0,518**	-0,432*	-0,122	0,223	-0,083	-0,014
SE6	Du Sud	-0,003	0,209	0,122	-0,334	-0,008	-0,168	-0,132
			Région hyd	roclimatiqu	e de l'Est			
Εl	Ouelle	-0,209	-0,342	-0,217	-0,295	-0,202	-0,169	-0,151
E2	Du Loup	-0,154	-0,075	-0,021	-0,255	-0,172	-0,203	0,029
E3	Trois-Pistoles	0,042	-0,164	-0,060	0,011	0,208	0,242	0,325
E4	Rimouski	-0,115	-0,134	-0,129	-0,153	-0,107	-0,091	-0,013
E5	Matane	0,057	0,172	0,081	-0,092	-0,069	-0,075	-0,165
E6	Blanche	0,109	0,348	-0,065	-0,066	0,056	-0,19	-0,215
		Ré	gion hydroc	limatique di	ı Sud-Ouest	·		
SW1	De La Petite Nation	0,036	0,059	-0,159	0,173	0,124	0,148	0,17
SW2	Du Nord	-0,061	-0,177	0,025	-0,035	0,188	-0,189	-0,264
SW3	L'Assomption	-0,087	-0,088	-0,153	0,221	0,291	0,174	-0,057
SW4	Matawin	0,182	-0,002	0,104	-0,137	-0,11	-0,297	-0,032
SW5	Vermillon	-0,067	-0,019	0,153	0,105	0,137	-0,032	0,215

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

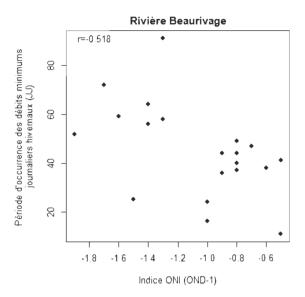


Figure 5.3 Relation entre la période d'occurrence des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017.

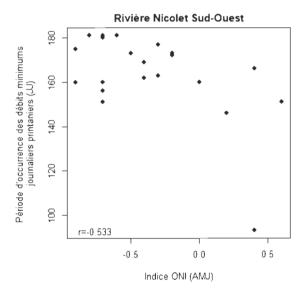
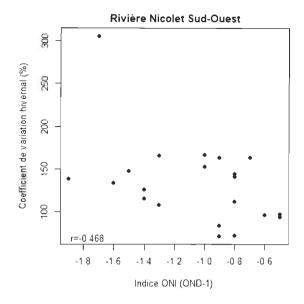


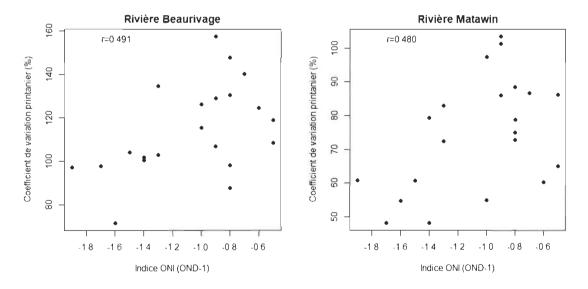
Figure 5.4 Relation entre la période d'occurrence des débits minimums journaliers printaniers et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017.

5.1.6 Relation entre les indices de variabilité de l'écoulement et les épisodes de La Niña d'intensité faible à forte

En ce qui concerne les coefficients de variation (CV), cette variable hydrologique est significativement corrélée aux indices automnaux (OND-1) des épisodes La Niña principalement dans les régions hydroclimatiques du Sud-Est et du Sud-Ouest respectivement en hiver et au printemps (Tableau 5.6). En hiver, cette corrélation est négative alors qu'au printemps, elle est positive. Ainsi, les épisodes intenses de la Niña sont associés à une forte variabilité interjournalière des débits en hiver, mais faible variabilité interjournalière au printemps (Figures 5.5 et 5.6). Quant aux coefficients d'immodération (CI), ils sont significativement corrélés aux indices des épisodes de la Niña dans la région hydroclimatique de l'Est seulement en hiver (Tableau 5.7). Ce sont les indices estivaux (JAS-1) et automnaux (OND-1) qui sont mieux corrélés aux coefficients d'immodération. Cette corrélation est négative. Il s'ensuit que les épisodes intenses de La Niña provoquent une forte amplitude des débits en hiver dans la région hydroclimatique du Sud-Est (Figure 5.7).


Tableau 5.6

Coefficients de corrélation calculés entre les coefficients de variation saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017


			Hiver			Print	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	égion hydro	climatique o	du Sud-Est			
SE1	Châteauguay	-0,307	-0,455**	-0,457**	-0,097	0,099	-0,009	-0,171
SE2	Eaton	-0,260	-0,322	-0,338	-0,134	0,037	0,125	-0,044
SE3	Nicolet SW	-0,235	-0,468**	-0,271	-0,041	0,338	0,115	-0,13
SE4	Etchemin	-0,442**	-0,382*	-0,135	-0,007	0,278	-0,048	-0,054
SE5	Beaurivage	-0,400*	-0,314	-0,376*	0,357	0,491**	0,168	-0,059
SE6	Du Sud	-0,359	-0,387*	-0,200	0,051	0,308	0,039	0,142
			Région hyd	roclimatique	e de l'Est			
E1	Ouelle	-0,380*	-0,273	-0,150	0,188	0,307	-0,003	0,051
E2	Du Loup	-0,359	-0,290	-0,129	0,199	0,313	0,09	-0,024
E3	Trois-Pistoles	-0,297	-0,260	-0,187	0,277	0,252	0,071	0,035
E4	Rimouski	-0,184	-0,142	-0,035	0,128	0,083	0,118	0,096
E5	Matane	-0,078	-0,129	-0,059	-0,077	0,006	0,028	0,132
E6	Blanche	-0,307	-0,225	-0,105	0,128	0,17	0,053	-0,004
		Ré	gion hydroc	limatique du	Sud-Ouest	t		
SWI	De La Petite Nation	0,101	0,061	0,231	0,264	0,401*	0,235	-0,11
SW2	Du Nord	-0,179	-0,257	-0,170	0,343	0,379*	0,152	-0,122
SW3	L'Assomption	-0,211	-0,260	-0,146	0,361	0,389*	0,116	-0,117
SW4	Matawin	-0,136	-0,092	0,024	0,324	0,480**	0,343	0,148
SW5	Vermillon	-0,120	-0,062	0,026	0,137	0,306	0,129	0,085

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Figure 5.5 Relation entre les coefficients de variation hivernaux et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017.

Figure 5.6 Relation entre les coefficients de variation printaniers et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017.

Tableau 5.7

Coefficients de corrélation calculés entre les coefficients d'immodération saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité faible à forte pendant la période 1950-2017

_			Hiver		Printemps			
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	égion hydro	oclimatique	du Sud-Est			
SEI	Châteauguay	-0,402*	-0,514**	-0,488**	0,063	0,263	0,11	-0,266
SE2	Eaton	-0,410*	-0,387*	-0,420*	-0,152	0,015	0,043	-0,235
SE3	Nicolet SW	-0,332	-0,424*	-0,260	-0,037	0,331	0,142	-0,227
SE4	Etchemin	-0,484**	-0,387*	-0,240	-0,241	0,045	0,001	-0,057
SE5	Beaurivage	-0,520**	-0,409*	-0,447**	0,057	0,378*	0,202	-0,227
SE6	Du Sud	-0,381*	-0,408*	-0,297	-0,31	-0,02	-0,195	-0,247
			Région hyd	roclimatiqu	e de l'Est			
E1	Ouelle	-0,318	-0,268	-0,187	-0,154	0,129	-0,077	0,12
E2	Du Loup	-0,329	-0,265	-0,082	-0,368	-0,298	-0,193	-0,101
E3	Trois-Pistoles	-0,181	-0,157	-0,069	-0,31	-0,319	-0,356	-0,216
E4	Rimouski	-0,065	-0,078	0,030	-0,025	-0,108	0,111	0,142
E5	Matane	-0,005	-0,038	0,043	-0,091	-0,077	-0,196	0,043
E6	Blanche	-0,212	-0,121	0,031	-0,142	-0,314	-0,266	-0,051
		Ré	gion hydroc	limatique d	u Sud-Ouest			
SW1	De La Petite Nation	-0,030	-0,078	0,114	0,264	0,273	0,205	-0,077
SW2	Du Nord	-0,133	-0,194	-0,128	0,238	0,291	0,171	-0,087
SW3	L'Assomption	-0,134	-0,159	-0,091	0,135	0,191	0,125	0,183
SW4	Matawin	-0,160	-0,129	-0,022	0,134	0,277	0,25	-0,031
SW5	Vermillon	-0,126	-0,086	-0,006	-0,039	-0,028	0,161	0,289

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

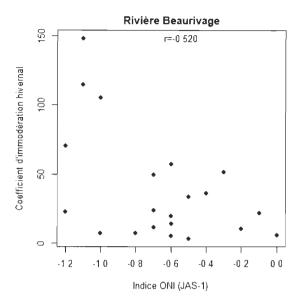
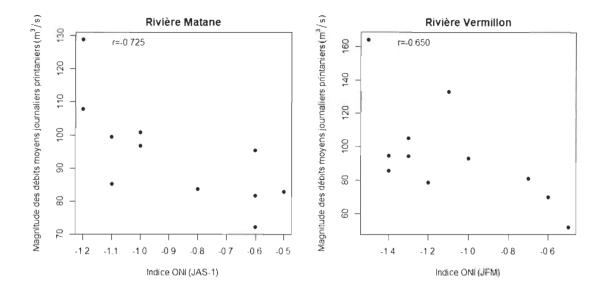


Figure 5.7 Relation entre les coefficients d'immodération hivernaux et l'indice ONI lors des épisodes La Niña d'intensité faible à forte pour la période 1950-2017.

5.2 Analyse de l'influence des épisodes de La Niña d'intensité modérée à forte

5.2.1 Relation entre les débits moyens journaliers saisonniers et les épisodes de La Niña d'intensité modérée à forte

En éliminant les épisodes de faible intensité de La Niña, on observe une nette amélioration du lien entre La Niña et les débits moyens journaliers. En effet, le nombre des rivières corrélées à La Niña a significativement augmenté comparativement au tableau 5.1. Ainsi, cet événement devient significativement corrélé dans presque toutes les rivières des régions hydroclimatiques de l'Est et du Sud-Ouest principalement au printemps (Tableau 5.8). Ce sont les indices hivernaux (JFM) qui sont les mieux corrélés aux débits moyens journaliers dans les deux régions. Cette corrélation est négative dans les deux régions. Les épisodes intenses de La Niña y sont donc associés aux débits moyens journaliers relativement élevés (Figure 5.8). Dans la région hydroclimatique du Sud-Est, il n'existe aucun coefficient de corrélation statistiquement significative. Néanmoins, leurs valeurs ont significativement augmenté au printemps confirmant ainsi la tendance générale observée à l'échelle du Québec.


Tableau 5.8

Coefficients de corrélation calculés entre les débits moyens journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017

			Hiver		Printemps				
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ	
		R	tégion hydro	climatique	du Sud-Est				
SEI	Châteauguay	-0,405	-0,066	-0,179	0,068	0,172	-0,264	-0,192	
SE2	Eaton	-0,251	0,078	0,015	-0,092	-0,237	-0,278	-0,119	
SE3	Nicolet SW	-0,121	0,053	0,107	-0,278	-0,421	-0,426	-0,169	
SE4	Etchemin	-0,291	0,024	0,005	-0,278	-0,437	-0,407	-0,192	
SE5	Beaurivage	-0,220	0,000	0,139	-0,196	-0,309	-0,473	-0,258	
SE6	Du Sud	-0,008	0,101	0,290	-0,245	-0,259	-0,441	-0,105	
	·		Région hyd	roclimatiqu	e de l'Est				
E1	Ouelle	0,148	0,275	0,350	-0,337	-0,404	-0,445	0,093	
E2	Du Loup	0,313	0,408	0,307	-0,440	-0,285	-0,559*	-0,139	
E3	Trois-Pistoles	0,267	0,313	0,378	-0,391	-0,392	-0,560*	-0,266	
E4	Rimouski	0,418	0,465	0,424	-0,566*	-0,695**	-0,549*	-0,344	
E5	Matane	0,526*	0,470	0,582*	-0,725**	-0,628**	-0,615**	-0,481	
E6	Blanche	0,345	0,433	0,442	-0,142	-0,375	-0,413	-0,457	
		Ré	gion hydroc	limatique d	u Sud-Ouest				
SW1	De La Petite Nation	0,261	0,297	0,002	-0,380	-0,446	-0,514	-0,117	
SW2	Du Nord	0,274	0,404	0,367	-0,392	-0,406	-0,600*	-0,289	
SW3	L'Assomption	0,407	0,419	0,433	-0,449	-0,436	-0,585*	-0,237	
SW4	Matawin	0,236	0,352	0,271	-0,540*	-0,549*	-0,642**	-0,298	
SW5	Vermillon	0,096	0,271	0,340	-0,578*	-0,573*	-0,650**	-0,351	

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Figure 5.8 Relation entre la magnitude des débits moyens journaliers printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée à forte pour la période 1950-2017.

5.2.2 Relation entre les débits maximums journaliers saisonniers et les épisodes de La Niña d'intensité modérée à forte

Très peu de liens significatifs sont observés entre les débits maximums journaliers et les indices des épisodes La Niña (Tableau 5.9). On note qu'un seul coefficient de corrélation significatif à l'hiver, celui-ci est positif et concerne la rivière Matane de la région de l'Est. Au printemps, on observe deux liens significatifs et ceux-ci sont négatifs.

Tableau 5.9

Coefficients de corrélation calculés entre les débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017

			Hiver			Print	temps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		F	Légion hydro	oclimatique	du Sud-Est	-		
SEI	Châteauguay	-0,268	-0,205	-0,305	-0,099	-0,100	-0,330	-0,270
SE2	Eaton	-0,241	-0,075	-0,160	-0,243	-0,377	-0,049	0,140
SE3	Nicolet SW	0,075	-0,088	0,084	-0,538*	-0,221	-0,338	0,043
SE4	Etchemin	-0,325	-0,134	0,088	-0,334	-0,350	-0,330	0,009
SE5	Beaurivage	-0,320	-0,234	-0,087	-0,364	0,142	-0,295	-0,044
SE6	Du Sud	0,016	0,102	0,332	-0,208	-0,140	-0,309	0,025
			Région hyd	roclimatiqu	e de l'Est			
Εl	Ouelle	0,181	0,256	0,374	0,064	0,044	-0,217	0,069
E2	Du Loup	0,278	0,359	0,360	-0,125	-0,108	-0,209	0,002
E3	Trois-Pistoles	0,323	0,385	0,439	0,032	-0,136	-0,243	-0,051
E4	Rimouski	0,341	0,407	0,500	-0,123	-0,233	-0,205	-0,170
E5	Matane	0,410	0,446	0,562*	-0,164	-0,164	-0,386	-0,227
E6	Blanche	0,241	0,333	0,453	0,032	-0,096	-0,257	-0,168
		Ré	gion hydroc	limatique d	u Sud-Ouest			
SW1	De La Petite Nation	0,204	0,334	0,190	0,128	0,034	-0,211	-0,005
SW2	Du Nord	0,193	0,225	0,257	-0,037	-0,054	-0,258	0,062
SW3	L'Assomption	0,241	0,278	0,279	-0,198	-0,131	-0,337	0,120
SW4	Matawin	0,251	0,331	0,363	-0,231	-0,281	-0,506	-0,202
SW5	Vermillon	0,238	0,320	0,388	-0,438	-0,413	-0,578*	-0,214

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

5.2.3 Relation entre les périodes d'occurrence des débits maximums journaliers saisonniers et les épisodes de La Niña d'intensité modérée à forte

Les périodes d'occurrence des débits maximums journaliers de huit rivières sont négativement corrélées à l'indice estival (JAS-1) des épisodes La Niña en hiver, dont toutes celles de la région du Sud-Est. Pour ces rivières, les débits maximums

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

hivernaux surviennent plus tard dans la saison (Figure 5.9). Au printemps, on observe cinq rivières montrant au moins une relation significative. Pour deux de ces rivières, les liens sont positifs alors que pour les trois autres, les corrélations sont négatives et associées à l'indice océanique Niño printanier (Tableau 5.10 et Figure 5.10).

Tableau 5.10

Coefficients de corrélation calculés entre les périodes d'occurrence des débits maximums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017

			Hiver		Printemps				
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ	
		R	égion hydro	climatique	du Sud-Est				
SE1	Châteauguay	-0,751**	-0,107	-0,371	0,105	0,423	0,277	0,442	
SE2	Eaton	-0,587*	-0,107	-0,281	0,532*	0,498	0,351	-0,018	
SE3	Nicolet SW	-0,625**	-0,117	-0,317	-0,081	0,141	-0,239	-0,601*	
SE4	Etchemin	-0,608**	0,081	-0,271	0,288	0,158	0,018	-0,102	
SE5	Beaurivage	-0,619**	-0,105	-0,308	0,594*	0,381	0,653**	0,284	
SE6	Du Sud	-0,708**	-0,057	-0,369	0,448	0,054	0,396	-0,102	
			Région hyd	roclimatiqu	e de l'Est		_		
E1	Ouelle	-0,690**	-0,170	-0,245	0,211	0,056	0,138	-0,272	
E2	Du Loup	-0,233	0,110	-0,271	0,132	-0,227	0,067	-0,279	
E3	Trois-Pistoles	-0,099	0,062	0,055	0,198	-0,048	0,115	-0,324	
E4	Rimouski	0,090	0,285	0,118	0,059	-0,110	-0,163	-0,580*	
E5	Matane	-0,086	0,056	0,070	-0,155	-0,332	-0,061	-0,243	
E6	Blanche	-0,280	0,354	-0,005	-0,030	-0,136	-0,135	-0,451	
		 Ré _t	gion hydroc	limatique di	u Sud-Ouest				
SWI	De La Petite Nation	-0,026	-0,151	0,165	-0,098	-0,117	-0,285	-0,229	
SW2	Du Nord	-0,641**	-0,090	-0,214	0,101	0,379	-0,053	0,035	
SW3	L'Assomption	-0,315	-0,232	-0,151	0,082	-0,158	-0,038	-0,065	
SW4	Matawin	-0,258	0,121	-0,245	-0,074	-0,204	-0,146	-0,450	
SW5	Vermillon	-0,311	0,267	-0,179	-0,338	-0,289	-0,440	-0,554*	

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

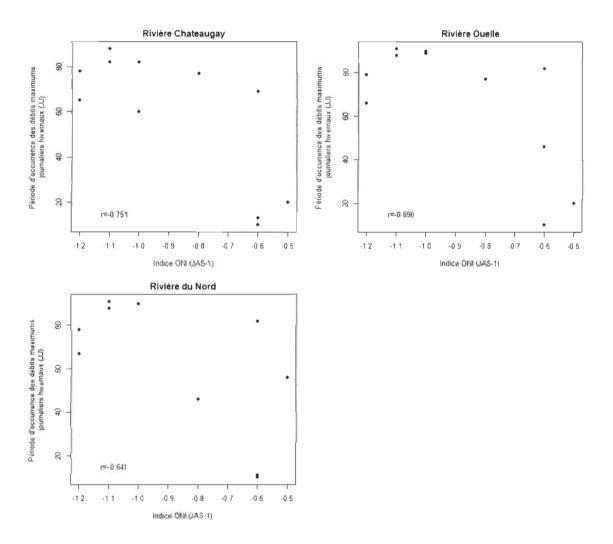
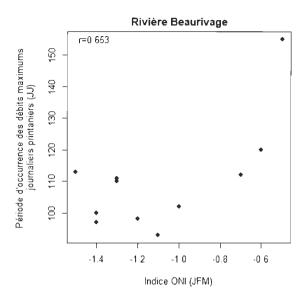



Figure 5.9 Relation entre la période d'occurrence des débits maximums journaliers hivernaux et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017.

Figure 5.10 Relation entre la période d'occurrence des débits maximums journaliers printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017.

5.2.4 Relation entre les débits minimums journaliers saisonniers et les épisodes de La Niña d'intensité modérée à forte

La corrélation entre la magnitude des débits minimums journaliers et les indices des épisodes La Niña est observée presque exclusivement au printemps dans la région du Sud-Ouest (Tableau 5.11, Figures 5.11 et 5.12). Ce sont les indices automnaux et hivernaux de ces épisodes qui sont mieux corrélés aux débits. Cette corrélation est négative, c'est-à-dire que les épisodes intenses de La Niña provoquent une hausse de la magnitude des débits minimums journaliers.

Tableau 5.11

Coefficients de corrélation calculés entre les débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017

			Hiver			Prin	temps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	égion hydro	oclimatique	du Sud-Est			_
SE1	Châteauguay	0,066	0,185	-0,152	-0,013	-0,039	-0,113	0,293
SE2	Eaton	0,287	0,305	0,066	0,026	-0,322	-0,009	0,238
SE3	Nicolet SW	0,562*	0,346	-0,005	-0,359	-0,509	-0,381	-0,369
SE4	Etchemin	0,187	0,164	0,000	0,125	0,042	-0,081	-0,049
SE5	Beaurivage	0,192	-0,009	-0,119	-0,127	-0,212	-0,318	-0,032
SE6	Du Sud	0,055	0,117	-0,036	0,095	0,071	0,012	0,399
			Région hyd	roclimatiqu	e de l'Est			
E1	Ouelle	-0,154	-0,100	-0,223	0,251	-0,494	0,325	0,239
E2	Du Loup	-0,021	0,192	-0,124	-0,086	0,098	0,120	0,620**
E3	Trois-Pistoles	0,027	-0,104	-0,239	-0,134	-0,236	-0,187	0,019
E4	Rimouski	-0,227	-0,138	-0,402	-0,592*	-0,510	-0,368	0,075
E5	Matane	-0,323	-0,075	-0,118	0,101	-0,368	0,464	0,304
E6	Blanche	-0,263	0,036	-0,192	-0,469	-0,154	-0,209	-0,067
		Rég	gion hydroc	limatique d	u Sud-Ouest			
SWI	De La Petite Nation	-0,128	-0,018	-0,455	-0,602**	-0,519	-0,736**	-0,224
SW2	Du Nord	0,033	0,015	-0,321	-0,464	-0,560*	-0,767**	-0,430
SW3	L'Assomption	-0,418	-0,280	-0,432	-0,712**	-0,524*	-0,734**	-0,266
SW4	Matawin	-0,364	-0,086	-0,267	-0,625**	-0,530*	-0,587*	0,008
SW5	Vermillon	-0,603**	-0,201	-0,293	-0,464	-0,254	-0,437	0,078

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

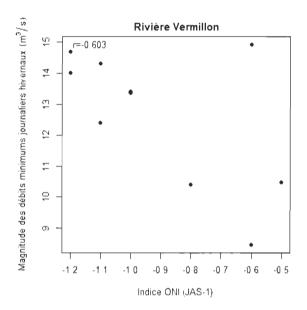


Figure 5.11 Relation entre la magnitude des débits minimums journaliers hivernaux et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017.

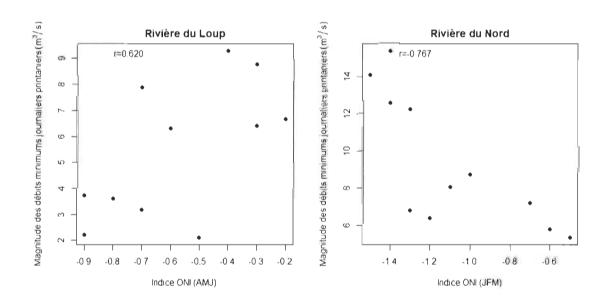
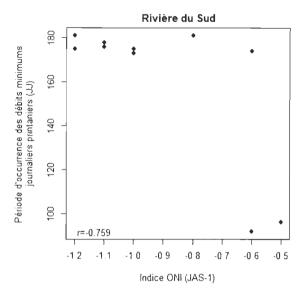


Figure 5.12 Relation entre la magnitude des débits minimums journaliers printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017.

5.2.5 Relation entre la période d'occurrence des débits minimums journaliers saisonniers et les épisodes de La Niña d'intensité modérée à forte

Dans les trois régions hydroclimatiques, on observe très peu de relations significatives entre la période d'occurrence des débits minimums journaliers et les indices des épisodes de La Niña, soit trois à l'hiver et trois autres au printemps. À l'hiver, les relations sont toutes négatives. Au printemps, deux sont négatives et une seule est positive (Tableau 5.12 et Figure 5.13).


Tableau 5.12

Coefficients de corrélation calculés entre les périodes d'occurrence des débits minimums journaliers saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017

			Hiver		Printemps				
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ	
		R	tégion hydro	climatique	du Sud-Est				
SE1	Châteauguay	-0,147	-0,404	-0,307	-0,431	-0,237	-0,010	-0,132	
SE2	Eaton	-0,217	0,012	-0,340	-0,376	-0,070	0,160	0,141	
SE3	Nicolet SW	0,193	0,327	-0,165	0,172	0,326	0,309	0,085	
SE4	Etchemin	-0,448	-0,016	-0,393	-0,308	0,343	-0,408	-0,164	
SE5	Beaurivage	-0,220	-0,467	-0,488	-0,388	0,236	-0,458	-0,187	
SE6	Du Sud	-0,543*	-0,127	-0,259	-0,759**	-0,134	-0,434	-0,289	
			Région hyd	roclimatiqu	e de l'Est				
Εl	Ouelle	-0,112	-0,576*	-0,405	-0,401	-0,135	0,148	0,101	
E2	Du Loup	0,078	-0,173	-0,338	-0,524*	0,117	-0,197	0,062	
E3	Trois-Pistoles	0,024	-0,345	-0,049	-0,268	-0,192	-0,118	0,096	
E4	Rimouski	0,082	-0,265	-0,168	-0,025	0,145	0,108	0,321	
E5	Matane	-0,072	-0,340	-0,268	0,327	0,211	0,553*	0,408	
E6	Blanche	-0,209	0,089	-0,491	-0,216	0,125	-0,262	-0,123	
		Ré	gion hydroc	limatique d	u Sud-Ouest				
SW1	De La Petite Nation	-0,271	-0,193	-0,379	-0,046	0,374	0,389	0,518	
SW2	Du Nord	0,267	-0,223	0,137	-0,280	0,293	-0,370	-0,090	
SW3	L'Assomption	-0,153	-0,239	-0,336	-0,183	0,186	0,228	0,488	
SW4	Matawin	-0,005	-0,398	-0,033	-0,238	0,013	-0,059	0,052	
SW5	Vermillon	-0,183	-0,571*	0,019	0,029	0,180	0,201	0,375	

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

Figure 5.13 Relation entre la période d'occurrence des débits minimums journaliers printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017.

5.2.6 Relation entre les indices de la variabilité de l'écoulement et les épisodes de La Niña d'intensité modérée à forte

En ce qui concerne les coefficients de variation, on ne note aucune relation significative à l'hiver alors qu'au printemps, on en observe cinq, dont une négative (Tableau 5.13 et Figure 5.14). Quant aux coefficients d'immodération, la moitié des rivières présentent une corrélation significative positive avec l'indice hivernal des épisodes La Niña dans la région hydroclimatique de l'Est en hiver. Au printemps, deux rivières montrent au moins une relation significative, une positive et une négative (Tableau 5.14, Figures 5.15 et 5.16).

Tableau 5.13

Coefficients de corrélation calculés entre les coefficients de variation saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017

			Hiver			Print	emps	
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ
		R	Région hydro	climatique	du Sud-Est			
SE1	Châteauguay	-0,292	-0,354	-0,412	-0,031	-0,431	-0,381	-0,678**
SE2	Eaton	-0,265	-0,269	-0,275	-0,427	-0,180	-0,001	-0,121
SE3	Nicolet SW	-0,076	-0,389	-0,091	-0,146	0,232	-0,187	-0,246
SE4	Etchemin	-0,255	-0,346	0,142	-0,294	0,060	-0,328	0,099
SE5	Beaurivage	-0,335	-0,238	-0,244	0,110	0,704**	-0,052	-0,093
SE6	Du Sud	-0,105	-0,161	0,177	-0,094	0,327	-0,224	0,100
			Région hyd	roclimatiqu	e de l'Est			
Εl	Ouelle	-0,154	-0,073	-0,040	0,205	0,585*	-0,053	0,122
E2	Du Loup	0,116	0,096	0,323	0,377	0,525*	0,191	0,156
E3	Trois-Pistoles	0,152	0,209	0,292	0,319	0,353	0,146	0,149
E4	Rimouski	0,214	0,288	0,449	0,390	0,226	0,246	0,006
E5	Matane	0,311	0,297	0,472	0,182	0,397	0,037	0,112
E6	Blanche	0,050	0,108	0,277	0,229	0,236	0,026	-0,004
		Ré	gion hydroc	limatique d	u Sud-Oues	t		
SW1	De La Petite Nation	0,303	0,365	0,510	0,433	0,470	0,209	-0,020
SW2	Du Nord	0,013	0,072	0,173	0,243	0,266	-0,101	-0,006
SW3	L'Assomption	0,149	0,148	0,224	0,151	0,373	-0,161	0,100
SW4	Matawin	0,322	0,383	0,462	0,356	0,586*	0,106	0,104
SW5	Vermillon	0,269	0,352	0,428	0,106	0,329	-0,208	-0,064

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

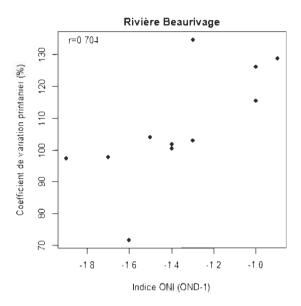


Figure 5.14 Relation entre les coefficients de variation printaniers et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017.

Tableau 5.14

Coefficients de corrélation calculés entre les coefficients d'immodération saisonniers (hivernaux et printaniers) et les indices des épisodes La Niña d'intensité modérée à forte pendant la période 1950-2017

			Hiver			Printemps				
Code	Rivière	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	AMJ		
		R	Région hydro	oclimatique	du Sud-Est					
SE1	Châteauguay	-0,458	-0,360	-0,378	0,097	0,119	-0,109	-0,386		
SE2	Eaton	-0,377	-0,233	-0,222	-0,359	0,009	-0,154	-0,366		
SE3	Nicolet SW	-0,250	-0,282	-0,038	-0,228	0,077	-0,047	0,206		
SE4	Etchemin	-0,404	-0,292	-0,043	-0,324	-0,231	-0,089	0,271		
SE5	Beaurivage	-0,480	-0,306	-0,229	-0,083	0,361	-0,007	-0,197		
SE6	Du Sud	-0,175	-0,145	0,068	-0,188	-0,039	-0,314	-0,306		
			Région hyd	droclimatiqu	e de l'Est					
El	Ouelle	-0,005	0,054	0,063	-0,056	0,383	-0,308	-0,110		
E2	Du Loup	0,192	0,090	0,344	-0,168	-0,331	-0,349	-0,632**		
E3	Trois-Pistoles	0,333	0,40 l	0,522*	-0,039	-0,050	-0,200	-0,048		
E4	Rimouski	0,445	0,478	0,617**	0,380	0,099	0,104	-0,181		
E5	Matane	0,469	0,478	0,595*	0,042	0,145	-0,467	-0,368		
E6	Blanche	0,221	0,291	0,475	0,353	0,059	-0,084	-0,040		
		Ré	gion hydroc	climatique d	u Sud-Ouest					
SW1	De La Petite Nation	0,206	0,323	0,419	0,718**	0,540*	0,610**	0,271		
SW2	Du Nord	0,137	0,190	0,310	0,250	0,318	0,279	0,375		
SW3	L'Assomption	0,269	0,286	0,329	0,274	0,203	0,038	0,248		
SW4	Matawin	0,306	0,354	0,426	0,521	0,290	0,265	-0,141		
SW5	Vermillon	0,278	0,340	0,404	0,110	-0,106	-0,056	-0,220		

^{* =} valeur du coefficient de corrélation significative au seuil de 10 %.

^{** =} valeur du coefficient de corrélation significative au seuil de 5 %.

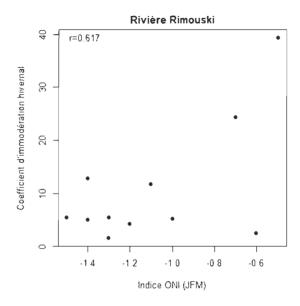


Figure 5.15 Relation entre les coefficients d'immodération hivernaux et l'indice ONI lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017.

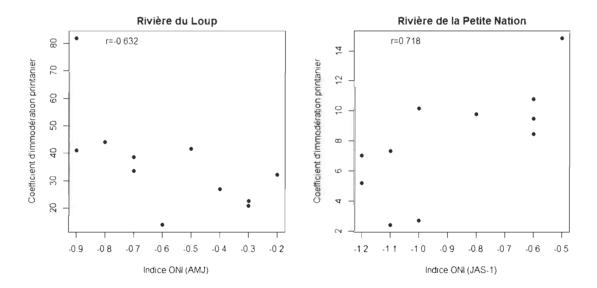


Figure 5.16 Relation entre les coefficients d'immodération printaniers et l'indice ON1 lors des épisodes La Niña d'intensité modérée et forte pour la période 1950-2017.

CHAPITRE VI

SYNTHÈSE DES RÉSULTATS ET DISCUSSION

Afin de pouvoir répondre aux différentes questions soulevées dans la problématique, notre discussion sera articulée autour de six points suivants :

- Comparaison des résultats obtenus avec la série complète des indices de l'OA à ceux obtenus exclusivement avec des séries d'intensité des épisodes El Niño et La Niña analysées séparément.
- 2) Comparaison des résultats obtenus en fonction de degrés d'intensité des épisodes El Niño et La Niña analysés séparément.
- Comparaison des résultats en fonction des indices saisonniers des épisodes
 El Niño et La Niña
- 4) Comparaison de l'influence des intensités des épisodes El Niño et La Niña en fonction des saisons au Québec méridional
- 5) Comparaison de l'influence des épisodes El Niño et La Niña sur les trois régions hydroclimatiques du Québec méridional
- 6) Comparaison des résultats en fonction des caractéristiques des débits journaliers hivernaux et printaniers

D'abord, trois séries seront comparées afin de vérifier si on obtient de meilleurs résultats en utilisant l'ensemble des années ou en utilisant que les événements El Niño et La Niña. Ensuite, nous comparerons les séries de l'ensemble des épisodes El Niño/La Niña aux séries discréditant les événements d'intensité faible afin de vérifier si les épisodes de plus faible intensité atténuent l'effet des plus intenses. Puis, nous avons comparé les résultats obtenus selon les différents indices saisonniers afin de déterminer à quelle saison l'intensité de l'indice affectera le plus les caractéristiques des débits.

Nous discuterons ensuite de quelle saison est la plus affectée par les épisodes El Niño/La Niña et nous déterminerons dans quelle région hydroclimatique les effets de l'OA sont le plus observés. Finalement, nous discuterons de l'effet de ces phénomènes climatiques sur les caractéristiques des débits hivernaux et printaniers au Québec méridional.

6.1 Comparaison des séries

Afin de vérifier l'influence de l'intensité des épisodes El Niño et La Niña sur les caractéristiques des débits au Québec, on a comparé le pourcentage de rivières significativement corrélées aux indices d'ONI en fonction des séries complètes et des séries constituées seulement des épisodes El Niño et La Niña. Les résultats de cette comparaison sont consignés dans le tableau 6.1.

Tableau 6.1

Pourcentage (%) des rivières significativement corrélées en fonction des séries des indices ONI pendant la période 1950-2017

Caractéristiques des débits	Complet	El Niño	La Niña
Qm	14,3	28,6	1,7
Qmax	0,8	29,4	7,6
POmax	11,8	23,5	2,5
Qmin	5,0	20,2	5,9
POmin	5,9	15,1	3,4
CV	6,7	7,6	11,8
CI	7,6	10,9	12,6
Total :	7,4	19,3	6,5

NB : Total représente le pourcentage de coefficients de corrélation significatif considérant l'ensemble des résultats obtenues sans distinction selon la caractéristique de débit.

En tenant compte de toutes les caractéristiques des débits et de deux saisons, il ressort de ce tableau que le pourcentage de rivières significativement corrélées est plus élevé avec les épisodes El Niño (19,3 %) qu'avec les épisodes La Niña (6,5 %) et les deux épisodes confondus (7,4 %). Il s'ensuit que l'utilisation classique des séries

complètes masque plus l'influence des épisodes El Niño que celle de La Niña. De plus, ce résultat démontre l'existence d'un lien significatif entre l'intensité des épisodes El Niño et La Niña sur les caractéristiques des débits au Québec. La faible influence des épisodes La Niña par rapport à celle d'El Niño pourrait s'expliquer en partie par le fait que le courant chaud El Niño a une extension spatiale beaucoup plus importante que celle du courant froid La Niña. Ainsi, l'influence planétaire induite par le courant El Niño sur la variabilité des variables hydroclimatiques serait plus importante que celle de La Niña. L'influence de ce dernier courant marin s'estomperait rapidement au fur et à mesure qu'on s'éloigne de l'océan Pacifique tropical.

6.2 Comparaison de l'influence de degrés d'intensité des épisodes El Niño et La Niña

Afin de vérifier l'hypothèse que l'influence des épisodes les plus intenses est atténuée par les épisodes de faible intensité, on a comparé les résultats obtenus pour les séries incluant les épisodes de faible intensité et celles les excluant. En ce qui concerne les épisodes El Niño dont les résultats sont présentés au tableau 6.2, l'inclusion des épisodes de faible intensité augmente le pourcentage des rivières corrélées avec El Niño en hiver, mais, en revanche, cette inclusion diminue ce pourcentage au printemps. Il s'ensuit que le degré d'intensité des épisodes El Niño n'a aucune influence en hiver. Par contre au printemps, l'influence de ces épisodes se manifeste surtout lors des événements d'intensité modérée à très forte. Quant aux épisodes La Niña (Tableau 6.3), on observe la même tendance. En effet, l'influence du degré d'intensité des épisodes se manifeste plus au printemps qu'en hiver. À la lumière de ces considérations, on observe sans le moindre doute l'affaiblissement de l'influence des épisodes de faible intensité au printemps au Ouébec. Pour expliquer cet affaiblissement, il faut rappeler que les phénomènes El Niño et La Niña commencent à se former après l'été austral (janvier à mars) et se développent en hiver austral (de juin à septembre) jusqu'au printemps austral. Pour des épisodes de faible intensité, leur influence s'estompe rapidement dans le temps et dans l'espace. Ceci expliquerait ainsi l'affaiblissement de leur influence au printemps au Québec, région relativement éloignée de la zone tropicale.

Tableau 6.2

Pourcentage (%) de rivières significativement corrélées selon le degré d'intensité des épisodes El Niño pendant la période 1950-2017

	His	ver	Printe	emps	
Caractéristiques des débits	Intensité faible à très forte	Intensité modérée à très forte	Intensité faible à très forte	Intensité modérée à très forte	
Qm	45,1	31,4	16,2	11,8	
Qmax	58,8	29,4	7,4	27,9	
POmax	47,1	9,8	5,9	2,9	
Qmin	39,2	13,7	5,9	8,8	
POmin	13,7	21,6	16,2	7,4	
CV	9,8	2,0	5,9	20,6	
CI	19,6	2,0	4,4	13,2	
Total:	33,3	15,7	8,8	13,2	

NB : Total représente le pourcentage de coefficients de corrélation significatif considérant l'ensemble des résultats obtenues sans distinction selon la caractéristique de débit.

 $\label{eq:continuous} \begin{table} \textbf{Tableau 6.3} \\ \textbf{Pourcentage de rivières significativement corrélées (\%) en fonction de degré d'intensité des épisodes La Niña pendant la période 1950-2017 ($\alpha = 0.1$) \\ \end{table}$

	Hi	iver	Printemps			
Caractéristiques des débits	Intensité faible à forte	Intensité modérée à forte	Intensité faible à forte	Intensité modérée à forte		
Qm	0,0	3,9	2,9	23,5		
Qmax	17,6	2,0	0,0	2,9		
POmax	3,9	15,7	1,5	8,8		
Qmin	2,0	3,9	8,8	17,6		
POmin	5,9	5,9	1,5	4,4		
CV	17,6	0,0	7,4	7,4		
CI	27,5	5,9	1,5	5,9		
Total:	10,6	5,3	3,4	10,1		

6.3 Comparaison de l'influence des épisodes El Niño et La Niña en fonction des indices saisonniers d'ONI et des caractéristiques des débits journaliers

En ce qui concerne El Niño, les résultats de cette comparaison sont présentés aux tableaux 6.4 en hiver et 6.5 au printemps. Les indices saisonniers d'ONI les plus fréquemment corrélés aux débits hivernaux des rivières sont les indices hivernaux (JFM) et automnaux (OND-1). Ils le sont plus fréquemment aux débits moyens journaliers, aux débits maximums journaliers et leurs périodes d'occurrence ainsi qu'aux débits minimums journaliers et leurs périodes d'occurrence. Néanmoins, pour cette dernière caractéristique, elle est beaucoup moins influencée par des épisodes de faible intensité que ceux de forte intensité. Au printemps, si on tient compte de tous les épisodes de différentes intensités, ce sont les indices d'ONI hivernaux (JFM) et automnaux (OND-1) qui sont les plus fréquemment corrélés aux débits printaniers des rivières. Ils le sont surtout aux périodes d'occurrence des débits minimums journaliers et, dans une certaine mesure, aux débits moyens journaliers. Mais si on exclut les épisodes de faible intensité, ce sont les indices hivernaux (JFM) et printaniers (AMJ) qui sont les plus fréquemment corrélés aux débits maximums journaliers et aux coefficients de variation. À noter que les indices estivaux (JAS-1) sont aussi fréquemment corrélés aux deux indices hydrologiques (CV et CI) de la variabilité de l'écoulement.

En ce qui concerne le phénomène La Niña, en hiver (Tableau 6.6), les indices automnaux (OND-1) et, dans une certaine mesure, les indices estivaux (JAS-1) sont fréquemment corrélés aux débits maximums journaliers et aux deux indices hydrologiques de la variabilité de l'écoulement. Toutefois, si on exclut les épisodes de faible intensité, les indices estivaux deviennent les plus fréquemment corrélés aux périodes d'occurrence des débits maximums journaliers. Au printemps (Tableau 6.7), ce sont les indices automnaux (OND-1) qui sont fréquemment corrélés aux débits maximums journaliers et aux deux indices hydrologiques (CV et CI) de la variabilité de l'écoulement. Si on exclut les épisodes de faible intensité, ces indices automnaux deviennent beaucoup plus fréquemment corrélés aux débits moyens journaliers.

Tableau 6.4

Pourcentage (%) de rivières significativement corrélées aux épisodes El Niño en hiver pendant la période 1950-2017

Caractéristiques	Intens	sité faible à tr	ès forte	Intensité modérée à très forte			
des débits	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM	
Qm	11,8	58,8	64,7	0,0	58,8	35,3	
Qmax	29,4	58,8	88,2	0,0	52,9	35,3	
POmax	29,4	47,1	64,7	5,9	17,6	5,9	
Qmin	17,6	47,1	52,9	0,0	23,5	17,6	
POmin	23,5	5,9	11,8	29,4	17,6	17,6	
CV	5,9	5,9	17,6	0,0	0,0	5,9	
CI	5,9	29,4	23,5	5,9	0,0	0,0	
Total:	17,6	36,1	46,2	5,9	24,4	16,8	

NB : Total représente le pourcentage de coefficients de corrélation significatif considérant l'ensemble des résultats obtenues sans distinction selon la caractéristique de débit.

 $\label{eq:tableau} \begin{tablea} \textbf{Tableau 6.5} \\ \textbf{Pourcentage (\%) de rivières significativement corrélées aux épisodes El Niño} \\ \textbf{au printemps pendant la période 1950-2017 ($\alpha=0.1$)} \end{table}$

Caractéristiques	Int	ensité faib	le à très fo	orte	Intensité modérée à forte			
des débits	JAS-1	OND-1	JFM	AMJ	JAS-1	OND-1	JFM	AMJ
Qm	23,5	29,4	11,8	0,0	5,9	23,5	17,6	0,0
Qmax	0,0	5,9	11,8	11,8	5,9	17,6	35,3	52,9
POmax	0,0	0,0	11,8	11,8	0,0	0,0	11,8	0,0
Qmin	5,9	11,8	5,9	0,0	5,9	17,6	11,8	0,0
POmin	5,9	17,6	41,2	0,0	0,0	23,5	5,9	0,0
CV	5,9	0,0	5,9	11,8	29,4	0,0	11,8	41,2
CI	0,0	0,0	5,9	11,8	23,5	17,6	5,9	5,9
Total:	5,9	9,2	13,4	6,7	10,1	14,3	14,3	14,3

Tableau 6.6

Pourcentage (%) de rivières significativement corrélées aux épisodes La Niña en hiver pendant la période 1950-2017

Caractéristiques	Inte	nsité faible à	forte	Inten	Intensité modérée à forte			
des débits	JAS-1	OND-1	JFM	JAS-1	OND-1	JFM		
Qm	0,0	0,0	0,0	5,9	0,0	5,9		
Qmax	11,8	23,5	17,6	0,0	0,0	5,9		
POmax	11,8	0,0	0,0	47,1	0,0	0,0		
Qmin	5,9	0,0	0,0	11,8	0,0	0,0		
POmin	5,9	5,9	5,9	5,9	11,8	0,0		
CV	17,6	23,5	11,8	0,0	0,0	0,0		
CI	29,4	35,3	17,6	0,0	0,0	17,6		
Total:	11,8	12,6	7,6	10,1	1,7	4,2		

NB : Total représente le pourcentage de coefficients de corrélation significatif considérant l'ensemble des résultats obtenues sans distinction selon la caractéristique de débit.

Tableau 6.7 Pourcentage (%) de rivières significativement corrélées aux épisodes La Niña au printemps pendant la période 1950-2017 (α = 0.1)

Caractéristiques] 1	Intensité fa	ible à for	te	Intensité modérée à forte			
des débits	JAS-1	OND-1	JFM	AMJ	JAS-1	OND-1	JFM	AMJ
Qm	5,9	5,9	0,0	0,0	23,5	23,5	47,1	0,0
Qmax	0,0	0,0	0,0	0,0	5,9	0,0	5,9	0,0
POmax	0,0	5,9	0,0	0,0	11,8	0,0	5,9	17,6
Qmin	5,9	17,6	11,8	0,0	23,5	17,6	23,5	5,9
POmin	0,0	0,0	0,0	5,9	11,8	0,0	5,9	0,0
CV	0,0	29,4	0,0	0,0	0,0	23,5	0,0	5,9
CI	0,0	5,9	0,0	0,0	5,9	5,9	5,9	5,9
Total:	1,7	9,2	1,7	0,8	11,8	10,1	13,4	5,0

6.4 Influence des saisons

En ce qui concerne le phénomène El Niño (Tableau 6.8), les épisodes El Niño sont plus fréquemment corrélés aux débits hivernaux qu'aux débits printaniers. Pour La Niña, si on exclut les épisodes de faible intensité, ces épisodes deviennent plus fréquemment corrélés aux débits printaniers qu'aux débits hivernaux (Tableau 6.8). Ceci s'explique probablement en raison de l'affaiblissement de l'influence des épisodes de l'OA de faible intensité au printemps comme on l'avait déjà invoqué.

Tableau 6.8

Pourcentage de rivières significativement corrélées (%) par saison pendant la période 1950-2017 (α = 0.1)

	El Niño				La Niña			
Caractéristiques des débits	Intensité faible à très forte		Intensité modérée à très forte		Intensité faible à forte		Intensité modérée et forte	
	Hiver	Printemps	Hiver	Printemps	Hiver Printemps		Hiver	Printemps
Qm	45,1	16,2	31,4	11,8	0,0	2,9	3,9	23,5
Qmax	58,8	7,4	29,4	27,9	17,6	0,0	2,0	2,9
POmax	47,1	5,9	9,8	2,9	3,9	1,5	15,7	8,8
Qmin	39,2	5,9	13,7	8,8	2,0	8,8	3,9	17,6
POmin	13,7	16,2	21,6	7,4	5,9	1,5	5,9	4,4
CV	9,8	5,9	2,0	20,6	17,6	7,4	0,0	7,4
CI	19,6	4,4	2,0	13,2	27,5	1,5	5,9	5,9
Total:	33,3	8,8	15,7	13,2	10,6	3,4	5,3	10,1

NB : Total représente le pourcentage de coefficients de corrélation significatif considérant l'ensemble des résultats obtenues sans distinction selon la caractéristique de débit.

6.5 Influence des régions hydroclimatiques

Afin de vérifier quelle est la région hydroclimatique la plus réactive aux phénomènes El Niño et La Niña, on a comparé la proportion des rivières significativement corrélées à ces deux phénomènes dans les trois régions hydroclimatiques. En ce qui concerne le phénomène El Niño, en hiver, il est plus fréquemment corrélé aux

caractéristiques des débits journaliers dans la région du Sud-Ouest que dans les deux autres régions hydroclimatiques (Tableau 6.9), à l'exception des magnitudes moyennes des débits journaliers et des périodes d'occurrence des débits minimums journaliers. Au printemps, l'influence de ce phénomène devient comparable dans les régions hydroclimatiques de l'Est et du Sud-Ouest dépendamment des caractéristiques des débits (Tableau 6.10). Quant au phénomène La Niña, en hiver, il est plus fréquemment corrélé aux caractéristiques des débits dans la région du Sud-Est que dans les deux régions hydroclimatiques (Tableau 6.11). En revanche, au printemps, son influence devient globalement plus marquée dans ces deux dernières régions hydroclimatiques que dans la première (Tableau 6.12).

Tableau 6.9

Comparaison des pourcentages des coefficients de corrélation significatifs entre les trois régions hydroclimatiques lors des hivers El Niño pendant la période 1950-2017

Caractéristiques	Intensi	té faible à tr	ès forte	Intensité modérée à très forte			
des débits	Sud-Est	Est	Sud-Ouest	Sud-Est	Est	Sud-Ouest	
Qm	50,0	38,9	46,7	27,8	33,3	33,3	
Qmax	50,0	55,6	73,3	11,1	22,2	60,0	
POmax	33,3	38,9	73,3	0,0	11,1	20,0	
Qmin	50,0	16,7	53,3	5,6	16,7	20,0	
POmin	11,1	27,8	0,0	11,1	44,4	6,7	
CV	0,0	11,1	20,0	0,0	0,0	6,7	
CI	0,0	16,7	46,7	0,0	5,6	0,0	
Total :	27,8	29,4	44,8	7,9	19,0	21,0	

Tableau 6.10

Comparaison des pourcentages des coefficients de corrélation significatifs entre les régions hydroclimatiques lors des printemps El Niño pendant la période 1950-2017

Caractéristiques	Intensit	é faible à t	rès forte	Intensité modérée à très forte			
des débits	Sud-Est	Est	Sud-Ouest	Sud-Est	Est	Sud-Ouest	
Qm	12,5	0,0	40,0	0,0	0,0	40,0	
Qmax	0,0	16,7	5,0	16,7	20,8	50,0	
POmax	4,2	8,3	5,0	8,3	0,0	0,0	
Qmin	0,0	0,0	20,0	0,0	16,7	10,0	
POmin	12,5	33,3	0,0	0,0	16,7	5,0	
CV	12,5	4,2	0,0	8,3	41,7	10,0	
CI	8,3	4,2	0,0	8,3	25,0	5,0	
Total:	7,1	9,5	10,0	6,0	17,3	17,1	

NB : Total représente le pourcentage de coefficients de corrélation significatif considérant l'ensemble des résultats obtenues sans distinction selon la caractéristique de débit.

Tableau 6.11

Comparaison des pourcentages des coefficients de corrélation significatifs entre les régions hydroclimatiques lors des hivers La Niña pendant la période 1950-2017 ($\alpha = 0.1$)

Caractéristiques	Inten	sité faible a	à forte	Intensité modérée à forte			
des débits	Sud-Est	Est	Sud-Ouest	Sud-Est	Est	Sud-Ouest	
Qm	0,0	0,0	0,0	0,0	11,1	0,0	
Qmax	50,0	0,0	0,0	0,0	5,6	0,0	
POmax	11,1	0,0	0,0	33,3	5,6	6,7	
Qmin	0,0	5,6	0,0	5,6	0,0	6,7	
POmin	16,7	0,0	0,0	5,6	5,6	6,7	
CV	44,4	5,6	0,0	0,0	0,0	0,0	
CI	77,8	0,0	0,0	0,0	16,7	0,0	
Total:	28,6	1,6	0,0	6,3	6,3	2,9	

Tableau 6.12

Comparaison des pourcentages des coefficients de corrélation significatifs entre les trois régions hydroclimatiques lors des printemps La Niña pendant la période 1950-2017 (α = 0.1)

Caractéristiques	Inten	sité faible à	forte	Intensité modérée à forte			
des débits	Sud-Est	Est	Sud-Ouest	Sud-Est	Est	Sud-Ouest	
Qm	4,2	0,0	5,0	0,0	33,3	40,0	
Qmax	0,0	0,0	0,0	4,2	0,0	5,0	
POmax	0,0	0,0	5,0	16,7	4,2	5,0	
Qmin	12,5	4,2	10,0	0,0	8,3	50,0	
POmin	4,2	0,0	0,0	4,2	8,3	0,0	
CV	4,2	0,0	20,0	8,3	8,3	5,0	
CI	4,2	0,0	0,0	0,0	4,2	15,0	
Total:	4,2	0,6	5,7	4,8	9,5	17,1	

NB: Total représente le pourcentage de coefficients de corrélation significatif considérant l'ensemble des résultats obtenues sans distinction selon la caractéristique de débit.

6.6 Analyse de la nature de l'influence des épisodes El Niño et La Niña sur les caractéristiques des débits journaliers

En ce qui concerne El Niño, en hiver (Tableau 6.13), il est majoritairement corrélé positivement aux débits moyens journaliers, à la magnitude et à la période d'occurrence des débits maximums journaliers et à la magnitude des débits minimums journaliers. Lorsque l'intensité des épisodes El Niño augmente, les valeurs de ces caractéristiques des débits augmentent aussi en raison de la hausse de la fréquence des précipitations sous forme liquide en hiver. En effet, la hausse de la fréquence des pluies hivernales favorise le ruissellement du fait que le sol est gelé et/ou couvert de neige. La hausse du ruissellement provoque une hausse de la magnitude des débits des rivières. Quant aux périodes d'occurrence des débits maximums journaliers, ils surviennent tardivement dans la saison en raison probablement à la fois de la fonte précoce de neige et des effets cumulatifs de pluies à la fin de l'hiver. La hausse du ruissellement provoque aussi dans une certaine mesure celle de la variabilité interannuelle et de l'amplitude de débits. En revanche, la hausse progressive des débits durant la saison hivernale favorise plutôt une occurrence hâtive des débits minimums journaliers. C'est ce qui explique une

corrélation négative entre cette caractéristique des débits minimums et les épisodes El Niño. Cette tendance se reproduit au printemps, mais avec une intensité relativement faible.

Tableau 6.13

Comparaison des pourcentages (%) des valeurs positives et négatives des coefficients de corrélation calculés entre les épisodes El Niño et les caractéristiques des débits journaliers pendant la période 1950-2017

Caractéristiques des débits	El Niño d'intensité faible à très forte				El Niño d'intensité modérée à très forte			
	Hiver		Printemps		Hiver		Printemps	
	+	-	+	-	+	-	+	_
Qm	45,1	0,0	11,8	4,4	31,4	0,0	11,8	0,0
Qmax	58,8	0,0	7,4	0,0	29,4	0,0	27,9	0,0
POmax	47,1	0,0	0,0	5,9	9,8	0,0	0,0	2,9
Qmin	39,2	0,0	5,9	0,0	13,7	0,0	8,8	0,0
POmin	0,0	13,7	16,2	0,0	0,0	21,6	7,4	0,0
CV	9,8	0,0	5,9	0,0	2,0	0,0	14,7	5,9
CI	19,6	0,0	4,4	0,0	2,0	0,0	5,9	7,4
Total:	31,4	2,0	7,7	1,5	12,6	3,1	11,5	2,4

NB : Total représente le pourcentage de coefficients de corrélation significatif considérant l'ensemble des résultats obtenues sans distinction selon la caractéristique de débit.

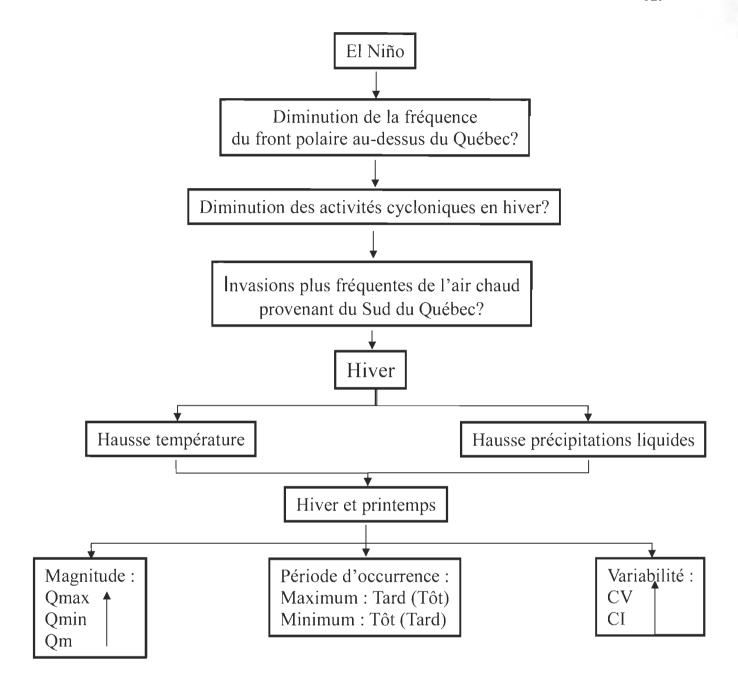
Quant au phénomène La Niña, il est majoritairement corrélé négativement aux magnitudes des débits moyens et minimums journaliers au printemps (Tableau 6.14) en raison d'un couvert nival plus important que durant les années El Niño. En hiver, la diminution de la fréquence du ruissellement favoriserait un écart relativement important des débits minimums entre le début et la fin de la saison hivernale. Il s'ensuit une corrélation négative entre les épisodes La Niña et les deux indices de la variabilité de l'écoulement (CV et CI).

^{+ :} Coefficient de corrélation positif

^{- :} Coefficient de corrélation négatif

Tableau 6.14

Comparaison des pourcentages (%) des valeurs positives et négatives des coefficients de corrélation calculés entre les épisodes La Niña et les caractéristiques des débits journaliers pendant la période 1950-2017


Caractéristiques des débits	La Niña d'intensité faible à forte				La Niña d'intensité modérée à forte			
	Hiver		Printemps		Hiver		Printemps	
	+	-	+		+	-	+	-
Qm	0,0	0,0	0,0	2,9	3,9	0,0	0,0	23,5
Qmax	0,0	17,6	0,0	0,0	2,0	0,0	0,0	2,9
POmax	0,0	3,9	0,0	1,5	0,0	15,7	4,4	4,4
Qmin	2,0	0,0	2,9	5,9	2,0	2,0	1,5	16,2
POmin	0,0	5,9	0,0	1,5	0,0	5,9	1,5	2,9
CV	0,0	17,6	7,4	0,0	0,0	0,0	5,9	1,5
CI	0,0	27,5	1,5	0,0	5,9	0,0	4,4	1,5
Total:	0,3	10,4	1,8	1,8	2,0	3,4	2,7	8,0

NB : Total représente le pourcentage de coefficients de corrélation significatif considérant l'ensemble des résultats obtenues sans distinction selon la caractéristique de débit.

La nature de l'influence des intensités des épisodes El Niño et La Niña permet d'esquisser un schéma conceptuel général sur les mécanismes par lesquels ces épisodes influencent la variabilité spatio-temporelle des caractéristiques des débits au Québec. Durant les années El Niño, le front polaire se situe plus fréquemment au nord du Québec. Cette position favorise l'invasion fréquente de l'air chaud du sud. Cette invasion entraîne ainsi une hausse des températures et de la fréquence des pluies en hiver et au printemps. Il en résulte une hausse de la magnitude des débits, une occurrence précoce des débits minimums, mais tardive des débits maximums ainsi qu'une forte variabilité des débits (Figure 6.1). Ce schéma se vérifie beaucoup plus en hiver qu'au printemps au Québec en raison probablement de l'affaiblissement de l'influence des épisodes El Niño au printemps. Le schéma inverse s'applique aux années La Niña (Figure 6.2). En effet, durant ces années, le front polaire balaie fréquemment le Québec. Il en résulte une baisse des températures, mais, en revanche, une hausse des quantités de neige générées par des cyclones ou dépressions associés au front polaire. Au printemps, la fonte de cette neige favorise une hausse de la magnitude des débits. Cependant, comme on l'a démontré, l'influence des épisodes La Niña est moins marquée que celle d'El Niño aussi bien en hiver qu'au printemps.

^{+ :} Coefficient de corrélation positif

^{- :} Coefficient de corrélation négatif

Figure 6.1 Schéma conceptuel de l'influence des épisodes d'El Niño sur les caractéristiques des débits en hiver et au printemps au Québec.

Figure 6.2 Schéma conceptuel de l'influence des épisodes de La Niña sur les caractéristiques des débits en hiver et au printemps au Québec.

CHAPITRE VII

CONCLUSION

L'oscillation australe est un phénomène climatique reconnu comme l'un des principaux facteurs qui influence la variabilité spatio-temporelle des températures, des précipitations et des débits à l'échelle planétaire (Halpert & Ropelewski, 1992; Ropelewski & Halpert, 1987, 1989; Ward et al., 2010, 2014). En ce qui concerne la température, Trenberth et Fasullo (2013) ont démontré que durant ses phases chaudes correspondant aux épisodes El Niño, l'oscillation australe amplifiait le réchauffement planétaire causé par les gaz à effet de serre d'origine anthropique tandis que durant ses phases froides correspondant aux épisodes La Niña, elle atténuait ce réchauffement. Cependant, la nature et l'ampleur de son influence varient d'une région à une autre. Au Canada, les travaux consacrés à cette influence ont démontré qu'en ce qui concerne la nature de cette influence, l'oscillation australe dans sa phase positive (El Niño) est associée à des températures généralement supérieures aux normales, mais à des précipitations inférieures aux normales durant la saison hivernale (Shabbar, 2006). Quant à l'ampleur de son influence, il est établi que l'influence de l'oscillation australe est beaucoup plus grande dans la partie ouest du Canada que dans sa partie orientale, qui inclut le Québec. Ainsi, dans cette dernière région, son influence sur les débits des rivières a été reconnue comme très faible ou inexistante dans plusieurs travaux.

Cette faible influence de l'oscillation australe sur les débits au Québec pourrait résulter de l'utilisation simultanée des phases chaudes et froides dans les travaux antérieurs. Cette approche peut ainsi « brouiller » le signal spécifique associé à chaque phase. En analysant séparément les deux phases, on peut alors amplifier ce signal et démontrer *in fine* l'ampleur de l'influence de l'oscillation australe sur les débits au Québec. Cette séparation des phases se justifie par le fait que dans une étude récente, Assani (2018) a démontré clairement que les températures estivales au Québec étaient mieux corrélées aux phases chaudes (El Niño) qu'aux phases froides (La Niña) de

l'oscillation australe. L'objectif de ce mémoire était effectivement d'analyser séparément l'influence de chacune de ces deux phases sur les débits hivernaux et printaniers. Pour atteindre cet objectif, on a tenu compte séparément des épisodes El Niño d'intensité faible à très forte et ceux de La Niña d'intensité faible à forte.

La comparaison des fréquences des coefficients de corrélation statistiquement significatifs calculés entre les débits et les phases chaudes (épisodes El Niño) et froides (épisodes La Niña) confondues d'une part, et les phases chaudes et froides analysées séparément, d'autre part, a révélé que cette fréquence était plus élevée lorsqu'on a analysé séparément les deux phases. La comparaison entre les deux phases a démontré que cette fréquence était plus élevée pendant les phases chaudes (19,3 %) que pendant les phases froides (6,5 %) de l'oscillation australe. En d'autres termes, les débits des rivières sont plus fréquemment corrélés aux épisodes El Niño qu'aux épisodes La Niña au Québec. Ensuite, l'analyse de l'intensité de chaque phase a démontré que l'influence de l'intensité sur les débits lors de la phase chaude est quasi négligeable en hiver alors qu'au printemps, ce sont surtout les épisodes d'intensité modérée à très forte qui étaient fréquemment corrélés aux débits. Cette tendance a été observée aussi pendant les phases froides durant les deux saisons. En ce qui concerne l'influence des indices des phases, il ressort de cette étude que durant les phases chaudes, ce sont des indices hivernaux de l'oscillation australe sont plus fréquemment corrélés aux débits, aussi bien hiver qu'au printemps. Durant les phases froides, ce sont les indices automnaux et estivaux de l'oscillation australe qui sont plus fréquemment corrélés aux débits en hiver alors que seuls les indices automnaux le sont au printemps.

En ce qui concerne l'influence saisonnière, on a démontré que l'influence de phases chaudes et froides sur les débits se manifeste plus fréquemment en hiver qu'au printemps au Québec. Toutefois, cette influence n'est pas spatialement homogène. En hiver, les phases chaudes sont plus fréquemment corrélées aux débits des rivières de la région hydroclimatique du Sud-Ouest que les deux de deux autres hydroclimatiques. Au printemps, cette corrélation est aussi observée, quasi dans les mêmes proportions, dans les régions hydroclimatiques du Sud-Ouest et de l'Est. Quant aux phases froides,

elles sont fréquemment corrélées aux débits des rivières de la région hydroclimatique du sud-est en hiver, mais aux débits des rivières de la région hydroclimatique du Sud-Ouest au printemps.

Quant à la nature de la relation entre les deux phases de l'oscillation australe et les débits des rivières, il est apparu que les phases chaudes (épisodes El Niño) sont généralement corrélées positivement aux débits alors que les phases froides (épisodes La Niña) le sont globalement négativement aussi bien en hiver qu'au printemps. Il s'ensuit que les épisodes El Niño sont associés à une hausse de la magnitude et de la variabilité des débits, mais une occurrence tardive des débits maximums et minimums journaliers en hiver et au printemps. Cette tendance est aussi observée lors des épisodes de La Niña, à l'exception de la variabilité des débits qui diminue. Néanmoins, pour mieux expliquer l'influence de ces phases sur la dynamique des débits printaniers et hivernaux au Québec méridional, il faudra mieux comprendre comment les épisodes modifient les régimes de températures et des précipitations à l'hiver. En effet, ce sont ces variables qui pourront expliquer pourquoi les débits varient ainsi. De plus, il faudra s'intéresser à l'interaction entre l'oscillation australe et les autres téléconnexions si on souhaite éventuellement prédire la dynamique des cours d'eau lors des épisodes El Niño et La Niña.

BIBLIOGRAPHIE

- Amarasekera, K. N., Lee, R. F., Williams, E. R., & Eltahir, E. A. B. (1997). ENSO and the natural variability in the flow tropical rivers. *Journal of Hydrology*, 200, 24-39. https://doi.org/10.1016/S0022-1694(96)03340-9
- Anctil, F., & Coulibaly, P. (2004). Wavelet analysis of the interannual variability in Southern Québec streamflow. *Journal of Climate*, 17(1), 163-173. https://doi.org/10.1175/1520-0442(2004)017<0163:WAOTIV>2.0.CO;2
- Assani, A. (2018). Comparison of the temporal variability of maximum daily temperatures for summer months in relation to El Niño events in Southern Quebec. In *Extreme Weather* (pp. 1-10). INTECH. https://doi.org/10.5772/intechopen.74548
- Assani, A. A., Charron, S., Matteau, M., Mesfioui, M., & Quessy, J.-F. (2010). Temporal variability modes of floods for catchments in the St. Lawrence watershed (Quebec, Canada). *Journal of Hydrology*, 385(1-4), 292-299. https://doi.org/10.1016/j.jhydrol.2010.02.031
- Assani, A. A., Lajoie, F., Vadnais, M.-E., Benseghir, S., & Bureau, C. (2006). Modes de variabilité temporelle des débits moyens annuels et leurs liens avec les indices climatiques au Québec (Canada). *Géographie Physique et Quaternaire*, 60(3), 215-224. https://doi.org/10.7202/017996ar
- Assani, A. A., Landais, D., Mesfioui, M., & Matteau, M. (2010). Relationship between the Atlantic Multidecadal Oscillation index and variability of mean annual flows for catchments in the St. Lawrence watershed (Quebec, Canada) during the past century. *Hydrology Research*, 41(2), 115. https://doi.org/10.2166/nh.2010.055
- Assel, R. A. (1998). The 1997 ENSO event and implication for North American Laurentian Great Lakes winter severity and ice cover. *Geophysical Research Letters*, 25(7), 1031-1033. https://doi.org/10.1029/98GL00720
- Assel, R. A., Janowiak, J. E., & Norton, D. C. (2000). Laurentian Great Lakes ice and weather conditions for the 1998 El Niño winter. *Bulletin of the American Meteorological Society*, 81(4), 703-718.
- Astrade, L. (1998). La gestion des barrages-réservoirs au Québec : exemples d'enjeux environnementaux. *Annales de Géographie*, 590-609.

- Beauchamp, M., Assani, A. A., Landry, R., & Massicotte, P. (2015). Temporal variability of the magnitude and timing of winter maximum daily flows in southern Quebec (Canada). *Journal of Hydrology*, *529*, 410-417. https://doi.org/10.1016/j.jhydrol.2015.07.053
- Bjerknes, J. (1969). Atmospheric teleconnections from the Equatorial Pacific. *Monthly Weather Review*, 97(3), 163-172. https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
- Bonsal, B., & Shabbar, A. (2008). Impacts of Large-Scale Circulation Variability on Low Streamflows over Canada: A Review. *Canadian Water Resources Journal / Revue Canadienne Des Ressources Hydriques*, 33(2), 137-154. https://doi.org/10.4296/cwrj3302137
- Bonsal, B., & Shabbar, A. (2010). *Large-scale climate oscillations influencing Canada*, 1900-2008. Ottawa, ON. Retrieved from http://www.biodivcanada.ca/default.asp?lang=En&n=137E1147-0
- Clarke, A. J. (2008). An introduction to the dynamics of El Niño & the Southern Oscillation. (Elsevier, Ed.). London, UK.
- Coulibaly, P., Anctil, F., Rasmussen, P., & Bobe, B. (2000). A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff. *Hydrological Processes*, *14*, 2755–2777. https://doi.org/10.1002/1099-1085(20001030)14:15<2755:A1D-HYP90>3.0.CO;2-9
- Coulibaly, P., & Burn, D. H. (2004). Wavelet analysis of variability in annual Canadian streamflows. *Water Resources Research*, 40(3). https://doi.org/10.1029/2003WR002667
- Coulibaly, P., & Burn, D. H. (2005). Spatial and temporal variability of Canadian seasonal streamflows. *Journal of Climate*, *18*(1), 191-210. https://doi.org/10.1175/JCLI-3258.1
- Croley, T. E. (2003). Great Lakes climate change hydrologic impact assessment I.J.C. Lake Ontario-St. Lawrence River Regulation Study. *Components*, 77.
- Dahlman, L. (2009). Climate Variability: Oceanic Niño Index. Retrieved from https://www.climate.gov/news-features/understanding-climate/climate-variability-oceanic-niño-index

- Dubeau, S. (2014). Effets de l'épisode El Nino 2009-2010 sur les variables hydroclimatiques, physico-chimiques et l'abondance des espèces herbacées des îlots en aval du réservoir Taureau (rivière Matawin, Québec, Canada). Université du Québec à Trois-Rivières.
- GIEC. (2013). Changement climatiques 2013 Les éléments scientifiques.
- Golden Gates Weather. (2017). El Niño and La Niña Years and Intensities. Retrieved from http://ggweather.com/enso/oni.htm
- Guay, J.-F., Rasmussen, P. F., Slivitzky, M., & Bobée, B. (1999). Les oscillations climatiques à moyenne fréquence : causes possibles, mécanismes et effets connus au Canada et au Québec. Québec : INRS-Eau.
- Halpert, M. S., & Ropelewski, C. F. (1992). Surface temperature patterns associated with the Southern Oscillation. *Journal of Climate*, *5*, 577-593.
- Hydro-Québec. (2015). Rapport annuel 2015: Voir grand avec notre énergie propre. Québec.
- Jia, S., Zhu, W., Yan, H., Duan, S., & Yao, Z. (2011). El Nino Southern Oscillation and water resources in the headwaters region of the Yellow River: links and potential for forecasting. *Hydrology and Earth System Sciences*, 15, 1273-1281. https://doi.org/10.5194/hess-15-1273-2011
- Kovats, R., Bouma, M., & Haines, A. (1999). El Niño and health protection of the human environment. World Health Organization. Genève.
- Lau, K.-M., & Yang, S. (2002). Walker circulation. *Encyclopedia of Atmospheric Sciences*, 1–6. https://doi.org/10.1006/rwas.2002.0450
- Lofgren, B. M., Quinn, F. H., Clites, A. H., Assel, R. A., Eberhardt, A. J., & Luukkonen, C. L. (2002). Evaluation of potential impacts on Great Lakes water resources based on climate scenarios of two GCMs. *Journal of Great Lakes Research*, 28(4), 537–554. https://doi.org/10.1016/S0380-1330(02)70604-7
- Merle, J., & Hisard, P. (1990). Interactions océan-atmosphère dans les Tropiques. *Annales de Géographie*, 99(553), 273–290. https://doi.org/10.3406/geo.1990.20972
- National Centers for Environmental Information (NCEI). (2016). El Niño/Southern Oscillation (ENSO) Technical Discussion. Retrieved April 1, 2016, from https://www.ncdc.noaa.gov/teleconnections/enso/enso-tech.php

- NOAA. (2016). El Niño & La Niña (El Niño-Southern Oscillation). Retrieved February 18, 2016, from https://www.climate.gov/enso
- Poff, N. L., Allan, J. D., Bain, M. B., & Karr, J. R. (1997). The natural flow regime. *BioScience*, 47, 769–784. Retrieved from http://www.jstor.org/stable/1313099
- Redmond, K. T., & Koch, R. W. (1991). Surface climate and streamflow variability in the Western United States and their selationship to large-scale circulation indices. *Water Resources Research*, 27, 2381-2399. Retrieved from http://one.geol.umd.edu/enso/readings/redmond koch91.pdf
- Ropelewski, C. F., & Halpert, M. S. (1986). North american precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). *Monthly Weather Review*, 114, 2352-2362. https://doi.org/10.1175/1520-0493(1986)114<2352:napatp>2.0.co;2
- Ropelewski, C. F., & Halpert, M. S. (1987). Global and regional scale precipitation patterns sssociated with the El Niño/Southern Oscillation. *Monthly Weather Review*, 115(8), 1606-1626. https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
- Ropelewski, C. F., & Halpert, M. S. (1989). Precipitation patterns associated with the high index phase of the Southern Oscillation. *Journal of Climate*, 2, 268-284. https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2
- Sellars, C. D., Garrett, M., & Woods, S. (2008). Influence of the Pacific Decadal Oscillation and El Niño Southern Oscillation on operation of the Capilano Water Supply Reservoir, Vancouver, British Columbia. *Canadian Water Resources Journal*, 33(2), 155-164. https://doi.org/10.4296/cwrj3302155
- Shabbar, A. (2006). The impact of El Niño-Southern Oscillation on the Canadian climate. *Advances in Geosciences*, 6, 149-153. https://doi.org/10.5194/adgeo-6-149-2006
- Shabbar, A., Bonsal, B., & Khandekar, M. (1997). Canadian precipitation patterns associated with the Southern Oscillation. *Journal of Climate*, 10(12), 3016-3027. https://doi.org/10.1175/1520-0442(1997)010<3016:CPPAWT>2.0.CO;2
- Shabbar, A., & Khandekar, M. (1996). The impact of El Niño-Southern Oscillation on the temperature field over Canada: Research note. *Atmosphere-Ocean*, 34(2), 401-416. https://doi.org/10.1080/07055900.1996.9649570
- Trenberth, K. E. (1997). The Definition of El Niño. Bulletin of the American Meteorological Society, 78(12), 2771-2777.

- Trenberth, K. E., & Fasullo, J. T. (2013). An apparent hiatus in global warming? *Earth's Future*, 19-32. https://doi.org/10.1002/2013EF000165
- Trenberth, K. E., & Stepaniak, D. P. (2001). Indices of El Niño evolution. *Journal of Climate*, 14(8), 1697-1701. https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2
- Wang, C., Deser, C., & Yu, J. (2012). El Niño and Southern Oscillation (ENSO): A review. In *Coral Reefs of the Eastern Pacific* (pp. 3-19). Retrieved from http://192.111.123.246/phod/docs/ENSO Revision.pdf
- Ward, P. J., Beets, W., Bouwer, L. M., Aerts, J. C. J. H., & Renssen, H. (2010). Sensitivity of river discharge to ENSO. *Geophysical Research Letters*, *37*(12), 1-6. https://doi.org/10.1029/2010GL043215
- Ward, P. J., Eisner, S., Flörke, M., Dettinger, M. D., & Kummu, M. (2014). Annual flood sensitivities to El Niño-Southern Oscillation at the global scale. *Hydrology and Earth System Sciences*, 18(1), 47-66. https://doi.org/10.5194/hess-18-47-2014
- Wei, W., Chang, Y., & Dai, Z. (2014). Streamflow changes of the Changjiang (Yangtze) River in the recent 60 years: Impacts of the East Asian summer monsoon, ENSO, and human activities. *Quaternary International*, 336, 98-107. https://doi.org/10.1016/j.quaint.2013.10.064
- Xu, C., & Zhang, Q. (2007). Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China. *Journal of Hydrology*, 333, 265-274. https://doi.org/10.1016/j.jhydrol.2006.08.010
- Zelle, H., Appeldoorn, G., Burgers, G., & van Oldenborgh, G. J. (2004). The relationship between sea surface temperature and thermocline depth in the Eastern Equatorial Pacific. *Journal of Physical Oceanography*, 34(3), 643-655. https://doi.org/10.1175/2523.1