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Abstract—Energy management strategy (EMS) has a profound 

influence over the performance of a fuel cell hybrid electric vehicle 

since it can maintain the energy sources in their high efficacy zones 

leading to efficiency and lifetime enhancement of the system. This 

paper puts forward an online multi-mode EMS to efficiently split 

the power among the components while embracing the effects of the 

driving conditions and performance degradation of the fuel cell 

system. In this regard, firstly, a self-organizing map (SOM) is 

trained to cluster the driving patterns. The SOM competitive layer 

in this work is composed of ten driving features as inputs and it 

classifies the driving patterns into three classes in the output. 

Subsequently, a three-mode fuzzy logic controller (FLC) is designed 

and optimized offline by the genetic algorithm for each driving 

pattern. Unlike the other similar works, the output membership 

function of the FLC is designed based on the online identification of 

the maximum power and efficiency of the fuel cell system which 

change over time. Finally, the SOM is utilized to recognize the 

driving mode at each sequence and accordingly activate the most 

suitable mode of the FLC to meet the requested power by efficient 

use of the energy sources. The performance of the proposed EMS 

has been validated by using the hardware-in-the-loop platform for 

several scenarios. The experimental results analyses indicate the 

promising performance of the suggested methodology in terms of 

ameliorating hydrogen economy and the fuel cell system lifetime. 

Index Terms—Driving condition prediction, fuel cell hybrid 

electric vehicle, fuzzy logic control, PEMFC online parameter 

estimation, self-organizing map. 

I. INTRODUCTION

RANSPORTATION is broadly held responsible for producing 

carbon dioxide emissions resulting from the burning of  
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fossil fuels, such as gasoline, in internal combustion engines 

[1]. Pure electric and hybrid electric vehicles have been 

thought-provoking transitional alternates for conventional 

vehicles although the latter is still dependent on fossil fuels and 

the former has limited driving range in addition to long 

recharging time [2]. These shortfalls have also provided the 

basis for the advent of new power sources such as proton 

exchange membrane (PEM) fuel cells (FCs) in vehicular 

applications, which are presenting a steadily growing division 

of the automotive market [3]. Fuel cell hybrid electric vehicles 

(FCHEVs) usually utilize a PEMFC as the primary power 

source and a battery pack or/and a supercapacitor as the 

secondary power source. Therefore, the performance of an 

FCHEV is impacted by several interrelated factors which put 

the design of an energy management strategy (EMS) in critical 

position [4]. Regardless of the type of the hybrid vehicle, the 

existing EMSs fall under two categories of rule-based and 

optimization-based [5, 6]. The rule-based strategies are usually 

heuristic and lead to limited and sub-optimal solutions. In this 

regard, the researchers have turned attentions on the 

optimization methods, which assure optimal or near-optimal 

solutions in theory and can also provide new guidelines for 

refining the rule-based methods [7, 8]. Optimization-based 

strategies can be divided into two groups of global and real-time 

strategies depending on the defined cost function. The former 

utilizes the cost function over a fixed driving cycle and is 

beneficial for realizing the optimal policy. However, it is not 

applicable in real-time control of the vehicle owing to its 

dependency on the driving profile. The latter, nonetheless, uses 

an instantaneous cost function based on the variables of the 

system. Equivalent consumption minimization strategy 

(ECMS) and Pontryagin's minimum principle (PMP) are two 

widely used real-time optimization strategies in hybrid electric 

vehicles [9-12]. One of the key issues here is the high 

instantaneous computational time. Furthermore, the estimation 

of the equivalent factor in ECMS and the initialization of the 

co-state in PMP, which are sensitive to transient dynamic and 

the driving pattern, are quite challenging tasks [13, 14].  

In light of the discussed matters, the use of traffic condition 

and driving information in the design of an EMS has come 

under the attention of many researchers [15-17]. This line of 

work is known as intelligent-based EMS category and can be 

integrated into both of ruled-based and optimization-based 

strategies [18]. Intelligent-based EMSs mainly consist in the 

use of car navigation data (global positioning system, vehicle 
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geographical information system or vehicle telematics) and the 

history of motion for recognizing and predicting the driving 

condition [19]. Several approaches based on fuzzy logic control 

(FLC) [20], neural networks (NNs) [21], and other machine 

learning-based techniques [22] have been introduced in this 

respect. In [23], the driving data is clustered by using a 

hierarchical algorithm and support vector machine (SVM) is 

used for the recognition of the traffic condition. In [24], multi-

layer perceptron (MLP) NN is trained to recognize the driving 

pattern and activates the controller. In [25], back propagation 

NN along with metaheuristic algorithms is used to formulate a 

dynamic programming-based predictive EMS to reduce the fuel 

consumption. In [26], the suggested strategy comprises two 

steps: generation of optimal EMS for the long trip by using an 

estimation of distribution optimization algorithm and refining 

the optimal EMS with regard to actual traffic conditions in the 

short-term. In [27], combination of PMP with NN, in [28], 

learning vector quantization NN with GA, and in [29], 

probabilistic SVM with a data fusion based method are 

proposed for developing the EMS. In [30], an adaptive control 

based on tuning the FLC parameters for different loads is 

proposed. The authors state that the PEMFC voltage declines 

due to degradation after a while and under this condition the 

rule-based values should be reconsidered. 

Apart from the importance of considering the driving 

condition, it is also essential to take into account the 

performance drifts of the FC system in EMS formulation of an 

FCHEV. The performance of a FC system is impacted by 

several factors such as the variation of operation conditions and 

degradation phenomenon. The previous works of the authors 

have touched upon the procedure for updating the parameters 

of a FC system online [31, 32]. However, they have not been 

integrated into the EMS design yet. There are some works in 

the literature regarding the online identification of the PEMFC 

model in an EMS. Some of them are based on the extremum 

seeking methods in which a periodic perturbation signal is 

utilized to find an optimal operating point in real-time [33-35]. 

Such strategies are employed in the formulation of an EMS 

mainly due to their easy implementation. However, they cannot 

be very effective when simultaneous identification of several 

operating points are required in online applications. Because 

they need a separate search line for each intended characteristic 

such as maximum efficiency (ME) and maximum power (MP). 

This problem can be avoided by utilizing recursive filters for 

online identification of the PEMFC parameters and extracting 

the necessary characteristics from the updated model. There are 

a few EMSs on this basis in the literature for FCHEVs. In [36, 

37], the authors employ the recursive least square (RLS) and 

the square root unscented Kalman filter (KF) for updating a 

single-input (current) PEMF model while designing hysteresis 

and PMP based EMSs for a FCHEV. They indicate that the 

classical EMSs are not very efficient when there are drifts in the 

FC system. In [38], the authors propose a supervisory controller 

while the PEMFC model is being updated by a simple current 

dependent model. 

This paper proposes a novel adaptive soft-computing based 

EMS for a FCHEV, composed of a FC system and a battery 

pack. This is one of the first attempts, if any, to merge both of 

driving pattern recognition and adaptation to the performance 

drifts of the FC system in a single EMS. The core of the 

suggested strategy is an online self-organizing map (SOM) 

driving profile classifier and a multi-mode FLC with online 

updating of the output defuzzification. To the best of the 

authors’ knowledge, SOM has not already been used as a 

driving condition recognition tool. Moreover, the other 

contribution of this work lies in the formulation of the FLC to 

adapt to the real state of the FC system. Each FLC has three 

inputs including requested power, derivation of requested 

power, and battery state of charge (SOC), and one output, which 

determines the portion of required power form the PEMFC 

system. The defuzzification of the FLC output is done based on 

the estimation of MP and ME of the real FC system through an 

online model composed of a PEMFC semi-empirical model 

coupled with KF. Contrary to most of the existing papers in the 

literature which are based on simulation, the obtained results of 

this work have been validated on a developed test bench by 

using hardware-in-the-loop (HIL) technique. To highlight the 

influence of tracing the real state of a FC system while 

designing an EMS, two PEMFCs with different degrees of 

degradation are used in the experimental section of this paper.   

Section II deals with the modeling description of the vehicle. 

The methodology for designing the proposed EMS is detailed 

in Section III. Section IV clarifies the obtained results from 

different considered scenarios. Finally, the conclusion along 

with some remarks is presented in section V. 

II. FUEL CELL HYBRID ELECTRIC VEHICLE SYSTEM

A. Hardware-in-the-loop platform and Power train system

modeling

The system used in this work is based on a low-speed 

FCHEV called Nemo. The main characteristics of the vehicle 

are listed in Table I. 

TABLE I 

NEMO PARAMETERS DEFINITION 

Specification Parameter Value 

Vehicle’s parameters 

Rolling resistance  0.015 

Aerodynamic drag  0.42 

Frontal area (m2) 4 

Density of air (kg/m3) 1.2 

Mass factor 1.035 

Mass (kg) 896 

Maximum speed 

(km/h) 
40 

3-phase induction

machine 

Power (W) 5690 

Frequency(Hz) 131.1 

FC system Rated power (kW) 4 

Battery  
voltage (V) 72  

Capacity (Ah)  120 

For the purpose of this paper, a HIL set-up, as shown in 

Fig. 1, is designed for evaluating the performance of the EMS. 

The FC system is the real component of this HIL simulator and 

the other ones are the mathematical models. In this set-up, a 

Horizon 500-W air breathing PEMFC, which is connected to a 

National Instrument CompactRIO through its controller, is 

utilized. The FC controller controls the mounted axial fan 

which is responsible for cooling the stack and supplying the 

necessary oxygen. The information between the CompactRIO 
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and the PC is transferred by an Ethernet connection every 100 

milliseconds. Temperature, current, and voltage of the FC 

system are recorded and used for the online modeling. An 8514 

BK Precision DC Electronic Load is used to request the load 

profile, imposed by the DC-DC converter, from the FC system. 

According to Table I, the Nemo FCHEV has a 4-kW FC system. 

In this regard, the FC output voltage in the HIL set-up is scaled 

up after the converter to meet the requested power. To 

emphasize the significance of tracking the real behavior of the 

FC system while designing an EMS, two H-500 Horizon 

PEMFCs with different degrees of degradation are used in this 

work. The MP and ME curves of each of the FC systems are 

presented in Fig. 2 and their other characteristics are listed in 

Table II. Hereafter in this manuscript, the degraded PEMFC is 

called old PEMFC and the other one is referred to as new 

PEMFC. Fig. 2 also shows the safe zone operating range, 

between the ME and MP boundaries, of these FC systems. The 

EMSs should try to operate the PEMFC in this safe zone to 

increase the lifetime and fuel economy of the system. It should 

be noted that according to [37], a dynamic limitation of 50 

Ws−1, which means a maximum of 10% of the maximum

power per second for rising, and also 30% of the maximum 

power per second for falling, as suggested in [39], have been 

considered for the operation of the PEMFC stack.   

Fig. 1.  The HIL set-up for testing the EMS. 

Fig. 2.  The old and new PEMFCs’ characteristics.  

TABLE II 
THE TECHNICAL FEATURES OF THE H-500 HORIZON PEMFC 

PEMFC Technical specification 

Type of FC PEM 

Number of cells 36 

Active area 56 cm2 
Max Current (shutdown) 42 A 

Hydrogen pressure 50-60 kPa (0.5-0.6 Bar) 

Rated H2 consumption 7 SLPM 
Ambient temperature 5 to 30 °C 

Max stack temperature 65 °C 

Cooling Air (integrated cooling fan) 

According to Fig. 1, the FC system, as the primary power 

source, is connected to the DC bus via a DC-DC converter, and 

the battery pack, as the secondary source, is directly linked to 

the bus to sustain the voltage of the DC-link. The force of the 

hybrid vehicle, considering the speed (𝑉𝐻𝑉) and mass (𝑚), can

be calculated by taking into account the traction (𝐹𝑡𝑟) and

resistive (𝐹𝑟𝑒𝑠) forces as follows:

{

𝑚
𝑑

𝑑𝑡
𝑉𝐻𝑉 = 𝐹𝑡𝑟 − 𝐹𝑟𝑒𝑠 

𝐹𝑟𝑒𝑠 = 𝑚𝑔𝑓𝑟 + 0.5𝜌𝑎𝐶𝑑𝐴𝑓𝑉2 + 𝑚𝑔𝛼

𝐹𝑡𝑟 = (𝑉𝐻𝑉−𝑟𝑒𝑓 − 𝑉𝐻𝑉)𝐶𝑠(𝑡) + 𝐹𝑟𝑒𝑠

 (1) 

Where a family of PI controller is used to force the vehicle to 

follow the driving cycle and assure achieving the reference 

speed of the vehicle. The vehicle requested power from the 

electric motor side can be then expressed as:    

𝑃𝑟𝑒𝑞 = (𝑉𝐻𝑉 × 𝐹𝑡𝑟) 𝜂𝐸𝑀𝜂𝑡𝜂𝑑𝑐−𝑎𝑐⁄   (2) 

Where 𝜂𝑡 is the transmission efficiency (92%), 𝜂𝐸𝑀 is the motor

average efficiency (90%), and 𝜂𝑑𝑐−𝑎𝑐 is the inverter efficiency

(95%). A lithium-ion battery pack is used to help the FC stack 

to meet the energy demand from the electric motor side. The 

important parameters of the battery are listed in Table III. An 

internal resistance based model is used for modeling the 

behavior of this energy storage system [40]. Fig. 3 shows the 

relationship of battery SOC with each of open circuit voltage 

(𝑈𝑏𝑎𝑡−𝑂𝐶), internal resistance (𝑅𝑏𝑎𝑡) changes in charge, and

internal resistance changes in discharge. The battery current 

(𝐼𝑏𝑎𝑡), bus voltage (𝑈𝑏𝑢𝑠), and SOC are calculated based on (3)-

(5) respectively.

𝐼𝑏𝑎𝑡 =
(𝑈𝑏𝑎𝑡−𝑂𝐶−√𝑈𝑏𝑎𝑡−𝑂𝐶

2−4×𝑅𝑏𝑎𝑡×𝑃𝑏𝑎𝑡

2×𝑅𝑏𝑎𝑡
 (3) 

𝑈𝑏𝑢𝑠 = 𝑈𝑏𝑎𝑡−𝑂𝐶 − 𝐼𝑏𝑎𝑡 × 𝑅𝑏𝑎𝑡   (4) 

𝑆𝑂𝐶(𝑡𝑓) = 𝑆𝑂𝐶(𝑡0) − 𝜂𝐶

∫ 𝐼𝑏𝑎𝑡𝑑𝑡
𝑡

𝑡0

𝐶𝑏𝑎𝑡
 (5) 

where 𝑃𝑏𝑎𝑡  is the battery pack power, 𝐶𝑏𝑎𝑡 is the capacity, and

𝜂𝐶 is the coulombic efficiency.

The FC system modeling is premised on a semi-empirical  

equation proposed by Mann et al [41]. This model calculates 

the stack voltage for a number of cells connected in series. In 

fact, this model is being used for two purposes. 
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TABLE III 
THE UTILIZED BATTERY PACK DATA 

Specification Parameter Value 

SAFT Rechargeable 

lithium-ion battery cell 

Maximum current 

continuous 
C/1 A 

Capacity  6 Ah 

Nominal voltage 3.65 V 

No. of cells in series 20 

No. of cells in parallel 13 

Cell mass 0.34 kg  

Coulombic efficiency 0.99 

Fig. 3.  The relationship of SOC with 𝑈𝑏𝑎𝑡−𝑂𝐶 and 𝑅𝑏𝑎𝑡 per cell.

First, for tuning the EMS parameters before its 

implementation on the real system to make sure that it does not 

damage the real FC system. Second, it is used in the online 

characteristics estimation process of the real FC stack while it 

is under operation. 

𝑉𝐹𝐶 = 𝑁(𝐸𝑁𝑒𝑟𝑛𝑠𝑡 + 𝑉𝑎𝑐𝑡 + 𝑉𝑜ℎ𝑚𝑖𝑐 + 𝑉𝑐𝑜𝑛)  (6) 

𝐸𝑁𝑒𝑟𝑛𝑠𝑡 = 1.229 − 0.85 × 10−3(𝑇 − 298.15) + 4.3085 ×
10−5𝑇[ln(𝑃𝐻2) + 0.5ln (𝑃𝑂2)]      (7) 

{
𝑉𝑎𝑐𝑡 = 𝜉1 + 𝜉2𝑇 + 𝜉3𝑇𝑙𝑛(𝐶𝑂2) + 𝜉4𝑇𝑙𝑛(𝑖𝐹𝐶)

𝐶𝑂2 =
𝑃𝑂2

5.08×10−6 exp(−498 𝑇⁄ )

    (8) 

𝑉𝑜ℎ𝑚𝑖𝑐 = −𝑖𝐹𝐶 𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = −𝑖𝐹𝐶(𝜁1 + 𝜁2𝑇 + 𝜁3𝑖𝐹𝐶)    (9) 

𝑉𝑐𝑜𝑛 = 𝐵𝑙𝑛(1 −
𝐽

𝐽𝑚𝑎𝑥
)                  (10) 

Where 𝑉𝐹𝐶  is the output voltage (V), 𝑁 is the number of cells,

𝐸𝑁𝑒𝑟𝑛𝑠𝑡  is the reversible cell potential (V), 𝑉𝑎𝑐𝑡  is the activation

loss (V), 𝑉𝑜ℎ𝑚𝑖𝑐 is the ohmic loss (V), 𝑉𝑐𝑜𝑛 is the concentration

loss (V), 𝑇 is the stack temperature (K), 𝑃𝐻2 is the hydrogen

partial pressure in anode side (N m−2), 𝑃𝑂2 is the oxygen partial

pressure in cathode side (N m−2), 𝜉𝑛(𝑛 = 1 … 4) are the semi-

empirical coefficients based on fluid mechanics, 

thermodynamics, and electrochemistry, 𝐶𝑂2 is the oxygen

concentration (mol cm−3), 𝑖𝐹𝐶  is the PEMFC operating current

(A), 𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  is the internal resistor (Ω), 𝜁𝑛(𝑛 = 1 … 3) are the

parametric coefficients, 𝐵 is a parametric coefficient (V), 𝐽 is 

the actual current density (A cm−2), and 𝐽𝑚𝑎𝑥 is the maximum

current density (A cm−2). The hydrogen flow is computed by a

first order function approximation based on the experimental 

data, where 𝑎 and 𝑏 are fitting parameters [37].  

𝐻2,𝑓𝑙𝑜𝑤 = 𝑎 + 𝑏 ∗ 𝑖𝐹𝐶  (11) 

The FC system is connected to the DC bus through a DC-DC 

converter. This converter is modeled by using a smoothing 

inductor and a boost chopper as formulated in (12) and (13). 

The detailed explanation of the converter model can be found 

in [42].   

𝐿
𝑑

𝑑𝑡
𝑖𝐹𝐶 = 𝑉𝐹𝐶 − 𝑉ℎ𝐹𝐶 − 𝑟𝐿𝑖𝐹𝐶  (12) 

{
𝑉ℎ𝐹𝐶 = 𝑚ℎ𝑓𝑐𝑈𝑏𝑎𝑡

𝑖ℎ𝐹𝐶 = 𝑚ℎ𝑓𝑐𝑖𝐹𝐶𝜂ℎ𝐹𝐶
𝑗  with 𝑗 = {

1 𝑖𝑓 𝑃𝑐𝑜𝑛𝑣 > 0
−1 𝑖𝑓 𝑃𝑐𝑜𝑛𝑣 < 0

     (13) 

Where 𝐿 is the converter inductance (H), 𝑉ℎ𝐹𝐶  is the input

voltage in the chopper (V), 𝑟𝐿 is the converter resistance (Ω),

𝑚ℎ𝑓𝑐 is the modulation ratio, and 𝜂ℎ𝐹𝐶
𝑗

is the converter 

efficiency. In fact, the converter uses a voltage controller to 

determine the required coil current by minimizing the error 

between the actual and reference voltage of the FC system. 

Then a current controller is used to determine 𝑚ℎ𝑓𝑐 which

boosts the output voltage to the desired value.     

III. ENERGY MANAGEMENT STRATEGY DESIGN 

The proposed EMS in this work aims at dealing with two 

important uncertainties, namely driving pattern changes and 

performance drifts of the FC system. The general structure of 

the suggested EMS is shown in Fig. 4. As is seen in this figure, 

the proposed online EMS comprises three important parts, 

namely traffic condition recognizer, online PEMFC modeling, 

and multi-mode FLC. The SOM is employed to determine the 

driving mode at each sequence and consequently trigger the most 

appropriate mode of the multi-mode FLC to satisfy the requested 

power. The updated characteristics of the online PEMFC stack 

model are also utilized to tune the output of the FLC with respect 

to the performance drifts of the PEMFC system. The 

development of each part is carefully described hereinafter.     

A. Traffic condition recognizer

In this work, SOM, as an unsupervised learning method, is

used for recognizing the driving condition. Kohonen presented 

this form of unsupervised competitive ANN in 1982 and it has 

been well studied and implemented in different problems [43]. 

In SOM, each of the neurons is associated to all the network 

inputs and to the neighborhood of the nearby neurons. Contrary 

to the utilized supervised methods, such as MLP and SVM, in 

driving condition recognition, SOM can update its weights 

without the need for a priori known labeled output. Compared 

to other unsupervised methods, like k-means and linear vector 

quantization, SOM preserves the structure of the original data, 

is very conducive to the interpretation of the clusters, and 

teaches the adjacent neurons to distinguish the neighboring 

sections of the input space. SOM has four phases of training as 

initialization, competition, cooperation, and adaptation.  

In the training process, initially, each neuron is entirely 

linked to all the source nodes in the input vector and the weights 

of all the connections are assigned with small random values. 
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Fig. 4. The general architecture of the proposed online multi-mode EMS.  

Then, the competition phase is performed by calculating the 

inner product between neuron j’s weight vector (𝑊𝑗) and the

input vector (𝑋). The winning neuron (𝑖(𝑋))  is determined by: 

{

𝑖(𝑋) = arg 𝑚𝑖𝑛
𝑗

‖𝑋 − 𝑊𝑗‖ 

𝑤𝑖𝑡ℎ {
𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑚]𝑇

𝑊𝑗 = [𝑊𝑗1, 𝑊𝑗2, … , 𝑊𝑗𝑚]𝑇 , 𝑗 = 1,2, … , 𝑙

 (14) 

where 𝑚 is the dimension of the input vector, and  𝑙 is the total 

number of neurons in the network. In the cooperation phase, the 

neurons in the neighborhood of the excited neuron are also 

tuned based on the principle of lateral interaction among the 

activated neurons of the human brain. This topological 

neighborhood is defined by: 

{

ℎ𝑗,𝑖(𝑋) = exp(− 𝑑𝑗,𝑖
2 2𝜎2⁄ )

𝑤𝑖𝑡ℎ {
𝑑𝑗,𝑖

2 = ‖𝑟𝑗 − 𝑟𝑖‖
2

𝜎(𝑛) = 𝜎0 exp(− 𝑛 𝜏1⁄ ) , 𝑛 = 0, 1, 2, … ,

      (15)  

where ℎ𝑗,𝑖(𝑋) is the topological function, 𝑑𝑗,𝑖 is the lateral

distance, 𝜎 is the standard deviation, 𝑟𝑗 is the position of the

activated neuron, 𝑟𝑖 is the position of the wining neuron, 𝜎0 is

the initial value of the 𝜎, and 𝜏 is the time constant. Finally, in 

the adaptation phase, it is required that the weights of the wining 

neuron and its neighbors get updated. The weight adaptation is 

defined as:    

{
𝑊𝑗(𝑛 + 1) = 𝑊𝑗(𝑛) + 𝜂(𝑛)ℎ𝑗,𝑖(𝑋)(𝑛)(𝑋(𝑛) − 𝑊𝑗(𝑛))

𝑤ℎ𝑒𝑟𝑒: 𝜂(𝑛) = 𝜂0 exp(− 𝑛 𝜏2⁄ ) , 𝑛 = 0, 1, 2, …, 
 (16) 

  where 𝜂(𝑛) is the learning-rate parameter of the algorithm. 

The initial value of learning rate (𝜂0) is usually defined as 0.1

and gradually decreases to around 0.01. Once the SOM is 

trained, it can be used to classify the new input data based on 

the defined clusters.  

In this manuscript, the input layer consists of ten neurons 

which are among ten important driving features introduced in 

[23, 28]. Each of these neurons corresponds to one driving 

feature. Table IV lists the used features and driving schedules 

for SOM training. All the driving cycles have been scaled down 

according to the maximum speed of the Nemo vehicle, which is 

40 km/h. In this way, the real driving patterns are best 

represented. The number of driving features in the input layer 

can vary from 2 to 62 in the literature.  However, the chosen 

features of this work are among the most used ones. In order to 

train the SOM to classify the input features, twelve driving 

cycles are employed. Since SOM learns to classify the data 

based on how they are grouped in the input space, the driving 

cycles are chosen in a way to reach a homogeneous distribution 

of data. In other words, the chosen driving cycles cover all the 

driving conditions. To extract the statistical features, the driving 

cycles are decomposed into micro-trips and all the features are 

calculated for each micro-trip [20]. Concerning the number of 

output layer neurons, based on which the clusters are defined, 

Silhouette criterion is used. In this regard, SOM is trained for 

different number of output neurons (2, 3,…, 6) by using the 

same input data. In each case, the Silhouette value is calculated 

for all the data of each cluster and its mean values are shown in 

Fig. 5. This value demonstrates how analogous an entity is to 

its own cluster (consistency) compared to other clusters 

(segregation). Silhouette value changes from −1 to +1, where 

higher values denote that the entity fits well to its own cluster. 

According to Fig. 5, by grouping the driving data into three 

clusters, more cohesion clusters are attained. Therefore, three 

neurons are selected for the output layer of SOM to classify the 

driving data into three classes of slow-speed, medium-speed, 

and high-speed driving profiles. 

TABLE IV 

THE USED DRIVING FEATURES AND SCHEDULES  

Individuality Description 

Driving 

features 

▪ Average speed (km/h) 
▪ Idle time (%) 

▪ Speed standard deviation (km/h)

▪ Average acceleration (km/h2) 
▪ Maximum acceleration (km/h2) 

▪ Average deceleration (km/h2) 

▪ Maximum acceleration (km/h2) 
▪ Percentage of low-speed (%)

▪ Percentage of middle-speed (%)

▪ Percentage of high-speed (%) 

Driving 

schedule 

(DS) 

• Urban and extra urban DS (CYC_ECE_EUDC)

• Federal test procedure DS (CYC_FTP) 

• Highway Fuel Economy Test (CYC_HWFET)

• Indian highway DS (cyc_india_hwy)

• Indian Urban DS (cyc_india_urban)

• Supplemental Federal Test Procedure (CYC_SC03)

• City of Tehran's DS (CYC_TEH_CAR)

• Urban Dynamometer DS (CYC_UDDS)

• West Virginia Interstate (CYC_WVUINTER)

• West Virginia Suburban (CYC_WVUSUB)

• California Air Resources DS (CYC_UNIF01)

• The Unified DS (CYC_LA92)

After training the SOM classifier, it can be used online for 

determining the driving conditions. In this respect, as suggested 

in [24], a sampling window size of 150 s and an updating 

window size of 50 s are employed to extract the statistical 

driving features while avoiding frequently mode switches. This 

means that each recognition is based on the driving features of 
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the previous 150-s window and is updated every 50 s. Fig. 6 

demonstrates the 2D SOM weight positions based on average 

velocity and standard deviation (SD) in the initial phase and at 

the end of self-organization. As is seen in Fig. 6a, primary 

weights are scattered over the input space after the 

initialization. The red spots show the training vectors. However, 

after 1000 epochs, the neurons have moved towards the various 

training groups by updating the weights of the winner neurons 

and their neighbors according to Fig. 6b.  

Fig. 5: The mean of Silhouette value for each cluster. 

Fig. 6: The SOM based driving condition recognizer weight positions. (a): 

Initial weight positions, (b): The trained SOM weight positions. 

A combined driving cycle, made up of CYC_NewYorkBus, 

CYC_UDDS, and worldwide harmonized light-duty vehicles 

test cycles (WLTC_class 3), is used to assess the performance 

of the SOM driving condition recognizer, as shown in Fig. 7. 

As it can be seen, the classifier is capable of recognizing new 

driving data without switching or confusing the conditions. It is 

worth noting that the CYC_NewYorkBus and WLTC_class 3 

driving cycles are completely new for the classifier and have 

not been used in its training phase.   

Fig. 7: Recognition results for the combined driving cycle. 

B. Fuel cell online modeling

As previously mentioned, the parameters of a PEMFC model

vary slowly over time since the device is affected by 

degradation and operating conditions. KF, as an optimal 

estimator, has been suggested for online parameter estimation 

of a FC system in the previous work of the authors [31]. KF can 

conclude the parameters of interest from imprecise and 

uncertain observations. This filter estimates the current state 

variables firstly and then updates them when the next 

measurement is received. The standard form of KF, introduced 

in [44], has been used in this paper. Table V defines some of 

the important parameters of KF in this work. The details about 

initialization and customization of KF for updating the 

parameters of the introduced PEMFC semi-empirical model, in 

section II, are comprehensively discussed in [31]. The ME and 

MP of the PEMFC are extracted from the updated model and 

used in the multi-mode FLC. Fig. 8 shows the capability of the 

online model in estimating the output voltage of the old FC 

system for the presented current and temperature profiles. 

Moreover, the hydrogen flow obtained by the model is 

compared with the measured one. Fig. 9 shows the predicted 

maximum power and efficiency curves of the old FC system.  

TABLE V 
KF CUSTOMIZATION FOR THE IDENTIFICATION PROBLEM 

Operators SYMBOLS Implementation description 

State vector 𝑥(𝑡) [𝜉1,  𝜉2,  𝜉3,  𝜉4,  𝜁1,  𝜁2,  𝜁3,  𝐵] 

Measurement 

vector 
𝐻(𝑡) 

[1,  𝑇,  𝑇𝑙𝑛(𝐶𝑂2),  𝑇𝑙𝑛(𝑖),  − 𝑖,  − 𝑖𝑇,  −

𝑖2,  𝑙𝑛(1 −
𝐽

𝐽𝑚𝑎𝑥
)] 

Transition matrix 𝐹(𝑡 + 1|𝑡) Identity matrix 

Measured output 𝑦(𝑡) Measured 𝑉𝐹𝐶
 
from the real FC

Fig. 8. The output voltage and hydrogen estimation analysis. a) The demanded 

current profile from the FC system and the corresponded stack temperature, b) 
Online voltage estimation, and c) Comparison of H2 rate between the model 

and the real PEMFC. 
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Fig. 9. The analysis of power and efficiency curves estimation by using the 

extracted parameters at 600 s.  

C. Multi-mode fuzzy logic controller

Fuzzy logic systems are designed to provide a number of

strategic rules by means of linguistic labels. Several reasons, 

such as imprecise modeling of a vehicle’s components, their 

nonlinear behavior, and the unknown behavior of exogenous 

factors, like traffic, weather, etc., can be counted for suitability 

of utilizing a FLC in EMS design of FCHEVs.  

The proposed FLC has three inputs, which are demanded 

power, the derivation of the demanded power, and battery SOC. 

Choosing the requested power derivation as an input, besides 

the other two inputs, helps at using the PEMFC system in a 

more stable manner. The only output of the utilized FLC is the 

required power from the FC system. The initial input and output 

membership functions (MFs) are shown in Fig. 10. As is clear 

in this figure, the output MF is defined based on the ME and 

MP points of the FC system. The output of the FLC, which is 

between 0 and 1, goes under a defuzzification process to be 

transformed into a real quantifiable value. The defuzzification 

is done by utilizing a linear function in which the slope is 

defined by means of the estimated values of ME and MP points 

through the previously described online PEMFC modeling. In 

this way, as the FC system goes under degradation, the output 

MF is updated with respect to the real state of the FC system. 

Moreover, the distribution of the variables of the output MF 

stays the same though the transformation gains of the 

defuzzification process change. The fuzzy reasoning rules, 

shown in Fig. 11, are laid down based on the heuristic expertise. 

The initial MFs are also tuned heuristically and then improved 

by GA which is a metaheuristic approach. Since the 

optimization of fuzzy MFs is a classic method and is available 

in other similar works [7], its explanation has been considered 

redundant in this paper. The utilized objective function for 

performing the MFs adjustment is presented in (17). The 

constructing parameters of the input and output MFs, which 

come to 23, are considered as decision variables for optimizing 

the FLC. To perform the optimization process, GA utilizes 

some natural procedures, such as crossover and mutation, to 

leave out the unfavorable populations and keep the most 

meritorious ones to create new generations. In this context, the 

process of survival of the fittest refers to the minimization trend 

of the defined objective function. The number of generations is 

set to 100, the population size is 200, the elite count is 10, and 

the crossover fraction is 0.8. 

𝒎𝒊𝒏
(𝑝𝑎𝑟𝑎𝑚𝑠. )    𝐽 = 𝑤1 ∑ 𝑚𝐻2

𝐾
𝑗=1 + 𝑤2 ∑ 𝑁𝑜𝑛/𝑜𝑓𝑓

𝐾
𝑗=1 + $𝑅𝑃

𝑃𝑀𝐹𝑠𝑘,𝑚𝑖𝑛
≤ 𝑃𝑀𝐹𝑠𝑘

≤ 𝑃𝑀𝐹𝑠𝑘,𝑚𝑎𝑥
 (k = 1 … 23)

𝑀𝐸 ≤ 𝑃𝐹𝐶 ≤ 𝑀𝑃       
 0.5 ≤ 𝑆𝑂𝐶 ≤ 1      

 (17) 

Where 𝐽  is the objective function, 𝑤1 is the cost conversion

factor for hydrogen, 𝑤2 the durability cost conversion factor,

𝑚𝐻2 is the hydrogen consumption, 𝑁𝑜𝑛/𝑜𝑓𝑓 is the number of

on/off cycles in the PEMFC, $𝑅𝑃 is the cost of the recharge

penalty (USD), 𝑃𝑀𝐹𝑠 is the parameter for defining the MFs, and

𝑃𝐹𝐶  is the FC system power. The values of 𝑤1 and 𝑤2 are 2.3

USD/kg H2 and 0.032 USD respectively. These values have 

been defined based on the 2020 technical targets put forward by 

the U.S. Department of Energy in the Multi-Year Research, 

Development, and Demonstration Plan. The optimization 

process of the fuzzy controllers has been done by considering a 

recharge penalty step ($𝑅𝑃) at the end of each profile. In this

way, the battery is fully recharged by using the maximum 

power point of the PEMFC stack at the end of each test and the 

USD cost of the additional required hydrogen is added to the 

total cost function. It should be noted that the recharge step is 

performed by setting the stack on its maximum power to punish 

the strategy if it finishes in low SOC level.     

 Fig. 10. The primary distribution of the input and output MFs, a) Input 1: 
requested power, b) Input 2: requested power derivation, c) Input 3: battery 

SOC, and d) Output: reference power of the FC system. 

Fig. 11. The designed FLC rule base. (Fuzzy system: Mamdani, Inference 

mechanism: AND (minimum operator), and diffuzication: centroid). The output 

MF labels are shown in the legend of this figure. 
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The multi-mode controller should be developed in a way to 

embrace all the traffic conditions since it is supposed to work 

online without a prior knowledge of the driving cycle. As the 

driving data are clustered into three classes by the developed 

SOM recognizer, one optimized FLC needs to be developed for 

each class and then the three controllers should be put together 

to form the multi-mode FLC. Each optimized FLC can be 

considered as the near optimal controller for each class of the 

driving data. However, due to the high volume of data that each 

cluster contains, the optimization process would be very time-

consuming for all the driving data. In this regard, a 

representative driving cycle is developed for each of the driving 

profile to reduce the required time for optimization process. Fig. 

12 shows the extracted representative driving cycles, namely 

low-speed, medium-speed, and high-speed, and their average 

velocities. These driving cycles are used as the input driving 

data for the process of FLC optimization. Each of them is 

composed of the nearest micro-trips to the center of cluster they 

belong to. The cluster centers have been already calculated by 

the developed SOM. The distance between each cluster center 

and each micro-trip is calculated by the Euclidean distance 

(𝑒𝑑(𝑥, 𝑦)) as: 

𝑒𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1    (18) 

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥10) is the cluster center vector, 𝑦 =
(𝑦1, 𝑦2, … , 𝑦10) is the micro-trip vector, and 𝑛 is the number of

driving features, which is 10 in this work. There are three 

cluster center vectors and 130 micro-trip vectors where each 

vector contains 10 elements. The distance between each cluster 

center and all the micro-trips is calculated and then the nearest 

micro-trips to the center are combined to reach an almost 2000-

s representative cycle for every cluster. As explained before, the 

defuzzification function of the output MF is updated when a 

noticeable drift is observed in the maximum operating points of 

the FC system, which are available from the online semi-

empirical model.  

Fig. 12. The extracted representative driving cycles, a) Low-speed profile, b) 

Medium-speed profile, and c) High-speed profile.  

D. Primary evaluation of the proposed strategy

To have a primary assessment of the developed multi-mode 

controller and the SOM classifier, a comparative analysis, in 

terms of the costs of H2, ON/OFF cycles, final SOC recharge 

penalty, and the total cost, is performed for five cases, as 

explained further in this section. The main purpose of the first 

three cases is to examine the performance of the SOM classifier 

of the proposed online multi-mode EMS regarding unnecessary 

switches. Case 4 is a real challenge between the proposed multi-

mode EMS and one optimized fuzzy controller. Finally, Case 5 

evaluates the performance of the proposed EMS under a new 

driving condition and compares it with two other strategies.     

1) Case 1: low-speed (LS) driving profile (Fig. 12a)

In this case, the performance of the online multi-mode EMS

is compared with only the first mode of the controller

(FLC1), which is an offline optimized single-fuzzy EMS

specifically designed for LS driving profile. According to

Table VI, the performance of the both controllers is

completely the same indicating the SOM classifier has used

the correct mode.

2) Case 2: medium-speed (MS) driving profile (Fig. 12b)

The second case compares the performance of the online

multi-mode EMS with the second mode of the controller

(FLC2), which is an offline optimized single-fuzzy EMS

specifically designed for MS driving profile. Table VI

shows that the total cost of the online multi-mode EMS is

2% more than the FLC2, which can be owing to very few

switches in the recognition process.

3) Case 3: high-speed (HS) driving profile (Fig. 12c)

This case compares the performance of the online multi-

mode EMS with the third mode of the controller (FLC3),

which is an offline optimized single-fuzzy EMS specifically

designed for HS driving profile. Table VI indicates that the

proposed EMS can closely approach the optimized results

obtained by FLC3 with less than one percent difference in

the total cost. Obviously, the proposed EMS does not have

unnecessary switches for determining the mode of

operation.

4) Case 4: representative (Rep.) driving profile

This case compares the performance of the online multi-

mode EMS with an offline optimized single-fuzzy EMS

(Opt. for rep.) particularly designed for the Rep. driving

profile. The Rep. driving profile is a concatenation of LS,

MS, and HS profiles. The online multi-mode EMS has three

optimized FLCs corresponding to each of LS, MS, and HS

conditions inside the Rep. driving profile while the Opt. for

rep. EMS is only one optimized FLC for the whole driving

profile. According to Table VI, it can be seen that the online

multi-mode EMS outperforms the Opt. for rep. EMS by 3.7

percent in terms of the total cost. This superior performance

shows the applicability of the proposed multimode EMS.

5) Case 5: combined driving profile (Fig. 7)

So far, all the discussed cases have been done by using the

known driving profiles. However, in this case study, to

better clarify the effectiveness and flexibility of the online

multi-mode controller in real-time unknown driving

conditions, its performance is compared with the Opt. for

rep. EMS under combined driving profile, which is a new

driving condition for both of the strategies. Moreover, the

performance of the proposed strategy is compared with one

of the commonly used real-time strategies in the literature

called bounded load following strategy (BLFS) [39, 45].
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BLFS is a hysteresis based energy management to split the 

power among the components of a fuel cell hybrid electric 

vehicle. BLFS normally provides three modes of operation 

for the PEMFC stack including ON/OFF, 𝑃𝐹𝐶_𝑚𝑖𝑛, and

𝑃𝐹𝐶_𝑚𝑎𝑥 with respect to the battery SOC level. To assure a

low hydrogen consumption, the maximum efficiency of the 

PEMFC stack is selected as the 𝑃𝐹𝐶_𝑚𝑖𝑛 mode. This choice

stems from the fact that the hydrogen consumption and the 

degradation of the stack is higher within the open circuit 

voltage and the best efficiency point area of the PEMFC. 

Therefore, when the PEMFC is turned on, the ME mode is 

activated. 𝑃𝐹𝐶_𝑚𝑎𝑥 mode, which sets the stack on its

maximum power, is triggered when the battery SOC reaches 

the minimum SOC level. Furthermore, the 𝑃𝐹𝐶_𝑚𝑎𝑥 mode

assists the battery pack in high traction power operations. 

The battery SOC can fluctuate between 45% and 95% 

(0.45 ≤ 𝑆𝑂𝐶 ≤ 95) [39]. As reported by Table VI, the 

proposed multi-mode EMS outperforms the Opt. for rep. 

and the BLFS strategies by almost 7 percent. This 

performance distinction indicates that the proposed EMS 

performs well when confronting new driving conditions. 

TABLE VI 
COMPARISON OF THE MULTI-MODE CONTROLLER AND THE OPTIMIZED 

CONTROLLER OF EACH REPRESENTATIVE DRIVING CYCLE   

Case study 

 Cost (USD) 

EMS 

H2 
ON/OFF 

cycles 

Recharge 

penalty  
Total 

 Case 1 
Opt. for LS 12.49 0 8.21 20.70 

Multi-mode 12,49 0 8.21 20.70 

 Case 2 
Opt. for MS 12.72 0 10.55 23.27 

Multi-mode 13.25 0 10.51 23.76 

 Case 3 
Opt. for HS 13.67 0 18.01 31.67 

Multi-mode 14.15 0 17.66 31.81 

 Case 4 
Opt. for rep. 35.64 2.97 2.38 41 

Multi-mode 34.16 2.78 2.52 39.48 

 Case 5 

Opt. for rep.  28.05 0 3.84 31.90 

Multi-mode 25.66 0 3.92 29.58 

BLFS 28.76 0 3.00 31.76 

IV. EXPERIMENT AND RESULTS ANALYSIS

The performance of the proposed online multi-mode EMS is 

comprehensively studied in this section. In this respect, two 

principal scenarios are taken into consideration. Both of these 

scenarios have been implemented on the developed test bench 

to have realistic perception of the FCHEV performance.   

 In the first scenario, the combined driving cycle, introduced 

in section 2, is imposed to the vehicle as the input and the 

performance of the proposed EMS is compared with the offline-

optimized EMS in terms of hydrogen consumption and efficient 

use of the energy sources. The new FC system is used 

throughout the first scenario. Fig. 13 presents the obtained 

results from the performed test in scenario 1. Fig. 13a shows the 

traction power, obtained from imposing the combined driving 

cycle to the system, the supplied power by FC system, and the 

battery pack for the case of offline optimized EMS. It should be 

noted that this offline strategy knows the driving cycle in 

advanced as opposed to the online multi-mode EMS. Fig. 13b 

indicates the traction power and its split between the FC and the 

battery pack for the case of online multi-mode strategy. From 

these two figures, it is clear that the FC system is being used to 

supply the main portion of the requested power in a stable 

manner, compared to the battery, which is mostly responsible 

for absorbing the fast transitions. Fig. 13c compares the battery 

SOC of the optimal and multi-mode controllers. It is obvious 

that the optimal strategy keeps the SOC in a higher level due to 

its priory knowledge about requested power. Fig. 13d presents 

the distribution of the FC operating points while meeting the 

requested power. Form Fig. 13d, it is clear that the proposed 

strategy is capable of limiting the operation of the FC system 

within the safe zone, which is between MP and ME, and tends 

to operate the FC system in the high efficient zone, which is 

around 15A, most of the time.  

Fig. 13. Scenario 1 for evaluation of the proposed multi-mode EMS, a) Power 

split by the optimal FLC, b) Power split by the online multi-mode strategy, c) 

Battery SOC comparison of the two strategies, and d) PEMFC operating points 
distribution. 

In the second scenario, the capability of the proposed EMS 

to deal with the FC system performance drifts is scrutinized. In 

this respect, the EMS test with the combined driving cycle is 

repeated, but by using the old PEMFC. Moreover, to signify the 

importance of the online PEMFC characteristics tracking, once 

the test is performed by deactivating the online identification, 

and the second time it is done by activating it. Fig. 14 shows the 

obtained outcomes of these tests. Fig. 14a and Fig. 14b 

represent the power split for offline and online multi-mode 

EMSs respectively. According to Fig. 14a, the offline multi-

mode strategy experiences a lot of start-ups and shutdowns in 

the first 400 s in the FC system as it tries to recharge the battery 

by using the PEMFC in high power. However, it is not aware 

of the fact that the FC system has been degraded and its MP and 

ME points have changed. Therefore, it demands for a power 
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level that is out of the ability of the FC to supply and causes 

these on/off cycles.    

On the other hand, in case of the proposed online EMS as shown 

in Fig. 14b, in the first 100 s, the identification is performed to 

realize the real characteristics of the FC system and update the 

defuzzification tuning of the controller. After that, the FC 

system works in the high power area to recharge the battery 

pack to a certain level in addition to supplying the requested 

power without having any on/off cycles. Fig. 14c compares the 

SOC level of the battery for both cases and Fig. 14d 

demonstrates the FC system operating points distribution. From 

Fig. 14d, it is clear that the online multi-mode EMS utilizes the 

FC system more efficiently which can prolong its lifetime 

besides improving the fuel economy of the vehicle. Table VII 

compares the obtained cost by each of the EMSs in both 

scenarios. According to this table, the proposed online multi-

mode strategy shows a very close performance to the optimal 

FLC in scenario 1. This close performance demonstrates that 

the proposed online EMS is able to handle unknown driving 

conditions with an acceptable fuel economy. The presented 

results of scenario 2 also confirms the satisfactory adaptation of 

the proposed EMS to the performance drifts of the FC system, 

which is a distinguishing feature of this suggested EMS. This 

adaptation to the real state of the FC system has made 8% of 

performance improvement in the online multi-mode strategy in 

scenario 2.   

Fig. 14. Scenario 2 for assessing the online performance tracking of the FC 
system significance in the proposed multi-mode EMS, a) Power split by the 

online multi-mode EMS, b) Power split by the offline multi-mode strategy, c) 

Battery SOC comparison of the strategies, and d) PEMFC operating points 
distribution. 

TABLE VII 
The cost comparison of the EMSs in the two performed scenarios 

Cost (USD) 

Scenario 1 Scenario 2 

Optimized 

FLC 

Online 

Multi-mode 

Offline 

multi-mode 

Online 

multi-mode 
H2 28.82 26.96 28.92 25.56 

ON/OFF 

cycles 
0 0 0.80 0 

Recharge 

penalty  
13 6.00 7.98 8.99 

Total 32.16 32.96 37.70 34.55 

V. CONCLUSION

This paper presents a new online multi-mode EMS for a 

FCHEV. This EMS is mainly composed of a SOM based 

driving condition classifier and a multi-model FLC. The FLC 

output MF is constantly adjusted based on the online estimation 

of the FC system MP and ME boundaries by KF and a semi-

empirical PEMFC model. The developed SOM recognizes the 

driving condition and activates the most proper mode of the 

FLC at each update to efficiently supply the request power from 

the vehicle. The performance of the proposed online strategy is 

compared with an offline optimized FLC under a combined 

driving cycle of CYC_NewYorkBus, CYC_UDDS, and 

WLTC_class 3 and a satisfactory result is obtained with only a 

two-percent difference in terms of the total cost of hydrogen 

consumption and on/off cycles of the FC system. Moreover, the 

performance of the proposed EMS is tested when the FC system 

undergoes a sixteen-percent drift regarding the maximum 

power. In this case, the proposed online EMS adapts to the real 

state of the FC system and improves the performance of the 

vehicle by eight percent compared to the offline multi-mode 

controller.     

Although this work has well established the potential of the 

proposed online EMS, some prospects for extending the scope 

of this paper remain as follows: 

• Incorporating an online battery management system

into the presented strategy to reach a holistic EMS.

• Performing a lifetime and ageing study of the

energy sources under the proposed EMS.
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