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RÉSUMÉ 

La problématique envisagée par les hydrologues, dans un contexte de prédominance de 
neige en hiver et de fonte rapide au printemps, est d ' avoir une estimation réaliste du 
couvert nival et de comprendre la complexité des facteurs qui contrôlent la génération 
des crues printanières. La modélisation hydrologique et de l' accumulation et la fonte de 
la neige par des modèles hydrologiques à différentes complexités constituent un outil 
pour la prévision opérationnelle des crues et la simulation du manteau nival. Dans cette 
étude, nous chercherons à améliorer la calibration d'un modèle hydrologique conceptuel 
couplé avec un module de fonte de la neige par l'ajout des données observées de 
l'équivalent en eau de la neige (ÉEN) dans le but d'obtenir une simulation réaliste du 
couvert nival dans une première étape. Dans une deuxième étape, nous avons essayé de 
comprendre la variabilité interannuelle de la magnitude et de la date d'occurrence des 
pics de crues printanières et de répondre à la question: est-ce que cette variabilité 
dépend principalement du stock de neige maximal accumulé, et quel est l' effet de la 
quantité et de l' intensité de la pluie durant la période de fonte sur le pic de crue? 
La performance de deux modèles, GR4J et Cemaneige, a été testée tout d 'abord sur 
12 bassins à régime hydrologique naturel et la calibration a été réalisée selon quatre 
stratégies. Un calage classique par rapport aux débits mesurés a été réalisé en premier 
temps en utilisant une méthode d'optimisation locale et ensuite avec un algorithme 
global (SCE-UA) dans la deuxième méthode. La troisième méthode consiste à calibrer 
indépendamment le module de neige avec l'équivalent en eau (ÉEN) observé aux 
stations du réseau nivométrique et l'introduire par la suite dans le modèle hydrologique. 
Une calibration multi-objectif a été entreprise par la suite, où les paramètres du modèle 
ont été calés par rapport à l' ÉEN et le débit observé, en utilisant un algorithme 
d'optimisation multi-objectif AMALGAM. Une amélioration de la simulation du 
couvert nival et du débit par la méthode multi-objectif a été démontrée. Les jeux de 
paramètres équifinaux ont montré une interaction et une compensation entre les 
paramètres qui constituent une grande source d'équifinalité. Sur une période de pré­
conditionnement des crues, les facteurs liés à la fonte de neige, la pluie liquide 
enregistrée et l'humidité de sol ont été calculés et par la suite leurs capacités à expliquer 
les caractéristiques des pics printaniers (magnitude et date d 'occurrence) ont été 
évaluées par une régression linéaire multiple. Nos résultats de régression linéaire 
démontrent que la variabilité interannuelle de la magnitude de crues printanières à 
travers les douze bassins dépend des facteurs suivants en ordre d'importance : l'intensité 
de fonte (moyenne et maximale), le total de la fonte , le total de la pluie, le pic de 
l' équivalent en eau (ÉEN) et l'humidité du sol. La pluie pré-crue contrôle principalement 
la variabilité interannuelle du pic de crue dans les bassins forestiers situés plus au nord 
avec un régime nival. Cependant, l'importance du stock de neige accumulé en hiver 
contrôle davantage cette variabilité dans les bassins du sud, plus agricoles et à régime 
davantage pluvio-nival. La date d'occurrence est plutôt expliquée par la pluie pré-crue. 

Mots-clés: crues printanières, variabilité interannuelle, magnitude, date d' occurrence, 
calibration, modèles hydrologiques conceptuels, ÉEN, incertitude des paramètres, 
changements climatiques. 
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CHAPITRE 1 

INTRODUCTION 

t. t Mise en contexte 

L'hydrologie dans les pays nordiques comme le Canada se distingue par de longs 

hivers dominés par la neige et une fonte printanière rapide. Cette fonte saisonnière 

fournit plus de 80 % du ruissellement annuel dans les prairies canadiennes (Buttle, 

2016). Au Québec la quantité de neige accumulée est très importante avec un maximum 

annuel moyen de 200 à 300 mm d'équivalent en eau (Brown, 2010). Dans le nord du 

Québec, l'accumulation de neige commence en octobre et continue jusqu'au mois de mai 

tandis qu'au sud la neige commence à s'accumuler en novembre jusqu'à la fonte en 

mars-avril (Buttle et al. , 2016). Le régime de ruissellement est fortement influencé par 

l'écoulement de la fonte des neiges au printemps et le débit le plus élevé est typiquement 

mesuré pendant cette période, le régime hydrologique des rivières se caractérise alors 

par une principale crue printanière (Adamowski, 2000), une crue secondaire faible liée 

aux précipitations en automne, une période de faible débit en hiver résultant de la chute 

de précipitations sous forme de neige et une autre période de faible débit en été suite à la 

diminution des précipitations liquides et solides (Assani et al., 2012). La relation entre 

le volume de neige et les débits de crues printanières a constitué le sujet de recherche 

de plusieurs études dans le but de prédire les crues, étudier les facteurs qui les 

préconditionnent et estimer la contribution du volume de la fonte à ces débits. Pour les 

gestionnaires des ressources en eau, une connaissance précise de l' équivalent en eau des 

neiges (ÉEN) des manteaux nival dans les derniers jours d'hiver est très importante pour 

la prévision du moment et du volume de crue printanière (Turcotte et al. , 2010). 

L'état hydrique du sol ainsi que la contribution de la pluie aux crues peuvent 

influencer l'estimation de la vraie contribution nivale à ces crues. La modélisation de 

l'accumulation et la fonte de la neige par des modèles de neige et hydrologiques à 

différentes complexités constituent un outil pour la prévision opérationnelle des crues. 
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Une simulation réaliste du manteau nival présent sur le bassin suivi d ' une bonne 

calibration et validation de ces modèles hydrologiques peut fournir une estimation 

réaliste de la contribution respective de la pluie et de la fonte de la neige aux débits en 

réponse aux conditions hydro-climatiques au moment des crues. 

1.2 Problématique 

Les crues printanières causent parfois des inondations qui provoquent d'importants 

dégâts matériels. Une meilleure compréhension des conditions hydroclimatiques causant 

les crues est souhaitable et représente la première étape vers le développement de 

méthodes de prévision des crues à l'échelle opérationnelle (jours) et saisonnière (mois). 

L'étude des facteurs préconditionnant les crues est difficile au Québec en raison du 

peu de données hydrométéorologiques disponibles. Quoique des données fiables de 

précipitation et températures existent, le bilan d 'humidité du sol et la quantité de neige 

au sol, deux facteurs influençant fortement les crues, ne sont pas mesurés de façon 

routinière. L 'utilisation de modèles hydrologiques peut ainsi contribuer à améliorer notre 

compréhension des facteurs qui pré conditionnent les crues printanières. La calibration 

classique des paramètres des modèles de neige se fait typiquement par rapport aux débits 

avec des critères de performance globale calculés à partir des débits observés et simulés 

(Troin et al., 2015; Valéry et al., 2014a, 2014b). Sauf que dans un bassin dominé par la 

fonte des neiges, une bonne simulation de débit à la sortie ne garantit pas toujours une 

bonne représentation des processus de neige. 

1.3 Objectifs 

L'objectif principal de ce projet de recherche est d'étudier les caractéristiques 

hydrométéorologiques des crues printanières au Québec à l'aide d'un modèle 

hydrologique simplifié (modèle GR4J) et un modèle de fonte à base de degré/jours 

(modèle Cemaneige) pour la compréhension des facteurs qui préconditionnent les crues 

printanières au Québec. Les objectifs spécifiques suivants ont été poursuivis: 
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1) Tester la performance d'un modèle pluie-neige-débit pour 12 bassins au 

Québec. La question principale qui sous-tend cet objectif est la suivante: 

un modèle conceptuel et parcimonieux est-il adéquat pour bien simuler 

l'évolution du couvert nival et les débits de crues printanières? Le choix de la 

stratégie de calage/validation des deux modèles est le premier défi à relever 

dans cette étape, qui comprend le choix de la fonction objectif et d'un 

algorithme d'optimisation permettant d'utiliser simultanément les relevés de 

neige et les débits observés. Nos principales hypothèses qui ont été testées 

pour cette partie sont 1) la calibration multi-objectif (débit et neige) améliore 

la simulation des débits et du manteau nival et augmente la stabilité des 

paramètres (réduit l'équifinalité); 2) les paramètres hydrologiques seront 

spatialement plus homogènes, et mieux reliés aux caractéristiques du bassin 

lorsque les paramètres neige sont prescrits. Cet objectif va être l'objet du 

chapitre 1. 

2) Identifier les variables, telles que simulées par le modèle GR4J-Cemaneige, 

qui préconditionnent les crues (apports de la fonte de la neige, pluies, bilan 

d'humidité du sol) et leurs variations spatiales. La question qui sous-tend cet 

objectif est la suivante: quelle est la contribution respective de la pluie, de la 

fonte des neiges et de l'état hydrique du sol aux pics de crues printanières? 

Les hypothèses qui ont été testées sont 1) la contribution de la pluie au volume 

de crue printanière varie entre les bassins, selon la latitude; 2) la variabilité 

interannuelle de la magnitude du pic de crue printanière ainsi que sa 

date d'occurrence dépend principalement du stock de neige accumulé, et 

secondairement de la quantité de pluie durant la période de fonte; 3) plus le 

stock de neige est important, plus longue sera la fonte et le niveau des rivières 

montera plus haut; 4) plus il y a de pluie durant la fonte, plus le niveau 

montera. Les résultats de cette deuxième partie seront l'objet du chapitre II. 



CHAPITRE II 

COMP ARING CALIBRATION STRATEGIES OF A CONCEPTUAL SNOW 
HYDROLOGY MODEL AND THEIR IMPACT ON MODEL PERFORMANCE 

AND P ARAMETER IDENTIFIABILITY 

Article en attente de soumission au journal scientifique Journal of Hydrology 

Saida Nernri l , Christophe Kinnard 1 

1 Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, 

C. P. 500, Trois-Rivières, Québec, G9A 5H7 Canada 

Corresponding author: Christophe Kinnard 

E-mail: Christophe.Kinnard@uqtr.ca 
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Abstract 

Having a realistic estimation of snow coyer by conceptual hydrological models 

continues to challenge hydrologists. The calibration of the free parameters is an 

unavoidable step in modeling and the uncertainties resulting from the use of this optimal 

set remains a source of concem, especially in fore casting applications and climate 

changes impact assessments. The objective of this study is to improve the calibration of 

the conceptual hydrological model GR4J coupled with the snowmelt model Cemaneige, 

in order to obtain a more realistic simulation of the snow water equivalent (SWE) and to 

reduce the uncertainty of the free parameters. The performance of the two models was 

tested over twelve snow-dominated basins in southem Quebec, Canada. Four calibration 

strategies were adopted and compared. In the first two strategies, the parameters were 

calibrated against observed streamflow only using a local and a global algorithm. 

In the third and fourth strategies the calibration of snow and hydrological parameters 

was performed against observed discharge and snow water equivalent (SWE) measured 

at snow survey points, first separately, and then with a multi-objective approach using 

the AMALGAM algorithm. An ensemble of equifinal parameters was used to compare 

the capacity of the global and multi-objective algorithms to improve the parameters 

identifiability, and to quantify their uncertainties in the detection of climate change 

impact on spring peak streamflow. Results show that the inclusion of snow observations 

using the multi-objective approach improved the simulation of SWE and the 

identifiability of the parameters. The large number of equifinal parameters found 

during calibration shows the importance of structure no-identifiability in the coupled 

GR4J-Cemaneige mode!. The uncertainty induced by using the best numerical optimal 

solution rather than equifinal parameters giving a similar performance, for detecting 

changes in maximum spring streamflow in response to climate warming in snow­

dominated basins, is not negligible. 

Keywords: conceptual hydrologic model; calibration; SWE; structural uncertainty; 

equifinality; climate change. 
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Introduction 

In cold regions, the accumulation of snow in winter and the rapid melting during 

the warm period is the main source of the high spring streamflow. In these areas, a good 

estimation of the amount of snow present in a basin before melting is the starting point 

of any floods forecasting and essential to understand the interannual variability of the 

magnitude and the timing of snow melting. In the Canadian province of Quebec, 

the amount of accumulated snow is considerable, with a mean annual maximum of 

200 to 300 mm in terms of water equivalent (Brown, 2010). Melting of this snow in the 

spring represents an important source of freshwater which shapes the ecology of the 

region as well as hydropower generation capacity (Brown, 2010). In Québec, a network 

of snow survey measurement sites was installed by the Ministry of Environment and 

Fight Against Climate Change (MELCC) since 1928 for operational purposes to 

monitor snow cover depth and snow water equivalent (SWE) (Poirier et al., 2014). 

Remote sensing data (passive and active microwaves) has also been widely used for 

estimating SWE but problems remain in forested areas and regions with thick snow 

cover, as weIl as in steep mountain terrain (Brown, 2010; Turcotte et al. , 2007). 

Consequently, hydrological models of different complexities have been mainly used by 

hydrologists to simulate the accumulation and melting of snow and to estimate 

streamflow for operational purposes (Turcotte et al. , 2010). Several rainfall-runoff 

models have shown a great ability to simulate runoff, but in a snow-dominated basin, 

a good streamflow simulation does not al ways guarantee a good representation of the 

snow processes (Udnres et al. , 2007). Accurate simulations of both river discharge and 

snow cover are desirable if these models are to be used to project potential impacts of 

climate change on snow hydrology. 

Model calibration is necessary to estimate the free parameters in conceptual 

models, and many questions still arise about how the uncertainties in the calibrated 

parameters impact streamflow forecasts as weIl as model-based climate change 

projections. In its beginning, the calibration problem was a numerical problem which 

often led to miscalibration, as described by Andréassian et al. (2012), due to the high­

dimensional response surfaces of the parameters and the failure of algorithms to locate 
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global mathematical optima without being trapped by local ones (Moradkhani et al. , 

2009). Therefore, several optimization algorithms (local, global) were developed during 

the last decades, with the objective to improve both the search algorithms and the 

evaluation criteria used during calibration and validation. Several important reviews in 

the li te rature have illustrated and compared the optimization methods developed and 

used by hydrologists (Duan et al., 1992; Efstratiadis et al. , 2010; Gupta et al., 2006; 

Gupta et al. , 2003b; Moradkhani et al. , 2009). The Shuffled Complex Evolution -

University of Arizona (SCE-UA) algorithm elaborated by Duan et al. (1992) is often 

considered the most efficient for the calibration of conceptual and global hydrological 

models because of its ability to find global optima (Arsenault et al., 2013). Despite the 

development of sophisticated automatic algorithms and calibration methods, 

the uncertainties related to calibrated parameters has persisted while new uncertainty 

problems have been revealed (Blasone, 2007). The major issue is the multiplicity of 

optimal parameters, whereas several sets of parameters give the same performance, and 

this remains at the heart of aIl studies on the robustness of hydrological models. 

The concept of a single optimal set has been gradually replaced to accept that a group of 

parameter sets can give equally satisfying simulations, a concept called 'equifinality' by 

Beven (2006). Nurnerous hydrological studies have focused on quantifying equifinality 

and its impact on simulations (Arsenault, 2015; Arsenault et al., 2014; Beven, 2006; 

Beven et al. , 2001 ; Foulon et al. , 2018). This multiplicity is also explained by the 

dependence between the optimized parameter values and the climatic conditions of the 

calibration period, which was highlighted by several authors using a multi-calibration 

approach on climatically contrasted sub-periods (i.e. periods of similar climatic 

conditions) (Blasone, 2007; Brigode et al. , 2013; Coron et al., 2014; Coron et al. , 2012; 

Merz et al. , 20 Il; Perrin, 2000; Seiller et al. , 2012; Vos et al. , 2010). These studies also 

demonstrate the problem of the temporal transferability of parameters, i.e. when they are 

calibrated over a period and transferred to another period with different climatic 

conditions. Gupta et al. (1998) also explained this multiplicity of optimal sets by the 

natural multi-objectivity of the parameters that are related to the calibration objective 

function. In the context of snow-dominated basins, the parameters of the snow models 

are most often calibrated simultaneously with the hydrological parameters against 
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observed discharge, without taking into account any infonnation about snow (e.g. Troin 

et al. , 2015; Valéry et al. , 2014a, 2014b). Hence in addition to the aforementioned 

calibration uncertainties, the representativity of key processes such as snow melting 

represents another important issue in these basins, especially wh en using these models 

for climate change studies. A multi-objective approach was recommended by 

hydrologists to replace this classical calibration method to improve the simulation of 

all processes and to reduce uncertainties in the free parameters (Efstratiadis et al. , 2010; 

Gupta et al. , 1998). This is typically carried out using evolutionary algorithms that 

se arch for acceptable trade-offs between objective functions and leads to a feasible 

vector called 'Pareto optima lit y' (Yapo et al. , 1998). Several studies have already shown 

the utility of including snow observations in the calibration of different models within a 

multi-objective approach to improve the simulation of SWE (Duethmann et al. , 2014; 

Fenicia et al. , 2007; Finger et al., 2011 ; Madsen, 2003 ; Parajka et al. , 2008; Parajka et 

al. , 2007; Turcotte et al. , 2003). Snow coyer area (SCA) estimated by satellite sensors 

such as MODIS and Landsat are among the snow observations used to calibrate and 

validate snowmelt models (Duethmann et al., 2014; Finger et al. , 2011 ; Parajka et al. , 

2008). In Quebec, Roy et al. (2010) incorporated snow-covered area derived from 

remote sensing to improve spring streamflow simulation with the Hydrotel model. 

Turcotte et al. (2007) used snow survey observations (density and SWE) to calibrate the 

Hydrotel model at each snow survey station. 

Lumped or semi-distributed models are among the most used models to assess 

climate change impacts on water resources (Wilby, 2005). Uncertainties in climatic 

scenarios and downscaling techniques are known to cause significant uncertainties in 

hydrological impact assessments (e.g. Wilby, 2005). Several recent studies have also 

focused on the uncertainties induced by hydrological modeling, i.e. those resulting from 

structural and parameterization errors. Sorne of these studies attempted to rank these 

uncertainties, but there is no agreement yet on the ranking of hydrological and climatic 

errors, and between hydrological uncertainties themselves, i.e. structural errors and 

parameters equifinality (Bennett et al. , 2012; Kay et al. , 2009; Seiller et al. , 2014; Teng 

et al., 2011 ; Wilby, 2005; Wilby et al. , 2006). Uncertainty arising from the model 
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structure is typically evaluated by using multiple hydrological models having different 

structures, and so different representations of hydrology processes, to see the spread of 

future hydrological projections for the same c1imatic scenario (e.g. Chen et al. , 20 Il; 

Jiang et al. , 2007; Poulin et al., 2011; SeilIer et al., 2014). Seiller et al. (2014) compared 

the uncertainties arising from c1imatic variability and the choice between twenty lumped 

hydrological models and seven snow models, and found that the uncertainty in simulated 

streamflow arising from models structures was less important than uncertainties in 

c1imate scenarios. Wilby et al. (2006) ranked parameter uncertainty as the third most 

important source, behind the choice of GCM and downscaling technique. Chen et al. 

(20 Il) ranked the structural uncertainty as the fourth and parameters uncertainties as the 

fifth most important, behind climatic uncertainties, for a Canadian catchment. In aIl 

these studies, structural and parameterization uncertainties were evaluated jointly. 

The impacts of parameters non-uniqueness on hydrological projections have been 

addressed by generating equifinal parameter sets using different methods and running 

the model using this ensemble. Wilby (2005) studied the uncertainties caused by 

conceptual model structure, parameter equifinality and the choice of calibration period 

(wet, dry). He used two different model structures and 100 equifinal parameter sets 

sampled by Monte Carlo sampling and two emission scenarios, and found that the 

uncertainty on projected monthly mean river flows due to parameter equifinality was 

higher in winter than summer and comparable to those related to emission scenarios. 

Kay et al. (2009) used two different versions of a conceptual model and a jackknifing 

method to generate parameter sets and found that the uncertainty related to climate 

modeling was higher th an that arising from hydrological modeling. In a snow-dominated 

basin of southem Québec, Poulin et al. (20 Il) used two hydrological model versions and 

equifinal parameter sets obtained by multiple calibrations with the SCE-UA algorithm, 

and found that model structural uncertainties are more important th an parameter 

uncertainty due to equifinality under c1imate change, insisting that this structural 

uncertainty should be considered in hydrological impact assessment studies. Bennett et 

al. (2012) used 25 Pareto solution sets obtained by the multi-objective algorithm 

MOCOM and found that hydrological parameter uncertainty was less than the 

uncertainties related to GCMs and emissions scenarios for three snow-dominated basins 
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in British-Colombia, Canada. Ficklin et al. (2014) examined the effects of parameter 

equifinalty on hydrology in the SWAT model using outputs from five GCMs and 

showed that equifinal sets can lead to statistically significant differences in projected 

streamflow, snowmelt rates and timing under climate change. Hence the use of a single 

parameter set to project future streamflow under climate change with the SW AT model 

was deemed to be not robust in snow-dominated basins. Brigode et al. (2013) tested two 

models, GR4J and TOPMODEL, on 89 catchments in France to study the uncertainties 

related to parameter instability (dependence to calibration climate conditions) and 

parameter equifinality in a climate change context. They used the GLUE method to 

identify 2000 posterior parameters sets and found that the uncertainty arising from the 

temporal transferability of parameters was higher than that from equifinality. Her et al. 

(2016) studied the uncertainties related to climate models and hydrological parameter 

equifinality under climate change using the GLUE method and different thresholds to 

identify behavioral parameter sets. They showed that parameter uncertainty depends on 

the choice of hydrologic indicator and has a greater influence on soil moisture and 

groundwater projections than climate model uncertainty. Foulon et al. (2018) assessed 

the impact of equifinality and the choice of objective function on several hydrological 

indices, including SWE and maximum winter peak flows. Their study was conducted 

over 10 basins in Québec with the Hydrotel model, using 250 equifinal sets and different 

objective functions computed on streamflow. They found that the choice of objective 

function was most important for SWE, while parameter equifinality was a more 

important source of uncertainty for the other hydrologic indices. The authors insisted 

that equifinality should be systematically taken into account in future work. Most of the 

aformentionned studies compared the sources of uncertainty and demonstrated that 

uncertainties induced by hydrological models are less important than climate models, 

but nonetheless suggested that they should be evaluated when performing climate 

change impact assessments. 

The mam question of interest in this study is whether simple conceptual 

hydrological models are capable to adequately simulate runoff as weil as snow cover in 

snow-dominated basins and how stable are the optimized parameters. Therefore, the 
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main objective of this study is to improve the simulation of snowpack by a parsimonious 

hydrological model, GR4J (Perrin et al., 2003), coupled to the snow model Cemaneige 

(Valéry, 2010) by considering available SWE observations from the Quebec permanent 

snow measurement network in the model calibration. We further investigate different 

calibration strategies, by (i) comparing the respective performance of a local, global and 

multi-objective algorithm for twelve snow-dominated basins in Québec, and (ii) 

comparing how the calibration strategy improves the parameters identifiability. 

Finally, we test how the uncertainty related to parameter equifinality impacts the 

assessment of streamflow sensitivity to climate change. The goal is not to perform a 

thorough, scenario-based climate change impact assessment nor to compare the different 

sources of uncertainties, but rather to focus on the impacts of choosing either a 

mathematically-optimal parameter set versus several equifinal parameter sets on the 

detection of a climate changing signal in selected streamflow signatures. 

Data and methods 

Study site and data 

Twelve tributary basins of the St. Lawrence River in Quebec were selected in 

this study (Fig. 1). The choice was based on the length of observed discharge data 

(> 20 years), the natural character of the hydrological regime of the ri vers and, 

especially, the availability of snow measurement points inside or close to the studied 

basin. The area of the basins varies between 367 and 4504 km2 (Table 1). They are 

located in four homogeneous hydrological regions, namely (i) the St. Lawrence 

northwest region (Batiscan, Bras du Nord, Matawin) on the north shore and 

characterized by a continental climate; (ii) the St. Lawrence southwest region (Nicolet, 

L'Acadie) characterized by a mixed maritime and continental climate; (iii) the 

St. Lawrence southeast region (York, Beaurivage, Bécancour, Famine, Etchemin, 

Ouelle) characterized by a mix of maritime and continental climate, and (iv) the 

St. Lawrence northeast (Godbout) characterized by a maritime climate (Assani et al. , 

2010a; Assani et al., 2010b; Mazouz et al. , 2013). 
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Daily historical discharge data measured at the basin outlets were 

extracted from the website of the Quebec Center of Water Expertise (CEHQ) 

(www.cehq.qc.ca). The climatic data used were extracted from the daily climate grids 

developed by the Atmospheric Environment Information Service (SIMAT) 

in collaboration with the CEHQ (Bergeron, 2015). The total daily precipitation (solid 

and liquid), minimum and maximum temperature at each grid point are estimated by 

spatial interpolation (kriging) using stations managed by the Quebec Climate Monitoring 

Program (Programme de surveillance du climat du Québec: PSC) and stations operated 

by the national hydropower company Hydro-Québec. The interpolated climate grids are 

considered to be of good quality in the southem part of Quebec given the high density of 

stations in this region. Continuous data are available for the period from 1961 to 2015 

(Bergeron, 2015). The snow observations come from the permanent snow survey 

network maintained by the Ministry of Environment and Fight Against Climate Change 

(MELCC). Survey sites are located in forested areas where the depth and density of 

snow is measured every two weeks during the winter and spring seasons. Each SWE 

observation at a given survey site represents the average of ten manual measurements 

made with a snow tube along a 100 rn-long transect. The historical measurements of 

12 survey sites located in or very close to the selected basins were used. The snow 

survey sites and the characteristics of the basins are shown in Table 1. 

Models 

The GR4J (modèle du Génie Rural à 4 paramètres Journalier) hydrological 

conceptual model (Perrin et al., 2003) and the Cemaneige snow model (Valéry, 2010) 

were chosen in this study to simulate the snow coyer and hydrology of the basins. 

In the GR4J model, hydrological processes in the basin have been simplified into two 

interconnected reservoirs. The production function, which determines the amount of 

water in the basin, is represented by a soil reservoir with a maximum capacity xl (mm) 

which is the first parameter to be calibrated. The transfer function, which determines the 

transfer of water in the water basin, is represented by a routing reservoir which receives 

the quantity released by the production function and calculates a discharge linked to its 
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level of filling and its maXImum retention capacity at 1-day, x3, which is a free 

parameter. Edijtano (1991) added a function to simulate water transit time to the routing 

reservoir by a unit hydrograph to improve the simulation of flood peaks in which 90% of 

the water released by the production store is routed by a unit hydrograph to the routing 

reservoir, while the remaining 10% contributes directly to flow and is routed only by a 

unit hydrograph. The base of the unit hydrograph, x4 (mm/day), is a free parameter. 

The model was previously found to give poor simulations in basins with intermittent 

flow regimes. For this reason, Nascimento (1995) added a groundwater exchange 

function to the routing reservoir and to the direct flow compone nt which improved 

runoff simulations. This exchange coefficient, x2 (mm/day), can be negative (losses to 

the aquifer) or positive (inflow from the aquifers) and this is why the model no longer 

considers the basin as a conservative water balance system but rather as an open system 

(Perrin, 2000; Perrin et al. , 2003 ; Perrin et al. , 2007). The version of GR41 from Perrin 

(2000) is used in this study. 

Developed by Valéry (2010), the Cemaneige module with two free parameters 

simulates snow accumulation an melt in the basin with one snow reservoir for each of 

five altitude bands. The two internaI states of the snowpack simulated are the snow 

storage (snow water equivalent) and the thermal state. The snow storage is initially zero 

and increases at each time step after adding the solid fraction of the precipitation. 

The thermal state of the snowpack (OC) determines the onset of melting and is calculated 

by a weighting coefficient, x5 (dimensionless), which is a free parameter of the model to 

be calibrated and varies between 0 and 1. A value of 1 describes a maximum thermal 

inertia of the snow compared to air temperature. After the calculation of the snow 

storage and its thermal state, the model calculates the potential melt which represents the 

maximum amount of snow that can melt using the degree-day method. The degree-day 

factor, x6 (mm °C l ) , controls the potential melt and is a free parame ter to be calibrated. 

Six parameters must then be calibrated for the coupled GR41-Cemaneige model. Table 2 

summarizes the description of these parameters. The ranges of hydrological model 

parameters are based on lite rature and previous studies (Perrin, 2000) while those for the 

Cemaneige model were chosen based on the work of Valéry (2010). 
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Calibration strategies 

In the calibration strategy, the choice of optimization algorithm and objective 

functions have a great influence on the identification of the parameters and their 

uncertainty, in addition to the structure of the model and the quality of the input data. 

The objective of improving the snow coyer simulation by the GR4J -Cemaneige model 

and the identifiability of the parameters led us to consider four calibration strategies in 

which three algorithms (local, global and multi-objective) were used: for the first two 

strategies, the calibration of the six GR4J-Cemaneige model parameters was done 

simultaneously using the observed discharge, with respectively a local 'pas-à-pas' 

approach (strategy 1: 'LOCAL') and the global SCE-UA algorithm (strategy 2: 'SCE­

FLOW'). The local 'pas-à-pas' (step-by-step) optimization algorithm was used for the 

development and improvement of the two models by researchers at Cemagref, France 

(Perrin, 2000). The global automatic algorithm Shuffled Complex Evolution (SCE-UA) 

developed by Duan et al. (1992) is considered the most efficient by hydrologists. 

The SWE simulated by these two strategies was then compared with the SWE observed 

at the nivometric survey points in, or closest to, the selected basins, for the elevation 

band closest to the elevation of the snow survey point. In the third strategy, 

'SCE_INDEP', the four hydrological model parameters and the two snow parameters 

were calibrated separately. The two snow parameters were calibrated with the observed 

SWE and prescribed subsequently as fixed parameters in the coupled GR4J-Cemaneige 

model. The four hydrological parameters were next calibrated with the observed 

discharge by the global SCE-UA algorithm. The fourth and final multi-objective 

strategy, 'MULTI', was finally applied in which the six model parameters were 

calibrated simultaneously with the observed SWE and discharge using the multi­

objective optimization algorithm AMALGAM (Vrugt et al. , 2007). The split-sample test 

calibration method (Klemes, 1986) was used to separate the observation record into two 

equal length periods of calibration/validation (Table 1). The Nash-Sutcliffe (1970) 

efficiency criterion was used as the evaluation criterion and calculated from the 

observed and simulated discharge (Nash-Q) and from the SWE measured at surveys 

point and that simulated by the model for the corresponding elevation band 

(Nash-SWE): 
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Equation (1) 

Equation (2) 

where Qo and Qs are the observed and simulated discharge and SWEo and SWEs the 

observed and simulated snow water equivalent, respectively. 

Parameters equifinality 

Only the calibration methods SCE_FLOW and MULII were used in this step to 

study the interaction and the compensation between parameters. Iterations made by the 

algorithms during calibration until convergence were saved (more than 6000 for each 

basin). For the SCE-UA algorithm, the parameter sets yielding a Nash value within 1 % 

of the optimal Nash value were considered equifinal. Similarly, for the multi-objective 

algorithm AMALGAM, the optimal point of the Pareto solution was chosen and aIl 

parameter sets around this point that gave the same optimal performance with a 

difference less than 1 % in the Nash criterion were retained. 

Parameter sensitivity analysis 

The dynamic identifiability analysis (DYNIA) method developed by (Wagener et 

al., 2003) was used after that to investigate the parame ter identifiability. This method 

consists in testing the identifiability of each parameter in a moving time window, 

set to 15 days here, by identifying the portion of the parameter range that give the best 

performance (Wagener et al., 2003). Finding a clear range of parameter values that give 

the best simulation means that this parameter is more identifiable in this time window, 

while the opposite means that aIl values within the range can give equaIly-best 

simulation in combination with other parameters. Time-varying sensitivity analysis 

(TVSA) (Pianosi et al., 2016; Reusser et al., 20 Il) is used also to investigate the most 

influential model parameters at each time step of the simulation and the consistency of 
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the parame ter role and its period of influence with the physical behavior of the basin 

(Pianosi et al., 2016; Reusser et al., 2011). 

Climate sensitivity 

The objective in this step is to assess how parameter equifinality and the choice of 

a single optimal parameter set versus several equifinal sets impact the characterisation of 

streamflow sensitivity to climate change. We focus here on the sensitivity of the average 

annual springtime peak streamflow (Qmaxsp) and its timing (QmaxspT) to a +2 oC 

increase in mean air temperature. Only the equifinal sets obtained by the third 

calibration strategy, the most used in lite rature , was considered III this part 

(SCE-FLOW). The sensitivity measures used (~Qmaxsp), is the percent difference 

between the mean historical Qmaxsp obtained by the optimal set and that projected by 

the optimal set and equifinal sets under the warming scenario. The same approach was 

used for the peakflow timing (~QmaxspT, in days). The objective is to investigate the 

agreement between the equifinal and optimal sets about the evolution, i.e. the direction 

and magnitude of change, of an important hydrological indicator in southem Quebec 

which is the peak streamflow induced by snowmelt in spring. 

Results 

Models performance 

For all calibration strategies, one global optimal parameter set was obtained, 

except for the multi-objective method MULTI where a vector of 'Pareto-optimal' 

parameter sets was obtained. The optimal point of the Pareto set that gives the best 

compromise between snow SWE and discharge was selected to compare with the 

performance of the other calibration strategies. Boxplots in Fig. 2 show the model 

performance for the 12 selected basins and the four calibration methods for both the 

calibration and validation periods. With the first method LOCAL (Fig. 2aI) the model 

shows a good performance in discharge simulation with a median Nash-Q value of 84% 
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in calibration and 80% in validation but a comparatively poor performance in SWE 

simulation: the median Nash-SWE value is around 40% during calibration and increases 

to 58% in validation, but the spread of the distribution is higher (Fig. 2a2). 

The calibration results with the global algorithm SCE_FLOW also show a good 

streamflow simulation with a median Nash-Q value of 82% in calibration, similar to the 

first method, but with an improvement in validation with the median Nash-Q value 

increasing to 83% (Fig. 2bl). The SWE simulation is still weak with the SCE FLOW 

method but slightly improves nonetheless with the median Nash-SWE value increasing 

to 43% in calibration and 59% in validation (Fig. 2b2), but the spread of the distributions 

is still considerable and comparable to the first local method. In the third strategy 

SCE_INDEP, the two Cemaneige parameters were calibrated separately against the 

observed SWE, which improved significantly the Nash-SWE in calibration with a 

median value of 58%. This significant improvement in the Nash-SWE criterion is 

however accompanied by a degradation of the flow simulation, with the median Nash-Q 

value decreasing to 80% in calibration and 76% in validation, which means that the 

introduction of two fixed snow parameters in the GR4J-Cemaneige model led to an 

over-adjustment on the SWE and a degradation in the streamflow simulation (Fig. 2c). 

The multi-objective strategy in which the Nash-SWE and Nash-Q are simultaneously 

optimized (Fig. 2d) improved the simulation of the SWE, with 75% of the basins having 

a Nash-SWE greater than 50% in calibration and greater th an 40% in validation, without 

significantly degrading streamflow simulations (Fig.2dl). The simulation of SWE is 

hence significantly improved for the two methods SCE_INDEP and MULTI in which 

the snow observations are taken into account (Fig. 2c-d), but the method SCE _ INDEP 

degrades the simulation of discharge. The best simulation of SWE in both calibration 

and validation without significant streamflow degradation is obtained by the MDL TI 

method, for which the model efficiency ranged between 31 and 84% for the 12 basins 

(Fig. 3). The best SWE simulations were obtained for the Famine, Beaurivage, Ouelle, 

Bécancour, and Bras de Nord basins, with a Nash-SWE criterion above 65% while the 

poorest simulation were obtained for the Matawin and Acadie basins. The poor 

simulation in these two basins may be due to the survey sites being less representative of 

the basin, which is an obvious limitation of using point observations to constrain the 
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snow mode!. Fig. 4 shows an example of SWE simulation for the Bécancour catchment 

with the MDL TI method. 

Parameters interaction 

The distribution of the optimal parameters obtained for the 12 basins is different 

between the calibration strategies, except for the parameter x4 (base of the unit 

hydrograph) and x2 (water table exchange) which are more similar (Fig. 5). 

The choice of the calibration method does not seem to have a clear impact on the 

distribution of the parameters between the basins. For the third method SCE_INDEP, 

where the calibration of the Cemaneige parameters is do ne separately on the SWE 

observations, the degree-day factor x6 which determines potential snowmelt is higher 

and more dispersed than for the other methods, while x5 (weighting coefficient of the 

thermal state), which determines the onset of melting, is minimized. Subsequently, the 

parameter xl (maximum capacity of the soil reservoir) approaches its lower limit in 

sorne basins while x3 (the routing reservoir capacity) approaches its upper limit. 

The optimal parameters obtained by each calibration strategy differ with each other for a 

given basin (Fig. 6). This shows that different optimal sets give the best simulation for 

each calibration method over the same period. The two parameters x2 and x4 are the 

only ones for which similar values are obtained from aU calibration strategies. 

Equifinality was studied usmg two calibration methods, namely SCE _FLOW, 

which is the global algorithm most used in the literature and uses only observed 

discharge, and the method MULTI which gave the best performance (Fig. 3). 

The distributions of equifinal parameters obtained for the 12 basins by the procedure 

described in the methods section are presented in Fig. 7. The distributions for the 

SCE_FLOW method are narrow but with many extreme values, while the distributions 

for the multi-objective method are more homogeneous (Fig. 7). For the SCE _FLOW 

method the number of sets found is very high and variable between basins. Therefore, in 

order to converge mathematically with a very small change in the Nash value « 1 %), 

the maximum capacity of the soil reservoir (xl) can, for example, vary from 200 to 
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450 mm for basin 1 (Batiscan). Similar variability is seen for the other basins. 

The calibration with the multi-objective algorithm reduced the number of equifinal 

parameters sets and their dispersion (Fig. 7b). The MUL TI method also reduced the 

range, i.e. the difference between the maximum and minimum parameter value, but no 

significant reduction was found in the interquartile range compared to the SCE _FLOW 

method (Fig. 8). The correlation between the equifinal sets can explain this dispersion 

and multiplicity of parameters giving the same performance. A strong negative 

correlation is found between the two reservoir parameters, xl (the maximum soil 

reservoir capacity) and x3 (the routing reservoir capacity), with a median value of -0.7, 

and between the two transfer parameters x3 and x4 (base time unit hydrograph) 

with a median value of -0.5 (Fig. 9). A positive correlation is also visible between 

x 1 and x2, which regulates the amount of water available in the basin, with a median 

value of 0.4 (Fig. 9a). This strong correlation shows the compensation between the 

parameters occurring during the optimization and the difficulty to converge toward an 

optimal set. This parameter correlation was significantly reduced when using the 

MUL TI method (Fig. 9b). 

Identifiability analysis ofGR4J-Cemaneige parameters 

The equifinality of parameters has led us to investigate more deeply the 

identifiability of the GR4J and Cemaneige parameters using the DYNIA and TVSA 

methods in order to understand the interaction of model parameters. The analysis was 

only performed in the Bécancour basin (ID#2) for the sake of brevity. The temporal 

identifiability of the six parameters of the GR4J-Cemaneige model found by the DYNIA 

method is shown in Fig. 10. In these graphs the color scale represents the frequency 

distribution of the parameters for a sample of the 10% best-performing simulations, 

using the root-mean-squared error (rmse) as objective function. A parameter becomes 

more identifiable during periods when the frequency distribution is narrower. For the 

parameter xl , low values are more frequent before and during floods, while high values 

are more frequent after the floods. There is no c1ear part in this parameter space that is 

identifiable in the best-performing simulations, which indicates that different values of 
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this parameter give similar results in combination with the other parameters. Parameter 

x2 is a multiplicative parameter that regulates the volume of water in the basin: the more 

positive its value, the largest is the contribution of groundwater to the basin, while more 

negative values increase deep percolation losses. Fig. 10 shows that negative values are 

more frequent during low flow periods, indicating large water losses to deep aquifers 

simulated by the model. Conversely, high positive values ofx2 are more frequent during 

floods . This means that to simulate the high flows the model increases the supply from 

the water table while for the low flows the model increases the loss to the water table. 

The high sensitivity of x2 implies that the GR4J model first tries to use this parameter to 

adjust the water volume in the basin and then the other production parameter xl , which 

explains the difficulty of finding sensitive x 1 values conditioned on discharge. 

The parameter x3 (one-day capacity of the routing reservoir) is barely identifiable: 

high values are more frequent during and before the floods, and after the floods the 

models begins decreasing the its value but still the identifiability is unclear. 

The identifiability of the parameters x4 (base time of the unit hydrograph) and x5 

(thermal coefficient of state of the snowpack) is low since very different values of these 

parameters give similar results in combination with the remaining parameters. Parameter 

x6 (degree-day factor) is somewhat identifiable during the melt period, with a value 

between 5 and 7 mm °C- 1 giving the best simulation. Time-varying sensitivity analysis 

(TVSA) (Reusser et al. , 20 Il) (Fig. Il) also shows that the parame ter x2 is the most 

influential, except during the spring pre-flood periods when the snow parameters x5 and 

x6 of the Cemaneige model become the most influential, whereas they have no influence 

on the rest of the period. This confirms that the behavior of the model is consistent with 

the physical behavior of the basin in the spring. The sensitivity of xl , x3 , and x4 is not 

clear compared with x2, suggesting that the model tries to first use the x2 parameter 

value to adjust the flow and then uses the other parameters afterward. 

Equifinality under changing climate 

The final objective of this study was to assess how parameter equifinality and the 

choice of a single optimal vs. equifinal parameter set impact the characterisation of 
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streamflow sensitivity to c1imate change. The distribution of ~Qmaxsp values can thus 

be used to quantify the uncertainty in the sensitivity of springtime peak flow to warming 

which results from equifinality alone (Fig. 12) There is a general agreement between ail 

equifinal and the optimal sets that peak spring streamflow would decrease in the future 

in response to a +2 oC climate warming, as ail simulations display negative ~Qmaxsp 

values. For ail basins the impact of a +2 oC c1imate warming on Qmaxsp can be detected 

using the optimal parameter set (red dot on Fig. 12) with a 99% confidence interval 

varying between ± 0.8% (basin 10) to ± 3.9% (basin 7), which is a rather low 

uncertainty. However, the distributions of sensitivities is not normal, and when we take 

into account ail the parameter sets inc1uding the numerous outliers, the range of 

reduction in Qmaxsp can be much greater, as much as 12% (-10 % to -22%) for basin 

3 and 13 % (-4% to -17%) for basin Il . The difference of uncertainty between basins can 

be explained by the dispersion of equifinal parameters displayed in Fig. 7: basins with 

the most dispersed equifinal parameter distributions (ID# 1, 3, Il) have the largest errors 

in their temperature sensitivities. 

There is an agreement, except for basin 12, that peak springtime streamflow will 

occur earlier in response to a +2 oC temperature warming (Fig. 13). For basin #2 

the peak streamflow could occur earlier by 2 to 10 days and for the two basins #7 and #8 

the occurrence day could shift earlier by 3 to 9 days depending on the equifinal 

parameter set. For basin #12 (L'Acadie River), which is the southernmost basin studied 

(Fig. 1), the change in peakflow timing detected using the optimal parameter set is 

positive but the uncertainty due to equifinality, when considering outliers, is such that 

the direction of change in timing cannot be reliably detected for this basin. 

Discussion and conclusion 

SWE simulation 

Having a good simulation of streamflow generated by snowmelt has always been 

an important objective of hydrologists during the development of snow models to be 
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used within hydrological models, and their performance has been generally assessed by 

their capacity to simulate observed streamflow, which was the case for the development 

of the Cemaneige model (Valéry, 2010). The objective is most often to obtain the best 

efficiency criteria between observed and simulated streamflow, which does not always 

guarantee that other processes such as snowmelt are properly simulated by conceptual 

models. The contribution of this study was mainly to test the use of snow survey points 

to improve the calibration of the conceptual models GR4J and Cemaneige while 

avoiding the difficulties related to snow cover satellites products. Four calibration 

strategies have been tested for the simulation of discharge and SWE using a local, global 

and multi-objective algorithrn. After comparing results obtained by the different 

methods, it appears that overall the calibration against observed discharge in the first 

two methods yielded good streamflow simulations but poor simulations of SWE. 

The global algorithrn SCE-UA yielded a better streamflow simulation in validation that 

the local algorithm, confirming previously reported results about the ability of global 

algorithrns and specifically the SCE-UA to find global optimal parameters, unlike the 

local algorithrns that depend on initial sets (Efstratiadis et al. , 2010). Despite this 

mathematical power of the SCE-UA algorithrn in fin ding the global optima, 

its performance in simulating SWE was very similar to the local algorithm. On the other 

hand, the separate calibration of the snowmelt model in the third method showed an 

over-adjustment of the model to the SWE simulation and a subsequent significant 

degradation of the streamflow simulation compared to the first two methods. The multi­

objective calibration against both observed runoff and SWE using the AMALGAM 

algorithrn gave the best simulation of SWE, with a very smail degradation of runoff 

simulation compared to the streamflow-only calibrations approaches. Troin et al. (2015) 

also used the same third strategy SCE-FLOW (calibration against discharge with 

SCE-UA algorithrn) over one catchrnent in Quebec (Mistassibi Basin) to test 

different combinations of seven snow models and three hydrological models including 

GR4J-Cemaneige, and used four SWE measurement points to compare with the 

simulated SWE. They found a good simulation of streamflow as weil as good 

performance for SWE simulations with ail model combinations including 

GR4J-Cemaneige (Nash = 79%). This disagreement with our results can be explained 
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by the results displayed in Fig. 5: good SWE simulations are found with this strategy for 

sorne basins, but overall for the twelve basins studied and comparing with the multi­

objective approach this method does not give a good simulation of SWE. Therefore, 

we emphasize that the general model performance should be evaluated on several basins. 

Overall, the results of this study show that the additional information provided by 

the snow survey points improved the simulation of SWE without degrading the 

streamflow simulated by the conceptual rainfall-runoff GR4J coupled with the snow 

model Cemaneige. This type of snow data has only been exploited in a few studies for 

the calibration ofhydrological models (Troin et al. , 2015; Turcotte, 2010; Turcotte et al. , 

2010; Turcotte et al., 2003). On the other hand many previous studies have already 

shown the effectiveness of using remotely-sensed snow coyer data in several regions of 

the world for the calibration of hydrological models using a multi-objective approach 

(Duethmann et al. , 2014; Finger et al. , 2011 ; Gupta et al., 2003a; Rogue et al., 2003 ; 

Madsen, 2003; Parajka et al. , 2008; Parajka et al. , 2007; Roy et al. , 2010; Turcotte ebt 

al. , 2003). Given that the satellite-derived SWE by microwave methods is still difficult 

in Quebec with deep snowpacks and dense forests (Bergeron et al. , 2014; Brown, 2010; 

Sena et al. , 2016), our results show that inc\uding snow survey observations could be a 

good alternative for the calibration of conceptual models in snow dominated basins. 

These observations could even be used conjointly with remotely sensed data to improve 

the simulation in forested basins. Moreover, our results show that using complementary 

snow data improves the physical realisms of conceptual hydrological models and 

strengthens the confidence in using these models to project c\imate change impacts on 

hydrology. 

Equifinalty and model structure uncertainty 

We considered as equifinal parameters ln this study the iterations during the 

optimization by the algorithms SCE-UA and AMALGAM that gave the same optimal 

Nash criteria, within a small 1 % difference. The large number of equifinal sets and their 

dispersion for a < 1 % change in the objective function (Nash criterion) reveals the 
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difficulty of the algorithm to converge toward one clear optimum. For the SCE-UA 

algorithm, the maximum soil reservoir capacity xl was found to be negatively or 

positively correlated with the ex change coefficient x2 and the maximum capacity of the 

routing reservoir x3 (Fig. 9). Therefore these three parameters can play the same role to 

adjust the water balance in the basin as a quantity of water can be stored in the soil 

reservoir, routing reservoir or infiltrated into the water table by the parameter x2. 

Lay (2006) used sensitivity analysis and found that the model is respectively more 

sensitive to the soil reservoir capacity xl , the parameter of the unit hydrograph x4, 

the ground water exchange parameter x2, and the routing reservoir capacity x3. 

A correlation has already been found by Perrin (2000) between the parameter sets 

obtained by multi-calibration on man y subsets, namely a significant correlation between 

x2 and xl and a1so between x3 and x l. He exp1ained this multiplicity of parameters by 

the dependence between the parameters and the climatic conditions of the calibration 

period, as already proposed by several other authors (Coron et al. , 2014; Merz et al. , 

2011; Seiller et al. , 2012; Vos et al. , 2010). The low identifiability ofmodel parameters 

appears when the change in the value of a parameter is compensated by changes in other 

parameters. The analysis by the DYNIA method (Fig. 10) confirms these results and 

shows that for aIl parameters the model al ways struggles to find a range of parameter 

values which is identifiable, except for the exchange coefficient (x2) which is the loss or 

gain of water to the water table. This confirms the results of Perrin (2000), that the 

model GR4J could use the ex change parameter x2 more than the soil reservoir xl to 

adjust the basin water balance. 

Several studies have discussed the importance of multi-objective strategies In 

which another hydrological process is added to calibration in order to constrain feasible 

parameters, reduce equifinality and improving the identifiability of parameters (Gupta et 

al. , 1998; Tang et al. , 2006; Wagener et al., 2005 ; Wagener et al. , 2003). Her et al. 

(2018) also used the AMALGAM algorithm and objective functions calculated on 

several streamflow criteria (without adding additional information) and demonstrated 

that equifinality and uncertainty decrease when the number of objective functions 

considered increases. This is consistent with our results which showed that adding 
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observed SWE survey points to the AMALGAM algorithm reduced the number, 

dispersion and correlation of equifinal sets. Moreover, we found no correlation between 

the optimal parameter sets and the physical characteristics of the twelve basins studied, 

similar to the numerous previous studies that also failed in the regionalization of these 

parameters. Andréassian et al. (2012) discussed the difference between miscalibration, 

which is a numerical problem to be solved by sophisticated algorithms, and over­

calibration, which is the difference between a mathematical and hydrological optimum 

related to the structure of the model. The low identifiability and strong interaction 

between the GR4J equifinal parameters demonstrated here, reveal the large 

compensation between the parameters which can be at the origin of equifinality, rather 

than the objective function or input data. Thereafter the conceptualization of 

hydrological processes using mathematical equations and the interaction of parameters 

should be the main reason for parameter non-uniqueness. As explained by Wagener et 

al. (2005), after many years of looking for the best model with a unique optimal 

parameter set, the emergence of the equifinality concept was the turning point toward a 

new paradigm in which model consistency is sought by taking into account uncertainties 

and accepting parameter equifinality, which yield many models that give a good 

representation of the basin. On the other hand, does the existence of a large range of 

soil reservoir capacity or routing schemes that give a good simulation undermines the 

physical representativity of these parameters? The question here is to what limits can we 

accept the equifinality of parameters that represent physical characteristics of the basin? 

Shin et al. (2015), using several screening methods to check the identifiability of 

conceptual rainfall-runoff models (GR4J, SIMHYD, Sacramento and IHACRES), 

demonstrated also that the main reason for parameters no-identifiability is not the input 

data nor the objective function, but rather the model structure. They recommended 

fixing the parameters for which the model is more sensitive, or adding new information 

such as snow or groundwater, within a multi-objective approach to reduce the non­

uniqueness of parameters and improve their identifiability. They found similar results 

about the significant parameter interaction in the GR4J model. 
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The use of hydrological models under conditions different from those of the 

calibration period, as in climate change impact assessment or for seasonal flood 

forecasting, has always been confronted by problems of parameter uncertainty, 

non-stability and multiplicity. Using a conceptual hydrological model forced by GCM 

outputs to assess climate change impacts on hydrology, without taking into account 

hydrological and climatic uncertainties is indefensible as shown by different studies. 

Many studies have tried to compare and rank the importance of the various sources of 

uncertainty by comparing the spread in futures projections, but the quantification of 

uncertainties, their hydrological significance and how they affect decision-making in 

a climate change context remains an active field of study. Unlike other studies, 

the objective here was to evaluate the uncertainty that can result from using a single, 

best numerical optimal solution rather than a set of parameters that give the same 

performance, on the tempe rature sensitivity of spring peak flow in snow-dominated 

basins. In several previous studies parameters uncertainty ranked last in order of 

importance in a climate change context (Bennett et al. , 2012; Kay et al. , 2009; Seiller et 

al. , 2014; Teng et al. , 20 Il ; Wilby, 2005; Wilby et al. , 2006). In this study, uncertainties 

due to equifinality of ± 0.9 to ± 3.9% (99% confidence interval) were found between the 

basins, which is not negligible and can affect climate change impacts assessment. 

Further studies are needed in snow-dominated basins to see how mu ch the uncertainties 

induced by the calibration of snow models with observed discharge affect the detection 

of climate change impacts on the magnitude and timing of spring peak flow. 

Conclusion 

The main objective of this study was to evaluate the capacity of the coupled GR4J 

and Cemaneige models to simulate snow water equivalent and streamflow over twelve 

snow-dominated basins in Quebec, Canada. Results showed that adding SWE 

observations within a multi-objective approach gave a good performance in the 

simulation of both SWE and streamflow. Equifinality was studied by retaining 

parameter sets resulting in a model performance within 1 % of the mathematical 

optimum for the same calibration period. The resulting multiplicity of parameters thus 
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only represents the difficulty faced by the algorithms to converge toward a mathematical 

best optimum due to parameters interaction and does not reflect their dependence to 

climatic conditions, as studied several previous studies (Coron et al. , 2012; Merz et al. , 

2011 ; Vos et al. , 2010). The importance of the coupled GR4J-Cemaneige structure 

no-identifiability as the source of the large number of equifinal parameters found in this 

study cornes in the same line of conclusions advanced by several authors (Gupta et al. , 

2014; Kavetski et al. , 2011 ; Shin et al., 2015 ; Wagener et al. , 2005). In addition to the 

simultaneous improvement of SWE and streamflow simulations, the multi-objective 

approach narrowed the dispersion and the number of equifinal parameters and improved 

their identifiability. Our study showed that equifinality caused uncertainties in the 

sensitivity of streamflow to climate warrning, which should be considered in climate 

impact assessment studies with conceptual models. Based on our results, the use of 

conceptual models calibrated on observed discharge only and forced with climatic 

scenarios for the assessment of climate change impacts on snow co ver and spring flow is 

not recommended. 
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List of tables 

Table 1. Characteristics of the 12 se!ected study basins. 

ID Catchment 
Lat. Lon. Area Med. Discharge Snow survey Snow site 
e) e) (km2

) Elev. (m) data site elev. (ru) 

1 Batiscan 46.59 -72.40 4504 385 1967-2017 Lac-Édouard-2 381 

2 Bécancour 46.31 -71.45 2163 273 1999-2017 Lyster 131 

3 Godbout 49.33 -67.65 1577 368 1974-2017 Lac-Sainte-Anne 290 

4 Nicolet 46.06 -72.31 1550 203 1966-2017 Chester 274 

5 Matawin 46.68 -73 .92 1387 481 1931-2017 
Barrière-St 

390 
Guillaume 

6 Etchemin 46.69 -71.07 1152 382 1980-2017 Saint-Léon 330 

7 Ouelle 47.38 -69.95 796 348 1982-2017 Sai nte-Perpétue 450 

8 Beaurivage 46.66 -71.29 708 152 1925-2017 Saint-Étienne 99 

9 Famine 46.1 -70.3 696 377 1964-2017 Sainte-Rose 404 

10 York 48.81 -64.92 647 482 1980-2017 Murdochville 131 

Il 
Bras du 

47 -71.8 646 597 1965-2017 
Ri vière-Verte-

236 
Nord Ouest 

12 L'Acadie 45.39 -73 .37 367 31 1979-2017 Hemmingford 68 
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Table 2. GR4J-Cemaneige free parameters and lower and upper bounds used in model 
calibration. 

Parameters Physical description Unit Min-max 

xl Maximum capacity of production reservoir mm 20-1500 

x2 exchange coefficient mm/day -5-10 

x3 Maximum retention capacity of 1 day mm 1-400 

x4 Base of the unit hydrograph day 0.8-4 

xS Coefficient of thermal state - 0-1 

x6 Degree-day factor mm oC-1 0-20 
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Table 3. The four calibration strategies adopted in this study. 

Calibration strategies Optimisation algorithm Objective function 

LOCAL Locale 'pas à pas' Nash-Q 

SCE FLOW SCE-UA Nash-Q 

SCE INDEP SCE-UA Nash-SWE; Nash-Q 

MULTI AMALGAM Nash-SWE; Nash-Q 
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Fig. 1. Selected basins (blue) and snow survey measurement locations (red stars) 
in southern Quebec province. Basins ID ranked [rom largest to smallest 
basin area: 1 Batiscan, 2 Bécancour, 3 Godbout, 4 Nicolet, 5 Matawin, 
6 Etchemin, 7 Ouelle, 8 Beaurivage, 9 Famine, 10 York, Il Bras du Nord, 
12 Acadie. 
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Fig. 2. Performance of GR4J-Cemaneige for streamflow simulation (al -dl ) and SWE 
simulation (a2-d2) for the calibration period (red boxplots) and validation 
(blue boxplots) for the 12 catchments using four calibration strategies: 
a: LOCAL; b: SCE_FLOW; c: SCE_INDEP; d: MULTI, C: Calibration, 
V: Validation. 
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boxplots); SWE: snow water equivalent (blue boxplots). 
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Fig. 4. Calibration results for snow water equivalent (SWE) by the multi-objective 
'MULTI' method for the Bécancour catchment (ID#2); Red dots: measured 
SWE; blue line: SWE simulated by the Cemaneige model. 
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Fig. 6. Boxplots of Pareto solutions vector (100 sets) obtained by the multi-objective 
calibration method 'MDL TI' for each basin. The coloured dots represent the 
optimum parameter sets obtained from the other calibration methods. 
Red dots: SCE _Flow; blue dots : SCE _ INDEP; green dots: LOCAL. 
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Fig, 7, Boxplots of equifmal parameters sets for the twelve basins using the two 
calibration methods: A: SCE FLOW B: MUL TI. 



R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 

0.08 r--~---' 

t
+ f ç 

L{) 0.05 
x 

o 

0.1 + 60 

~ ~ 0.4 + ~ 40 >; 0.06 
E 40 ~ E ro .s E E ~0.04 
X 20 f ~NE 0.2 1 ~ 20 l "<t 1 T x 0.02 

o '---__ --' x 0 <---t_---' 0 '----__ + --' 
11 12 11 12 11 12 11 12 11 12 

:EX ': i 1 ~05 f t 
o 

~~0. 15 

o 
°E 0.1 
E 
;; 0.05 
x 

o 

R1 R2 

fi 
11 12 

38 

Fig. 8. Distribution of the range (R) and interquartile range (1) of equifinal parameter 
sets for the 12 basins and each of the six model parameters; RI: range 
for MULTI method (red); R2: range for SCE Flow method (blue); 
Il: interquartile range for MUL TI (red); 12: interquartile range for SCE _Flow 
(blue). 
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Fig. 10. Identifiability analysis of the six parameters of the GR4J-Cemaneige model by 
the DYNIA method (Wagener et al. , 2003) RMSE computed over a moving 
window (15 days); the black line is the streamflow. A more reddish color 
indicates the zones, in the parameter space that give the 10% best simulations 
in the time window. The absence of a c1ear red zone means that ail parameter 
values can give equally best simulation, i.e. the parameter is not identifiable. 
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Fig. 12. Percent change in mean springtime peak streamflow ~Qmaxsp in response to a 
+2 oC temperature perturbation for the 12 basins simulated with equifinal sets 
(boxplot) and the optimal set (red dot). 
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for the 12 basins simulated with equifinal sets (boxplot) and optimal set (red 
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Abstract 

Seasonal forecasting of spring floods in snow-covered basins is still difficult and 

uncertain due to the ambiguity in the driving processes, errors in the initial conditions 

and the choice of predictor variables. In this study we attempt to improve the prediction 

of spring flow peaks in southem Quebec, Canada, by studying the preconditioning 

mechanisms of runoff generation and their impact on inter-annual variations in the 

timing and magnitude of spring peak flow. Historical observations and simulated data 

from a hydrological and snowmelt model are used to study the antecedent conditions 

that control flood characteristics in twelve snow-dominated catchments. Over a pre­

flood period extending from the onset date to the spring peak flow, the relative 

contributions of snowmelt, rainfall, melt intensity, rainfall intensity and soil moisture in 

driving interannual changes in spring peak flow were assessed. A multivariate linear 

regression analysis was used to predict the magnitude and timing of the spring peak 

flow using the hydrological antecedent factors as predictors. Results show that 

interannual variations in spring peak flow are controlled differently between basins. 

Overall interannual variations are mainly explained, in order of importance, by melt 

intensity, rain intensity, melt volume, total rainfall, peak SWE at the beginning of 

spring, and soil moisture. Variations in the timing of peak flow are controlled in most 

basins by total rainfall and rainfall intensity. In the northemmost, snow-dominated 

basins rain amount and intensity mostly control flow peaks variations, whereas for the 

southem, rainier basins snowpack conditions control this variability. AIso, as melting is 

more graduai in the more forested basins, snowpack interannual variations are less 

important than variations in rain. On the other hand, in more agricultural basins melting 

is naturally faster and as such variations in snowpack conditions have a larger influence 

on the variability of spring flow peaks. 

Keywords: spring freshet; runoff generation; spring floods ; snowmelt intensity; rain-on­

snow. 
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Introduction 

The hydrology of cold regions is characterized by long winters dominated by 

snowfall and rapid spring melting which is the main cause of the high spring streamflow 

(Buttle et al., 2016; Pomeroy et al., 2016). In the province of Quebec, Canada, 

the amount of accumulated snow is very important, with a mean annual maximum of 

200 to 300 mm of snow water equivalent (SWE) (Brown, 2010). The streamflow regime 

is nival to nivo-pluvial and strongly influenced by the snowmelt contribution, which 

occurs between April and June depending on the basin geographic location and the year. 

In the southern basins snow begins to accumulate in November and melting occurs 

between March and May. Peak flow is typically recorded in the spring following the 

melt and a second peak occurs in surnmer in response to convective rainstorms, or in the 

fall caused by the advection of moist air masses with above-freezing temperatures. 

In northern Quebec, snow accumulation begins earlier in October and melting occurs 

later in June and July with a single streamflow peak being observed, mainly caused by 

snowmelt (Assani et al. , 2010; Buttle et al., 2016; Saint-Laurent et al. , 2009). 

Rence knowledge of the SWE stored in the winter snowpack and of ablation dynamics 

in the spring is key for accurate streamflow predictions and operational management of 

reservoirs in Quebec. As such, a reliable seasonal forecast of spring freshet based on 

winter and early spring conditions is essential for reservoir operators to optimize two 

conflicting objectives, namely flood protection and hydropower production (Turcotte et 

al., 2010). Nevertheless, the relation between snow conditions and the inter-annual 

variations in the magnitude and timing of the spring peak flow is not straightforward, 

due to the complexity of spring runoff generation mechanisms. In fact, the same annual 

snow accumulation can induce more or less severe floods because of the multiplicity of 

antecedent hydrological conditions that can control runoff in addition to snow, such as 

meteorological conditions during the melt period, the occurrence of rain-on-snow 

events, and soil moisture. Therefore, a good understanding of the flood generation 

mechanisms and of the relative contribution of the key driving factors involved is 

essential to explain the interannual variability of the spring peak flow characteristics and 

guide future forecasting efforts. 
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The variability in flood characteristics in North America has been linked with 

large-scale climatic indices, and several previous studies have studied how these indices 

influence extreme floods (Assani et al. , 2010; Assani et al. , 2010b). Mazouz et al. (2013) 

studied the relationship between the interannual variations of high spring flow 

characteristics in southern Quebec (magnitude, duration, period of occurrence, 

frequency, and variability) and several global climatic indices using canonical 

correlation analysis. A significant correlation between the Atlantic Multi-Decadal 

Oscillation (AMO) and North Atlantic Oscillation (NAO) indices and four flood 

characteristics (duration, period of occurrence, frequency, and variability) was found 

while no relationship was found between these indices and the flow magnitude. 

This correlation was explained by the low temperature during the negative phases of the 

AMO and the positive phases of the NAO, which causes a later date of occurrence, 

a higher frequency, a longer duration and lower variability of heavy spring floods 

(Mazouz et al. , 2013). Additionally, heavy rainfall events during spring may accelerate 

snowmelt and cause more devastating floods (Fang et al., 2016; Pomeroy et al. , 2016; 

Sui et al., 2001) depending on the antecedent conditions of the snowpack (Garvelmann 

et al. , 2015). During these events, the relative contribution of melting and rainfall 

becomes more complicated and affects the results of forecasting studies. 

This phenomenon of rain-on-snow in Canada has been addressed by several authors 

(Dyer, 2008; Mccabe et al. , 2007; Pomeroy et al. , 2016; Wayand et al. , 2015). 

In Quebec, many devastating spring floods have been caused by a combination of heavy 

rainfall during melting and a deep accumulated snowpack, such as for the Richelieu 

river floods in 20 Il (Saad et al. , 2015). Teufel et al. (2018) studied the devastating 

spring floods that occurred in Montreal during May 2017, showing that heavy rainfall 

events during April and May and snowmelt were the culprit of these extreme events. 

Likewise, moisture state of the catchrnent plays a key role in runoff generation during 

melt. In fact, the degree of soil saturation below the snowpack determines the infiltration 

and the runoff of snowmelt water in snow-covered basins (Koster et al. , 2010; 

Mahanama et al. , 2012). These two studies have quantified the contributions of snow 

accumulated on January lst and soil moisture to the skill of seasonal forecast of spring 

snowmelt in 23 basins of the eastern United States. They demonstrated that despite the 
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important role of snow, the contribution of soil moi sture ln the skill of streamflow 

forecast is significant. Several studies showed also the importance of 'soil memory', i.e. 

soil moisture conditions before soil freezing (Curry et al. , 2017; Mahanama et al. , 2012; 

Webb et al. , 2018; Weyer et al. , 2017) so that understanding the relationship between 

floods, soil moisture and snow coyer in these basins is necessary to understand the 

spring streamflow generation. 

The main challenges in studying how antecedent hydrological variables control 

spring floods are the choice of predictors, the interaction between them, the period over 

which these factors will be calculated and the unavailability of observations for sorne 

factors such as soil moisture and SWE (Coles et al. , 2016; Curry et al., 2017; Fang et al. , 

2016; Nied et al. , 2013 ; Nied et al. , 2014). In western Canada, Curry et al. (2017) 

investigated the influence of a set of factors on the variability of annual maximum daily 

flow magnitude using multivariate linear regression models in a snow-dominated basin. 

They ranked the effect of a set of predictors according to their degree of control on the 

maximum basin peak flow as follows: the maximum annual snowpack (SWEmax), 

the melting rate calculated between SWEmax and peak flow, the Pacific Decadal 

Oscillation (PDO) and El Nifio-Southern Oscillation (ENSO), and finally the rate of 

warming calculated between April Ist and the date of peak flow. Sorne variables used 

were measured while others were simulated by a hydrological model, such as the melt 

rate and soil moisture. Coles et al. (2016) studied snowmelt runoff generation in the 

Canadian prairies hillslopes using a decision tree learning approach to rank the processes 

responsible for the generation of runoff. The impact of variables on flow peak, in order 

of importance, were as follows: total snowfall, snow coyer, fall soil surface water 

content, melt rate, melt season length, and fall soil profile water content. Among its most 

important results was the importance of the degree of soil saturation during the fall 

before the frost period, or soil memory, in controlling runoff. Fang et al. (2016) studied 

the sensitivity of the June 2013 flood in Calgary to pre-flood conditions as simulated by 

the physically-based hydrological model CRHM. They studied streamflow generation 

processes by varying the amount of precipitation, the land coyer and soil storage 

capacity during the pre-flood period. It was shown that runoff increases rapidly in 
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response to prior accumulation of snow and soil moisture and that antecedent soil 

moisture in the basin is a better indicator of flood magnitude than the antecedent 

snowpack in this basin. 

In Quebec basins, the hydrological drivers, or 'predictors' of interannual variations 

in the magnitude and timing of the spring flow peak are not weIl identified and have not 

been studied except in relation with global climatic indices (Assani et al., 201 Oa; Assani 

et al. , 2010b; Mazouz et al. , 2013). Hence the main objective ofthis study is to identify 

and better understand the factors that control the variation of spring freshet 

characteristics in the catchments of the St. Lawrence tributaries in order to improve 

seasonal forecasts . The limited availability of snow depth, snow water equivalent (SWE) 

and soil moisture observations has always been an obstacle when analyzing historical 

hydrological datasets. In this study, we use outputs of simplified conceptual models to 

simulate snow accumulation and melt as weil as soil moisture storage in the basins. 

We seek to answer the following questions: (i) is the inter-annual variability in the 

magnitude of the spring freshet peak mainly dependent on the antecedent snowpack, so 

that higher flow peak occurs in years with deep snowpack? (ii) Does the quantity and 

intensity of rainfall during the pre-flood period affect the characteristics of the spring 

freshet? (iii) How do the preconditioning factors vary between basins, according to their 

latitude and physiographic region? 

Study Area and Data 

This study was carried out on twelve tributary catchments of the St. Lawrence 

River located in the province of Quebec, Canada with a natural hydrological regime 

(Fig. 1). The area of the catchments varies between 367 and 4504 km2 (Table 1). 

They are spatially distributed between the north and south shore of the St. Lawrence 

River and within four homogeneous hydrological regions used by the Quebec Center for 

Water Expertise (CEHQ) in charge of streamflow monitoring and forecasting. 

The Northwest St. Lawrence region (Batiscan, Bras du Nord, Matawin) is characterized 

by a continental climate; the Saint-Laurent Southwest region (Nicolet, Acadie) is 
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characterized by a maritime climate; the Saint-Laurent Southeast reglOn (Y ork, 

Beaurivage, Bécancour, Famine, Etchemin, Ouelle) characterized by a mix of maritime 

and continental climate and Saint-Laurent Northeast region (Godbout) characterized by 

a maritime climate (Assani et al. , 201Oa; Assani et al. , 2010b; Mazouz et al. , 2013). 

These basins are located in three different physiographic regions: the St Lawrence 

Lowlands characterized by a flat relief (Acadie), the north shore of the St. Lawrence 

River in Canadian Shield forested lands (Batiscan, Matawin, Bras du Nord and 

Godbout); the remaining seven basins (Ouelle, York, Etchemin, Bécancour, Famine, and 

Nicolet) are located on the south shore of the St. Lawrence River in the Appalachian 

Mountains (Table 1). 

The six basins Batiscan, Godbout, Matawin, Ouelle, York, Famine, and Bras du 

Nord are completely forested basins with approximately 90% of the area covered by 

forest and the remaining area covered by agriculture and lakes. The land coyer in the 

Acadie basin is dominated by agriculture (72%) with only 25% covered by fore st. 

The three basins Nicolet, Etchemin, and Bécancour have the same fore st (70%) and 

agriculture (25%) coyer (in Table 1). 

Daily historical streamflow data at the outlet of the 12 basins were extracted from 

the website of the Quebec Center for Water Expertise (CEHQ) (www.cehq.qc.ca). 

The length of the observed data varies between basins, from 33 to 55 years . A method 

developed as part of this study, described in the next section, was used to separate spring 

streamflow using the daily observed flows. 

Having a good estimation of pre-flood snowpack is one of the challenges to 

understand the contribution of snowmelt to peak flow variability. However, the 

difficulty of measuring snow depth and snow water equivalent (SWE) typically results 

in limited data being available, over time and space. Remote sensing tools are used to 

estimate the snow coyer and the SWE in low vegetation areas but problems remain in 

forested areas (Bergeron et al. , 2014; Brown, 2010; Sena et al. , 2016). In Quebec, a 

network of snow survey sites has been installed in forested areas to measure the water 



58 

equivalent of snow (SWE) and the depth of snow every two weeks in the winter and 

spring seasons, but the spatial distribution and density of these stations is low. 

Consequently, using outputs of hydrological models seems the only solution to derive 

long SWE and soil moisture records. In a previous study conducted in the same basins 

by Nernri and Kinnard (2019), The GR4J hydrological model coupled to the Cemaneige 

snow model has been calibrated and validated in order to properly simulate basin-wide 

SWE, soil moisture and daily streamflow. The calibration methods and validation results 

are weIl described in Nernri and Kinnard (2019). A multi-objective calibration strategy 

was found to give the best simulation of both streamflow and SWE, and the simulation 

results using this method were used in the present study. The model was forced by 

dai ly precipitation and temperature date extracted from daily grids produced by the 

Atmospheric Environrnent Information Service (SIMA T) in collaboration with the 

Quebec Center for Water Expertise (CEHQ) (Bergeron, 2015). Historical SWE 

measurements at 12 measuring points of the Quebec snow survey network located in or 

very close to the selected basins were used in the calibration along with the observed 

flow (see Fig. 1). Daily precipitation during the pre-flood period was separated in a ra in 

and snowfall fraction based on air temperature. The snowmelt module Cemaneige 

Valéry (2010) simulates the accumulation and snowmelt in five altitude bands. 

The precipitation phase (rain, snow) is determined using the mean temperature of each 

altitude band, according to two methods depending on the median altitude of the basin. 

If the median altitude is higher than 1500 m the method developed by the US Army 

Corps of Engineers (1956) is used, in which the snow/rain fraction is interpolated 

between -1 °C (ail snow) and 3 oC (ail rain). If the median altitude is less than 1500 m, 

which is the case for ail basins in this study, the fraction of snow is calculated according 

to the function used in the Hydrotel model (Fortin et al. , 2001). The snow/rain fraction is 

estimated as a function of the minimum (T min) and maximum (T max) daily tempe rature of 

each altitude band: when T max ~ 0 oC ail precipitation fall as snow, while if T min 2: 0 oC 

ail precipitation fall as rain, else the snow fraction is estimated as 1-T min/CT max- T min). 

These functions are weIl described by Valéry (2010) and Valéry et al. (2014b). 

In addition, soil moisture measurement were not available for the study so that soil 

moisture simulated by the conceptual model GR4J was used. In GR4J the hydrological 
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processes ln the basin are simplified into two interconnected reserVOlrs. The soil 

reservoir has a maximum capacity (mm), which is a free parameter to be calibrated, and 

determines the amount of water in the basin according to the degree of soil saturation, 

itself a function of the ratio between the quantity of stored water and the maximum 

storage capacity. 

Methodology 

Spring flood identification 

The first analysis step was to identify the pre-flood factors and the period over 

which to calculate them. A sufficiently large spring window of four months, from 

March lst to June 30th, was selected based on daily observed streamflow and taking into 

account the inter-annual and spatial variability of the spring freshet of aIl basins. 

The maximal daily flow value and its timing observed within this time window were 

identified for every year. Then, the pre-flood period was set between the flood onset 

point, defined here as the point that marks the beginning of the rise in streamflow, and 

the peak flow date (Fig. 2). The onset point was identified as the first point having a 

flow value ab ove the 30% percentile of the annual flow distribution and foIlowed by a 

continuo us increase in flow over a minimum of three consecutive days, before the 

peakflow date. This automatic procedure worked weIl for most years and basins, 

but exceptions were noted upon visual inspection. Rence for sorne years the percentile 

threshold was either adjusted, or the point was chosen manuaIly when the automatic 

algorithm failed. Identifying the spring flood onset date was difficult when the form of 

the hydrograph was irregular, i.e. for complex, multiple-peak floods. In fact , snowmelt is 

discontinuous in several years. This intermittent snowmelt is due to low air temperatures 

associated with the advection of cold polar air masses which stops snowmelt for days 

and causes separate floods according to melting events (Mazouz et al. , 2013). 

This makes it difficult in sorne years to precisely pinpoint a general flood onset date and 

this decision may subsequently influence the relation between the peak flow magnitude 

and the pre-event variables. 
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Antecedent factors and statistical analysis of spring freshet peak 

The objective is to understand if the interannual variability ln the timing and 

magnitude of the spring streamflow peaks depends mainly on the amount of 

accumulated snow and its rate of melting, and what is the effect of antecedent soil 

saturation conditions and rainfall events during melting. Hence two spring streamflow 

characteristics, the magnitude Qmax and timing of peak flow (in day of year or DOY) 

Qmax _ T were selected to characterize the spring freshet, and their interannual variability 

calculated from the daily flow historical records. In total, six antecedent factors related 

to snowmelt, rainfall and soil moisture were selected and calculated during the pre-flood 

period as defined in section 3.1., except for the annual maximum snowpack (peak SWE) 

which was ca1culated over the entire hydrological year. The daily pre-flood variables 

were computed taking into account the time of transfer of the basin, i.e. preconditioning 

variables were calculated from the flood onset date up to x4 days before the flood peak 

date calibrated for each basins, where x4 is the base time of the unit hydrograph in the 

GR41 hydrological model and was calibrated by Nernri and Kinnard (2019). 

The Cemaneige model simulates snow accumulation and melt in five altitudinal bands 

and extrapolates the meteorological data (temperature, precipitations) according to the 

median altitude of the band. However, ail variables used here are the mean of the basin 

and not related to a specific band. The contribution of snowpack conditions to the 

variations in spring peak flow characteristics, Qmax and Qmax _ T, was assessed by three 

variables: (i) the maximum SWE, Gmax (mm), simulated by the model before the melt, 

between the beginnings of spring (March 1) and the peak flow date, represents the 

amount of snow accumulated and to be released during the spring freshet. A good 

correlation between Gmax and maximum streamflow would imply that Gmax is good 

predictor that can ameliorate seasonal flood forecasts. The quantity of snowmelt and its 

rate of melting are also used to evaluate their contribution to interannual variability in 

peak flow characteristics. The sum of the pre-flood melting, Melt_sum (mm), 

was simulated by Cemaneige and the melt intensity Melt_int (mm/d) is the melting rate 

calculated as the mean over the pre-event period. Rainfall is used as another antecedent 

condition that can affect streamflow in this period by changing snowpack characteristics 

or directly contribution to runoff. The sum of daily rain, Rain_sum (mm), accumulated 
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during the pre-flood period, was calculated after separating the solid and liquid fraction 

in the snow model, and the mean rain intensity, RainJnt (mm/d), are selected as 

potential predictors. The mean soil moisture saturation level during the pre-flood period, 

Smean (unitless), was simulated by the model and used as another antecedent factor. 

The selected antecedent factors are summarized in Table 2. 

The relationship between the antecedent factors and peak streamflow 

characteristics was assessed initially by linear univariate correlation analysis using the 

Pearson correlation coefficient. Following this, a stepwise multivariate regression 

analysis was performed (Equation 1). 

y = ~O + ~lXl + ~2X2 + ... + ~nXn Equation (1) 

where ~O is the intercept and ~ 1...n are the regression slope coefficients. The stepwise 

method consists in choosing the combination of pre-flood predictor variables (X) which 

together best explain the characteristics of floods (response variables Y) using an 

iterative procedure. The stepwise procedure requires two significance levels for adding 

and removing predictors based on a variance ratio (F) test, for the improvement of the 

model. Starting with the initial model, a p-value for the F-statistic is calculated at each 

step of adding or removing a variable in the mode!. An entrance tolerance p-value of 

< 0.05 and an exit tolerance p-value < 0.1 were used. 

ResuIts 

Inter-annual and spatial variability of peak streamflow and ils date of occurrence 

The variability of the spring streamflow magnitude Qmax observed in the twelve 

basins, sorted by latitude from south to north, is shown in Fig. 3a. The highest median 

Qmax values are observed in the basins Batiscan, Bécancour, Nicolet, and Godbout 

which are the largest basins (cf. Table 1). Boxplots show that the peak streamflow is also 

more variable between years in these basins. The smallest Qmax value is recorded in the 

smallest basin Acadie (ID# 1). The month of occurrence of spring maximum flow is 
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shown in Table 2. For the two northernmost basins, i.e. Godbout and York, 90% of the 

flow peaks occurs the latest, in the month of May. For the two southernmost basins, i.e. 

Nicolet and Acadie, melting occurs earlier with 40% of peakflow events occurring in 

March and 40% in April. For the remaining basins, 65% of the peakflow events occur 

during April. Fig. 3b shows the high inter-annual variability of the peakflow timing in 

terms of day of the year (DOY), and also the spatial variability between the basins. 

The general increasing trend from south to north in the peakflow timing also appears 

clearly. Also, for the three completely forested basins located in the Canadian Shield, i.e. 

Batiscan (#5), Matawin (#7) and Bras du Nord (#9) melting occurs later compared to 

basins at the same latitude with less forested area such as Beaurivage (#6: 60%) and 

Etchemin (#8: 74%). Therefore, the spatial distribution of the Qmax timing is seen to 

primarily be a function of latitude and land cover. 

Contribution of melt and rain to flood volumes 

The contribution of pre-flood vertical inflows (melt and rain) volumes to the total 

flood volume ca1culated during the pre-flood period is illustrated in Fig. 4 for the twelve 

basins. The boxplots in Fig. 4a show the volume of snowmelt and rain during the pre­

flood period for each basin while the corresponding contributing fraction to the total 

flood volume is shown in Fig. 4b. It is very clear for the southernmost Acadie basin that 

the rain contribution is high compared to the other basins. While the median ra in 

contribution (0.25) is only slightly higher than that of other basins, the interannual 

variability is large, with the third quartile of the distribution reaching near 0.75, and in 

sorne extreme years rain was the sole contributor. For the other basins, the median rain 

contribution is around 0.2, but the fraction can be as high as 0.6, which shows that the 

rain contribution to the spring flood volume in aU basins can be important. Multivariate 

linear regression analysis was conducted to study how interannual variations in rainfall 

and snowmelt volumes explain the variability in total spring flood volume. Variations in 

vertical inflow (melt and rain) volumes explain between 67% and 93% of the interannual 

variability in peak volumes (Table 5). For the five southern basins located on the north 

shore of the St. Lawrence River, in the Canadian Shield forest (Nicolet, Acadie, 
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Batiscan, Matawin and Bras du Nord), the effect of rain and snowmelt variability on 

streamflow volume is comparable, whereas for the other seven basins the interannual 

variability in flood volume is more controlled by snowmelt volume than rainfall. 

Correlation between antecedent factors and spring flow peak and timing 

The Pearson 's linear correlation coefficient was first used to assess the 

significance of correlation (p < 0.05) between observed streamflow characteristics 

(Qmax and Qmax _ n and the antecedent factors. Correlations between Qmax and the 

six factors for the 12 basins are displayed on a correlogram (Fig. 5). Melt intensity 

Melt_int is positively correlated with the flow magnitude in all basins; the correlation is 

significant (p < 0.05) in most basins, with a Pearson correlation coefficient between 0.37 

and 0.75, except for the three basins Bras du Nord, Bécancour and Batiscan. 

The simulated spring peak SWE (Gmax) also stands out as a good predictor of Qmax 

with a positive correlation found in ail basins; significant correlations between 0.31 and 

0.53 are found in ail basins except Bras du Nord, Bécancour, Beaurivage, and Ouelle. 

Thus, years with higher snow accumulation and higher melting rate (intensity) generally 

tend to result in higher peak flow. The sum of snowmelt simulated during the pre-flood 

period Melt_sum is positively and significantly correlated with Qmax in only five basins. 

The accumulated rainfall events before peakflow and their intensity do not show any 

significant univariate relation with spring Qmax, except for the two basins Matawin and 

Godbout where Qmax is positively correlated with rainfall intensity (Rain_int). 

Soil moisture Smean is significantly and positively correlated with Qmax in only three 

basins (Batiscan, Famine and Matawin) and negatively correlated in Bécancour. 

In the basins Bécancour and Bras du Nord, Qmax is not correlated with peak SWE nor 

with variables related to snow melting Melt _int and Meltsum, which is not logical for 

these basins with a nival regime. 

The correlation coefficient of Melt _int is stronger th an for Gmax in six basins, 

while Gmax is a better predictor in only two basins, Nicolet and York. Overall, 

the correlation analysis shows that the pre-flood melt intensity Melt_int is the best 
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overall predictor of the maXImum spnng streamflow variability, followed by the 

maximum SWE accumulated in winter Gmax, which is logical given the strongly nival 

character of the hydrological regime of rivers in Quebec. On the other hand, the 

correlation coefficients are overall only moderate, therefore a combination of several 

factors could better explain the variability in spring flow magnitude. 

For the peakflow timing the pre-flood rainfall sum significantly controls Qmax_T 

ln ail basins, except for the three basins Famine, Acadie, and Godbout (Fig. 6). 

This means that in years with high rainfall volumes during the pre-flood period the 

streamflow peak occurs later. Melting intensity is significantly anti-correlated with 

Qmax timing in an but four basins, with correlations varying between -0.31 and -0.56, 

so when melting is rapid peakflow occurs earlier. The correlation with soil moisture is 

not spatially coherent, being significantly anti-correlated with flow timing in three 

basins (Acadie, Famine, and Beaurivage) and positively correlated in Batiscan, 

Matawin, Bras du Nord, Godbout, and Etchemin. 

Multivariate regression 

Interannual changes in spring Qmax can be induced by a combination of factors . 

For example, the same snowpack can result in different peakflow magnitudes if it is 

accentuated by abnormal rainfall events, rapid melt due to high spring warming rate or 

saturated soil before melting. The combination of pre-flood factors which best explain 

the inter-annual variations in maximum spring streamflow and its date of occurrence 

was thus assessed by stepwise multivariate linear regression. The multivariate linear 

regression models found differ between basins (Table 6). In fact, in only five basins 

(Acadie, Bécancour, Famine, Matawin and Etchemin) do the linear model explains more 

than 35% of Qmax inter-annual variations (adjusted R2 > 0.35). For the remaining seven 

basins (Nicolet, York, Beaurivage, Bras du Nord, Batiscan and Godbout) the linear 

models only explain up to 30% of the variability of Qmax . 



65 

The snowmelt intensity Melt_int was the only significant predictor kept by the 

stepwise analysis to explain Qmax in three basins (Acadie, Godbout, and Beaurivage). 

In the southernmost Acadie basin melt intensity explains 60% of the variations in Qmax 

(R2 = 0.6). In Godbout, which is located further north, only 20% of Qmax variations are 

explained by Melt_int even thought the correlation analysis also showed a significant 

correlation of Qmax with Rain_int and Gmax, but these variables were exc\uded from 

the variable selection stepwise method, which mean they did not bring any additional 

significant prediction skil!. The same occurs for the Beaurivage basin where melt 

intensity only explained 10% of Qmax variations. The peak SWE Gmax is the only 

predictor retained for the two basins Nicolet and York and only explained 20% of Qmax 

in the southern Nicolet basin, even if Melt _int was also found to be significantly 

correlated, which means that this variable did not improve model skill and was thus 

exc\uded from the mode!. In the York basin the model Gmax only explain 17% of the 

variation. 

The two variables related to pre-flood rainfall , Rain_sum and Rain_int, are good 

predictors of Qmax only in four basins: Bécancour, Batiscan, Matawin, and Ouelle. 

Combined with Gmax, soil moisture and Rain _sum it explained 70% of Qmax in the 

Bécancour basin. In Matawin it is combined with soil moisture and explains 40% of the 

variation, while in the Ouelle basin it is combined with melt intensity to explain 30% of 

the variation. Soil moisture was thus found to be a significant predictor in only two 

basins. In Bras du Nord, Qmax could not be explained by any of the predictors 

considered. 

Interannual variations in peakflow timing (DOY) Qmax_T are comparatively weIl 

explained by a different combination of factors between basins, with adjusted R 2 varying 

between 0.4 and 0.7. (Table 7). Rain intensity explains most of the variation in the four 

basins Acadie, Nicolet, Bécancour and Ouelle and rainfall sum in the Etchemin basin. 

In the three basins York, Bras du Nord and Matawin, most of this variation is explained 

by pre-flood snowmelt Melt_sum. For Famine and Beaurivage maximum SWE Gmax is 

the main predictor. Soil moisture is the main predictor only for the Godbout basin. 
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Uncertainties of simulated predictors 

Overall, the linear models explain more than 36% of the variation of Qmax in only 

five basins and for the seven other basins the antecedent variables explain less than 

30% of the variation. Additionally, for Bras du Nord Qmax is not explained by any of 

the variables considered while in Bécancour it is explained only by soil moisture, 

which appears little logical for a nival basin. The question here is why do these weak 

correlations occur? Candidate explanations could be the existence of other, unaccounted 

factors such as large-scale climatic indices and pre-freezing soil moisture or bad 

simulations by the model. 

Soil moisture and SWE were simulated by a conceptual model. Rence, the 

capacity of these simulated factors to explain the characteristics of observed streamflow 

is strongly dependent on the quality of the model simulation. Additionally, aH the 

preconditionning factors were ca\culated considering the transfer time of the basin (x4) 

which is a calibrated routing parameter, which can result in events occurring shortly 

prior the flow peaks not being taken into account if this parameter is over estimated, 

especially given that rainfall events falling on snow or frozen ground can cause rapid 

runoff. The calibration and validation results obtained by Nemri and Kinnard (2019) 

(Table 4) show an overall good performance for aH basins in the simulation of 

streamflow and SWE. Nevertheless, the Nash criterion used for calibration and 

validation is a global performance criterion calculated over the who le period and reflects 

the overall ability of the model to simulate the basin water balance, and as such does not 

guarantee accurate simulations for all years. For sorne basins, the spring peakflow is not 

well simulated in several years even if the model shows a good global performance 

during calibration/validation. The comparison between the yearly observed and 

simulated maximum streamflow Qmax (Fig. 7) shows that the worst simulation occur in 

the two basins Bécancour and Bras du Nord (B3 and B9 in Fig. 7). This under­

estimation or overestimation of simulated spring flow can be related to a bad simulation 

of antecedent hydrological conditions, used here as flood drivers, to simulate the se 

peaks. This can explain the weak correlation found between Qmax and the antecedent 

factors obtained for these two basins (cf. Fig. 5 and Table 6). Additionally, after 
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inspecting the hydrograph over several years we can notice that for sorne basins the 

hydrological response to an important rain event can be more rapid than the calibrated 

time of transfer (x4). The impact of this parameter on the peakflow magnitude and 

timing explanation by antecedent factors was thus assessed by reducing the transfer time 

to zero, one or two days depending on the basin in order to check the improvement of 

the regression models resulting from this modification. Also, in sorne basins peakflow 

can be seen to be generated by an important event over a one or two day period, while 

the factors used here (Rain_int, Melt_int) were averaged over the whole pre-flood 

period, i.e. between the onset date and the hydrograph peak, and which can last more 

than seven days in sorne years. Thus, two additional factors were added, namely the 

rainfall and snowmelt maximum intensity over the pre-flood period to reflect this 

phenomenon and reduce the uncertainty related to using mean intensities only. 

After changing the transfer time and taking into account these two factors, the linear 

models of Qmax interannual variations improved for many basins as summarized in 

Table 8. The regression models explain more than 47% of the variation in all basins 

except the Batiscan and Beaurivage basins where the models still explain only 20% of 

the variation. For Bras du Nord, although the Nash_SWE in calibration was 65% 

(Table 4), after yearly verification we noticed that in 11 years out of 50, the SWE was 

not well simulated by the Cemaneige mode!. After changing the number of routing days 

(x4) to zero, which was initially calibrated to two days, the R2 increased from zero to 

40% with variations of Qmax being explained by rain intensity and melt intensity 

(Table 8). For the Beaurivage basin, the initial linear model explained only Il % of the 

variation using melt intensity. The SWE is well simulated globally in calibration and 

validation with Nash_SWE equal to 72% and 79% respectively. Even after changing the 

transfer time from two days to one or zero day the model still only explains 20% of the 

variation, with melt intensity as sole predictor. For the Matawin basin the SWE 

simulation is the worst in calibration (31 %) compared to the other basins. Changing the 

transfer time from 4 to 2 days improved the linear regression model (R2 from 37 to 50%) 

with Qmax being explained by rain intensity, melt intensity, melt sum and soil moisture. 

The initial model only explained 15% of Qmax in the Nicolet basin with Gmax as sole 

predictor. After changing the transfer time to one day the linear model explains 44% of 
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the variation of Qmax by rain intensity, maximum melt intensity, and soil moisture. 

The simulation of SWE in this basin is rather good in calibration (50%) and validation 

(70%). In the York basin the SWE is weil simulated globally in calibration (57%) but the 

simulation is poor in several years. Changing x4 from 2 to zero days improved the 

regression model from 20% to 52% with Qmax variations explained by rain and melt 

intenstty and soil moisture. In the Famine basin the SWE is weil simulated in calibration 

(84%) and validation (76%) and the regression R2 increases from 36% to 44% with 

Qmax explained by meIt intensity, rain sum and Gmax after changing the transfer time 

from 2 to 1 day. For Godbout basin the simulation of SWE in calibration is rather good 

(50%), the modification of x4 (2 to zero day) improved the regression from 35% to 54% 

with Qmax explained by rain and snow melt intensity and rain sumo For the four basins 

Batiscan, Etchemin, Bécancour and Acadie changing the transfer time to 0-2 days did 

not improve the models. Overall, the sensitivity of Qmax prediction by antecedent 

factors to the chosen transit time highlight the importance of snowmelt and rainfail 

events in the two days before the peakflows, and the difficult in deriving precise 

forecasts on longer lead times. 

Extremes events as simulated by conceptual model 

To better understand the results of the linear regresslOn analysis we tried to 

disentangle the mechanisms leading to the historical largest peakflow events and the 

main hydrometeorological factors behind these extreme events as simulated by the 

model. For the sake of brevity we only consider the four years with the largest spring 

flow peaks for the twelve basins as summarized in Fig. 8. In the southemmost Acadie 

basin, the me an of Qmax over the period 1980-2015 is 70 m3/s. For the four years with 

the large st Qmax (123-219 m3/s) (Fig. 8Bl), peak SWE was above the period average 

(Gmax = 109 mm) with no rainfall events recorded except in 1998 when a rainfall event 

was recorded during snowmelt. Incidentally, the highest streamflow recorded in this 

basin was in 1998 and was the combined result of an aboye-normal snowpack 

(Gmax = 194 mm) and an important rainfall quantity. Still, the linear regression results 

showed that 60% of the variations in Qmax is controlled only by melt intensity, 
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which was the case for the three other extreme years. In Nicolet, located in the 

St. Laurent south west hydrologie region characterized by a maritime and continental 

climate, and in the Appalachian Mountains physiographic reglOn, me an Qmax was 

390 m3/s over the period 1967-2015. The four years with highest peakflows 

(560-762 m3/s) were not generated by exceptional snowpack as Gmax was near its 

historical average (211 mm) (Fig. 8B2). No exceptional rainfall events were recorded 

during the pre-flood period in 1982 (Qmax = 663 m3/s) and 1998 (Qmax = 560 m3/s). 

Therefore, snowmelt rate, ice-jams or frozen saturated soils could be the factors behind 

these exceptional events. The exceptional peakflows of 1976 (614 m3/s) and 1989 

(762 m3/s) were accentuated by a small one-day rainfall event during melting (30 mm). 

The regression analysis confirms these observations where 44% of Qmax variations 

were explained mainly by pre-flood maximum melt intensity and secondly by rainfall 

intensity. Mean Qmax was 460 m3/s over the period 2000-2015 in the Bécancour basin, 

where important rainfall events were recorded during snowmelt in the four years with 

highest peakflow (514-814 m3/s) (Fig.8B3). The maximum simulated SWE in these 

years were very close to the period average (230 mm). The extreme flood of 2014 

(814 m3 /s) recorded in this basin was accentuated by six rainy days before the peak 

while no exception al maximum SWE was recorded for this year. In 2011 , the peak 

(540 m3/s) was generated mainly by a few long rainy days just at the end of the melting 

period following a previous peak generated by snowmelt (420 mm). Therefore, for this 

basin extreme events are not generated by an exceptional snowpack but rather by a 

combination of rainy days and melting. The regression analysis showed that 74% of 

Qmax variations are explained by rain sum, maximum SWE and soil moisture. For the 

Famine basin mean Qmax was 163 m3/s over the period 1965-2015 and in the four years 

with extreme spring flow (265-299 mm), important rainfall events are recorded 

(Fig. 8B4). In 2008 an important snowpack (peak SWE = 400 mm) accentuated by rain 

events were at the origin of important streamflow, but the largest peakflow (286 m3/s) 

occurred after peak snowmelt and was triggered by a large rainfall event. A similar 

pattern occurred in the next year 2009, although with a snowpack thinner than average. 

The linear regression models confirm that 44% of the variations in Qmax are explained 

by mean melt intensity, rain sum and maximum SWE (Gmax). In the Batiscan basin, 
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mean Qrnax was 560 m3/s for the period 1968-2015 and the four highest maximum 

peak flows varied between 761-837 m3/s (Fig. 8 B5). An thick snowpack was recorded 

in 2008 (Qrnax = 820 m3/s; Grnax = 411 mm) and 1997 (Qmax = 773 m3/s; 

Grnax = 360 mm) unlike the two years 1983 and 1970 when the maximum SWE was 

close to the period average (280 mm) but important rainfall events occurred during 

melting, which is confirmed by the linear models explaining only 28% of Qmax 

variations by rain intensity and melt sumo Mean Qrnax was 180 m3/s and mean peak 

SWE was 271 mm in the Beaurivage basin for the period 1961-2015, while the highest 

maximum peakflows varied between 270 and 325 m3/s (Fig. 8B6). ln the year 2014 with 

highest Qrnax (325 m3/s) important rain events are recorded with normal snowpack 

conditions. ln the other three years the maximum S WE is close to average with !ittle to 

no rainfall events, meaning that these peaks were generated by rapid melting, perhaps 

over saturated soil. AIso, after checking the shape of the hydrograph in this basin 

we found that at least in 60% of years the hydrograph had a multi-peak shape which 

explains the poor correlation between the highest flow and the quantity of snow 

accumulated. This multi-peak shape can affect the length of the pre-flood period and 

subsequently the calculation of and influence of preconditioning factors. AIso, 60% of 

this basin is forested while the rest is agriculture, and snowmelt in forests is typically 

slower th an in open fields which is the reason behind this peak multiplicity. 

This is confirmed by the linear model that explained only 20% of the variation by melt 

intensity. In the Matawin basin the four highest maximum spring flows vary between 

210 and 240 m3/s (Fig.8B7). No exceptional snowpacks were recorded but a 

combination of important rainfall events occurred during melting and are at the origin of 

the important peakflows in 1983 and 1998. In 2008 an important snowpack was 

recorded (250 mm) compared to the annual mean period average (159 mm), with no 

rainfall recorded, while in 2002 the maximum SWE was close to average (159 mm) also 

with no rainfall events, so runoff generation must have been induced by rapid melt 

and/or saturated soil. The linear model explains 50% of the variations in Qmax by the 

melt intensity, mean rain intensity, Gmax and soil moisture. In the four years with 

highest maximum spring flow (330-369 m3/s) in the Etchemin basin (Fig. 8B8) an thick 

snowpack was simulated by the model along with important recorded rain events, 



71 

so runoffwas mainly generated in these years by the combination ofthese rainfall events 

during melting. Conversely, the linear model explains 40% of the variations in Qmax 

only by melt intensity and maximum SWE. In Bras du Nord the highest four maximum 

spring flows varied between 235 and 277 m3/s (Fig. 8B9). In 1994, no exceptional 

snowpack was recorded for that year, with maximum SWE being close to average 

(350 mm), and the extreme spring flow (235 m3/s) was generated after snowmelt by a 

large rainfall quantity. For the three other years (1968, 1997, 1989) peakflows seem to 

have been generated by a combination of snowmelt and significant rainfall events with 

snowpaks close to average. On the other hand, the peak snowpack recorded in two years 

2008 (516 mm) and 1972 (531 mm) (not shown in the figure) are above average but the 

observed peakflow was so close to the average streamflow. The linear regression model 

showed for this basin that 40% of the variations in Qmax are controlled by rain and melt 

intensity, which means that in the large forested basins a lot of the slow snowmelt is 

infiltrated during snowmelt but any large intensity event (snowmelt and or rainfall) 

results in rapid runoff. In the Ouelle basin, important rainfall events were recorded 

during melting for the four extreme years and only in 2008 was the accumulated 

snowpack important (Gmax = 405 mm) and above the period average (Gmax = 281 mm) 

(Fig. 8BlO). For this basin Qmax is controlled mainly by maximum melt and rain 

intensity which explain 53% of the inter-annual variation. For the York basin (Fig. 8B Il) 

important rainfall events are recorded during the four years with extreme Qmax 

(200-280 m3/s) combined with important snowpack above the period average 

(Gmax = 376 mm) in 1981 (Gmax = 479 mm) and close to the average for the other 

three years. After the change of X4 calibrated for this basin the improvement of the 

stepwise model was by an interaction term (-0.308) between melt intensity Melt _int and 

soil moisture model which means that more rapid snowmelt leads to decreased peakflow 

which is not logical. The VIF coefficient (not shown here) is 8 so acceptable it is not a 

problem of multicollinearity between these two factors but a limitation of stepwise 

method that will be discussed later in this paper. In the Godbout basin, mean Qmax was 

310 m3/s over the period 1975-2015. For the four years with most extreme peakflows 

(456-856 m3/s), important rainfall events were recorded during melting, with normal 

snowpack simulated by the model (Fig. 8B 12). In fact, in several other years where an 
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important peak SWE (Gmax) was simulated but the resulting peakflow remained close 

to average conditions. For example, in the extreme event of 1979 (865 m3/s) the 

maximum S WE was less than the period average and runoff was generated by an 

extreme rainfall event during snowmelt. Important rainfall events are also recorded 

during melting in the other extreme years. The linear regression results for this 

northemmost basin showed that 60% of Qmax variations are explained by rain intensity, 

melt sum and rain sumo 

Hence for ail these snow-dominated basins the extreme events recorded were not 

only generated by a large snowpack but by a combination of rainfall and snowmelt 

events. For the majority of forested basins, few of the extreme peaktlow events were 

associated with exceptional snowpacks. A pattern may be emerging, that snowmelt is 

generally slower in forested basins, which makes them less sensitive to peak SWE, 

but more sensitive to the intensities of melt and rainfall events. Conversely in the 

southemmost and more agriculture Acadie basin, extreme events are generated by 

exception al snowpacks with rapid snowmelt intensity. 

Discussion and conclusion 

Understanding the inter-annual variability of the observed characteristics 

(magnitude and timing) of the spring freshet in response to the contribution of 

antecedent hydrological conditions (peak SWE, melt rate, rainfall, soil moisture) in the 

generation of runoff was always challenged by the lack of observed data, especially 

snow coyer and soil moisture. Lumped hydrological models coupled with a temperature­

index snowmelt model give accurate simulations of snow coyer and discharge overaIl, 

but spring peaktlow can sometimes be under or over-estimated in sorne years as found in 

this study. The improvement of results after changing the calibrated transfer time shows 

that the results of the multivariate regression models are strongly dependent on the 

performance of the model to correctly simulate aIl antecedent variables for ail the years. 

The snowpack melt rate, which is controlled by the energy balance, can be rapid or 

graduaI in relation to the spring air warming rate and the presence of vegetation. 
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Melting is more graduai in forests and faster in areas with cleared forest and agriculture, 

which can increase the magnitude of flow peaks (Ellis et al. , 20 Il) . However, the spatial 

distribution of the snow coyer and the spatial variability of snowmelt is not taken into 

account in the simple temperature-index snowmelt model, other th an that induced by 

elevation. Moreover, the quantity of rainfall events during melting can generate more 

rapid runoff depending on the antecedent retenti on capacity of the snowpack (Ellis et al. , 

2011 ; Mccabe et al. , 2007; Pomeroy et al. , 2016; Sui et al. , 2001) and the advected 

energy from this rainfall is also not considered in the simple model. In fact, liquid 

precipitation that occur in spring on the snowpack can be stored by the snowpack if it is 

initially dry and released later. Therefore, several uncertainties can arise from using 

simulated instead of measured snowpack conditions, especially since we found that 

SWE can be under-or overestimated in sorne years even if the model simulates SWE 

adequately on average. 

Results found in this study using measured and simulated antecedent factors can 

improve our understanding of flow characteristics interannual variations. The mean melt 

intensity (Melt _int) calculated over the period from the flood onset date to the peakflow 

date is a good predictor of the peakflow magnitude (Qmax) in seven basins (Acadie, 

Famine, Beaurivage, Etchemin, Matawin, Bras du Nord and York) and is the most 

skillful predictor for four of these basins (Acadie, Famine, Beaurivage, Etchemin). 

The maximum melt intensity (Meltint_max) is a good predictor only in the Nicolet and 

Ouelle basins. So, overall, snowmelt intensity appears to be the dominant control on 

peakflow magnitude for 9 of the 12 basins. AIso, the quantity of melt in the pre-flood 

period (Melt_sum) is the best predictor in Matawin and Batiscan and a significant 

contributor in the Godbout basin. The accumulated peak SWE simulated at the 

beginning of spring (Gmax) reflects the winter conditions of the year and was retained as 

a significant predictor of Qmax only in four basins (Nicolet, Bécancour, Famine and 

Etchemin) so years with higher snowpack result in higher peak spring streamflow. 

Still, Gmax by itself could explain 10 to 28% of the variability in Qmax in 8 out of 

12 basins as shown by the bivariate correlation analysis (Fig. 5). This shows that the 

memory of the snowpack is not sufficient to accurately forecast springtime flood 
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magnitude in southem Quebec. Overall, for the eight basins located in more southerly 

latitudes (basin ID 1-8) peakflow magnitude variability is primarily controlled by 

snowmelt intensity and quantity, and only in four basins do factors related to rainfall 

contribute to explain peakflow variations. 

Mean rainfall intensity (Rain_int) during the pre-flood period is the most skilful 

predictor in three basins (Bras du Nord, York and Godbout) and a significant predictor 

in the two basins Matawin and Batiscan. The maximum rainfall intensity (Rainint_max) 

was the most skilful factor in the Ouelle basin only. The pre-flood rainfall quantity 

(Rainsum) is contributing to peakflow variations only in four basins (Ouelle, Godbout, 

Famine and Bécancour). So, for the four northemmost basins (Bras du Nord, Ouelle, 

York and Godbout), variations in peakflow are mainly controlled by rain events 

(intensity and sum) during the melting period. Soil moisture was considered to be a key 

factor in controlling runoff in snow-dominated basin in several studies (e.g. Weyer et al. , 

2017). In this study, no coherent correlation was found between the degree of soil 

saturation and peakflow variations. Even within the multivariate regression analysis this 

factor was found to be a significant predictor of peakflow magnitude and timing only for 

three basins, and a counterintuitive negative effect was found for two of these basins. 

The lumped GR4J model do es not consider soil freezing processes. Therefore, further 

research is needed in Quebec basins using a physically-based model that explicitly 

represents soil freezing and fall moisture 'soil memory' in order to better simulate pre­

melt soil moisture and its effect on snowmelt and rainfall runoff. Soil freezing is often 

assumed to play an important role on infiltration, but deep snowpacks can also inhibit 

soil freezing and cancel its impact on infiltration (Aygun et al., submitted). 

Overall, the ranking of preconditioning factors based on their frequency of 

appearance as significant factors in the linear models of Qmax across the twelve basins 

is as follow: (i) melt intensity (mean and max), (ii) rain intensity (mean and max), 

(iii) the sum of melt, (iv) sum of rain, (v) peak SWE (Gmax) and (vi) soil moisture. 

One note of caution must be mentioned, that the stepwise approach finds the best 

combination of factors explaining the most variations in Qmax, and as such can remove 
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predictors that are still important on their own, but that are redundant (collinear) in a 

multivariate context. Still, melt intensity also appears as the most important univariate 

predictor of Gmax as shown by the correlation analysis (Fig. 6), but peakSWE (Gmax), 

which is the second best univariate predictor of Qmax (Fig. 6) was often excluded 

from the multivariate models. A thicker snowpack is more likely to survive later into the 

spring season and be subjected to faster melt rates (e.g. Musselman et al., 2017) , which 

could explain the redundant predictive power of these two variables in multivariate 

models. 

The peakflow timing is controlled in most basins by the rainfall sum and intensity 

factors. These results are not in agreement with these found by Curry et al. (2017) in 

western Canada for the Fraser River basin in between the Coast Mountains and the 

Continental Divide, where the generation of spring runoff is controlled mainly by the 

maximum accumulated SWE and secondly by the melt rate. On the other hand Coles et 

al. (2016) found that the processes responsible for the generation of runoff in the 

Canadian prairies hillslopes were mainly and in order of importance the total snowfall, 

snow cover amount, fall soil surface water content (0-15 cm) and melt rate. The more 

humid climate of southern Quebec compared to the Canadian Prairies, and the lower 

elevation compared to the mountainous basins of western Canada, could explain the fact 

that interannual variations in accumulated SWE are generally less important th an the 

melt rate and the quantity and intensity of rainfall events during snowmelt. Interannual 

changes in snowmelt volumes are either the prime driver, or equally as important than 

rainfalI, in controlling flood volume variability as shown in Table 5. However regression 

analysis showed that snowmelt variables appear to be more important drivers of 

peakflow interannual variability for the more agricultural southern basins, even in the 

southemmost Acadie basin where snowmelt contributes less water th an rainfall to flood 

volumes. Conversely in the more northerly, forested basins flood volumes are primarily 

controlled by snowmelt volumes in these nival basins whereas rainfall stands out as 

more important in controlling interannual variations in peakflow. 
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Initial conditions (snow stored in the basin, soil moisture) and their forecasting 

skill are very important for the seasonal prediction of streamflow (Foster et al. , 2018; 

Koster et al., 2010; Li et al. , 2009; Mahanama et al. , 2012) but these variables are not 

well measured in most basins. Turcotte et al. (2010) discussed the difficulties envisaged 

by the prediction systems developed for Quebec basins due to errors in the snow 

observation methods. Therefore, using satellite products of snow cover in conjunction 

with physically-based models might be a good way to improve our understanding of the 

spring freshet generation mechanisms and the independent role of snow cover, rain on 

snow events and the soil moisture status in future studies Quebec. 
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List of tables 

Table 1. Characteristics of the twelve basins selected in this study ranked according to 
latitude, from South to North. 

Lat. Lon. Area Water Forest 
Agri- AIt. Low- Cano Appala 

ID Basin 
(0) (0) (km2

) % % 
culture med. lands Shield -chian Flow data 

% (m) % % 0/0 

\ Acadie 45 .39 -73 .37 367 0 25.7 72.\ 3\ \00 0 0 \979120\7 

2 Nico\et 46.06 -72.3\ \550 0 74.8 25.2 203 0 0 \00 \966/20\7 

3 Bécancour 46.3\ -7\.45 2\63 0 74.8 25.2 273 0 0 \00 1999/20\7 

4 Famine 46.\ -70 .30 696 0.3 87.4 12.3 377 0 0 \00 \964120\7 

5 Batiscan 46.59 -72.40 4504 0.7 92 6.7 385 0 \00 0 \967/20\7 

6 Beaurivage 46.66 -71.29 708 0 61.3 38.7 152 0 0 \00 \925/20\7 

7 Matawin 46.68 -73.92 \387 3.1 96.9 0 481 0 \00 0 193 1/20\7 

8 Etchemin 46.69 -71.07 1152 0 74.5 25.5 382 0 0 \00 1980120\7 

9 
Bras du 

47 .00 -71.80 646 0 100 0 597 0 100 0 1965120\7 
Nord 

10 Ouelle 47 .38 -69.95 796 0.5 97.4 2.\ 348 0 0 \00 1982120\7 

Il York 48 .8\ -64 .92 647 0 \00 0 482 0 0 \00 1980120\7 

\2 Godbout 49.33 -67.65 \577 0.5 99.5 0 368 0 \00 0 \974/20\7 



Table 2. Selected antecedent variables. 

Factors 

Gmax 

Rain int 

Rain sum 

Melt int 

Melt sum 

Smean 

Unit 

mm 

mm/d 

mm 

mm/d 

mm 

0 

Description 

Maximum of SWE simulated by the model on the first day of spring (1 st Mars) 

Mean ofrainfall intensity calculated over the pre-flood period 

Rainfall sum during the pre-flood period 

Mean of snowmelt intensity calculated over the pre-flood period 

Sum of snow melt 

Mean of soil reservoir saturation degree 
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Table 3. Interannual variability of spring maximum flow and its date of occurrence. 

Nb of 
Min Max Mean Std Occurrence month (nb years) 

ID Basin Qmax Qmax Qmax Qmax 
years 

(m3/s) (m3/s) (m3/s) (m3/s) Mar. Apr. May June 

1 Acadie 36 12 219 71 42 15 15 4 2 

2 Nicolet 49 161 762 390 130 15 31 2 1 

3 Bécancour 16 235 814 446 134 2 12 2 0 

4 Famine 51 13 299 163 57 7 40 3 1 

5 Batiscan 48 295 837 563 141 0 33 13 2 

6 Beaurivage 55 50 325 180 52 9 41 4 1 

7 Matawin 43 60 240 153 41 2 28 13 0 

8 Etchemin 35 158 369 253 62 6 27 2 0 

9 Bras du 51 63 277 156 48 0 20 28 2 
Nord 

10 Ouelle 33 87 427 218 82 2 22 9 0 

Il York 35 50 280 141 47 0 3 32 0 

12 Godbout 41 108 856 310 132 0 4 37 0 
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Table 4. Results of GR4J-CEMANEIGE model using AMALGAM multi-objective 
algorithm (Nernri and Kinnard, 2019) for the six parameters xl: capacity of production 
store (mm); x2: water ex change coefficient (mm); x3: capacity of routing store (mm); 
x4: UR time base (days); x5: Cemaneige snow pack thermal state; x6: Cemaneige 
degree-day melt coefficient. 

Basin 
xl x2 x3 x4 xS x6 Nash flow Nash swe 

(mm) (mm) (mm) (days) 0 (mm °Cl ) calib calib 

Acadie 200 -0.95 42 2 0.01 6.1 63 33 

Nicolet 217 0.22 36 2 0.01 5.9 76 50 

Bécancour 216 -0.6 87 2 0.29 5.5 76 84 

Famine 25 0.27 97 2 0.3 3.2 83 84 

Batiscan 436 0.5 134 3 0.03 4.4 90 49 

Beaurivage 44 -0.7 66 2 0.62 4.1 72 72 

Matawin 117 -0.51 351 4 0.05 4.6 90 31 

Etchemin 24 -0.33 238 2 0 7.2 80 56 

Bras du Nord 346 -0.59 112 2 0 4.8 84 65 

Ouelle 64 0.29 79 2 0.44 3.7 8\ 70 

York 78 -0.55 115 2 0.39 2.9 85 57 

Godbout 265 5.1 305 2 0.03 7.1 82 49 
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Table 5. Linear regression of response variable (runoff volume) against vertical inflows 
(snowmelt and rainfall) during the pre-flood period. Standardized regression coefficients 
W) indicate the relative influence of melt and ra in volumes to interannual variability in 
flood volume. The adjusted coefficient of determination (R 2) indicates the strength of the 
relationships. 

ID Basin ~1: Rainsum ~2: Meltsum Adjusted R2 

1 Acadie 0.6 0.6 0.83 

2 Nicolet 0.5 0.6 0.81 

3 Bécancour 0.3 0.9 0.89 

4 Famine 0.3 0.8 0.82 

5 Batiscan 0.5 0.6 0.93 

6 Beaurivage 0.3 0.8 0.67 

7 Matawin 0.6 0.5 0.88 

8 Echemin 0.2 0.7 0.72 

9 Bras du Nord 0.5 0.6 0.92 

10 Ouelle 0.4 0.7 0.85 

II York 0.3 0.8 0.88 

12 Godbout 0.4 0.7 0.72 
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Table 6. Results of stepwise multivariate regression of spring flow magnitude against 
the six antecedent factors (predictors) for the twelve basins. 

Standardized regression coefficients 
Adjusted R2 Basin p value 

Rain sum Rain int MeIt sum MeIt int Gmax Smean 

Acadie 0.75 0.56 0.000 

Nicolet 0.41 0.15 0.003 

Bécancour 0.42 0.51 -0.71 0.74 0.000 

Famine 0.32 0.45 0.36 0.000 

Batiscan 0.29 0.59 0.28 0.000 

Beaurivage 0.35 0. 11 0.013 

Matawin 0.37 0.56 0.28 0.38 0.000 

Etchemin 0.51 0.33 0.39 0.000 

Bras du Nord 

Ouelle 0.37 0.56 0.30 0.007 

York 0.46 0.17 0.005 

Godbout 0.47 0.20 0.002 
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Table 7. Results of stepwise multivariate regression of occurrence date of Qmax_T 
(DOY) against the antecedent factors (predictors) for the twelve basins. 

Standardized regression coefficients Adjusted p Basin 
Rain sum Rain int MeIt sum MeIt int Gmax Smean R2 value 

Acadie 0.3 1 0.5 -0.4 0.50 0.000 

Nico1et -0.38 -0.38 0.38 0.000 

Bécancour 1.13 0.7 0.65 0.000 

Famine 0.49 0.59 0.49 0.61 0.000 

Batiscan 0.18 -0.36 -0.36 0.58 0.000 

Beaurivage -0.26 -0.26 0.26 0.56 0.000 

Matawin 0.35 0.51 0.51 0.000 

Etchemin 0.56 0.3 0.32 0.001 

Bras du 
0.25 0.53 0.43 0.000 

Nord 

Ouelle 0.72 0.41 0.55 0.000 

York 0.65 -0.32 0.37 0.000 

Godbout 0.41 -0.64 0.42 0.67 0.000 
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Table 8. Results of stepwise multivariate regression of spring flow peak magnitude 
Qmax and the six antecedent factors (predictors) for the twelve basins after changing the 
transfer time (x4) and adding two antecedent factors of maximum intensity of rainfall 
and snowmelt. Ali Adjusted R2 are significant with p-value < 0.0.1. 

Standardized regression coefficients 

Basin 
Adjusted 

Rain Rain MeIt MeIt 
Gmax Smean 

Rainint MeItint R2 

sum int sum int max max 

Acadie 0.75 0.60 

Nicolet 0.41 0.81 0.44 

Bécancour 0.42 0.51 -0.71 0.74 

Famine 0.39 0.433 0.31 0.44 

Batiscan 0.29 0.59 0.28 

Beaurivage 0.46 0.20 

Matawin 0.33 0.51 0.28 0.24 0.50 

Etchemin 0.51 0.33 0.40 

Bras du 
0.59 0.41 0.41 

Nord 

Ouelle 0.52 1.16 0.44 0.53 

York 0.49 -0.308 -0.308 0.52 

Godbout 0.23 0.92 0.23 0.60 
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Table 9. Results of stepwise multivariate regression of spring flow peak timing Qmax _ T 
(DOY) and the six antecedent factors (predictors) for the twelve basins after changing 
the transfer time (x4) and adding two antecedent factors of maximum intensity of 
rainfall and snowmelt. 

Standardized regression coefficients 

Basin 
Adjusted 

Rain Rain Melt Melt 
Gmax Smean 

Rainint Meltint R2 

sum int sum int max max 

Acadie 0.61 -0.33 0.57 

Nicolet -0.50 -0.50 0.50 

Bécancour 1.\7 0.72 0.65 

Famine -0.14 -0.35 0.54 -0.14 0.55 

Batiscan -0.49 -0.49 0.5\ 0.53 

Beaurivage -0.54 0.55 0.44 -0.54 0.62 

Matawin 0.52 -0.37 0.33 0.51 

Etchemin 0.54 0.27 

Bras du Nord 0.28 0.52 0.46 

Ouelle -0.34 -0.34 0.60 

York 0.28 0.61 -0.34 0.48 

Godbout 0.30 -0.65 0.42 0.64 
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Fig. 1. Selected basins (blue) and snow survey measurement locations (red stars) 
in southern Quebec province. Basins ID : 1 Acadie, 2 Nicolet, 3 Bécancour, 
4 Famine, 5 Batiscan, 6 Beaurivage, 7 Matawin, 8 Etchemin, 9 Bras du 
Nord, 10 Ouelle, Il York, 12 Godbout. Basins IDs are ranked according to 
latitude, from South to North. 
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Fig. 2. Spring flood window from March to June and pre-event analysis period. 
The thick vertical stippled line indicates the automatically detected flood onset 
date and the thin vertical stippled line the peakflow date. The pre-flood 
analysis period extends from the onset date to x4 days before the peakflow 
date, where x4 is the transfer time (see text). Black curve: streamflow; blue 
bar: rainfall; red line: snowmelt. 
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(DOY) observed in the 12 basins. 



89 

400 
0 

0 

~ 300 0 
E 
S 
~ 200 
:::J 
ë5 
> 100 

0 
2 3 4 5 6 7 8 9 10 11 12 

0.8 , ~ 
§ 0.6 
U 0 
tu 
U: 0.4 

e o ~ 0.2 

0 
2 3 4 5 6 7 8 9 10 11 12 

Basin ID 

Fig. 4. Boxplots showing the distribution of (a) the snowmelt volume (black) and 
rainfall (grey) in the pre-flood period for each basin and (b) the relative 
contribution of these volumes to the total runoff volume during this period. 
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Fig. 5. Correlogram showing Pearson's linear correlation coefficient for ail antecedent 
factors (columns) and spring flow peak magnitude (Qmax) for the twelve 
basins (rows). Significant correlation (p < 0.05) are highlighted in bold; blue 
colors indicate negative correlations and brown colors positive correlations. 
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Fig. 6. Correlogram showing Pearson's linear correlation coefficient for aIl antecedent 
factors (columns) and day of occurrence (DOY) of peak spring streamflow 
Qmax for the twelve basins (rows) . Significant correlation (p < 0.05) are 
highlighted in bold; blue colors indicate negative correlations and brown 
colors positive correlations_ 
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CHAPITRE IV 

CONCLUSION GÉNÉRALE 

L'objectif principal de ce projet était d'étudier les caractéristiques 

hydrométéorologiques des crues printanières au Québec à l'aide d'un modèle 

hydrologique simplifié (modèle GR4J) et un modèle de fonte à base de degré/jours 

(modèle Cemaneige) pour la compréhension des facteurs qui préconditionnent les crues 

printanières au Québec. Les paramètres du modèle GR4J et les paramètres de 

Cemaneige liés à la neige ont été calés et validés sur 12 bassins des affluents naturels du 

fleuve Saint-Laurent au Québec dans le but d'améliorer la simulation du manteau nival 

avec quatre stratégies de calibration. La multiplicité des jeux optimums qui donnent la 

même performance équifinalité et la faible identifiabilité de certains paramètres sont les 

principaux problèmes rencontrés pour identifier le jeu de paramètres optimal dans un 

modèle hydrologique. La simulation du stock de neige est aussi un autre enjeu rencontré 

lors de l'utilisation de ces modèles simplifiés. 

La contribution de la première partie de cette étude (chapitre II) est d 'étudier 

l'apport de l'utilisation des points de mesure in situ au Québec dans la calibration sur la 

performance globale, la simulation de couvert nival et l' équifinalité des paramètres. 

Nos principaux résultats montrent que: 

1) La calibration sur les débits observés seulement a donné une bonne simulation 

de débit, mais une mauvaise simulation de couvert nival dans les deux 

premières méthodes où la calibration est faite seulement avec le débit observé. 

La calibration du modèle de fonte séparément dans la troisième méthode a 

montré un surajustement du modèle à la simulation de l'ÉEN et une 

dégradation significative globale au niveau de la simulation des débits par 

rapport aux deux autres méthodes utilisant seulement les débits observés. 

Par contre, la calibration multi-objectif par AMALGAM sur les observations 
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des débits et d'ÉEN a donné la meilleure simulation de couvert nival et de 

débit. Cette amélioration de la simulation de l'ÉEN sans dégrader la simulation 

des débits montre l'importance d'inclure les points de mesure in situ au 

Québec pour améliorer la simulation de la neige dans un modèle hydrologique 

conceptuel. 

2) L'incertitude structurelle de modèles GR4J due à la forte interaction et la 

faible identifiabilité des paramètres est la principale source d ' équifinalité des 

paramètres. En effet, l'étude de sensibilité effectuée dans le cadre de cette 

étude a montré que le modèle est le plus sensible au coefficient d'échange (x2) 

(échange avec la nappe) pour ajuster le bilan en eau. Le nombre de jeux 

équifinaux et le test d'identifiabilité dynamique montrent également la faible 

identifiabilité de certains paramètres. La corrélation entre les jeux équifinaux 

démontre la compensation entre certains paramètres du modèle GR4J. 

3) La calibration multi-objectif a montré aussi sa capacité à réduire la dispersion 

des paramètres équifinaux. 

4) Les résultats ont également montré que les incertitudes qui peuvent être 

induites en utilisant le jeu de paramètres optimal plutôt que les jeux de 

paramètres équifinaux pour la détection de l'évolution du débit maximum 

printanier dans un contexte des changements climatiques dans les bassins 

dominés par la neige ne sont pas négligeables, d'où l'importance de prendre en 

compte ce type d'incertitude dans les études d'impact des changements 

climatiques. 

La conclusion de cette première partie est que la structure grossière des 

modèles conceptuels, la faible identifiabilité des paramètres et l'absence de données 

complémentaires ouvrent la porte au surajustement des modèles. L'ajout d'information 

complémentaire (les points de neige) aux débits pour mieux contraindre ces paramètres 

semble être la meilleure façon pour simuler tous les processus correctement et réduire la 

dispersion des paramètres. 
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L'objectif de la deuxième partie était de déterminer les principaux facteurs qui 

contrôlent la variabilité interannuelle des pics de crue printanière, ainsi leur date 

d'occurrence. Les principaux résultats montrent que globalement, le classement des 

facteurs de préconditionnement obtenus par la régression linéaire et qui expliquent la 

variabilité interannuelle de la magnitude des crues printanières à travers les douze 

bassins est le suivant : (i) l'intensité de fonte (moyenne et maximale), (iii) la somme de 

la fonte, (iv) la somme de la pluie, (v) le pic du SWE (Gmax) et (vi) de l'humidité du 

sol. La date d'occurrence est contrôlée dans la plupart des bassins par la somme et 

l'intensité de pluie pré-crue et la date d'occurrence étant plus hâtive lorsque les pluies 

sont plus abondantes et intenses. Dans les bassins les plus au nord, dominés par la neige 

et avec un régime hydrologique nival, c'est la pluie qui contrôle le plus les variations 

interannuelles des pics de débit, tandis que dans les bassins plus pluvieux du sud, 

la variabilité de couvert nival contrôle davantage cette variabilité. Il semble également 

que pour les bassins plus boisés, la fonte est naturellement plus graduelle, de sorte que 

les variations du stock de neige ont moins d'influence que la pluie sur la variabilité de la 

magnitude des crues. En revanche, pour les bassins plus agricoles qui ont une fonte 

naturellement plus rapide c' est la variation du stock de neige qui a une plus grande 

influence sur la magnitude des crues. 
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