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Résumé 

La dépendance aux combustibles fossiles et l'effet de serre peuvent être réduits par 

l'électrification du train de puissance des véhicules. Afin d'assurer une réelle diminution de 

la pollution, l'énergie électrique doit être générée par des sources vertes et renouvelables. De 

nos jours, les véhicules à batterie (BEV) montrent une acceptation du marché et sont à zéro 

émission locale, mais il a deux inconvénients principaux : un long temps de recharge et une 

autonomie limitée. La combinaison d'une pile à combustible en tant que source primaire et 

d'une source secondaire telle qu'une batterie ou un super-condensateur bénéficie d'atouts 

particuliers, tels qu'un rendement plus élevé que les moteurs à combustion interne, plus 

d'autonomie que les BEV et une maintenance aisée. Un système de pile à combustible à 

plusieurs stacks (MFCS) est un ensemble de piles à combustible indépendantes (P AC) de 

faibles puissances utilisé en lieu et place d'une PAC de forte puissance. Ainsi, les différentes 

modules peuvent fonctionner ensemble pour prolonger la durée de vie du système et 

augmenter les performances. Néanmoins, le Tableau 1-1 présente évaluation du coût du 

système de 25 kW à mono et multi PAC, ce qui montre que le coût initial d'un MFCS est plus 

élevé. La répartition de puissance entre les P ACs doit être contrôlé par une stratégie de 

gestion de l'énergie. Les stratégies peuvent être catégorisées en deux grands groupes : basées 

sur des règles et basées sur l'optimisation. Le groupe à base de règles comprend des règles 

déterministes et logique floue, qui peuvent apparaître sous la forme d'approches 

conventionnelles, adaptatives et prédictives. Le groupe à base d'optimisation est composé 

d'une optimisation globale et en temps réel dans laquelle une fonction de coût est utilisée 

pour définir la consommation de combustible et l'efficacité du système. Cette thèse traite de 
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la conception d'une stratégie en ligne pour un MFCS dans une connexion parallèle, comme 

cela est montré dans la Figure 1.4, pour améliorer l'économie de combustible ainsi que la 

durée de vie des P AC. À cet égard, une stratégie à deux couches est proposée pour partager 

la puissance entre quatre P ACs et une batterie. La première couche (locale à chaque P AC) 

est responsable de la détermination en tout temps de la puissance maximale réelle et de 

l'efficacité de chaque PAC, étant donné que la variation des conditions de fonctionnement et 

le vieillissement influencent sensiblement les performances des P AC. Cette couche est 

composée d'un modèle semi-empirique et d'un filtre de Kalman. Ces modèles contiennent 

des paramètres physiques significatifs, qui permettent à un expert d'analyser les résultats de 

manière pratique. Dans ce travail, un modèle électrochimique proposé par Amphlett et al. est 

utilisé. Ce modèle est pour un nombre de cellules connectées en série et suppose le même 

comportement pour toutes les cellules. Dans ce modèle, la tension de sortie de la pile PEM 

(VFc) est perçu comme la somme du potentiel de cellule réversible (ENernst) et de trois chutes 

de tension, à savoir activation (Vact ), ohmique (Vohmic) et concentration n'con)' 

Le filtre utilisé met à jour les paramètres du modèle pour compenser les dérives de 

performance des FC. Le modèle discuté présente huit paramètres à identifier, qui sont listés 

dans au Tableau 2-1, avec les plages de variation correspondantes. L'intégration du filtre de 

Kalman pour estimer les paramètres du modèle d'une P AC réelle est illustrée à la Figure 2.6. 

Le filtre de Kalman est considéré comme un estimateur optimal et il peut estimer les 

paramètres d'intérêt à partir d'observations imprécises et incertaines. La Figure 2.7 présente 

un profil de courant et la tension et la température de mesure d'une PEMFC Horizon de 

500 kW avec un cycle de conduite UDDS d'échelle, qui représente la condition de conduite 

urbaine. Dans la Figure 2.7, le tracé c) indique la comparaison de la tension estimée par la 
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modélisation en ligne avec la tension mesurée de la PAC. Comme il est observé, le modèle 

en ligne proposé est capable d'estimer la tension avec une précision satisfaisante. La Figure 

2.8 compare la courbe de polarisation obtenue et la courbe de puissance du modèle en ligne 

avec les courbes de la P AC réelle. Selon cette figure, le modèle peut prédire la puissance 

maximale et le comportement de polarisation de la PAC avec une précision acceptable. 

La deuxième couche (gestion globale) est responsable de la répartition de la puissance entre 

les composants. Cette couche prend en compte deux entrées par P AC, la puissance et 

l'efficacité maximales déterminées en temps réel par la première couche, ainsi que l'état de 

charge de la batterie (SOC) et la puissance demandée par le train de puissance pour effectuer 

le partage de puissance. La stratégie proposée, appelée stratégie de machine d'état adaptative, 

est illustrée à la Figure 3.5. Il utilise les deux premières entrées pour trier les PAC par la 

puissance maximale et les autres entrées pour faire l'allocation de puissance. L'objectif 

principal de cette stratégie est de minimiser le nombre de P AC pour fournir l'énergie requise 

et utiliser les PAC de manière efficace. Pour ce faire, elle utilise chaque P AC du point 

d'efficacité maximum jusqu'à la puissance maximale, en commençant par le P AC avec les 

meilleures performances. Les résultats finaux de la stratégie suggérée sont comparés à deux 

méthodes de partage de puissance couramment utilisées, à savoir Daisy Chain et Equal 

Distribution. La validation de la performance de la stratégie proposée est réalisée sur un banc 

d'essai développé au moyen de la technique « hardware-in-the-Ioop » (HIL). L'émulateur 

HIL développé peut être considéré comme un émulateur HIL complet pour le véhicule Némo, 

qui est un véhicule de laboratoire. Les spécifications de ce véhicule sont énumérées dans le 

Tableau 2-1. Comme on peut le voir sur la figure 1.4, il est composé d'une P AC réel, qui est 

un PEMFC Horizon 500 W à cathode ouverte, trois émulateurs PEMFC, qui seront discutés 
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au Chapitre 2, un modèle mathématique de batterie et quatre convertisseurs de courant 

continu. Afin d'étudier la performance de la stratégie proposée, trois scénarios différents ont 

été conçus. Dans le premier scénario, un profil de puissance de rampe a été utilisé pour 

montrer clairement la différence entre la distribution de la puissance entre les sources par les 

trois stratégies. Le deuxième scénario traite de l'évaluation des performances des stratégies 

tout en utilisant un vrai profil de conduite du véhicule Némo. Enfin, le dernier scénario a été 

conçu en utilisant un très long profil de puissance aléatoire pour évaluer le taux de 

dégradation des P ACs. Les résultats de la stratégie proposée indiquent une amélioration 

prometteuse de la performance globale du système et un accroissement de la durée de vie du 

système en réduisant le temps de fonctionnement du FC avec un taux de dégradation plus 

élevé comme le montre la Figure 3.15. 
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Abstract 

This thesis deals with design of an online energy management strategy (EMS) for a multi­

stack fuel cell system (MFCS) to enhance the fuel economy as well as the fuel cells (FCs) 

lifetime. In this respect, a two-Iayer strategy is proposed to share the power among four FCs 

and a battery pack. The first layer (local to each FC) is held solely responsible for constantly 

determining real maximum power and efficiency of each FC since the operating conditions 

variation and ageing noticeably influence FCs' performance. This layer is composed ofa FC 

semi-empirical model and a Kalman filter. The utilized filter updates the FC model 

parameters to compensate for the FCs ' performance drifts . The second layer (global 

management) is held accountable for splitting the power among components. This layer takes 

two inputs per each FC, updated maximum power and efficiency, as well as the battery state 

of charge (SOC) and power train demanded power into account to perform the power sharing. 

The proposed EMS, which is called adaptive state machine strategy, employs the first two 

inputs to sort the FCs out and the other inputs to do the power allocation. The ultimate results 

of the suggested strategy are compared with two commonly used power sharing methods, 

namely Daisy Chain and Equal Distribution. The results of the suggested EMS indicate 

promising improvement in the overall performance of the system. The performance 

validation of the proposed strategy is conducted on a developed test bench by means of 

hardware-in-the-Ioop (HIL) technique. 
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Chapitre 1 - Introduction 

1.1 Motivation 

Anthropogenic emission of carbon dioxide has been dedared as one of the leading causes 

of global warming around the world. In this regard, transportation sector is recognized as a 

primary contributor of emitting a noticeable amount ofthis greenhouse gas to the atmosphere 

mainly due to the combustion of fossil fuels such as gasoline in internaI combustion engines 

(lCEs). Passenger cars are viewed as the principal source of transportation-related 

greenhouse gas discharge. Therefore, replacing the fossil fuel dependent energy sources by 

cleaner ones to power the vehicles can be stated as a vital step to defuse this global crisis. 

Thanks to the technological ad van ces in the electrification of vehicles ' powertrains, 

several cleaner substitutes have been proposed for conventional vehicles. Hybrid electric 

vehicle (HEV) is one of the commercially available candidates, which is composed of a 

smaller ICE and an electric propulsion system. Although HEV generates less pollution than 

the conventional vehicle, it is still dependent on fossil fuels. Another potential substitute is 

pure battery electric vehicle (BEV), which is run on just batteries. BEV is a zero-emission 

vehicle. However, it suffers from two main disadvantages oflong recharging time and limited 

driving range. The discussed drawbacks of the available options have created the basis for 

the advent of fuel cell system technology in the vehicular applications. 
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Among various types of fuel cells, proton exchange membrane fuel cell (PEMFC) has 

interesting characteristics, like low-temperature operation, high power density, and solid 

electrol yte to be utilized in a fuel cell vehicle (FCV) [1]. FCV s do not possess the restrictions 

of their rivaIs and benefit from particular assets, such as higher efficiency than ICEs, more 

autonomy than BEVs, easy maintenance, and being eco-friendly, by comparison [2]. FCVs 

powertrain is composed of a PEMFC as the primary power source, and a secondary source . . . . 

such as battery pack or/and supercapacitor, as shown in Figure 1.1. FCV sare experiencing a 

steady growth in the automotive market and several car companies have started introducing 

their products such as Honda FCX Clarity (2007), Mercedes-Benz F-Cell (2010), Hyundai 

Tucson FCEV (2014), Toyota Mirai (2015), Riversimple Rasa (2016), and Honda Clarity 

Fuel Cell (2016). 

Hydrogen 

Battery 
Pack 

Electric 
Motor 

Wheels 

Figure 1.1 Schematic diagram of a FCV drivetrain system 

However, sorne challenges have been posed to the development of this technology and 

FCVs need to rise to these challenges to be able to penetrate into the automotive market [3]. 

Sorne ofthese challenges are related to the renewable hydrogen production with comparable 

cost to fossil fuels , advances in material-based hydrogen storage, and providing the necessary 

infrastructures such as hydrogen stations, which are all in progress parallel to one another. 

Apart from the stated ongoing purposes, FCV s need to attract public attentions by offering a 

feasible substitute for conventional vehicles, particularly in terms of performance, reliability, 
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durability, and cost, to succeed in this super-competitive market. The existing cost 

projections ofFCVs are mainly based on the presumption oflarge series production, usually 

500,000 units / year. Therefore, in addition to performance and reliability, reaching the 

economy of scale can be considered highly important in the success of this technology in the 

confronted competition. The concept of using multi-stack fuel cell system (MFCS), which 

has been put forward recently [4] , can be considered as a potential solution for the mentioned 

challenges regarding performance, reliability, and cost. A MFCS is an arrangement of low­

power independent FCs, rather than one high-power FC, which can work together [5]. 

MFCSs can be configured in a way to lead to several economical and technical merits. In 

tenns ofperfonnance, a MFCS can bring about high level of efficiency for the whole system. 

It is mainly due to the fact that a single fuel cell system has just one optimal operating point 

as opposed to a MFCS which has several optimal points. Regarding the reliability, the 

modular configuration in a MFCS, i.e. one converter per FC allowing independent control, 

provides a degraded mode of operation which is not accessible in single stack systems. This 

modularity makes the PEMFC system fault tolerance and enables the system to keep 

operating in case of a FC malfunction. Concerning the cost, it can be stated that employing a 

MFCS can help reaching the economy of scale and large-scale production numbers in the 

intended source of power. In fact, in a MFCS, the same module ofPEMFC, which is produce 

in one production line, can be used for a wide range application in tenns of the rated power 

because just the number of modules can be increased or decreased to meet the demand. On 

the other hand, the initial cost development of a MFCS is higher than a single stack system 

[6]. However, this drawback can be compensated by the discussed scale economy of modular 

configuration [7, 8]. The use of another source of energy, such as a battery pack, 

supercapacitor etc., besides a FC seems to be vital in vehicular applications due to the fact 
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that FCs have slow dynamics and are not capable of storing energy. The extra source reduces 

degradation rate of the FC by absorbing the power peaks and is also used for energy recovery. 

Common structures for hybridization of FCV s are FC-battery, FC-SC, and FC-battery-SC. 

AlI of these structures have their own advantages and disadvantages [9] . However, among 

them, FC-battery structure has been widely employed in practical FCV s [10, Il]. Among the 

existing rechargeable batteries, Li~ion battery is considered as a potential secondary source 

in FCVs since it has the merits of high capacity, several charge-<iischarge cycles and 

acceptable cost [12]. A cost breakdown of single and multi-fuel cell system of 25 kW is 

presented in Table 1-1. In this comparison, the same battery and hydrogen tank have been 

used in order to preserve the same energy capacity and compare capital costs, though the two 

systems could present different performances. 

Table 1-1 25 kW Material handling equipment PEM MFCS analysis per unit [13] 

Component Single FC MFCS 

Battery $ 10,000 $ 10,000 

H ydrogen tank $ 3,373 $ 3,373 

DC/DC converter $ 6,024 $ 4,990 

Auxiliaries $ 7,717 $ 15,968 

Labor cost $ 2,271 $ 3,527 

Fuel cell $ 6,972 $ 8,740 

Total $ 36,357 $ 46,598 

With aIl the promising features of a MFCS and hybridization of sources, the performance 

of a FCV is influenced by a number of factors mainly due to the several sources with various 
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features. In this respect, the operating points of different components need to be determined 

efficiently by an energy management strategy (EMS) to increase the overall performance of 

the system. Indeed, this is the design of a suitable EMS which makes most of the above­

mentioned advantages of MESs, such as reliability, durability, degraded mode operation, and 

even cost decline, feasible. The flexible structure of the MFCSs provide the powertrain with 

more degrees of freedom in terms of designing an EMS though the system becomes more 

complex to control. 

1.2 Literature review 

The overall performance of a FCV in terms of fuel or energy consumption significantly 

depends on the efficient coordination of powertrain component. TraditionaIly, an EMS 

attempts to optimize the fuel consumption of the system, without sacrificing the driving 

performance of the vehicle. It manages this important task through controlling the power 

flow between the PEMFC, battery, and the drive train. A well-designed EMS should assure 

reaching the following terms: 

• The demanded power is always met by the output power of the electric motof. 

• The state of the energy is always maintained within an optimal range in the battery. 

• The PEMFC system operates within its optimal operating region. 

Several EMSs have been utilized for splitting the power in the previously-discussed 

structures in FCVs. The majority of EMSs deal with a single-stack FC system. However, 

these methods are applicable to a MFCS with slight modifications. The existent EMSs in the 

literature fall into two categories ofrule-based and optimization-based [9, 14], as represented 

in Figure 1.2 . 
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Figure 1.2 Classification of energy management strategies 
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The rule-based group comprises deterministic and fuzzy rule-based [15], which can 

appear in the form of conventional, adaptive, and predictive approaches. The optimization-

based group is composed of global and real-time optimization in which a cost function is 

utilized to define fuel consumption and system efficiency. As mentioned earlier, there are a 

few works in the literature to touch on the subject of EMS design for MFCSs. 

The following works fit into the first category of the presented EMSs. In [16] a simple 

rule-based EMS, composed of four FCs and a battery, is investigated in simulation. This 

control strategy considers 4 cases based on the SOC of the battery to adjust the requested 

energy from the FCs. In [4] , a two-layer EMS is applied to a MFCS. The first layer is astate 

vector machine, which decides when to start or stop a FC based on the demanding power. 

The second layer sets the power level for the active FC by means of a rule-based algorithm. 

In [17], two simple rule-based algorithms are implemented in a MFCS with a parallel 

structure. The main purpose of the mentioned work is to demonstrate that parallel architecture 

can lead to a modular system in which the FC system is able to keep working even after 

losing one of the FCs. In [18] , three power sharing algorithms, namely equal distribution, 

daisy chain, and optimal power splitting are compared. The comparison reveals that the 

optimal power splitting approach performs much better in high power region. In [17, 19], the 



21 

first two power sharing algorithms of the previous work are tested for a degraded mode 

operation scenario, where one of the FCs stops working. The influence of driving condition 

over the design of an EMS for a single fuel cell system has been considered in [20, 21] , which 

is valid and expandable for multiple source systems. An optimized fuzzy logic controller 

(FLC) considering different traffic conditions is suggested in [21], and an adaptive FLC 

based on pattern recognition is proposed in [20] . These manuscripts indicate that the . . . . 

perfonnance of a FCV is strikingly affected by the driving condition variations, and this is 

due to the fact that the fuel consumption is the direct result of the driving patterns fonned by 

the traffic condition. Another type of rule-based EMS which has been successfully tested for 

multiple source systems is state machine based strategies [22-24]. This type of EMS can 

coordinate multiple units to meet the power demand while respecting the intrinsic 

characteristics of the sources. To do so, the power distribution is done with respect to the 

state change and the safe operating zones of the power sources. In brief, the rule-based 

strategies are simply implementable in real-time applications. However, they might result in 

the operation far from the optimal since the design is not based on the infonnation of the 

whole trip. This weakness can be compensated by combining this methodology with other 

principles such as operating point tracking and optimization methods. 

The second category of EMSs is based on optimization strategies which minimize a 

defined cost function by using global and real-time optimization techniques. Global 

optimization strategies usually have a priori knowledge of driving cycle, which can be 

translated to the demanded power from the FCV. These methods are usually applicable in 

the design of offline strategies, which can be utilized as a reference for evaluating new 

strategies. They also require a lot of time and cannot be used for real-time applications. In 



22 

[25] , genetic algorithm is utilized to minimize the fuel consumption in a range extender 

vehicle by investigating several scenarios in terms of architecture and driving cycles. In [26] , 

a multi objective optimization problem has been defined with the aim ofminimizing the fuel 

consumption and vehicle cost by means of particle swarm optimization method. On the other 

hand, real-time optimization methods use an instantaneous cost function which only depends 

on the present data. In [27] , a neural network modeling strategy is proposed to predict the . . . 

behavior of a MFCS composed of four FCs. The application ofthis modeling technique is in 

the EMS design by means of model predictive control. There sorne other methods which use 

the optimal trajectory achieved by global optimization methods and try to devise a mIe based 

method to improve this trajectory response for a wide range of conditions or cases. In [28] , a 

multi-objective optimization method is proposed to ameliorate fuel economy as weIl as 

system durability. The proposed method is designed based on the results achieved by 

dynamic programming, and then the performance of the system is improved by altering the 

size of the battery. In [29] , a combinatorial optimization approach is utilized to improve the 

decision making quality of the EMS off-line by a piecewise linearization of the 

supercapacitor power los ses curve. In [30] , a real time optimization strategy is implemented 

to reduce the hydrogen consumption, by searching the global maximum point in a virtual 

environment. Convex programming formulation, which benefits from a fast computational 

time, is proposed, in [10] , to optimize the EMS as weIl as the main component sizes. In [31] , 

a real time linear optimization is proposed for a MFCS, to find the optimal subset of FC to 

reach a constant demand during a specific time. This method estimates the remaining useful 

life to deduce the evolution of maximum and nominal power of each FC. To sum up, the 

global optimality can be reached by having the trip information in advance. Other cases may 
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lead to real-time optimality by defining an instantaneous cost function and introducing the 

necessary limitations to ensure self-sustainability of the electrical path. 

The majority of the existing EMSs, regardless of their category or type, are premised 

upon Fe maps or unvarying-parameter mathematical models. In this light, these results 

remain valid only within a specific operating range. However, the energetic performance of 

a Fe alters by the operating conditions and degradation level variations through the time. 

Sorne solutions based on extremum seeking strategies have been proposed to deal with the 

moving characteristics of the Fe systems. The frrst suggestion is to use the maximum power 

point tracking methods, such as perturb and observe or hill climbing, to track the real 

performance of a Fe. Such strategies have been used in [32-34] for EMS purposes due to 

their convenient implementation. However, these methods are not very suitable for 

simultaneous identification of several characteristics, such as maximum power and efficiency 

points, in online applications since they require a separate search stage for each feature 

extraction. The second solution is the use of a parameter identification method coupled with 

an optimization algorithm. The identification is performed by using an online parameter 

estimation method and a greylblack box model [35] . Although the black box based strategies 

are easily applicable in real-time situations, they do not provide any insights into the physical 

phenomena inside the Fe and might become unreliable in case of confronting new situations. 

Moreover, the analysis of the results become more difficult with black box models due to the 

ambiguous input-output relationships. In this regard, the employment of semi-empirical 

models has come under attention. These models contain meaningful physical parameters, 

which enable a Fe expert to analyze the results conveniently. In [36, 37] , a semi-empirical 

Fe model, which is only based on cUITent, is utilized and its parameters are identified by 
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means ofrecursive filters to update the states of the FC and an optimization algorithm is then 

employed to find the operating points. The main idea in this line of work is to update the 

semi-empirical model parameters by means of a recursive algorithm and then apply the EMS. 

Combining the operating point tracking with the EMS design has been able to improve the 

performance of a single-stack fuel cell system, as reported in [38). In this regard, this concept 

seems to be worthwhile to be tested in the MFCSs. 

With respect to the reported manuscripts, it is c1ear that the use of real-time techniques 

in the design of adaptive EMSs to respect the real behavior a PEMFC in a MFCS demands 

more attention. Several online and real-time EMSs for the application ofFCVs can be found 

in the literature. However, the majority ofthese works deal with single-stack systems. Even, 

among the existed real-time single-stack EMSs, only few ofthem have tried to consider the 

real characteristics ofthe PEMFC while designing the EMS. Another worth mentioning point 

is that most of the existent investigations of PEMFC behavior lack the experimental 

validation. 

1.3 Objective 

The conducted literature study has disc10sed the fact that a MFCS has several advantages 

over a single-stack system, such as increased efficiency, modularity, and degraded mode 

operation. However, benefiting from these advantages requires a suitable EMS design to 

provide the basis for using them. One of the most important factors to have such a strategy 

is to incorporate the real-behavior tracking of a PEMFC, which goes under performance drifts 

due to various reasons such as degradation and operating conditions variations, into the EMS 

design. In this regard, the principal objective of this work is to propose a new adaptive state 

machine based EMS for a MFCS with a parallel configuration, as shown in Figure 1.3. The 
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MFCS of this work is composed of four PEMFCs, and a battery pack, which is mainly 

responsible for absorbing the peaks. The PEMFCs are connected to the DC bus individually 

by a DC-DC converter to increase the system redundancy. This strategy is indeed an online 

model based power-sharing methodology premised on a state machine algorithm. The state 

machine algorithm distributes the power among the PEMFCs and the battery pack. In the 

meantime, the strategy keepstrack ofthe PEMFCs state ofhealth by determining the present 

maximum power point of each. In case of detecting maximum power drifts in the PEMFCs, 

the strategy changes the order based on which it demands power from each PEMFC. It should 

be noted that the online modeling is performed by using an adaptive filter to update the 

parameters of a semi-empirical PEMFC model. 

Informatian Measurements 

Energy 
management Reference 

'--------~L__.:.st~ra:::te~g~y _r--...... pawercantral 

Demanded 
Power 

Figure 1.3 MFCS configuration a10ng with the EMS demonstration 
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1.4 Methodology 

A three-step methodology has been followed to complete this thesis. The first step is to 

review the literature to provide state-of-the-art information about the proposed topic. In this 

regard, the recent works mainly in the area of EMS designs have been scrutinized, and the 

areas which are in need of more attentions have been discovered. These gaps have formed 

the chief objectives of this project, discussed in the previous section. In this regard, anew 

adaptive state machine based EMS is put forward for the presented MFCS in Figure 1.3 . 

The second step of this work deals with the development of a suitable PEMFC model 

for the EMS design. This step comprises two important parts. The first part copes with 

proposing a simple static online model to track the behavior of the real PEMFC. To do this, 

Kalman filter has been used to update the parameters of a PEMFC semi-empirical model. 

The second part ofthis step is about developing an emulator to imitate the behavior of a real 

PEMFC. The main reason for designing an emulator is to be used in the hardware-in-the­

loop (HIL) simulation for validating the EMS. 

The last step of this work is designing an EMS for a MFCS. The proposed EMS of this 

work has two layers. The first layer is responsible for updating the semi-empirical model and 

the second layer distributes the power among the energy sources, which are four PEMFCs 

and a battery pack. It should be noted that as opposed to most of the existing EMS design 

researches, the results of this work have been validated by implementing the proposed 

strategy on a developed HIL in the Hydrogen Research Institute (IRH). HIL, which inc1udes 

the insertion of real components in the simulation loop, is a beneficial step to develop new 

EMS to test the control limitations and components restraints. Since developing a complete 

multi-stack PEMFC test bench is expensive, HIL emulator is used to validate the efficiency 
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of the proposed EMS. Figure lA presents the utilized HIL simulation in this work. As it can 

be seen, it is composed of a real PEMFC, which is an open cathode 500-W Horizon PEMFC, 

three PEMFC emulators, which will be discussed in Chapter 2, a battery mathematical model, 

and four simulated DC-DC converters. 

H2tank 

Pressure 
regulator 

E lectronic load 

Supply 
valve 

1.5 Thesis outline 

• VFC4 • TFC4 

• iFC4 H2.FC4 

Figure lA The full-scale HIL 

FPGA 

The rest of this document is organized as follows. Chapter 2 reVlews the PEMFC 

modeling methods, along with a detailed discussion of PEMFC online modeling and 

emulator design. Chapter 3 provides data on the suggested adaptive EMS and MFCS 

structure of this work. Chapter 4 investigates the obtained results of simulation and 

implementation stages. Finally, the conclusion is given with sorne suggestions for future 

steps conceming this work in Chapter 5. 
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Chapitre 2 - Modeling and Online Identification of 
a Fuel Cell System 

2.1 Introduction 

Mathematical modeling plays a key role in the technical development of PEMFCs since 

it can unveil a number of features about the performance of the device and how to enhance 

it. GeneraIly, PEMFC modeling methods can be fallen into two categories of steady-state and 

dynamic. Each category has its own advantages, disadvantages, and more importantly its own 

application. Depending on the application, one chooses the suitable group. Regarding the 

EMS design, which is the main focus of this work, steady-state models are usually used to 

devise the strategy [39]. This choice is firstly due to the fact that fuel cell system has a slow 

dynamic and will be exposed to steady demanded power. Secondly, in hybrid systems, the 

energy storage devices, such as battery, usually deals with the high dynamic. Therefore, a 

suitable PEMFC steady-state model needs to be selected for the purpose of EMS design in 

this work. However, since the proposed EMS of this work is an adaptive strategy based on 

recursive filters , the filters need a reference input signal to update the steady-state model 

parameters. In this regard, an emulator, which is a dynamic PEMFC model, needs to be 

designed to provide the filters with the necessary inputs. 

This chapter starts with providing the information on the utilized fuel cell system, which 

is a low speed vehicle. Subsequently, it outlines the selection of a steady-state model along 

with the integration of an adaptive filter to update the model online. Then, the obtained results 

of online modeling are discussed. Moreover, the development of an emulators is described 
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in details and the outcomes are evaluated. This chapter finishes by giving a synopsis of the 

main points of each investigated section. 

2.2 Power train model 

In this work, the developed HIL emulator can be considered as a full scale HIL emulator 

for Nemo vehicle, which is a laboratory-scale vehicle. The specifications of this vehicle are 

listed in Table 2 1 . 

Table 2-1 Vehicle specification [40] 

Dimension 

L:W:H 3.48 m: 1.52 m : 1.90 m 

Tire 175170 R13 

Weight 896 kg 

Max Load 453 kg 

Driving performance 

Maximum speed 40 km/h 

Acceleration 6.5s (0-40 km/h) 

Autonomy 115 km 

Transmission 

Engine ACX-2043; 4.8kW 

Transmission 12; 44:1 

Batteries 

Battery series 9x US 8VGCHC XC2 

Battery Type Lead-acid deep cycle 

Battery charger 1.3 kW 



30 

The requested power from the traction system has been estimated by the following power 

train model using the driving cycle speed v as the input [40). 

(2.1) 

Where Face is the acceleration force, Fr is the friction of the tires, Fad is the aerodynamic 

drag resistance, and Fer is the resistance of climbing. For this case, it has been assumed that 

the vehicle is on a fiat area and both of the friction and drag resistance are uniform and 

constant. 

The friction of the tire is calculated by: 

Fr = Crr * mtotal * g * cos aslope (2.2) 

Where Crr is the coefficient of friction (0.015), mtotal the total mass of the vehicle (896 

kg), g is the standard acceleration due to gravit y (9.81 m/s2 ) , and aslope is the slope of the 

road (0°). The drag force caused by the airfiow is calculated by the following equation, which 

only considers a uniform contacting surface. 

Fad = 0.5 * Pair * Cx * Aaero * v 2 (2.3) 

Where Pair is the air density (1.2 kg /m3
) , Cx is the drag coefficient (0.42), Aaero is the 

contact surface area (4 m 2), and v is the vehicle speed (km/ h). The acceleration force is 

calculated by multiplying the acceleration of the vehicle (ace) by the total mass (m). 

Face = aacc * m (2.4) 

After calculating the requested power (PtraJ , it is sent to the energy management 

strategy block. The first thing which is checked in this block is the battery soc. If the battery 

needs to be charged, one PEMFC with its maximum power will be allocated to recharge the 
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battery pack. It should be noted that a hysteresis strategy has been used for the battery pack 

to keep the SOC level between 50 % and 95 % [41] . 

2.3 Battery and De-De converter models 

A simple electric circuit based battery model is used to describe the battery pack ofNemo 

vehicle [42]. Figure 2.1 shows the equivalent circuit, which is composed of a configuration 

of series resistor (R l ) and a parallel resistor (R2 ) with a capacitor (C) [42]. 

Figure 2.1 Battery equivalent circuit 

The CUITent in the circuit is expressed by: 

(2.5) 

where Vo is the open circuit voltage. The SOC of the battery is calculated by using the initial 

charging state (SOCini ) , CUITent of the battery (ibat ), and the capacity of the battery (Qr=183 

Amp h)[43]. 

(2.6) 

Since the battery and FCs are connected in parallel to the power transmission, the CUITent 

flow in the bus is obtained by: 

(2.7) 
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As the PEMFCs are low-voltage and high-current suppliers, the use of converter has been 

opted to boost the voltage output. Indeed, the converter is used to control the FC current. The 

inductance response is represented by: 

iL,eonv = _l-J(Vbat - veonv,out) dt 
Lconv 

(2.8) 

where iL,eonv is the CUITent through the inductor, Leonv is the inductance value, and veonv,out 

is the output voltage of the converter. The output converter voltage is fonnulated by: 

(2.9) 

(2.1 0) 

where mfe is a gain and the efficiency of the converter (r]) is 95%. 

2.4 PEMFC modeling 

The existing PEMFC models in the literature can be categorized into three groups of 

white box, known as mechanistic, black box, and grey box, known as semi-empirical, as 

shown in Figure 2.2 . 

Min 

Black box 
models 

Based on 
experimental data 

(stochastic) 

Physical insight 

Gray box 
models 

Based on empirical 
equations 

Max 

~ 

White box 
models 

Based on 
mechanistic model 

(deterministic) 

Figure 2.2 PEMFC mode} categories 
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Mechanistic models mainly focus on clarifying the phenomena happening inside a single 

cell and are based on algebraic and differential equations. These equations describe the 

occurred processes related to thermodynamics, electrochemistry, and fluid mechanics. 

Mechanistic models require a wide knowledge of influencing parameters such as transfer 

quantities, humidity level, membrane thickness, etc. to mimic the behavior of the PEMFC 

over different operating conditions. However, fuel cell is a multiphysics system and a number . . . . 

of factors, such as degradation and operating condition fluctuation, can cause performance 

drifts in this system. In this regard, design of a complete mechanistic model considering aIl 

of the performance drifts is very difficult, time-consuming, and still a study limitation. As 

opposed to the mechanistic models, black box models are based on inputs and outputs data 

without any information about the internaI workings and physical interpretation of the 

parameters. Since the computational time of black box models is very low, they have been 

used in many studies for online vehicular applications. However, the dependability of such 

models decreases when facing new operating conditions, which have not been included in 

their training process. The last category of PEMFC modeling belongs to the semi -empirical 

methods, which are considered as an intermediary between mechanistic and black box types. 

Semi-empirical models are usually formed by combining the physical relationships with 

sorne experimental data. They describe the electrochemical behavior of a PEMFC by 

imitating the polarization curve, which is a useful approach for both single cell and stack 

modeling. One of the practical applications ofPEMFC semi-empirical models is in the field 

of EMS design. As mentioned before, these models provide remarkable data on the 

polarization curve effects, such as cell reversible voltage, and activation, ohmic, and 

concertation voltage drops, which are very useful to investigate the relevance of the results 

for fuel cell researchers. Moreover, by having the polarization curve, extracting the power 
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curve will be very convenient and it can be used in the design of an EMS. Semi-empirical 

models can also become adaptive easily, which will be discussed hereinafter. 

2.4.1 Semi-empirical model 

In the light of the explained PEMFC modeling methods in the previous section, semi­

empirical models seem to be fitted for EMS purposes. Several semi-empirical models can be 

found in the literature [44-46]. Among them, the model proposed by Amphlett et al. has been 

suggested for EMS purposes in a number of different manuscripts. This model has a good 

mechanistic background, so it has been used in many studies [35, 39]. The other available 

semi-empirical models may also perform the same as this model, however, they have not had 

this wide application in the literature. 

The proposed electrochemical PEMFC model by Amphlett et al. is for a number of cells 

connected in series and assumes the same behavior for aIl the cells. In this model, the output 

voltage ofthe PEMFC (VFd is perceived as the sum of the reversible cell potential (ENernst) 

and three voltage drops, namely activation (Vact), ohmic (Vohmic) , and concentration (\'con). 

The general formulation ofthis model can be given by: 

(2.11 ) 

where N is the number of cells, and the unit of VFC is volt. ENernst is calculated based on the 

following theoretical formula: 

ENernst = 1.229 - 0.85 x 10-3 (T - 298.15) + 4.3085 x 10-ST[In(PH2) + 0.5In(Po2 )] 

(2.12) 
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where T is the stack temperature (K), PHZ is the partial pressure of hydrogen in anode side 

(atm), and Poz is the partial pressure of oxygen in cathode side (atm). Vact is obtained by: 

(2.13) 

where (n(n = 1 ... 4) are semi-empirical parameters based on fluid mechanics, 

thermodynamics, and electrochemistry, COz is the oxygen concentration (mol cm-3) , and i 

is the PEMFC actual CUITent (A). The oxygen concentration is calculated by: 

CO = P02 
Z 5.08xl06 exp(-498jT) 

(2.14) 

The computation of the Vohmic is based on (2.5), where ~n(n = 1 ... 3) are the parametric 

coefficients. This way of ohmic loss formulation has a considerable structure to avoid 

requiring specifie information for calculation of water content or membrane thickness. 

(2.15) 

It should be noted that ohmic loss formulation is a function of temperature, mainly due 

to the fact that diffusivities and water partial pressures vary with temperature, and cUITent, 

because proton and water fluxes change with the CUITent. Finally, Vron is given by: 

J Vcon = Bln(l--) 
Jmax 

(2.16) 

where B is a parametric coefficient (V), 1 is the actual CUITent density (A cm -z), and lmax is 

the maximum CUITent density (A cm-z). 
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The discussed electrochemical PEMFC model has eight pararneters to be identified, 

which are listed in Table 2 1 . As previously discussed, a PEMFC system experiences sorne 

performance drifts during its lifetime. These drifts are because of degradation phenomenon, 

which happens slowly over time, and the influence of conditions which are not included in 

the model such as humidity. In order to take these effects into account, the model pararneters 

need to be updated online to adapt the model to the real state of the PEMFC system. The 

reported ranges of the listed pararneters in Table 2-1 have been collected from the available 

researches in the literature [35, 47]. That is to say, using a proper initial value is necessary 

for having satisfactory results while using the adaptive filters, especially when sorne of the 

model pararneters have physical interpretations. In this regard, a preprocessing of data is 

suggested to avoid a long convergence time or divergence in the pararneters and to get close 

to realistic results. The pre-treatrnent is performed by the Curve Fitting Toolbox™ of 

MATLAB software. This toolbox uses the least square methods to fit the data. Fitting 

requires a pararnetric model, which can relate the real data to the predictor data. In this work, 

the employed fuel cell model is linear in coefficients. The least square method minimizes the 

surnrned square of the difference between the observed and the estimated value. The 

employed experimental data in the preprocessing stage cornes from the conducted test for 

obtaining the polarization curves of the fuel cells, which is a proper representative of its 

behavior. This initialization method has shown that it can reach stable pararneters in 400 

seconds [47]. This time is acceptable for the FC application, since the variations in the 

performance of the FC are slow (in order ofhours). 
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Table 2-1 The unknown parameters of the semi-empirical model 

Parameter Minimum Maximum Reference 

ft -1.997 -0.8532 [35] 

fz, 0.001 0.005 [35] 

f3 3.6x10-s 9.8x10-s [35] 

f4 -2.6x10-4 -0.954x 1 0-4 [35] 

{t [47] 

{z CUITent interrupt test [47] 

{3 [ 47] 

B 0.0135 0.5 [35] 

2.4.2 Resistor measurement 

In this work, CUITent interrupt test has been used as an electrochemical technique to obtain 

a range for the resistor variation with regard to CUITent and temperature [41-44]. This range 

can be used as reference to validate the estimation result of the internaI resistor (Rinternal) of 

the PEMFC. The practicality of this method for measuring the resistor of a PEMFC stack has 

been already studied in [47-49]. CUITent interrupt test measurement is based on the rapid 

acquisition of the measured voltage, after interrupting the CUITent in the PEMFC. The fast 

data acquisition is necessary to separate the ohmic loss from the activation loss, which 

disappears faster than electrochemical losses after CUITent interruption. Therefore, the ohmic 

loss can be obtained from the difference between the voltage measurement immediately 

before and after the interruption. 
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In this work, the steps for conducting the current interrupt test is completely pursuant to 

[47]. One of the main advantages of the CUITent interrupt test compared to other 

electrochemical methods is the straightforward result analysis. However, the measurement 

needs to be done with a fast oscilloscope to exactly catch the point in which the voltage 

Jumps. 

Table 2-2 presents different CUITent levels and their cOITesponded temperature in which 

the interruption test has been performed. It should be noted that the PEMFC has been allowed 

enough time to achieve a stable temperature for each current level before doing the test. The 

CUITent interrupt test has been performed in a forced convection condition where the fans of 

the PEMFC worked with a constant dut y cycle of 34%. 

Table 2-2 CUITent levels and PEMFC stack temperature during resistor 
measurement 

CUITent (A) Temperature (oC) 

3 23.2 

6 25 

9 26.25 

12 28.2 

15 30.9 

18 33.7 

21 38.15 

24 44.7 

25 49.4 
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Figure 2.3 indicates the change of the resistor with regard to current and temperature for 

the utilized PEMFC. As mentioned before, this measurement is used as a reference to check 

the range of the estimated resistor by the identification algorithm. 
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Figure 2.3 Evolution range of the PEMFC internaI resistor with respect to current 
(a) and temperature (b) [47] 

2.4.3 Online parameter identification 

Generally, the identification pro cess can be performed offline and online, as shown in. In 

Figure 2.4 offline identification, the measured data is frrst saved in a data storage and then it 

is transferred to a computer for further analysis and evaluation. This type of identification is 

conducted by using batch processing of the data, which means assessing the complete data 

at once. Direct identification techniques, like least squares, are usually used for this type of 

identification. In online identification, the process is done through an online operation and 

the data is evaluated immediately after each sample is collected. Recursive identification 
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algorithms are used in online processes, which means that no data storage is required in 

online identification. In this work, online parameter identification is in demand. It is mainly 

due to the fact that, as mentioned before, the parameters of a PEMFC model are time-varying. 

Since the PEMFC performance is affected by degradation and operating conditions, updating 

the model parameters is necessary. Kalman filter and recursive least square (RLS) are two 

well: .. known recursive filters, which have been successfully used in different engineering 

problems. In [35], the robustness of RLS has been investigated and realized that its 

performance decreases when facing noisy data. In [35], the performance of Kalman filter and 

recursive least square have been compared in the PEMFC model parameter estimation 

problem and conc1uded that Kalman filter benefits from more robustness. In this regard, the 

focus of this section is to use Kalman filter to identify the parameters of the introduced 

electrochemical PEMFC model online. 

Offline 

Direct 
identification 

Iterative 
identification 

1 
1 

1 

1 

1 
1 
1 

Online 

Figure 2.4 Different ways of processing the measured data in identification process 
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Kalman filter is considered as an optimal estimator and it can estimate the parameters of 

interest from imprecise and uncertain observations. Figure 2.5 shows the process of 

integrating Kalman filter into the parameters estimation ofthe PEMFC model. 
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+ e ... Kalman 
iFC 

~ 

filter -
TFC ~~ 

PFC ... Sem i-em pi rica 1 VFC est 

model 

t Update parameters 

Figure 2.5 Online PEMFC modeling procedure 

Kalman filter identifies the current state parameters first and then updates them when the 

next measurement is received. The structure of Kalman filter is as follows: 

{
X(t + 1) = F(t + 1It)x(t) + w(t) (d d 1) 
() H () () ( ) 

stea y-state mo e 
yt = txt +vt 

(2.17) 

x-Ct) = F(tlt - 1)x-(t - 1) (steady-state propagation) (2.18) 

P-(t) = FCtlt - 1)P(t - 1)FT (tlt - 1) + Q(t - 1) (Error covariance propagation) 

(2.19) 

G(t) = P-(t)HT(t)[H(t)r(t)HT(t) + R(t)r1 (Kalman gain matrix) (2.20) 

x(t) = x-Ct) + G(t)(y(t) - H(t)x-(t)) (State estimate update) (2.21) 

pet) = (I - G(t)H(t))r(t) (Error covariance update) (2.22) 
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where t is the discrete time, x(t) is the state vector, which is unknown and here it can be 

called parameters vector as weIl, x(t) is the estimate of the state vector, x-Ct) denotes priori 

estimate of the state vector, F(t + lit) is the transition matrix, which takes the state vector 

from time t to time t + 1, w(t) is the process noise, y(t) is the output, H(t) is the 

measurement matrix, v(t) is the measurement noise, pet) is the error covariance matrix, 

Q(t) is the process noise covariance matrix, C(t) is the Kalman gain, R(t) is the 

measurement noise covariance matrix, and 1 is the identity matrix. Table 2 3 shows the 

customization of the explained Kalman filter for the problem of PEMFC model parameter 

estimation. As it can be seen in this table, state vector is composed of the targeted parameter 

for the identification, and the measurement vector is in fact the coefficient of each parameter 

in the introduced PEMFC formulation. It should be noted that the transition matrix has been 

assumed to be an identity matrix, which means that the future state is guessed to be the same 

as the CUITent state and the error will be compensated by the filter. 

Table 2-3 Kalman filter customization for the identification problem 

Kalman operators Symbols Implementation description 

State vector x(t) [(v (2, (3, (4' (l' (2, (3, B] 

[l, T, Tln(C02 ), Tln(O, - i - iT - i 2 ln(l , , , 
Measurement vector H(t) 1 --)] 

lmax 

Measured output Y(t) Measured VFC from the real PEMFC 

Transition matrix F(t + lit) Identity matrix 
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2.4.4 Resu/ts and discussion 

The performance assessment of the explained online modeling procedure is detailed in 

this section. In order to test the performance of this parameter identification process, the 

explained semi-empirical model with the Kalman filter have been implemented in a 

developed test bench in Hydrogen Research Institute (IRH) of Université du Québec à Trois­

Rivières. This test bench is represented in Figure 2.6 . As it can be seen in this figure, this 

test bench comprises a Horizon H-500 air breathing PEMFC which is connected to a National 

Instrument CompactRIO through its controller. A 8514 BK Precision DC Electronic Load is 

used to ask load profiles from the open cathode PEMFC. According to the manufacturer, the 

difference between the pressure of the PEMFC in the anode side and the atmospheric pressure 

in the cathode side should be kept around 50.6 kPa. The pressure in the anode side is set to 

55.7 kPa. The explained semi-empirical model and parameter identification method has been 

first designed and initialized in MA TLAB and then put into Lab VIEW software via Math 

Script Module. A current load is applied to the PEMFC by using the programmable DC 

Electronic Load, which communicates with Lab VIEW software and PC through a USB 

connection. The measured temperature and voltage from the open cathode PEMFC are sent 

to the PC with the help of the CompactRIO. The measured data are used in the implemented 

model for testing the identification process. The information between CompactRIO and the 

PC is transferred by means of an Ethernet connection every 100 milliseconds. In this respect, 

it can be stated that Kalman filter receives the measured data very 100 milliseconds and 

update the parameters of the model before the next measurement arrives. Then the updated 

model can be used for extracting useful information, such as maximum power and maximum 

efficiency, to be used in the EMS design. After extracting the required information from the 
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updated model, the CUITent that leads to the maximum efficiency/power can be requested 

from the PEMFC via the electronic load. 
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•.•. i.~~~ ••••.. . 

Figure 2.6 The employed set up for testing the online modeling 

Figure 2.7 presents the CUITent profile and the cOITesponded measured voltage and 

temperature of the PEMFC. This CUITent profile has been extracted from the UDDS driving 

cycle, which represents the urban driving condition. The extraction of the demanded load 

profile from the UDDS driving cycle has been done by means of the IEEE VTS Motor 

Vehicles Challenge Simulink file available in [50] , and the obtained required CUITent from 

the PEMFC has been scaled within the operating range of the employed PEMFC in the test 

bench. In Figure 2.7 subplot c) indicates the comparison of the estimated voltage by the 

online modeling with the measured voltage of the PEMFC. As it is observed, the proposed 

online model is able to estimate the voltage with a satisfying precision. Figure 2.8 compares 

the obtained polarization curve and power curve of the online model with curves of the real 
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PEMFC. According to this figure, the model can predict the maXImum power and 

polarization behavior of the PEMFC with an acceptable accuracy. It should be noted that for 

each case of prediction the mean square error (MSE) has been reported in the caption of the 

figures to clarify more the estimation quality. MSE shows the cumulative squared error 

between the estimated voltage and the measured voltage. The lower the value of MSE, the 

lower the error. 

a) 15 

~ 
ë 10 
~ .... 
:::J 5 () 

100 200 300 400 500 600 
Time (s) 

_30 
b) () 
~ 

~ 25 
:::J -co ... 
~20 
E 
CI) 

1- 15 
0 100 200 300 400 500 600 

Time (5) 

c) 
30 

- Measurement 

~ ---Kalman 

CI) 
0)25 
S 
ë5 
> 

20 
0 100 200 300 400 500 600 

Time (s) 

Figure 2.7 The voltage estimation result. a) Applied CUITent profile to the PEMFC 

system, b) Measured temperature, c) Comparison ofmeasured and estimated voltage (MSE: 

0.1475) 
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Figure 2.8 Polarization curve a) and Power curve b) for the experimental and estimated 

curves by mean of Kalman filter with a MSE of 3.44 (by using the extracted parameter at 

200 s) 

Figure 2.9 represents the prediction of the value for internaI resistor of the PEMFC. The 

resistor seems to be in the same range obtained by the CUITent interrupt test and it is a 

promising indication for validating the estimation of this physical parameter. It should be 

noted that the observed increase in the resistor evolution specifically between a to 100 is 

because of the utilized current profile to test the estimation. In the utilized profile, shown in 

Figure 2.7 , the current profile undergoes a sudden growth which results in a temperature 

increase influencing the resistor evolution. As previously-mentioned the internaI resistor is 

affected by operating CUITent and temperature. Table 2-4 shows the average value of 
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activation and concentration drop related semi-empirical parameters. It should be noted that 

the achieved parameters in this work are almost in the same range as in Table 2 4 , which 

have been collected from other manuscripts in the literature. The subtle difference in sorne 

of the parameters is probably attributable to different aging and conditions of the PEMFC 

systems from which the data has been obtained. 
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Figure 2.9 PEMFC internaI resistor evolution 

Table 2-4 Average value of the estimated parameters (activation and concertation) 

Parameter Obtained value Minimum Maximum 

(1 -1.29 -1.997 -0.8532 

( 2 0.0032 0.001 0.005 

(3 1.3 x 10-s 3.6x lQ-s 9.8 x lQ-S 

(4 -0.952 x 1 0-4 -2 .6 x 1 0-4 -0.954x 1 0-4 

B 0.351 0.0135 0.5 
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Figure 2.10 shows the change of the activation region parameters of the PEMFC with 

Kalman filter. As it can be seen in this figure, the parameters have sorne variation and this 

small variation of the parameters overtime implies that the selected PEMFC model has an 

acceptable accuracy, otherwise the parameters would fluctuate a lot to compensate the lack 

of accuracy in the model. The fluctuation of the concentration loss parameter, achieved by 

Kalman filter, is shown in Figure 2.11 . It should be reminded that although the influence of 

degradation on each parameter is not clear, the estimation process assures that in case of 

having performance drifts, the parameters change to update the model to the new condition. 
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Figure 2.10 The fluctuation of the activation loss parameters 
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2.5 Emulator design 
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Fuel cell technology can be still considered rather young and has not reached its maturity 

in the market yet. In this regard, PEMFC stack price is still pretty expensive and the required 

fuel of the PEMFC, which is highly-pure hydrogen, is pricy. Another worth noting aspect 

about the PEMFC is that exposing PEMFC system to different requesting operating 

conditions, such as immediate load changes or fast and high current ripples, has detrimental 

effect on the lifetime of the device and even can cause irreversible damage to the stack. AlI 

the above-mentioned factors restrict the utilization of real PEMFCs in new applications 

especially in power conditioning experiments. Such projects need to be developed and tested 

tirst by using emulators which are able to mimic the behavior of a PEMFC. Designing a 

suitable emulator requires detailed information about static and dynamic features of the 

PEMFC stack to be able to check the response of the system in critical operating conditions, 

like maximum achievable power, and rapid load alterations. 
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Several researchers have worked on the subject of obtaining a precise PEMFC model in 

the past years. A number of existing manuscripts have focused on extracting the parameters 

of a static model by means of metaheuristic optimization algorithms. For instance, grey wolf 

and slap swarm optimizers have been used to estimate the model parameters in [51, 52]. 

Genetic algorithms and particle swann optimization have been employed to identify the 

parameters of another PEMFC stack in [53 , 54] . Moreover, sorne curve fitting techniques 

such as least squares have been used to extract the parameters ofstatic PEMFC models [55] . 

However, aIl the mentioned manuscripts revolve around modeling the static polarization 

behavior of a fuel cell system and they lack the dynamic characteristics of a fuel cell system, 

which are vital for investigating the perfonnance of a PEMFC in power systems. Sorne 

intelligent model techniques based on fuzzy logic and artificial neural networks can be found 

in the literature which have been used to model the static and dynamic behavior of a single­

stack and even multi-stack PEMFC systems. One of the drawbacks of such modeling 

techniques is that they are not really appropriate for exploring the electrical and 

electrochemical behavior of a PEMFC and its interaction with other energy storage devices 

[56]. Another restricting aspect of generally non-circuital models is the difficulty of their 

implementation in different simulation environments. 

A through survey of selecting criteria of a PEMFC model has been conducted in [57] , by 

considering the commercial models and concluded that equivalent circuit models are the most 

practical modeling approach for obtaining a realistic interaction between the PEMFC and the 

load. Furthennore, equivalent circuit models are very useful for power system designs and 

have been used several times for simulation of energy management and optimization projects. 

One of the most frequent used models in the literature has been introduced by Lanninie et. 
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al. [58]. However, there are not still any certainties regarding the accurate value of the 

parameters for each PEMFC stack and this model has been combined and improved in 

different studies to enhance the performance of the simulation. 

The main purpose of this section is to acquire a dependable and accurate model for the 

500-W Horizon PEMFC, which has been used in the developed test bench of IRH, to be 

utilized in hardware-in-the-Ioop emulator with the aim of investigating the energy 

management of a hybrid multi-fuel cell system which is composed of four PEMFCs and a 

battery pack. 

2.5.1 Dynamic modeling 

The main application of the emulator in this work is for the design of an energy 

management strategy in a hybrid multi-stack fuel cell system, as stated in the previous 

section. In this regard, a low-frequency model is adequate in such a system. However, the 

temperature dynamic, which has a substantial influence on the PEMFC performance while 

operating at high currents, needs to be taken into account in this emulator. Therefore, this 

section presents the development and calibration of a PEMFC model to imitate the static and 

low-frequency behavior of a 500-W Horizon PEMFC in the complete operating temperature 

of the system. 

The model development for the purpose of this work involves formulating the 

electrochemical and thermal characteristics of a PEMFC. The electrochemical model of this 

work is based on [44, 58, 59]. The charge double layer effect has been added to the 

electrochemical model based on the proposed structure in [60]. The thermal behavior of the 

open cathode PEMFC has been modeled by employing the energy conservation law for a 
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lumped system, explained in [61 , 62] . Figure 2.12 represents the schematic design of the 

emulator of this work. 

The PEMFC output voltage is ca1culated by: 

(2.23) 

where VFC is the output voltage (V), N is the number of ceIls, ENernst is the reversible cell 

potential (V), Vc is the double-layer charging effect, VOhmic is the ohmic loss (V), and Vact is 

the activation loss (V). Activation drop is made up of a part related to the PEMFC internaI 

temperature (Vact1 ) and a part associated with the both CUITent and temperature of the stack 

(Vact2 )· 

Tamb 

QForeed 
R aet2 Reon PEMFC 

+ 

Airout 

Figure 2.12 The PEMFC system emulator 

The reversible cell potential is formulated in the same way as described before in semi-

empirical model development section. However, the formaI has been written again to 
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facilitate understanding of the dynamic modeling. Therefore, the reversible cell potential IS 

calculated by: 

ENernst = 1.229 - 0.85 x 10-3 (T - 298.15) + 4.3085 x 10- ST[ln(PH2 ) + 0.5In(Poz)] 

(2.24) 

where T is the stack temperature (K), PHZ is the hydrogen partial pressure in anode side (atm), 

and Poz is the oxygen partial pressure in cathode side (atm). The activation loss formulated 

as: 

{ 

Vaet = - [Vaet1 + VaetZ ] 

Vaet1 : -[(1 + (z~ + (3 Tln(COz)] 
Vaetz - -[(4Tln (l)] 
COz = Poz /5.08 X 106 exp( - 498/T) 

(2.25) 

where (k(k = 1 ... 4) are the semi-empirical parameters, COz is the oxygen concentration 

(mol cm-3 ) , and i is the PEMFC operating CUITent (A). The double-layer charging effect is 

calculated by: 

{

VC = Ci - c dV / dt) (Raetz + Reon) 
Raetz = Vactz/i 
Reon = l'con/ i = (Bln(1 - ] /]max)/i) 

(2.26) 

where c is the equivalent capacitor due to the double-layer charging effect (F), which is in 

order ofseveral Farads because ofporous electrodes of the PEMFC [58, 60] , Bis a parametric 

coefficient (V),] is the actual CUITent density (A cm-z), ]max is the maximum CUITent density 

(A cm-z), and l'con is the concentration 10ss (V). The ohmic voltage drop can be calculated 

by: 

(2.27) 

where Rinternal is the internaI resistor (fi), and Sk (k = 1 ... 3) are the parametric coefficients. 
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The energy balance for studying the thermal effect in the characteristics of the PEMFC 

can be formulated by: 

(2.28) 

where mst is stack mass (4.2 kg), est is specific heat capacity of stack (1260 ]/kg K) [62], 

Tst is stack temperature (K), Qreac is the released energy from electrochemical reaction (1), 

Pst is the generated electrical power (W), QNat is the natural convection (1), and QForced is 

the forced convection (l). The acquired energy form electrochemical reaction and the 

produced electrical power of the stack is determined by: 

Qreac = Vmax i N 

Vmax = !:l.H/nF 

(2.29) 

(2.30) 

(2.31) 

where Vmax is the maximum voltage obtained by hydrogen low heating value (1.23 V) or 

hydrogen high heating value (1.23 V), !:l.H is the formation enthalpy, n is the number of 

electrons per molecule, and F is the Faraday's constant. The heat transfer (convection) is in 

the form of natural and forced, and is given by: 

(2.32) 

(2.33) 

where hNat is the natural heat transfer coefficient (14 W /m2K) [61], ANat is the total surface 

area of the 500-W Horizon PEMFC (0.1426 m2) which has been calculated by the available 

dimensions in the manu al of the device, Tca is the ambient temperature (K), a is an empirical 

coefficient obtained by experiment, Dfan is the fan dut y factor, Pair is the ambient air density 
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(1.267 kgjm3), AForced is the area exposed to the forced convection (0.22 m X 0.13 m x 2), 

and Cp is the air specific heat capacity (1005 Jjkg K). 

The targeted parameters which need to be estimated to calibrate the model are listed in 

Table 2 5 . These parameters are estimated by the introduced metaheuristic optimization 

algorithm in the next section. The range of parameters is specified in the 1isted references in 

Table 25. 

Table 2-5 Targeted parameters for model calibration 

Parameter Minimum Maximum 

(1 -2 -0.5 

(2 0.001 0.005 

(3 1 x 10-5 1x10-4 

(4 -9 x 1 0-4 -1 x l 0-5 

Electrochemical c 0.1 10 

B 0.0l35 0.5 

(1 1 x l 0-3 9x 1 0-3 

(2 1 x l 0-6 9x 10-6 

(3 -9 x 1 0-4 -1 x l 0-4 

Thermal a 0.01 O.l 
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The hydrogen flow is estimated with a first order function based on experimental data. The 

inputs variables for this model is the CUITent of the FC (iFd and the dut y cycle of the fan 

(De) that is set to 34% in this work. 

H2,flOW = a + b * iFC + C * De (2.34) 

Since the proposed strategy of this work is an adaptive energy management, it is 

necessary to take into account the influence of ageing in the modeling part. The main purpose 

of including the ageing is to show how the proposed adaptive EMS functions when the 

PEMFCs undergo the performance drifts. In this regard, the effect of degradation has been 

considered on each parameter of the PEMFC model (voltage model, temperature model, and 

hydrogen consumption model) by using a polynomial function [63, 64]. The utilized 

polynomial function for degradation is able to estimate the behavior of the PEMFC during a 

long test. This second order function, Eq. (2.35), is used for each parameter based on the 

experimental data, where t represents the time in terms ofhours, Xk is the initial value, and 

Xc the actual one. 

Xc = a * Xk 
2 + b * Xk + c * t (2.35) 

2.5.2 Model calibration 

Constrained optimization has become an integral part of many engineering problems. In 

fact, this kind of problem revolves around defining the mathematical optimization by a 

number of limitations which form the search space for calibrating the parameters of the 

problem. Metaheuristic optimization algorithms are often utilized to solve such problems by 

finding near global solutions. They optimize the problem by iteratively attempting to enhance 

a set of selected solutions with respect to a predefined measure of quality, which is also 
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known as cost function. Metaheuristic algorithms are non-derivative methods which use 

deterministic rules to resolve nonlinear and nonconvex problems. 

As stated before, several metaheuristic optimization algorithms have been used for 

calibration of static and dynamic PEMFC models. Among them, differential evolution (DE) 

is easy to implement with physical experimental data. DE has been introduced by Rainer 

Stom in [65]. Basically, it starts working by using a set of initial agents. These agents explore 

the defined search space by using a straightforward equation to find new positions and better 

solutions with the hope of obtaining a satisfactory result. Therefore, finding the optimal 

answer is not guaranteed. Figure 2.13 shows the evolution of the parameter vectors in DE 

where the location of the parameters gets nearer to the optimal area in each generation. 

Xz * NP Parameter vectors tram generation G 
• Mutated parameter vector 

Minimum 

Figure 2.13 DE parameter evolution process for two-dimensional cost function [65] 
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In order to guarantee that the agents converge to the minimum, the initial population of 

vectors need to coyer the entire search space. DE algorithm is composed of four steps: 

initialization, mutation, crossover and selection [65] . Figure 2.14 shows the flowchart of DE 

algorithm. In the initialization stage, the user needs to define the population number (NP). 

This number should be selected with respect to the number of identifiable parameters to 

assure the satisfactory performance of the method. In order to reduce the computational time 

and increase the probability of finding the best answer, a vector with the minimum and 

maximum values of parameters is defined. This vector also determines the search space. In 

addition, the user defines the probability of mutation (CR) and an amplification factor for the 

DE (F). For each vector of population, a mutation procedure is performed. The indexes (r1 , 

r2 , and r3), which are mutually different to one another and to the running index 1, are 

selected randomly. Mutation process can be formulated by: 

(2.36) 



Initialization 
Population number - NP 
Generation number - G 

\Mutation probability - CR 

Boundary vectors - Vmax, Vmin 
Mutation scaling factor - F 
Number of parameters - D 

1 

1 

Generate a random population 1 

and evaluate co st function 
+ 
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Figure 2.14 DE flowchart 
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where F is a scaling factor that multiplies the differential variation of two members. As 

it is shown in Figure 2.13 , this value is added to a third vector to direct the offspring to the 

optimal solution. The scaling factor has been suggested to be different from the other 

parameters on the vector to increase the diversity (F E [0,2]). The crossover operator is the 

combination ofthe mutation vector with its predecessors. For each parameter, it evaluates a 

uniform random number between ° and 1. CR is the crossover probability. To assure that at 

least one parameter will change, a random index is chosen. Figure 2.15 shows an example of 
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the crossover phase for a seven-parameter vector. This combination is defined based on the 

following criteria: 

u. = lVij ,G+l if (rand < CR lU == randi[l,NP]) 

lj ,G+l x · else 
lj ,G+l 

j = 1 
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7 

j = 1 

2 
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4 
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7 

rand < CR 

j == q 

rand < CR 

Target parameter Mutant 
vector vector 

j = 1 

2 

Trial 
vector 

Figure 2.15 Representation of crossover process for seven parameters [65] 

(2 .37) 

The last step of the flowchart deals with the selection of the best found solution. If the 

latest offspring has a smaller cost function value, it will be set as the new parent vector, 

otherwise the old one is used. 

As shown in the flowchart ofthe DE algorithm, the estimated parameters at each iteration 

are evaluated based on the defined cost function. In this work, the described DE algorithm is 

used to find the listed parameters in Table 2-5. The utilized cost function in this work, which 

directs the population towards better solutions, is given by: 

min [ 
(params.) 

I7-1(VFc,ex-VFc,mo/ + I7-1(Tst,ex-Tst,mo/ 1 
N N 

(2.38) 
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where VFC,ex is the measured output voltage, VFc,mo is the output voltage of the 

electrochemical model, Tst,ex is the measured output temperature, Tst,mo is the output 

temperature of the thermal model, and N is the number of sample data. It should be noted 

that the upper and lower bounds of the parameters are based on the Table 2 5 . Table 2 6 

presents the operating parameters of DE algorithm, which have been used in the optimization 

problem of this work. 

Table 2-6 DE parameters for definition 

DE operators Definition Value 

D Number of parameters 10 

NP Population number 10 

G Generation number 50 

CR Mutation probability 0.2 

F Mutation scaling factor [0,2] 

2.5.3 Results and discussion 

The obtained results regarding the development of the PEMFC emulator, which is 

composed of a dynamic voltage model and temperature model, are presented in this section. 

In order to validate the performance of the designed emulator after calibration of the 

parameters with DE algorithm, the presented CUITent profile in Figure 2.16 has heen applied 

to the emulator and the output voltage and temperature of the emulator have been compared 

to those of the real PEMFC available on the developed test bench (Figure 2.5). It should he 

noted that the model calibration of the emulator has been done hy using the recorded voltage 



62 

and temperature of the real PEMFC cOITesponded to this CUITent profile. While recording the 

data, the PEMFC has been operating with a constant dut y cycle of 34. 

Figure 2.17 compares the emulated voltage and temperature of the developed dynamic 

model with the real PEMFC. As it is observed in this figure, the model is able to imitate the 

behavior of a 500-W Horizon PEMFC with a satisfactory precision. The obtained parameters 

of the model calibration process are shown in Table 2 7 . 
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Figure 2.17 Voltage and temperature prediction by the emulator for dut y cycle of 34, 

voltage evolution a), and temperature evolution b) 
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Table 2-7 Targeted parameters for model calibration 

Parameter Value obtained by DE 
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Figure 2.18 Voltage and temperature prediction by the emulator for dut y cycle of 100, 

voltage evolution a), and temperature evolution b) 
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In order to assess the performance of the calibrated emulator in another operating 

condition, the same CUITent profile for the dut y cycle of 100 have tested. Figure 2.18 

represents that the emulator works well in this condition as well. This emulator can be used 

in the development of the hardware-in-the-loop emulator for a MFCS. 

2.6 Synopsis 

In this chapter, PEMFC modeling has been explained thoroughly with respect to the aims 

and objectives of this thesis. The chapter can be divided into two main parts. The first part 

deals with the development of an online model for the PEMFC, which is necessary for the 

design of an adaptive energy management strategy. In this regard, a suitable semi-empirical 

model has been introduced and the process of integrating Kalman filter into the identification 

of the parameters of this model has been described completely. The main reason for 

developing an online model is to embrace the performance drifts of the PEMFC due the 

degradation and operating conditions variations. This part finishes by validating the 

performance of the online model on a developed test bench in IRH. The second part of this 

chapter details the development of an emulator for the 500-W Horizon PEMFC. The main 

reason for developing this emulator is to use it in the MFCS hardware-in-the-Ioop simulation 

of this project. This emulator is composed of a dynamic voltage model and a dynamic 

temperature model. The parameters of the emulator have been calibrated by means of DE. 

This chapter finishes by validating the performance of the emulator over different operating 

conditions. 
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Chapitre 3 - Energy management strategy design 

3.1 Introduction 

PEMFCs are viewed as one of the most potential sources ofpower in future transportation 

applications. They benefit from high energy efficiency and low/zero emissions compared to 

conventional ICEs and it is mainly attributable to the fact that the el ectri cal energy is 

generated in them by straight conversion of free energy in fuel without combustion. However, 

sorne drawbacks can be counted for powering a vehicle merely by a PEMFC, such as a hefty 

PEMFC stack power unit due to low power density ofthis source, lengthy start-up, and slow 

response to the demanded power. Moreover, in propulsion systems, both of rapid acceleration 

and low-speed driving result in low-efficiency operating region, as presented in Figure 3.1 . 

As explained previously, the PEMFC hybridization with a peaking power source is a practical 

methodology to sort out the discussed problems of a sole PEMFC-powered system. Although 

hybridization can enhance the system performance to sorne extent, more attempts are still 

needed to convince the clients to put their trust in this somehow new emerged technology. 

One of the proposed methods to improve the reliability and overall performance of a PEMFC 

hybrid system is to utilize a multi PEMFC stack structure. This structure is an arrangement 

of several PEMFCs which can work and interact with one another. The MFCS is a totally 

new system compared to existent conventional hybrid vehicles. It is even more complicated 

than a typical hybrid PEMFC system and hence an entirely new design control strategy is 

necessary in this system to exploit its advantages. 

The main purpose ofthis chapter is to propose a novel adaptive EMS for a MFCS. In this 

respect, this chapter details the utilized structure of the MFCS first. After that, the thorough 
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explanation of the proposed adaptive strategy is provided along with describing two 

commonly used EMSs for MFCSs, namely equal distribution and Daisy chain, to be used as 

a means of comparison. This chapter finishes by explaining the designed hardware-in-the-

loop emulator to test the EMSs and discussing the results. 
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Figure 3.1 Operating characteristics of a PEMFC system from maximum efficiency to 

maXImum power 

3.2 Multi-stack fuel cell system configuration 

Multi-stack fuel cell systems can be formed in three ways of multiple independent stacks 

with the shared auxiliary systems, as shown in Figure 3.2 a), modular MFCSs which have 

independent stacks and auxiliaries, Figure 3.2 b), and segmented fuel cell systems, Figure 

3.2 c). The possible architecture designs are determined based on the composition of the 

system. If the system comprises sorne PEMFC stacks, different configurations can be used 

for the electrical, thermal, and other subsystems of the stack. However, in a segmented stack, 
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the electrical configuration is only flexible and the other subsystems cannot be changed. In 

this respect, it can be stated that the level of control over the system depends on the type of 

configuration. In this thesis, the term multi-stack fuel cell system refers to the multiple stacks 

put together (Figure 3.2 a). 

H2 

+ Reactant 
VFC flow 

O2 

Reactant 
flow Thermal 

control O2 

control H2 cont rol 
Reactant 

VpC 
al 

flow VFC 
control a, 

al MFCS with shared auxiliaries bl Modular MFCS cl Segmented Fe system 

Figure 3.2 multiple FC stack system architectures 

A PEMFC is usually connected to the DC bus through a DC-DC converter. The use of 

converter opens up more possibilities for the configuration. GeneraIly, four configurations of 

series, parallel, cascade, and series-parallel can be defined for a MFCS, as shown in Figure 

3.3 [66, 67]. The simplest and cheapest architecture to implement is the series configuration 

presented in Figure 3.3 . It can easily reach a higher voltage level by using one low gain 

power converter that controls the CUITent among aIl the FCs. The main drawback of this 

architecture is that if one FC fails , the system stops working. This can be avoided by adding 

a bypass circuit to isolate that FC, though it can be a critical point during the reconnection 

process. A parallel connection, as shown in Figure 3.3 , is another way to reach high power 

level. Connecting power converters to each FC allows the system to have an independent 

control over the operation conditions of PEMFCs. By using individual converters, it is 

possible to isolate the degraded PEMFCs and have low-stressed points in the reconnection 



68 

process. However, the total cost of the system increases by adopting parallei configuration. 

Parallel configuration increases the system reliability and fault tolerance, and provides the 

basis for designing various power distribution strategies [68]. Another configuration, which 

has been presented in Figure 3.3 c), is Cascade. lndeed, it is one type of series connection, 

which integrates a low power converter at the output of each FC and connect aIl the system 

in series. This architecture allows the individual power control of the FC by means of cheaper 

regulators. However, the main disadvantage ofthis configuration is the ripple CUITent present 

[68]. The last presented configuration is the series-parallel, as shown in Figure 3.3 d). This 

one combines modularity of parallei and the high voltage level of series connection. The 

voltage boost is also smaIler, which leads to the reduction of the electrical power loss during 

the elevation voltage process. This configuration is good when the range of operating power 

is known. 

I --
al Seriai bl Parallel cl cascade dl Serial·Parallel 

Figure 3.3 Different configurations in a MFCS with DC-DC converters 

The utilized configuration in this work is paraIlel , due to the capability of providing a 

wide range of requested power, modularity of the system, and various power distribution 

control possibilities. The utilized MFCS in this work is composed of four PEMFC systems, 

including their thermal and fuel supply subsystems, and four DC-DC converters. The chosen 



69 

configuration leads to more redundancy and modularity, which can enable fault-tolerant 

operation. Common faults in a PEMFC system are usually due to flooding, drying, and 

contamination of the system. By having a fault-tolerant operation mode, the MFCS can keep 

working in case of failure in one of the PEMFCs. The series configuration uses aIl the FCs 

at the same time, increasing the degradation. The series-parallel configuration can also 

. provide the same level of redundancy. However, this configuration leads to more complexity 

in terms of designing an EMS, because the number of modules is reduced. The parallel 

configuration of the MF CS of this work is presented in Figure 3.4 

Figure 3.4 Parallel architecture of the utilized MFCS 

3.3 Energy management strategy 

In a MFCS, the EMS is responsible for distributing the requested power among the power 

sources with a view to reducing the system degradation as weIl as the hydrogen consumption. 

Declining the degradation rate of a MFCS can be achieved by using the minimum possible 

number of PEMFCs, operating the PEMFCs in their safe zone, and proper management of 

the battery pack SOC. Diminishing the hydrogen consumption can be reached by enhancing 

the length of operation in the maximum efficiency region. In this regard an adaptive state 
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machine based EMS is proposed in this section to fulfill the mentioned objectives in the 

described MFCS in Figure 3.5. The performance ofthis EMS is compared with two common 

rule-based strategies, namely equal distribution, and Daisy chain, which are explained 

hereinafter. 

• Adaptive State Machine Based EMS 

In this study, an online EMS, which is called adaptive state machine, is proposed to split 

the power among the main components, which are four PEMFCs and a battery pack. This 

strategy has two fundamental operating layers, which is shown in Figure 3.5 . The first layer 

contains the explained online model in Chapter 2. In fact, it uses a semi-empirical PEMFC 

model and a Kalman filter to continuously update the maximum power and maximum 

efficiency of each PEMFC. According to the presented structure in Figure 3.5 , the designed 

emulator, explained in Chapter 2, acts as the reai PEMFC and provides the necessary 

measurement signaIs such as voltage, cUITent, and temperature for the online model. 

MaKimum power and 
tftlci.ncy tKtractlon 

Identification 
prOCtS5 

FC4 

Adaptlve state 
machine 
strategy 

Figure 3.5 MFCS EMS configuration 

Demanded 
Power 
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The second layer of the adaptive state machine strategy distributes the power between 

the main powertrain components. This layer always attempts to use the minimum number of 

PEMFCs to meet the requested power. As it can be seen in Figure 3.5 , this layer has four 

inputs, which are the updated maximum power and maximum efficiency, battery SOC, and 

the requested power. The updated maximum power and efficiency points are firstly used to 

reconfigure the order of using the PEMFCs. In fact, the PEMFCs are al ways put in a 

descending order from young to old. The age of each fuel ceU is decided based on its CUITent 

maximum efficiency and power, which means the more power and efficiency, the younger. 

It should be noted that in this manuscript, the term " young fuel ceU" refers to the PEMFC 

with the highest power level and the term " old fuel ceIl " refers to the PEMFC with the 

lowest power level. The difference in the level of the PEMFCs power can be owing to the 

aging phenomena and operation time or any malfunctions in the system. The second practical 

usage of these updated points is that the strategy employs each PEMFC in a way to be 

between ME and MP range, which is a safe and efficient region. This is mainly due to the 

fact that by remaining in this region, fuel ceU do es not operate in activation, which is near 

open circuit voltage, and concentration zones. Working in both ofthese zones expedites the 

aging phenomenon. The other two inputs, which are battery SOC and demanded power, are 

used to aUocate sorne portions ofthe requested power to the components. Figure 3.6 presents 

the configuration of the proposed adaptive state machine EMS. In brief, this strategy first 

imposes the same requested power to aU the FCs in order to identify their characteristics and 

analyzes the inputs. Subsequently, it sorts out the PEMFCs in terms of their maximum power 

by utilizing an active table. Finally, it supplies the demanded power in a particular sequence 

in which the PEMFC with the best performance is first used up to its maximum power. If the 

demanded power exceeds the maximum power of the first PEMFC, the second PEMFC in 
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the active table is turned on only if this remnant is in si de its efficiency zone. Otherwise the 

battery supplies this power and this logic is applied to the rest of the PEMFCs. One of the 

advantages of the proposed strategy is that it degrades all the PEMFCs equally even if they 

have different aging rates. 

Active table 
Maximum deliverable power 

493W 484W - -
492W 483W - -
455W 337W - -
454W 376W - -ta tl t2 

Lifespan 

Figure 3.6 Adaptive state machine EMS 

• Equal distribution strategy 

Equal distribution strategy is based on dividing the requested power equally as the 

number of available PEMFCs. This strategy uses the requested power (Preq) as the only input 

signal, as described below. 

P _ Preq/ 
FCi - N (3.1) 

Where PFCi is the requested power from the Fei> determined by (3.1), and N is the number 

of available fuel cells. In this strategy, aIl the PEMFCs have the same demanding power in 



73 

spite of having different electrical capabilities in tenns of supplying power and electrical 

response. It is worth mentioning that the utilized PEMFCs in this strategy are aged at the 

sarne rate regardless of their initial degradation level. 

• Daisy chain strategy 

In a parallel configuration, Daisy Chain strategy utilizes the minimum number of 

PEMFCs to supply the requested power in a sequential order. This strategy employs only the 

first PEMFC until it reaches its MP. The next PEMFC is activated afterwards to supply the 

remaining requested power. This strategy has been tested in a MFCS in [17] and presented a 

better perfonnance in low power demand compared to equal distribution method. On the 

other hand, equal distribution method presents a better response when the demanded power 

is high. Daisy Chain strategy considers the total demanded power from the system and the 

maximum power of each PEMFC as inputs. The main disadvantage of this strategy is that it 

uses the FCs in a fixed order, causing the most part of degradation on the first FC. Therefore, 

the FCs are sorting randornly each 30 minutes. 

3.4 Results and discussion 

The obtained results from implementing the introduced EMSs are comprehensibly 

discussed in this section. In order to investigate carefully the perfonnance of the proposed 

EMS, three different scenarios have been designed. In the first scenario, a rarnp power profile 

has been used to clearly show the difference between the distribution of the power between 

different sources by the three strategies. The second scenario deals with the perfonnance 

evaluation of the EMSs while using a real driving profile from Nemo vehicle. Finally, the 

last scenario has been designed by employing a very long random step power profile to assess 
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the degradation rate of the MFCS under different EMSs. It should be noted that the minimum 

requested power that equal distribution and Daisy chain strategies impose to the system is 

limited to 80 W per fuel cell, which has been recommended as the minimum drawn power 

by the manufacturer, in order to avoid unnecessary tum-on cycles which could interfere with 

the real performance of the strategies. This limitation means that while the requested power 

from each PEMFC is less than 80 W, the battery pack will supply it. Regarding the power 

limitations of the proposed adaptive state machine EMS, the PEMFCs work between the 

maximum efficiency and maximum power points which are defmed by the online modeling 

process. Another worth mentioning point is that in scenarios l and 2, FC4 is the real PEMFC, 

and FCI to FC3 are the emulators. However, in scenario 3, which is a very long test and the 

usage of a real PEMFC is highly time-consuming, all ofFCI to FC4 are emulators. 

3.4.1 Scenario 1: 

Figure 3.7 shows the utilized demanded power profile in this scenario. As it is seen in 

this figure, this profile is a ramp-up power profile, which makes the functionality of different 

EMSs clear in terms of power distribution. It also indicates the way that the proposed strategy 

of this work reconfigures the order of using the PEMFCs. The presented power profile in 

Figure 3.7 has been applied to the MFCS for two different initial conditions in terms of age 

of each PEMFC to illustrate the change of the order for different conditions. The initial ages 

for performing this test are presented in Table 3 l . This age is used as the input of the 

degradation function to determine the characteristics of the system with respect to the aging 

phenomena. 
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Figure 3.7 Ramp profile 

Table 3-1 Initial conditions for perfonning the ramp profile test 

PEMFC system Condition 1: Age (h) Condition 2: Age (h) 

FC1 1000 1000 

FC2 4000 3000 

FC3 1000 2000 

FC4 4000 4000 
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Figure 3.8 shows the supplied power by the four PEMFCs and the battery for all the three 

strategies. According to Figure 3.8 a), Equal distribution strategy uses the battery in the 

beginning to supply the requested power up to 320 W, which means 80 W per PEMFC. Then 

the PEMFCs equally suppl y the requested power from almost 150 s to around 700 s. From 

700 s onwards, since the level of the requested power is very high, FC4 and FC2, which are 

more degraded than the others, work in their maximum power and FC 1 and FC3 converge to 

their maximum limit to me et the demanded power. The battery pack also helps the PEMFCs 

in this respect. With regard to the Daisy chain strategy, Figure 3.8 b), it can be observed that 

this strategy tums on FC4 when the requested power exceeds 80 W and uses this FC until its 
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maximum power. Then, it tums on more FCs as the requested power increases. One important 

aspect that should be pointed out here is that since this strategy is not aware of the CUITent 

maximum achievable power of the PEMFCs, it has used the more degraded PEMFCs more 

than other two PEMFCs, which can lead to less efficiency of the system. Furthermore, the 

supplied power by the battery in Figure 3.8 b) indicates that when the degraded PEMFCs 

reach their maximum power, which is 400 W in this case, the strategy assumes that the rated 

power is 500 W. As a result, battery supplies this difference between the actual maximum 

power of the FC and its initial rated power, and when the limiting power for activating the 

next FC is passed, it will be tumed on. It should be reminded that the PEMFCs order is 

changed randomly from time to time in Daisy chain strategy. Conceming the proposed 

adaptive state machine EMS, Figure 3.8 c), it can be seen that in the beginning, a power level 

is applied to aU the PEMFCs to identify the real maximum power and efficiency of an the 

FCs by means of the previously explained online modeling procedure. During this short 

period of time, the battery supplies the requested power. From 50 s onward, the battery meets 

the demanded power up to the point that the requested power reaches the maximum 

efficiency level of the FC1. The strategy keeps using the FCI up to its identified maximum 

power level. Then the next FCs are activated by respecting the same rules and regulations to 

satisfy the request. The point that needs to be highlighted is that in the proposed strategy, 

FCI and FC3, which are in better state ofhealth according to the defined conditions in Table 

3 l , are used more than the other two FCs. This choice has been made based on the performed 

identification process in the beginning and it can result in higher efficiency of the system, 

which will be explored more hereinafter. 
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Figure 3.8 Power split for Condition 1, a) Equal distribution, b) Daisy Chain, and c) 

Adaptive State Machine 

Figure 3.9 represents the distribution of the power by the three algorithrns for Condition 

2, specified in Table 3 1 . As it can be seen in this figure, the same principle as Condition 1 

has been followed by the algorithrns in terrns of power sharing. However, the conditions of 

the PEMFCs are different, and accordingly the proposed adaptive state machine EMS has 

reconfigured the order of the PEMFCs from the youngest to the most degraded one (FCl , 

FC3, FC2, and FC4). These two tests have been presented to show the functionality of the 

proposed EMS regarding the powering sharing. Figure 3.10 indicates the hydrogen 

consumption for the both discussed conditions. According to this figure, Daisy Chain strategy 

has the highest hydrogen consumption due to the fact that it has used the more degraded 

PEMFCs for a longer period of time than the other strategies. Equal distribution strategy 
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shows a better fuel economy than the Daisy chain and it can be attributed to its better 

performance in low CUITent level conditions. The proposed EMS has the best fuel economy, 

which is the result of the reconfiguration of the order of the PEMFCs as weIl as keeping the 

PEMFCs operating conditions within the safe zone between maximum power and efficiency 

points. It should be noted that in order to compare the achieved fuel consumption of the 

strategies, the initial battery SOC is 70% and it is expected that they finish in the same level. 

The hydrogen consumption, which is needed to recharge the battery pack to reach the same 

level as the its initial state has been calculated and added to consumption of each strategy. 
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Figure 3.10 Hydrogen consumption for the two conditions using the ramp profile 

3.4.2 Scenario 2: 

In this scenario, Highway Fuel Economy Test Cycle (HWFET) developed by the US 

EP A has been used to assess the power distribution of the EMSs in real condition. This 

driving cycle and its corresponded requested power profile are shown in Figure 3.11 . The 

power profile has been extracted by using the Nemo vehicle drive train information and 

equation (2.1). 
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Figure 3.11 HWFET profile, a) Speed profile, b) Requested power from Nemo 
drive train. 
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Figure 3.12 shows the power split achieved by the three strategies for the introduced 

HWFET profile. As it can be seen in this figure, in an the cases, the battery supplies the 

power peaks. Equal distribution and Daisy Chain strategies try to make the FCs work between 

low to high power region. On the other hand, the proposed strategy attempts to keep the FCs 

in a constant state for a longer time, which leads to reducing the number of PEMFC on/off 

cycles compared to Daisy Chain. Table 3 2 compares the fuel consumption achieved by 

different strategies. In order to have a fair comparison, the initial and final battery SOC is set 

to 70 %, similar to Scenario 1. 
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Figure 3.12 Power split for the three strategies, a) Equal distribution, b) Daisy Chain, 

and c) Adaptive State Machine 



Table 3-2 Hydrogen consumption for the studied strategies and percentage 
reduction of the proposed strategy 

Strategy H2 consumption (gr) % Reduction 

Equal distribution 16,09 8.6% 

Daisy Chain 16,84 12.7% 

Adaptive State Machine 14,69 

3.4.3 Scenario 3: 
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In this last scenario, a random step profile of 25 minutes, as shown in Figure 3.13, has 

been repeated for 300 hours. It is worth noting that fuel cell systems of the same model can 

show various degradation behavior, and it can be attributable to several reasons such as their 

fabrication process and working conditions. In this regard, during this long test, different 

ageing rates have been applied to the fuel cells to evaluate the performance of the strategies 

regarding coping with degradation management. As explained earlier, one of the main 

capabilities of the proposed EMS ofthis work is to make the PEMFC systems' degradation 

equal and the main purpose of designing this scenario is to illustrate this advantage. Table 3-

3 shows the utilized degradation rate for each PEMFC throughout this scenario. Each 

indicated degradation rate acts as an accelerated factor, which will be multiplied by (2.35). 
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Figure 3.13 Random step power profile unit 
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Figure 3.14 demonstrates the maximum power evolution of each fuel cell system which is 

affected by the specified degradation rate in Table 3 3 . This maximum power trend is a good 

measure to compare the performance of the EMSs through the time. As it is clear in Figure 

3.14 , the PEMFCs get degraded by different rates in case of equal distribution and Daisy 

Chain strategies. However, the proposed Adaptive state machine EMS manages to keep the 

PEMFCs with almost the same degradation rate by reconfiguring their order from time to 

time. The maximum observable difference in the power of the PEMFCs is 10 W. It should 

be noted that keeping the FCs within a similar degradation rate can lower the hydrogen 

consumption, increase the system life time, and extend the replacement time of each PEMFC. 

Figure 3.15 clarifies the operation time of each PEMFC during the long test. As expected, 

the proposed EMS uses the more degraded PEMFCs less (FC1:135.6 h and FC3:148.1 h) 

than the other two PEMFCs (FC2:189.2 h and FC4:177.7 h). It is also observed that the equal 

distribution strategy utilizes all the PEMFCs for 280.7 h, and Daisy Chain strategy does not 

respect the state of the health ofthe PEMFCs while using them (FC1: 178.7 h, FC2: 189.2 h, 

FC3: 199.5 h, and FC4: 175.1). Table 34 presents the hydrogen consumption ofeach EMS 

for the performed test and the percentage decrease ofhydrogen consumption compare to the 

proposed strategy. 
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Figure 3.14 Maximum power evolution during the 300-h test. a) Equal distribution, b) 

Daisy Chain, c) Adaptive State Machine 
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Figure 3.15 Operation time of each PEMFC during the 300-h test 



Table 3-4 Hydrogen consumption comparison for the 300-h test and percentage 
reduction of the proposed strategy 

Strategy H2 consumption (1) % Reduction 

Equal distribution 63494,8 26.5 % 

Daisy Chain 55223,4 15.4 % 

Adaptive State Machine 46697,3 
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One of the main factors which help to reduce the hydrogen consummation is to avoid 

using the PEMFCs in low power level regions and supplying it by the battery. In fact, battery 

plays a dual role in this hybrid system by supplying the low-Ievel requested power as well as 

absorbing the power peaks. It is important to highlight that the SOC of the battery has been 

recommended to be more than 50 % in order to extend its lifetime. Figure 3.16 shows the 

battery SOC for the 300-hours test. At the end of the test, the battery has been fully charged 

by the PEMFCs to have a fair comparison. 
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Figure 3.16 Battery SOC evolution during the 300-h test. 
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Chapitre 4 - Conclusion 

This work addresses the design of an adaptive EMS for a multi-source system, which 

comprises four PEMFCs and a battery pack, with the aim of reducing the hydrogen 

consumption as weIl as enhancing the lifetime of the system. The proposed strategy, which 

is caIled adaptive state machine, takes into consideration four inputs, namely battery state of 

charge, requested power from the system, maximum power and maximum efficiency points 

of the PEMFCs, to conduct the power sharing among the sources. The maximum power and 

efficiency points of the PEMFCs are continuously determined by using an online model 

composed of a Kalman filter integrated into a PEMFC semi -empirical model for each 

PEMFC. The updated operating points are used by the strategy to decide on the order of the 

PEMFCs from young (the PEMFC with the highest power level) to old (the PEMFC with the 

lowest power level). The strategy uses the minimum possible number of the PEMFCs to meet 

the requested power and the updated maximum power determines the limit which can be 

asked from each PEMFC. Three scenarios of ramp power profile, real driving profile, and a 

long random step profile have been designed to evaluate the performance of the proposed 

strategy. Moreover, two commonly used power sharing strategies of equal distribution and 

Daisy chain in MFCSs have been tested with the mentioned scenarios to make a comparison 

with the suggested adaptive state strategy. The final results ofthis work indicated the superior 

performance of the proposed EMS in terms of fuel consumption and lifetime. In fact, for a 

performed 300-hour test, which is quite a long test, up to 25% fuel consumption reduction 

has been achieved by the proposed strategy compared to the commonly used EMSs for 

MFCSs. 
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