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Résumé 

Le trav~il présenté par cette thèse porte sur l'amélioration de la transformation 

rapide de Fourier (TRF) et représente une contribution aux progrès dans le traitement 

numérique du signal et des algorithmes de calcul rapide. La réduction des temps de calcul 

offerte par la TRF proposée trouve des applications en traitement numérique du signal à 

temps réel et en analyse spectrale. C' est une contribution bien accueillie dans les domaines 

du traitement de la parole, les communications par satellite et terrestre, communications 

numériques avec ou sans fil , traitement du signal multidiffusion , détections et 

identifications des cibles, radar et systèmes de sonar, machine aux signaux surveillés, 

sismologie et biomédecine. En outre, les propositions peut être d'intérêt particulier dans les 

applications de communication sans fil , les cartes DSP (Digital Signal Processor) et FPGA 

(Field Programmable Gate Array ). 

Cette thèse développe et présente un algorithme de la TRF à radice-r qui réduit 

l'effort de calcul (telle que mesurée par le nombre d'opérations arithmétiques) par un 

facteur de r en comparaison avec la plupart des algorithmes de la TRF à radice-r. Le 

problème réside dans la définition du modèle mathématique de la phase de combinaison, 

dans laquelle la représentation de la TDF en termes de ses TDF partielles devrait être bien 

structuré pour obtenir le vrai modèle mathématique. L'algorithme qui en résulte, dans 

lequel les r processeurs en parallèles pourraient fonctionner simultanément avec une seule 

instruction. 

La clé conceptuelle du papillon modifié de la TRF à base r est la formulation de la 

TRF à radice-r comme r éléments de traitement élémentaires (BPE - Butterfly Processing 

Element) avec des structures identiques et un moyen systématique d'accéder les coefficients 
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multiplicateurs correspondants. Cela permet la conception d'un BPE avec le plus faible taux 

de multiplicateurs et d' additionneurs complexes, qui utilise r ou r - 1 multiplicateurs 

complexe en parallèle pour calculer chaque sortie du papillon conventionnel. Il y a une 

association simple entre les trois indices (TRF étape, papillon et élément) et les adresses 

des coefficients multiplicateurs nécessaires. Pour un environnement de processeur unique, 

ce type de BPE avec r multiplicateurs en parallèles entraînerait la diminution du délai du 

calcul de la TRF par un facteur de O(r). Un second aspect des papillons modifiés de la TRF 

à radice-r est, qu'ils sont également utiles dans les environnements du multitraitement en 

parallèle où cette structure en parallèle est réalisable au cours de chaque étage de la TRF. Si 

chaque BPE est exécuté sur le papillon modifié, cela signifie que chacun des r BPE en 

parallèles exécutera la même instruction simultanément, ce qui est très souhaitable pour la 

structure d'une seule instruction avec des données multiples (SIMD) sur certains des plus 

récentes cartes DSP. 

En outre, on a développé un générateur d'adresses pour la TRF qui peut réduire la 

charge de calcul et l'accès aux mémoires en groupant les ensembles de données avec ses 

multiplicateurs correspondants. L'avantage de regrouper les ensembles de données avec ses 

correspondants multiplicateurs permettra de réduire les accès aux mémoires où lors de 

chaque étage la mémoire des coefficients est consulté l fois pour la procédure DIT et r (S-s) 

fois pour la procédure DIF où S = logrN - 1 et s = 0, l , .. , S - 1. En plus et à l'aide de ce 

concept, nous pourrions facilement prévoir l'apparition des multiplications triviales. La 

présence de la multiplication par ± 1 peut être facilement prédite pendant le processus de la 

TRF où en faisant donc, l' accès aux mémoires et les multiplications complexes pourraient 

être réduites ainsi que la multiplication par ± j peut être aussi prédite et qui peut être 
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incorporée dans les additions par la commutation des parties réelles et imaginaires des 

données. En plus de cela, la multiplication par ±"l{ ±j"l{ peut être prédite aussi où le 

nombre d'opérations arithmétiques peut être réduit de 6 à 2. 

Dans ce domaine, nous avons développé également l'algorithme de la TRF à une 

seule itération qui est un outil utile pour détecter des fréquences spécifiques dans des 

signaux surveillés. Une des techniques les plus importantes dans l' analyse des 

caractéristiques d ' un signal est l'extraction des informations utiles d'un signal surveillé. La 

surveillance des signaux est un domaine en expansion qui visent la détection des 

changements brusques pour une fréquence spécifique la détection d'un ensemble 

présélectionné de fréquences tel que RFID (Radio Frequency Identification) et dans le 

système de communication sans fil OF DM (Orthogonal Frequency Division Multiplex) 

dans lequel la TRF est un opérateur clé principal. Notre algorithme proposé a montré un 

gain significatif en vitesse et en rapport du signal au bruit quantifié (SQNR - Signal to 

Quantization Noise Ratio) en comparaison avec l'algorithme de Goertzel. Enfin, pour ce 

domaine nous avons développé le Low Complexity Input/output Pruning FFTs qui est une 

méthode utilisée pour calculer une DFT où un sous-ensemble des sorties sont nécessaires. 
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Abstract 
Digital Signal Processing (DSP) is an engineering field that continues to extend its 

theoretical foundations and practical impl ications in the modem world from highly 

specialized aero spatial systems through industrial applications to consumer electronics. 

The Fast Fourier Transform is one of the most important topics in Digital Signal Processing 

that generates a map of a signal (called its spectrum) in terms of the energy amplitude over 

its various frequency components, at regular (e.g. discrete) time intervals, known as the 

signal ' s sampling rate. This signal spectrum can then be mathematically processed 

according to the requirements of a specific application (such as noise filtering, image 

enhancing, etc ... ). The quality of spectralînformation extracted from a signal relies on two 

major components: the first one is the spectral resolution which means a high sampling rate 

that will increase the implementation complexity to satisfy the time computation 

constraints. The second one is the spectral accuracy which is translated into an increasing 

of the data binary word-Iength that will increase normally with the number of arithmetic 

operations. 

As a result, the FFTs are typically used to input large amounts of data; perform 

mathematical transformation on that data and then output the resulting data all at very high 

rates. The mathematical transformation IS executed by arithmetic operations 

(multiplications, summations or subtractions in complex values) following a specific 

dataflow structure that should control the systems' input/output. Multiplication and 

memory accesses are the most significant factors on which the execution time relies. The 

problem with the computation of an FFT with an increasing N is associated with the 

straightforward computational structure, the coefficient multiplier memories' accesses and 



the number of multiplication that should be performed. In high resolution and better 

accuracy, this problem will be more and more significant for real time FFT implementation 

and in order to satisfy the time computation constraints. We should structure the 

input/output data flow that could reduce the coefficient multipliers accesses and also to 

reduce the computational load by targeting trivial multiplication. Memories ' accesses are 

major concerns in implementation on DSP cards which on the most cases are costly in DSP 

cycles. Therefore, in a real time implementation, executing and controlling the data flow 

structure is important in order to achieve high performance that could be obtained by 

regrouping the data with its corresponding coefficient multiplier. By doing so, the access to 

the coefficient multiplier' s memory will be reduced drastically and the multiplication by 

the coefficient multiplier w O will be taken out of the equation. In order to maintain lower 

arithmetic operations within the butterfly critical path (one complex multiplier and certain 

adders), we will be targeting hardware oriented Radix 2a or 4.8 which is an alternative way 

ofrepresenting higher radices by mean ofless complicated and simple butterflies. 

In this thesis, we developed the self-sorting JMFFT (Jaber-Massicotte Fast Fourier 

Transform) algorithrn that cou Id benefit the trivial multiplication 

±1, ±j and ±F?{ ±jF?{ that will yield to the kernel core JMFFT's computation. One 

of the most significant impacts of the proposed structure from the hardware point ofview is 

that the coefficient' s multiplier memory has been reduced from Nil to N18. The JMFFT 

was tested on the TMS320C6416 DSP platform using TI's Code Composer Studio which 

shows a significant gain in clock cycle reduction in comparison to the most recent 

published method 22 kernel core FFT. Furthermore, the JMFFT was benchmarked on the 

FFTW platform in which our proposed structure revealed a significant gain compared to 
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FFTW. The FFTW benchmark is an FFT bench platform assembled by Matteo Frigo and 

Steven G. Johnson at MIT (Massachusetts Institute of Technology). This platform 

compares the performance of different complex FFT implementations (40 FFT methods) 

based on speed and accuracy where performance is computed on a single processor 

environment. The FFTW platform includes an FFT method called FFTW _ESTIMA TE that 

outperforms ail other methods and is actually used in Matlab® software. Our results 

shown a speedup up to 30% compared to FFTW. 

One of the most important techniques is the Signal-analysis/feature-extraction 

techniques which aim to extract useful information from a given monitored signal. Signal 

monitoring is an expanding domain that deals in detecting any abrupt changes for a special 

known frequency such as fault detection machine or to scan a pre-selected set of 

frequencies, as in radio-frequency identification (RFID) tags, the recognition of the dual­

tone multi-frequency (DTMF), DNA analysis and in the orthogonal frequency division 

multiplex wireless communication (OFDM), wherein the Fast Fourier Transform (FFT) is a 

major key operator, particularly for cognitive radio. In this thesis, we developed the radix-r 

JM-Filter (Jaber Massicotte-Filter) which' is a combination of the radix-r one iteration FFT 

algorithm and the Goertzel's algorithm structures. Compared to Goertzel'~ filter, the 

proposed first and second order radix-r JM-Filter manifested a gain in the computational 

complexity reduction. The higher radix is; the highest gain is obtained. 

Cellular and cordless phones rapidly became mass-market consumer products in which 

each wireless system has to combat transmission and propagation effects that are 

substantially more hostile than for a wired system. The advances in signal processing 

provided methods to overcome the anomalies of the mobile channel by accelerating the 
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growth of wireless communication and by tackling the channel problems by mean of the 

diversity reception concept that can substantially improve the link performance. Moreover, 

advanced digital modulation methods, such as spread spectrum or Multi-Carrier 

Modulation (MCM) appear suitable for wireless communication where Orthogonal 

Frequency Division Multiplexing (OFDM), a special form of MCM, will be used 

extensively in digital terrestrial broadcast systems, e.g. in DAB (Digital Audio 

Broadcasting) and DTTB. Theoretical aspects of the Pruning FFT (PFFT) have been 

thoroughly elaborated in past three decades and which was mainly concentrated on 

sequences that have Li consecutive non-zero input points at the beginning. In many 

applications, the percentage of required input/output bins is very small su ch as the 3GPP 

(The · 3rd Generation Partnership Project) LTE (Long Term Evolution) where the 

OFMDA's symbol size is 1024 in which 12 users equally share the available 600 sub­

carriers. As a result only 50 of the 1024 FFT output bins (5%) are required for each mobile 

terminal. These partial input/output cases are important for the future wireless systems and 

because the PFFT can potentially achieve a significant speedup which is made it as a target 

by many applications such as cognitive radio. In this thesis, we have presented a novel 

JMIOPFFT (Jaber Massicotte Input/Output Pruning FFT) that shows an important gain in 

the computational complexity reduction compared to the most relevant published results. 
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Chapter 1 Introduction 



Résumé du Chapitre 1 

Dans ce chapitre, nous présentons la transformée discrète de Fourier (TDF) et la 

transformée rapide de Fourier (TRF). La Transformée Rapide de Fourier est simplement 

une TDF calculée selon un algorithme permettant de réduire le nombre d' opérations et, en 

particulier, le nombre de multiplications à effectuer. Une brève description de la dérivation 

de la transformée rapide de Fourier sera présentée en mettant l' accent sur les deux versions 

de l'algorithme, avec « entrelacement temporel » et avec « entrelacement fréquentiel ». Par 

la suite, on présentera une brève description du défi pour réduire la complexité de 

l' algorithme. Une de notre contribution majeure dans ce domaine, est la réduction de la 

complexité du passage critique du papillon à radice-r. Pour améliorer de manière 

significative la rapidité de ce traitement, on a suggéré un générateur d ' adresses pour la 

transformée rapide de Fourier dont le but est d ' effectuer toutes les opérations de 

réarrangement des données entrées/sorties. Ce générateur d' adresses nous a permis de 

regrouper les données avec les coefficients multiplicateurs correspondants tout en prédisant 

l'apparition des multiplications triviales (8 th root of unit y). De plus, dans cette thèse on a 

abordé le sujet de la détection d ' une fréquence spécifique tout en proposant un filtre, 

nommé JM-Filter avec une complexité réduite en comparaison avec celle de Goertzel. Dans 

de nombreuses applications telles que le Long Term Evolution (L TE) et la radio cognitive, 

qui est basée sur l'Orthogonal Frequency Division Multiplexing OFDM, on aura besoin de 

calculer un certains nombres de sorties de la TRF où on a appliqué de manière efficace des 

zéros sur les entrées. Notre contribution dans ce sujet est basée sur l' introduction d' un 

2 



algorithme qui peut réduire la complexité du calcul en se comparant avec les méthodes les 

plus récemment proposées. 
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Introduction 

Digital Signal Processing (DSP) is an engineering field that continues to extend its 

theoretical foundations and practical implications in the modem world from highly 

specialized military systems through industrial applications to consumer electronics. One of 

the most exciting aspects of DSP use is in new applications such as DNA that are 

impossible to implement using analog technology where a digital signal processor may be 

called on to perform one or more of several functions involving algorithmic processing of 

the digitized signaIs. So, digital signal processing is one of the most powerful technologies 

that will shape science and engineering in the upcoming centuries. 

For the last decade, the DFT and ail resu lting algorithms known collectively as Fast 

Fourier Transform (FFT) showed a great interest for their applications in which 

revolutionary changes have already been made in a broad range of fields su ch as: Speech 

compression [1] , Digital filters [2] , Image processing [3] , Radar [4], OFDM (Orthogonal 

Frequency Divisions Multiplexing) [5]- [8], Wireless communications [9]-[11] , DNA 

analysis and a lot of other non-cited domains. Therefore, the Discrete Fourier Transform 

(DFT) is the decomposition of a sampled signal in terms of sinusoidal (complex 

exponential) components expressed as: 

N - I 

X(k) = LX(n)w; , kE [O,N-1] (1), 
n=O 

and because of its computational requirements, the DFT algorithm usually is not used for 

real time signal processing. For the last decencies, the main concem of the researchers was 

to develop an FFT algorithm in which the number of operations required is minimized. 

Since Cooley and Tukey presented their approach showing that the number of 

multiplications required to compute the discrete Fourier transform (DFT) of a sequence 
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· may be considerably reduced by using one of the fast Fourier transform (FFT) algorithms. 

The basis of the radix-2 FFT is that a DFT can be divided into two smaller DFTs, each of 

which is divided into two smaller DFTs, and so on, resulting in a combination oftwo points 

DFTs kemel. Cooley and Tukey's method, which is known as fast algorithms for DFT 

computation, is based on the divide-and-conquer approach that was introduced by 

Danielson and Lanczos in 1942 as shown in Figure 1 [12]. The advantage of appropriately 

breaking the DFT in terms of its partial DFTs is that the number of multiplications and the 

number of stages may be controlled. The number of stages often corresponds to the amount 

of global communication and/or memory accesses in implementation, and thus, reduction 

in the number of stages is beneficial. Several efficient methods are used repeatedly to split 

the DFTs into smaller (two or four-point) core calculations, where the symmetry and 

periodicity properties of the DFT are exploited to significantly lower its computational 

requirements. 

1 Signal of 
16 points 

2 SignaIs of 
8 points 

4 SignaIs of 
4 points 

8 SignaIs of 
2 points 

16 SignaIs of 
1 point 

0123456789101112131415 

Figure 1: The FFT decomposition. N point signal is decomposed into N signais each containing a 
single point. Each stage uses an interlace decomposition, separating the even and odd numbered 
sampi es. 
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2. Derivation of the FFT 

The computational complexity of the DFT increases as the square of the transform 

length, and thus, becomes expensive for large N. The fast Fourier transform (FFT) provides 

an effective tool for the calculation of Fourier transforms that is based on the divide-and­

conquer approach. In the FFT case, the input data x (n) are divided into subsets on which the 

DFT is computed. Then the DFT of the initial data is reconstructed from these intermediate 

results. Ifthis strategy is applied recursively to the intermediate DFTs, an FFT algorithm is 

obtained. Sorne ofthese methods are: 

w Common Factor Aigorithms (decimation-in-time (DIT) or Cooley-Tukey 

FFT algorithm [13] and decimation-in-frequency (DIF) or Sande-Tukey 

FFT algorithm [14]), 

w Prime Factor Aigorithm (PFA) [15], 

W Mixed Radix Aigorithm (MRA) [15] , 

W Winograd Fourier Transform Aigorithm (WFTA) [16] and 

W Split-Radix Aigorithm (SRA) [17]. 

2.1 Common Factor Aigorithms 

In the common factor algorithms, the transform length N, is decomposed into arbitrary 

factors (N = rl, r2, ... , rk) and if ail the factors, rj, are equal, the algorithm is called radix-r 

algorithm. Two different versions of the algorithm that are dual of each other, which are 

always derived depending on how the decimation is performed. The two versions have the 

same computational complexity and are called decimation-in-time (DIT or Cooley-Tukey) 

and decimation-in-frequency (DIF or Sande-Tukey). 
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2.1.1 The DIT and DIF Aigorithms 

In mid-1960s, J.W. Cooley and J.W. Tukey proposed their first algorithm known as 

decimation-in-time (DIT) or Cooley-Tukey FFT algorithm, which first rearranges the 

input elements into bit-reverse order, then builds up the output transform in log2 N 

iterations figure (2) [12] , [13] and [18]. 

X(O) 
2-point 

X(4) DFT 

X(2) 
2-point 

X (6) DFT 

X( I ) 
2-point 

X(5) DFT 

X (3 ) 
2-point 

X(7) DFT 

Combine 
2-point 
DFT's 

Combine 
2-point 
DFT's 

X (O) 

X (I ) 

X (2) 

Combine X (3) 

4-point 
X (4) 

DFT's 
X(5) 

X (6) 

X(7) 

_ Figure 2: Three stages in the computation of an N = 8-point DIT DFT. 

It is also possible to derive FFT algorithms that first go through a set of log2 N iterations 

on the input data, and rearrange the output values into bit-reverse order. These are called 

decimation-in-frequency (DIF) or Sande-Tukey FFT algorithm Figure (3) [19] . 

X(7) - 1 

1 
Wg 

3 
w8 

Combination 
4- I)Onl 
DIT 

Combination 
4-pont 
DIT 

Figure 3: Three stages eight-point DIF FFT algorithm. 
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2.1.2 The Radix-2 Aigorithm 

In this section, the development of the radix-2 DIF FFT will be described in detail. The 

integers n and k in equation (1) (for the case N = 2Y) can be expressed in binary numbers as 

[15], 

- 2y-1 2y-2 
n - nY-1 + ny-2 + ..... + no (2), 

k - 2y-1 L- 2y-2L- ka - ""(-1 + ""(-2 + ...... + (3). 

in which n and k can take the values 0 and one only. Equation (1) can be rewritten as 

(4) 

Now, the fie sum can be divided into y separate summations 

(5) 

(6) 

(7) 

The computation of equation (1) has been divided into IOg2N = Y stages, each having a 

computational complexity of N, and thus, the result of the manipulations is that the total 

computational complexity has decreased from N2 to N IOg2 N. If the result needs to be in the 

natural order, an unscrambling stage for Xy is needed: 
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The signal flow graph for an 8-points radix-2 DIF FFT is shown in figure (4) in which 

the butterfly has been introduced as the primitive operation of the FFT. The radix-2 

butterfly consists oftwo complex additions and one complex multiplication and it is shown 

in figure (5). 

Figure 4: Eight-point DIF FFT Signal Flow Graph (SFG). 

a -~~-------.( 

b_~O--___ ~ 

Figure 5: Basic butterfly computation for the DIF FFT algorithm. 

2.1.3 Higher Radix 

Another class of FFTs subdivides the initial data of length N not aIl the way down to the 

trivial transform of length 2, but rather only down to sorne other smalt power of two, four 

or eight (Figure 6). The result obtained in the above section could be extended to any base r 

that can be developed using the same techniques as for radix-2 case. 

(8) 

(9) 

The derivation of such algorithm will not be discussed, but sorne key points are listed 

below. 
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• Transform length N = r"' where m is an integer. 

• The arithmetic complexity is N x logrN x the arithmetic complexity of the radix 

r butterfly. 

• The number of stages is equal to logrN. 

• The number of butterflies in each stage is equal 'to Nlr. 

• Each butterfly has r-inputs and r-outputs and r - 1 twiddle factor 

multiplication. 

The advantage of using higher radix is that the number of multiplications and the 

number of stages decrease. The number of stages often corresponds to the amount of global 

communication and/or memory accesses in an implementation, and thus, the reduction in 

the number of stages is beneficial if communication is expensive as is the case in most 

hardware implementation [15], [20] and [21]. Up to date, the most disadvantage ofusing a 

higher radix is that the butterfly becomes more complicated and can be difficult to 

implement. Most subsequent authors have directed their attention to the special case of N = 

2m due to its simplicity in programing and the restricted choice of values of N is adequate 

for a majority of applications. 

wJ' 

(.) lb) 

Figure 6: Basic buttertly computation in a radix-4 FFT algorithm. 
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2.2 The Mixed radix and Prime Factor Aigorithm (PF A) 

There are, however, sorne applications in which a wider choice of values of N is needed, 

especially in speech's spectral analysis and economic series data. Since the transforrn 

length is a problem, the mixed radix approach makes it possible [22]-[23]. This approach 

was achieved by decomposing the matrix Tr into a radix-3 stage and a radix-5 stage in 

order to compute a 15 points DFT [12]. 

Gentleman and Sand have extended the development of the general case by mentioning 

the existence of a mixed radix FFT program written by sand [14]. So, R. C. Singleton 

proposed an improved method by decomposing N into its prime factor, yielding an 

algorithm for computing the mixed radix Fast Fourier Transform [21]. The larger the prime 

factor of N is the worse this methods works because if N is prime, then no subdivision is 

possible, and the complexity would be of order N2
• 

Since the twiddle factors dominate the arithmetic workload in the corn mon factor 

algorithm, it seems logical to try to remove them and that is exactly what prime factor 

algorithms are ail about. This approach can only be used if N can be decomposed into 

factors relatively prime, i.e. 

(10). 

Therefore, the greatest common divisor for NI and N2 is equal to one and for this case, n 

and k can be expressed as [15] , 

(11), 

k = [N2 [N;' ]t, x lG +[ N, [N,-' ]t
2 

X k2 (12) 

k l E[O,N l -1], k2 E[0,N2 - 1] 
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where [X] N denotes x modulo N and [x-I L denotes the multiplicative inverse of x reduced 

moduloN. 

Using these expressions equation (1) can be represented as 

dimensional transform without inverting the twiddle factor. The signal flow graph of a 12 

point prime factor algorithm is shown in figure (7) for NI = 4 and N2 = 3. 

These are essentially three drawbacks of the prime factor algorithm: 

• Since N to be decomposed into factors that are relatively primes, these factors 

will be large if N is large. This means that the short-Iength DFTs, which have 

a length, equal to these factors, becomes expensive to implement. 

• There are more severe restrictions on the transform length than in the case of 

the corn mon factor algorithm. 

These problems were dealt with and developed for the first time by S. Winograd and 

were referred as the Winograd Fourier Transform Aigorithm (WFTA) [16]. Winograd used 

the indexing scheme from the prime factor algorithm, expressed in small DFTs in terms of 

convolution, and combined this with efficient methods for computing periodic convolution 

[24]. The price paid for this decrease in multiplication compared to common factor 

algorithms, is a significant increase in the number of addition and the irregular structure 

[24]. 
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X(O) 3-Poiot }O) '13) 
4-Poiot 

DFT DFT i,4) 
X(6 (8) 

(9) 

3-Poiot ~ '14) 4-Poiot DFT )il) 
(7) (5) 

~10 DFT 
(1) 

3-Poiot X(6) 

X(8) 
DFT 'f0) 

(2) 
X(1 4-Poiot 

12) DFT 
(5 3-Poiot ~! 

DFT (7) 

(11) 

Figure 7: 12 point PF A (NI =4, N2 =3). 

2.3 Winograd Aigorithm (W A). 

Winograd algorithms are in sorne way analogous to the base-4 and base-8 FFTs, where 

he has derived a highly optimized coding for taking small-N discrete Fourier transforms. 

The method involves a reordering of the data both before the hierarchical processing and 

after it, but it allows a significant reduction in number of multiplication in the algorithm. 

For sorne especially favorable values of N, the Winograd algorithm can be significantly (up 

to factor 2) faster than the simple FFT algorithms, however, this advantage must be 

weighed against the considerably more complicated data indexing involved in these 

transforms. So, in 1977 based on Winograd method, Silverman proposed an improved 

method to calculate the FFT [25]. 

2.4 The Split Radix Aigorithm (SRA) 

The split radix algorithm is an FFT based algorithm which was introduced by R. Yavne 

[26] and then developed by Duhamel and Hollmann [17]. It seems that the split·radix has 

achieved the lowest published arithmetic operation count (total exact number of required 

real additions and multiplications) on a data of size N which is a power of two [27]-[32]. 

The basic idea behind the SRFFT as derived by Duhamel and Hollman [17] is the 
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application of a radix 2-index map to the even-indexed terms and a radix-4 map to the odd-

indexed terms. Under these indexing scheme equation 1 can be rewritten as 

N 

X(,,) ~ ~(x(") +XH:)Jw~"' (14) 

for the even index terms, and 

N 

X(".,) = ~(( x(.) -X("4)J-+ ("7) -X(",d Jw~w~' (15) 

(16) 

for the odd index terms. This results in an "L-shaped butterfly" figure (8), which relates a 

length N DFT to one length N/2 DFT and two-length N/4 DFT [33]. Such algorithms are 

known by having the lowest of both multiplication and addition for length 2m FFTs, but it 

involves significantly more butterfly computations than radix 4 Cooley-Tukey Algorithms 

[34], [52] and [58]. 

x(n) ~----'? 

A 8 

Figure 8: Butterfly for SRFFT algorithrn. 

Use for 
X (4k+ 1) 

Use for 
X(4k + 3 ) 
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In the previous sub sections, different algorithm and butterfly structures for the 

dedicated FFT were cited. The main objective of these proposaIs was a reduction in 

computation and particularly the reduction in the number of multiplications where the most 

common way to compare algorithms is based on the number of arithmetic operations. 

In Table 1 and Table 2 the number of real multiplications and real additions 

required for different algorithms are listed [15] and [35] . In these tables; it is assumed that 

non-trivial complex multiplication is implemented using 3 real multiplications and 3 real 

additions. It is clear that the split radix and the Winograd algorithms offer the lowest 

number of multiplications for small and medium length FFTs whereas the Winograd 

algorithm require less multiplications than every other algorithm for long FFTs. From 

Table 2, it can be seen that the split radix algorithm offers the lowest number of additions. 

Table 1: Number of non-trivial real multiplications for various FFTs 

N Radix-2 Radix-4 SRA PFA WA 

16 24 20 20 
30 100 68 

32 88 68 
60 200 136 

64 264 208 196 
120 460 276 

128 712 516 
140 1100 632 

256 1800 1392 1284 
504 2524 1572 

512 4360 3076 
1008 5804 3548 

1024 10248 7856 7172 
2048 23560 1638 

2520 17660 9492 

In conclusion it is hard to make a fair and general comparison between the different 

algorithms betause the importance of different properties of the algorithms is depending on 

the implementation. In the case of hardware implementation of FFT processors there are 
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number of other algorithm' s properties that should be dealt with such as: regularity, 

modularity, parallelism and simplicity which are mostly offered by the common and prime 

factor algorithms. 

Table 2: Number of non-trivial real additions for various FFTs 

N Radix-2 Radix-4 SRA PFA WA 
16 152 148 148 

30 384 384 
32 408 388 

60 888 888 
64 1032 976 964 

120 2076 2076 
128 2504 2308 

140 4812 5016 
256 5896 5488 5380 

504 13388 14540 
512 13566 12292 

1008 29548 34668 
1024 30728 28336 27652 

2048 68616 61444 
2520 84076 99628 

Finally, in this chapter we will define the problematic and major challenges, to 

finally demonstrate c1early our methodology, originality and scientific contribution. 

3. Problematic and major challenges 

The FFTs are typically used to input large amounts of data; perform mathematical 

transformation on that data and then output ail the resulting data at very high rates. The 

mathematical transformation is translated into arithmetic operations (multiplications, 

summations or subtractions in complex values) following a specifie dataflow structure that 

should control the systems' input/output. Multiplication and memory accesses are the most 

significant factors on which the execution time relies therefore; the major challenge is to 

reduce the multiplication load in a simple dataflow structure to facilitate the parallel and 
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pipeline implementation in one hand and on the other hand to reduce the coefficient 

multiplier memories' accesses by regrouping the data with its corresponding coefficient 

multiplier. The quality of spectral information extracted from a signal relies on two major 

components: 

• Spectral resolution which means high sampling rate that will mcrease the 

implementation complexity to satisfy the time computation constraints . 

• Spectral accuracy which is translated into an increasing of the data binary word­

length that will increase normally with the number of arithmetic operations. 

The problem with the computation of an FFT with an increasing N is associated 

with the straightforward computational structure, the coefficient multiplier memories' 

accesses and the number of multiplication that should be performed. In high resolution and 

better accuracy this problem will be more and more significant for real time FFT 

implementation and in order to achieve our objective we should address the problems with 

the mathematical structure of the FFT that could be summarized as follow: 

1. An FFT of size N (N = r n
) is computed in n stages therefore, for larger N the number 

of stages will increase which cou Id be translated into an increase of the 

communication load and the computational load. So, increasing r will decrease n 

but it has been shown (e.g. [15]) that the adder tree simplification method did not 

provide a complete solution for the FFT problem due to the increasing complexity 

of the butterflies. For higher radices, the complexity of the butterfly implementation 

increases due to the added complex multipliers on its data path [15], and [36]-[39]. 
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2. Another attempt to speed up the FFT process, that does not necessarily involve 

computational reduction, is the parallel multiprocessing. One of the most significant 

problem in FFT implementation resides in its data's parallel multiprocessing. This 

difficulty arises in finding a feasible algorithm that could meet the following 

objectives [40]- [47] and [64]: 

i) To build an algorithm, which cou Id be easily implemented on VLSI 

technologies (DSP, FPGA and ASIC) 

ii) The r parallel processors should execute a single instruction simultaneously. 

iii) Reduce the NOP (no operations) to its minimum value. 

iv) Reduce the communication load between the r processors. 

v) Reduce the computationalload. 

vi) No Pipeline break (or "pipeline stail"): the delay caused on a processor using 

pipelines when a transfer of control is taken (is absent). 

vii) Straightforward design for real time FFT implementation. 

3. Memories' accesses are major concerns in implementation on DSP cards which on 

the most cases are costly in DSP cycles. Therefore, in a real time implementation, 

executing and controlling the data flow structure is important in order to achieve 

high performance that could be obtained by regrouping the data with its 

corresponding coefficient multiplier [48]. By doing so, the access to the coefficient 

multiplier's memory will be reduced drastically and the multiplication by w O 

(W~k = e- j (27r/N)nk) will be taken out of the equation. 

4. The scope of work in this thesis is to target the wireless communication such as 

OFDM therefore; 1 will be paying more attention to pipelined and pruning FFTs 
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algorithms where pruning FFTs are used to monitor specific frequencies outputs 

[49]-[51]. Consequently, for such types of signais' monitoring FFTs we will be 

investigating two types of algorithms: 

1. Goertzel Aigorithm 

11. Input/output pruning FFT [59]-[63]. 

4. Methodology, Originality and Scientific Contributions 

In order to address the higher radices butterflies' problem, our main objective is to 

reduce the complexity of the butterfly ' s critical path that could be achieved in two ways: 

• The proposed structure in [51] has reduced the complexity of the butterfly ' s critical 

path as a result our objective is to minimize the resources needed to implement1 

higher radices butterflies . 

• A hardware oriented Radix 2u or 4P which is an alternative way of representing 

higher radices by mean of less complicated and simple butterflies [29] in which we 

used the symmetry and periodicity of the root unity to further lower down the 

coefficient multiplier memories ' accesses [53] and [54]. 

Up to date there was no attempt to reduce the computational load by incorporating 

the twiddle factors and the adder tree matrices into a single stage of calculation. So, if we 

pay attention to the elements of the adder tree matrix T rand to the elements of the twiddle 

factor matrix W N' we notice that both of them contain twiddle factors. So, by controlling 

the variation of the twiddle factor' s exponent during the complete FFT calculation, we can 

incorporate the twiddle factors and the adder tree matrices into a single stage of calculation 

1 This originality has been approved by several pat~nts filed since 2004. 
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which will represent the originality of our proposed method and based on this, we will 

propose new concepts of the FFT implementation2
• 

This was the origin of our mathematical model for the butterfly computation that 

will be detailed in the paper of Chapter 2 "A New FFT Concept for Efficient VLSI 

Implementation: Part 1 Butterfly Processing Element DSP'09, Santorini, Greece, 5-7 July 

2009", where we have introduced a novel approach for the Discrete Fourier Transform 

(DFT) factorization by redefining the butterfly computation, which is more suitable for 

efficient VLSI implementation. The proposed factorization motivated us to present a new 

concept of the radix-r Fast Fourier Transform (FFT), in which the radix-r butterfly was 

formulated as composite engines to implement each of the butterfly computations. This 

concept enables the radix r butterfly-processing element (BPE) to be designed by 

maintaining only one complex multiplier in the butterfly critical path for any given r. Once 

this article was published Kim and al proposed in [55] a proper multiplexing scheme that 

reduces the usage of complex multiplier for the radix-8 butterfly from Il to 5. The 

proposed method for the radix-8 case was implemented on FPGA where we have targeted 

in our comparison the Spartan-3, Virtex-E, Virtex-4 and Virtex 5 families . The proposed 

method's implementation results achieved better performance in terms of the throughput 

per area ratio (Msamples/s/slice ) as shown in the paper of the same Chapter "A Higher 

Radix FFT FPGA Implementation Suitable for OFDM Systems ICECS 2011 , Beirut 

Lebanon". 

Another attempt to speed up the FFT process, that does not necessarily involve 

computational reduction, is the parallel multiprocessing. Based on the reformulation of the 

2 This originality has been approved by several patents filed since 2004. 
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radix-r factorization we defined the concept of the parallel pipelined FFT that boosted the 

execution time by a factor of r (Chapter 2 paper "A New FFT Concept for Efficient VLSI 

Implementation: Part II - Parallel Pipelined Processing" DSP 2009, Santorini, Greece, 5-7 

July 2009") in which one stage (or iteration) will be eliminated for each break down of the 

DFT [36]. 

One of the recent strategies to reduce the computational load is to target the trivial 

multiplication that could be achieved by grouping the data with its corresponding 

coefficients multipliers [15] and [56]. By achieving thi:;, all trivial multiplications by ± 1 or 

± j have been excluded from the process and adding to that the accesses to the coefficient 

multipliers have been also reduced. With a proper indexing scheme which will be based on 

the radix-r DFT factorization, the bit reversing techniques for accessing the data including 

the coefficient (twiddle factor) multiplier would be replaced by simple counter as address 

generators to boost the execution time of the FFT [56]. The originality of the indexing 

scheme is detailed in the paper "A Novel Approach for the FFT Data Reordering, Int. 

Symp. On Circuit and System (ISCAS), Paris, May 2010" of chapter 3 in which this 

concept was tested on the FFTW platform [57] that shows a significant improvement on the 

execution time of the FFT process. With further prediction of trivial multiplication su ch as 

±.f;{ ± j.f;{ will lead to a reduction in the memory accesses and where the number of 

arithmetical operation required for the complex multiplication can be reduced from 6 to 4 

arithmetical operations. By using the symmetry and periodicity of the root unity to lower 

down the computational effort, we developed an algorithm that could eliminate the trivial 

multiplication (eightth root of unity) which was elaborated in the paper of chapter 5 "The 

Self-Sorting JMFFT Aigorithm with Automatic Elimination of Trivial Multiplication, 
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NEWCAS 2012 Montreal, Canada" that will yield to the radix-23 kernel core FFT 

computation in which the kernel core is composed of 4 butterfly radix-2 that will access 

one coefficient multiplier per 8 inputs. The method is elaborated in the paper of the same 

Chapter "A Novel Radix-23 JMFFT Suitable for Embedded DSP Processor, to be submitted 

to a Journal", where the memory requirement to stock the coefficient multiplier is reduced 

from N/2 - 1 to H/8 - 1 and this will be highly desirable for a sm ail and low power special 

purpose FFT processor. 

Further decomposition of the DFT in term of its partial DFT will yield to the radix-r 

one stage FFT kernel computation which is used to compute a specific frequency output 

that is widely used in monitored signaIs. The proposed algorithm showed a significant gain 

by a factor of [ogr N compared to the conventional radix-r in order to compute a specific 

frequency as shown in the paper of Chapter 4 "The Radix-r One Stage FFT Kernel 

Computation, ICASSP 2008, April First Las Vegas Nevada USA 2008". By keeping aIl 

twiddle factors in memory in order to compute one frequency, the proposed algorithrn has 

been compared to Goertzel Algorithm that revealed a substantial gain in speed and SQNR 

as described in the paper of Chapter 4 "Fast Method to Detect Specific Frequencies in 

Monitored Signal, International Symposium on Communications, Control and Signal 

Processing (lSCCSP 2010), Cyprus, March 2010". Furthermore, this algorithm has been 

optimized in order to obtain the proposed method named JM-Filter (Jaber-Massicotte 

Filter) that would have approximately the same structure as the Goertzel Filter with a 

reduction in computation by a factor of r as demonstrated in the paper of the same Chapter 

"The JM-filter to Detect Specific Frequencies in Monitored Signal, to be submitted to a 

Journal". 
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Finally and based on this strategy by incorporating the twiddle factors and the adder 

tree matrices into a single stage of calculation we manifested a significant gain in the 

reduction of the computation al load in the input/output pruning FFT which is widely used 

in the OFDM, OFDMA and MIMO-OFDM as shown in the paper of Chapter 6 "Low 

Complexity Input/output Pruning JMFFTs; to be submitted to a Journal" , 

23 



Chapter 2 The Radix-r Butterfly Processing 
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Résumé Du Chapitre 2 

La transformée rapide de Fourier (TRF) est l'un des quelques algorithmes dont la 

publication a révolutionné le domaine de l' analyse spectrale. La TRF a permis de réduire la 

complexité de la transformée discrète de Fourier de N2 à (N/r) logr N opérations 

complexes. Les accès aux mémoires sont aussi un facteur important influençant sur la 

rapidité de l'exécution de la TRF où la TRF à radice élevée peut réduire les accès mémoires 

et la complexité arithmétique de l' algorithme. Les désavantages de la structure du papillon 

à radice élevée sont; 

1) La complexité de la connectivité 

2) Nombres d' entrées en parallèles 

3) L'augmentation de la profondeur du passage critique du papillon. 

4) L'ajout des multiplicateurs complexes dans le passage critique du papillon. 

Ce chapitre décrit une nouvelle approche pour le calcul en papillon à base élevée 

dédiée pour la structure en pipeline de la Transformée rapide de Fourier. En se basant sur le 

concept introduit par Cooley-Tukey, nous introduisons une nouvelle approche de 

factorisation de la DFT (Discrete Fourir Transform) en redéfinissant le calcul en papillon 

qui nous a permis de concevoir l'élément du traitement en papillon BPE (Butterfly 

Processing Element). Cette structure nous a permis de maintenir un seul multiplicateur 

complexe dans le chemin critique du papillon pour tout r donné. La description 

algorithmique, la performance, et la complexité de la méthode sont considérées dans ce 

chapitre. Ce chapitre présente également une solution au problème du multitraitement en 

parallèle de la FFT et implique de nouveaux concepts dans lesquels la réalisation, des 

pipelines à plusieurs étages en parallèle, est possible. La contribution la plus importante 

dans notre proposition, c'est que notre structure de BPE proposée maintient un seul 

25 



multiplieur complexe dans le chemin critique peu importe le radix 2,4 ou 8, rendant ainsi 

notre solution des BPE fort avantageux pour l'implantation en technologies VLSI 
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Abstract - This article describes a new approach of higher radices butterflies which is 

suitable for pipeline implementation. Based on the butterfly computation introduced 

by Cooley-Tukey [1], we redefined the DFT factorization by introducing the new 

concept of the butterfly computation that is suitable for efficient VLSI 

implementation. Finally, we will present a new concept of a radix-r Fast Fourier 

Transform (FFT), in which the concept of the radix-r butterfly computation has been 

formulated as composed engines with identical structures and a systematic means of 

accessing the corresponding multiplier coefficients. This concept enables the design of 

the butterfly processing element (BPE) with the lowest rate of complex multipliers 

and adders that utilizes r or r - 1 complex multipliers in parallel to implement each of 

the butterfly computations. Furthermore, the parallel pipelined FFT is also 

considered in Parallel Pipelined FFT Processing [15]. 

1. Introduction 

The Discrete Fourier Transform (DFT) is a fundamental digital signal-processing 

algorithm used in many applications, including frequency analysis and frequency do main 

processing. Frequency analysis provides spectral information for signais that are examined 

or used in further processing, such as speech compression, meanwhile the frequency 

domain processing allows for the efficient computation of the convolution integral (for 
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linear filtering), the computation of the correlation integral (for correlation analysis), and in 

wireless communication system based on the Orthogonal Frequency Division Multiplexing 

(OFDM) where the FFT is a major key operator [2], [3]. It is not unusual to find more than 

a dozen structures to complete a given task, so, finding the best structure is a crucial 

engineering problem, where in reality the class of the most efficient structures rests on a 

real time analysis of the signais to be processed. Thus, this paper proposes a new FFT 

algorithm which is able to increase the computation speed for an equivalent implementation 

complexity. 

The definition of the DFT is represented by the following equation 

N-I 

X[kl = IX[nlw~k , kE [O,N-1] (1) 
n=O 

where x[n] is the input sequence, X[k] is the output sequence, N is the ,transform length, 

W~k = e -
j
(27r

j
N)nk called the twiddle factor in the butterfly structure, and / = - 1. Both x[n] 

and X[k] are complex number sequences. 

From Eq. (1), it can be seen that the DFT computational complexity increases 

according to the square of the transform length, and thus becomes expensive for large N. 

Sorne algorithms used for efficient DFT computation, known as fast DFT computation 

algorithms, are based on the divide-and-conquer approach. The principle of this method is 

dividing a large problem into smaller sub-problems that are easier to solve. In the FFT case, 

dividing the work into sub-problems means that the input data x[n] can be divided into 

subsets from which the DFT is computed, and then the DFT of the initial data is 

reconstructed from these intermediate results. Sorne of these methods are known as the 

Cooley-Tukey algorithm [1], Split-Radix Algorithm [4] , Winograd Fourier Transform 
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Algorithm (WFTA) [5] and others, su ch as the Common Factor Algorithms [2], [5] , and 

[6]. 

The overall arithmetic operations deployed in the computation of an N-point FFT 

decreases with increasing r as a result, the butterfly complexity increases in term of 

complex arithmetic computation, parallel inputs, connectivity, and number of phases in the 

butterfly's critical path delay. The higher radix butterfly involves a non-trivial VLSI 

implementation problem (i.e. increasing butterfly cdtical path delay), which explains why 

the majority of FFT VLSI implementations are based on radix-2 or 4, due to their low 

butterfly complexity. The advantage of using a higher radix is summ~rized by decreasing 

the number of multiplications and stages to execute an FFT [2]. The number of stages often 

corresponds to the amount of global communication and/or memory accesses in 

implementation, and thus the reduced number of stages becomes beneficial if 

communication is expensive, as is the case in most hardware implementations. Fewer 

attempts to reduce the computational load have failed, due to the added multipliers in the 

butterfly's critical path for higher radices [7], [8]. 

The most significant impact in our proposed BPE structure is by maintaining lower 

arithmetic operations within its critical path (one complex multiplier and few adders). 

Based on this proposition, the design of higher radices BPE with low butterfly complexity 

in terms of complex multipliers in the butterfly critical path is always feasible, which is the 

key component in the FFT implementation. By doing so, the VLSI butterfly 

implementation for higher radices would be feasible sin ce it maintains approximately the 

same complexity of the radices 2 and 4 butterflies. 
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The paper is organized as follows; Section 2 details the radix-r DFT factorization 

while Section 3 defines the prior art butterfly operation. Section 4 provides a detailed 

description of the proposed FFT and the modified radix-r FFT methods. Section 5 presents 

the butterfly processing elements based on the modified radix-r FFT. Section 6 provides a 

performance evaluation while Section 7 reports the conclusions. 

2. The Radix-r DFT Factorization - Demystified 

Eq. (1) could be factorized as follow 

!!.-l 
(2) 

+ ~ (rn+(r- l) k 
... ~ x (rn+(r_l)wN 

n=O 

for k = 0,1, .. " N -1. In the summations, the variables rand k are independents of n 

therefore, we can rewrite (2) as: 

(3) 

Knowing that W;k = w ':tr as a result we can express (3) as follow 

(4) 
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To subdivide the axis k in Eq. (4) in 2 new axis p and q, we pose k = p+ qN / r with 

p = 0,1, .... , (N / r) -1 and q = 0,1, .... , r -1. By using the new indices p and q, X(k ) is 

replaced by: 

x -x 
(k) - (p+q(N /r») ' 

(5) 

withk=O,1,.··,N-1, p=O,1, .... ,(N/r)-1 andq=O,1, .... ,r-1. Following the axis v, 

equation (4) is expressed in r equations as shown in Eq. (6) or in a compact form Eq. (7). 

~-I 

+ 
(r- I) (p+N /r) ~ n(p+N/ r) 

••• w N L...J x(rn+(r_I» w N /r 
n=O 

~-I ~-I ~-I 
X - 0 ~ n(p+2N /r) + (p+2N / r) ~ n(p+2N/ r) 2(p+2N/r) ~ n(p+2N/ r) 

(p+2N /r) - w N L...J x(m)wN /r w N L...J x(m+l)wN / r +wN L...J x(rn+2)wN / r 
n=O n=O n=O 

. ~-I 

+ + (r-I) (p+2N / r) ~ n(p+2N/ r) 
•• • w N L...J x (rn+(r_I» w N /r 

n=O 

~-I ~-I 
X - 0 ~ n(p+(r-I)N/ r) + (p+(r-I)N / r) ~ n(p+(r-I)N/r) + 

(p+(r-I)N /r) - w N L...Jx(rn)wN / r w N L...Jx(m+ l )w N / r 
n=O n=O 

~-I 
(r-I) (p+(r-I)N / r) ~ n(p+(r-I)N /r) 

···+wN L...J x(rn+(r-I»wN / r (6) 
n=O 

~- J ~-J ~-J 
X - 0 ~ n(p+qN/ r) + (p+qN / r) ~ n(p+qN/ r) + 2(p+qN /r) ~ n(p+qN/r) 

(p+qN / r) - w N ~ x (rn) w N /r w N ~ x (rn+ J)w N /r W N ~ x(m+2)wN /r + 

n=O n=O n=O (7) 
~-J 

+ (r- J)(p+qN/ r) ~ n(p+qN/r) 
..• w N ~x(rn+(r-I»wN/ r 

n=O 

Considering w aN/r = (wN/r )a =1a =1 therefore Eq (7) becomes· N/r N/r ' . . 
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(8) 

r r 
2p 2qNl r"" np ( r - l )p q( r - I )Nl r "" np 

W N W N L..X( rn+2) W Nl r+···+WN W N L..X(rn+(r-I » W Nl r 
n=O n=O 

Finally, based on Eq. (8), Eq. (1) could be formulated in a matrix-vector equation as: 

[X(p) X (p+Nlr ) x (p+2Nlr ) 
X -r (p+(r - I)Nl r ) -

!:!..-I 
r 

° l np WN x (m)w Nlr 

WO 
N 

WO 
N ° WN 

WO 
N 

n=O 

!:!..- I 
WO W

Nl r 
W

2N1r (r- I)Nl r r 
(9) W N 

pI np 
N N N WN X(m+l) W Nl r 

WO W
2N1r 

W
4N1r 2(r - I)Nl r n=O 

N N N WN 
X !:!..- I 

r 
2p I np 

WN X(m+2) WNl r 
n=O 

WO (r- I)Nl r 2( r - I)Nl r (r - I)' Nl r 
N WN W N W N 

!:!..-I 
r (r-l)p I np 

W N X(m+(r_I) WNl r 
n=O 

or 

X(p) 
0 

W N 
0 

W N 
0 

W N 
0 

W N 

X (p+Nl r) W
O 

W
Nl r 2N l r (r- I)N l r 

N N W N W N 

X(p+2 Nl r) 
0 2Nl r 4N l r 2(r- I) N I r 

W N W N W N W N 
X 

X(p+(r - I )Nl r ) W
O ( r - I)N l r 2(r - I) N l r (r_I)2 Nl r 

N W N W N W N 

!!..-I 
r 
L np 

X ( rn )W N l r 
n=O 

W
O 0 0 0 0 !!..-I N r 

0 wP 
N 0 0 0 L np 

X ( rn+I )W Nl r 

0 0 w2p 0 0 
n=O 

N 
!!..-I 

0 0 0 r 
L np 

0 
X ( rn+2)W Nl r 

n=O 

0 0 0 0 ( r - I )p 
W N 

!!..-I (10) r 

LX w
np 

( rn+(r - I) N l r 
n=O 
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We recognize the tirst and the second matrix, the well-known adder tree matrix Tf and the 

twiddle factor matrix WN , respectively. Equations (2)-(10) can be expressed in a compact 

form as: 

x = Tr W Ncoz(t x(rn+q)w~r q = 0,1,"' , r -lJ, 
n~O 

(11) 

for k = 0,1,2,. · ',N -1 , p = 0,1,2, .... ,(N / r)-1 and q = 0,1,2, .. .. ,r-1, with 

X [X X X X JT W d' ( 0 p 2p (r- l )p) Z = (p)' (p+N /r)' (p+2N /r )' ••• , (p+(r-l)N /r) , N = lag w N , w N ' w N , "', w N , co 

refers to the column vector and 

WO 
N 

WO 
N 

WO 
N 

WO 
N 

WO w N/r W 2N/r (r-l)N /r 
N N N w N 

WO W 2N/r W 4N/r 2(r-l)N/r 

T= N N N w N (12) r 

(r-l)N/r 2(r- l)N/r wN wN 

From Eq. (11), we can write the well-known butterfly matrix Br, which can be expressed as 

(13) 

2. In Place (or Butterfly) Computation 

The basic operation of a radix-r PE is the so-called butterfly computation in wh ich r 

inputs are combined to give the r outputs via the operation: 

X=Brx, (14) 

where x = [x(O),x(I),x(2)"" ,x(r_l)f and X = [X(O) ' X(I ), X (2) ' . .. , X (r-l ) r are, 

respectively, the BPE's input and output vectors. Br is the butterfly matrix (dim (Br) = rxr) 

which can be expressed as 
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(15) 

for decimation in frequency (DIF) process, and 

(16) 

for decimation in time (DIT) process. Therefore, the column vector, col(e) , in (11) can be 

expressed as: 

(17) 

In both cases the twiddle factor matrix, W N is a diagonal matrix defined by 

W - d· (1 p 2p (r- I)p ) ·th - 0 1 NI s 1 0 li N 1 dT · N - lag , WN, WN , ... ,wN Wl p- " . .. , r - , s= " . .. , ogr - an r iS 

the adder-tree matrix within the butterfly structure (12). 

Knowing that the higher radix will decrease the number of complex multiplications 

and the number of stages needed to execute a total N-point FFT, we were consequently 

oriented to the implementation of higher radices butterflies. Since the higher radix 

automatically reduces the communication load, the only problem remaining was the 

butterfly ' s complexity (computational load and phase number). The best-known technique 

for red~cing the computational load is factoring the adder-tree matrix T r. 

Fig. 1 shows the signal flow graph (SFG) for the radix-4 and the radix-8 butterflies. 

The computational reduction is achieved by incorporating the trivial multiplications j or - j 

into the summation by switching the real and imaginary parts of the data. Factoring the 

summation matrix is the best-known method of computation reduction. As we move to 

·higher radices, the complexity of su ch butterfly implementation increases and the amount 

of the non-trivial multiplications increases as shown in Fig. 1-b [2]. 
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X(OJ H-___ -..x(OJ 

X(4) 

x (7J 

x (8) 

x (3) 

x (7) 

x (1) 

x (5) 

b) 

Figure 1: SFG of the a) radix-4 and b) radix-8 butterflies [2] 

3. Proposed FFT Method 

It has been shown that the adder tree simplification method did not provide a 

complete solution for the FFT problem due to the increasing complexity of the butterflies 

for higher radices [2]. The problem's solution resides in the structure of the adder tree 

matrix and the twiddle factor matrix. Thus, ifwe pay attention to the elements of the adder 

tree matrix T rand to the elements of the twiddle factor matrix W N , we notice that both of 

them contain twiddle factors. So, by controlling the variation of the twiddle factor during 

the calculation of a complete FFT, we can incorporate the twiddle factors and the adder tree 

matrices into a single stage of calculation. 
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According to Eq. (15), Br is the product of the twiddle factor matrix W N and the 

adder-tree matrix T r• By defining the element of the zth line and the mth column in the 

matrix T r as [Tr ] : 
l ,m 

[ ] 
_ 1(lm N/rt 

T -w'N ' r l ,m 
(18) 

and by defining W N ( ) the set of the twiddle factor matrix as u,v,s 

WN ( ) =diag(wN(O ),WN( 1 ), ••• ,wN ( 1 )), u,v,s ,v,s ,v,s , r- ,v,s (19) 

in which each element of the diagonal matrix for the DIF pro cess is represented as: 

{JlV/US Ji US IN _ 
W N = N for! - m , 
[l,m cu,v,s) ° 1 h e sew ere 

(20) 

therefore, the.proposed modified radix-r butterfly computation Br is expressed, for the DIF 

process, as: 

B =W T r N(u ,v,s) r (21) 

will be simplified as: 

Ilm N/r+l v/rS Ji rsl 

[B ] =w. N 
r l ,m (v,s) N ' 

(22) 

where the indices are u = 1 = m = 0,1, .. . ,r-1, v = 0,1, ... , V -1 , s = 0,1, .. . ,S, ris the radix-r, 

V is the number of words (V = Njr), l x J represents the integer part operator of x, [X]N 

represents the operation x modulo N and S is the number of stages (S = logr N -1). 

As a result, the operation of a radix-r BPE for the DIF FFT is formulated by the 

column vector: 

Xc ) =Brx , u,v,s 
(23) 
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will be formulated with respect to the butterfly's [th output as 

(24) 

With the same reasoning as above, a radix-r DIT FFT operation can be derived. 

4. BPE Structures 

The conceptual key to the modified radix-r FFT butterfly is the formulation of the 

radix-r as composed engines with identical structures and a systematic means of accessing 

the corresponding multiplier coefficients [9]. This enables the design of an engine with the 

lowest rate of complex multipliers and adders, which utilizes r or r - 1 complex multipliers 

in parallel to implement each of the butterfly computations. 

There is a simple mapping from the three indices u, v, and s (FFT stage, butterfly, 

and element) to the addresses of the multiplier coefficients needed (Fig. 2). This mapping is 

offered by the proposed FFT address generator [10]. For a single processor environment, 

this type of PE with r parallel multipliers would result in decrease in time delay for the 

complete FFT by a factor of O(r). 

It was shown in [11] that with further development of the proposed structure in 

Fig. 2 could yield to the one iteration FFT in which a specifie frequency is computed in S 

cycles. Such implementation is very desirable for detecting the presence of a special known 

frequency in a monitored signal. This must be very efficient because most of the computed 

results with a conventional FFT are ignored. 

A second aspect of the modified radix - r FFT butterfly, is that they are also useful 

in parallel multiprocessing environments as shown in Fig 3. In essence, the precedence 

relations between the engines in the radix- r FFT are su ch that the execution of r engines in 
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parallel is feasible during each FFT stage. If each engine is executed on" the modified PE, it 

means that each of the r parallel processors would always be executing the same instruction 

simultaneously, which is very desirable for SIMD implementation on some of the latest 

DSP cards. 

a) b) 

Figure 2: Radix-r partial BPE (llh output) (a) using Br in Eg. (16), and the symbol b). 

X(V,S) [O]~ ___ -r--'" 
x (v,s) [l]--i--r----i [B ] 

r o (v,s) 

Figure 3: Maximize the data throughput using r BPE in parallel. 

Based on this concept, an alternative hardware implementation could be achieved as 

shown in Fig. 4 and 5 for the radix-4 and 8, respectively. The hardware reductions in 

complex multipliers and adders are obtained by increasing the connectivity complexity of 

the butterfly structures. 
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[2l (v /4(S-, » }(S-, ) ] [Jl (v /4(S-,» }(S-')] 

M J = W N N ,M4 = W N N , 

[N/4+Jl (v /4(S-,» Jis-,)] 
M s = wN N 

Figure 4: SFG of the proposed radix-4 BPE and the value of the multip}iers M; with i=1,2, ... ,5. 

[l-V j8(S-,)] ll-v j8(S-')+li] fl-v j2x8(S-,)] 
8(S-,) 8(S-,) 8 l 8(S-,) 

M,=w N,M2 =w N,M3=w N, 

ll-v j3x8(S-,)] ll-v j3X8(S-,) +li] ll-v j4X8(S-,)] 
8(S-,) 8(S-,) 8 8(S-,) 

M 4 =w N,M5 =w N,M6 =w N, 

ll-v j5X8(S-,)] ll-v j5X8(S-,)+li] ll-v j6X8(S-,)] 
8(S-,) 8(S-,) 8 8(S-,) 

M 7 =w N,M8 =w N,M9 =w N, 

ll-v j7X8(S-,)] rl-v j7X8(S-') +li] 
8(S-,) 1 8(S-,) 8 

MIO = W N , Mil = W N 

Figure 5: SFG of the proposed radix-8 BPE and the value of the multipliers Mi with i = 1,2, ... ,11 
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5. Performance Evaluation 

A recursive application ofEq. (16) can convert the DFT computation oflength N=I 

into S steps in order to compute rS DFTs of length r. In each step N/r words have to be 

processed. Therefore, the sequential time computation, te, of the algorithm is given by: 

te =( ~}BPE logr N =( ~}BPES (25) 

where tBPE is the BPE time computation which is depicted by its critical path. 

As for computation time and in order to compare our proposed radix-r with the 

conventional radix-r structures, we assume that ail data is present at the input, in a pre­

ordered manner. We quantified this comparison based on the critical path delay for one 

BPE in order to obtain the first r outputs for an FFT of size r for the following radices 2, 4, 

8 and 16. The conventional radix-r structures shown in Fig. 1, in which the BPE's critical 

paths are defined as: 

i) Radix-4 needs 2 complex multiplications and 2 complex additions, and 

ii) Radix-8 needs 4 complex multiplications and 3 complex additions. The proposed 

radix-4 BPE structure (Fig. 4) requires one complex multiplication and two 

complex additions, while radix-8 (Fig. 5) requires one complex multiplication 

and 3 complex additions. Our radix-2 BPE is the same as the conventional BPE. 

Given that the time delay for real addition (TA) is 4 times less th an real 

multiplication (TM), therefore, Table 1 summarizes the critical path delay based on TM for 

each BPE. 

By also assuming that the time delay TM = 4TA, Table 2 shows the performance 

result in terms of computation time te, between the proposed structures and the 
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1, 

t 

conventional one for different radices and for N = 4096. The gam obtained by the 

convention al and the proposed radix-r is compared to the Cooley-Tukey (radix-2) 

algorithm which is also shown. 

Table 1: Critical path delay ofBPE for conventional and proposed BPE with Radix-2, 4, 8 and 16 in 
order to obtain the first r outputs. 

" Critieal Path Delay [xTMl 
"h ----C-:oii"-'·u-:"-e-;n-:ti-on---al-:i\=J/·------"'--'-P-r-"o"""p-o-sed--F-F-T-"'- Speed Gain 

Radix-2 
Radix:'4 
Radix-8 

Radix416 

4.75 4.75 
5.25 5.00 
10.25 5.25 
18.0 6.0 

1 
1.05 
1.95 
3.0 

One of the most FFT powerful implementation is the pipelined FFT (Fig. 6). An N 

= ; length FFT is implemented within S stages where each stage performs a radix-r 

butterfly. The switch blocks correspond to the data communication buses from the (s - l)th 

to the sth stage where we considered the proposed switching concept in [14]. Since r data 

paths are used, the BPE pipeline achieves a data rate of S times the inter-module c10ck rate. 

Table 2: Time computation results in terms of TM between the proposed structures and the 
conventional one and the speed gain comparison with Cooley-Tukey (radix-2) for N=4096. 

Radiees , lW? '~,:;:~ 

Radix-2 
Raâ'ix-4 
Radix-8 

,f Radix:..t6!'%" 

x(v.s) [O] 
x(v.s) [I] 

1 
~ 

Radix-r 
BPE 

Stage 1 

Conventional 
Jj::t c %~%W~i 

[~TM] 
116736 
32256 
20992 
13824 

Radix-r 
BPE 

Stage 2 

1 
3.6 
5.6 
8.4 

116736 
30720 
10 752 
4608 

Radix-r 
BPE 

Stage S 

Figure 6: S Stages Radix-r Pipelined FFT. 

1 
3.8 
10.8 
25.3 

X (v.S) [O] 
X (v.s) [1] 
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Compared to [12] and [13], in which the radix-16 butterfly was represented as 

cascaded radix-2 buttertly known as very fast Fourier transforms (VFFT), the cited 

method's critical path will contain 5 cascaded complex multipliers and 4 complex adders 

which will make it slower than our proposed model by a factor of 5. 

Fig. 7 shows the comparison in computation time for both pipelined structures in 

order to compute pipelined FFTs for different FFT-length (N). According to this figure we 

observe that: 

i) For the conventional case the critical path increases wh en the r > 4; 

ii) The critical path of the proposed FFT maintain one complex multiplier when r 

increases; and 

iii) The critical path increases exponentially with N for the conventional radix-r 

when r>4 meanwhile the critical path of the proposed FFT remains invariant 

with increasing r. 

Table 3 presents the comparison in terms of implementation resources needed to 

execute the respective BPE, in terms of: 

i) Number ofreal number multiplications and additions, 

ii) Number of full adders (FA) needed to implement both fixed-point arithmetic 

operators in the VLSI. 

We assumed that a complex multiplication can be implemented using 3 real 

multiplications and 3 real additions. We considered 16-bit and 32-bit globallengths for the 

real multiplication and addition, respectively. Since our proposed model will have only one 

multiplier in the buttertly's critical path therefore, we can implement the real multiplication 
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with less overall bit word length than the conventional BPE, In order to obtain the 

equivalent result. 

60 

55 0 R,dix-2 } 
Radix-4 Convention al 

f-~ 50 ':;/ Radix-8 x 
$ 

t..Li 45 + Rrulix-2 } 0... co <:> Radix-4 Proposed fj) 

:; 40 1> Radix-8 8-
::l dl 
0 
~ 35 ...... 
0 

~ 30 . \/ 
0... ffi 

... 
<:> 

~ .g 25 <> 'C $ 
U 

20 7 6 1> 

15 ... 1> 
<:> 

10 J>. 

101 10
2 

10
3 

Number of point (N) 

Figure 7: Critical path delay for r-output pipeline FFT conventional and proposed FFT Radix-2, 4 
and 8. 

Table 3: Number of real multiplications and additions for BPE and in term of FA 
(multiplier on 16-bit and adder on 32-bit). 

6. Conclusion 

Mult 
3 
9 

27 

Proposed FFT 

3 9 
15 41 
33 111 

Fi\. 
1056 
5152 
12000 

This article has presented an efficient implementation method for the FFT 

algorithm, where various issues conceming FFT implementation processors were 

discussed, placing the emphasis on butterfly processing elements (BPE) implementation. It 

can be argued that the higher radix FFT algorithms are advantageous for the hardware 

implementation, due to the reduced quantity of complex multiplications and memory access 
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rate requirements. In this paper, we showed that the implementation of a radix-r PE for the 

FFT is feasible. For the radix-8 and 16 cases, we have shown an improvement in the critical 

path delay for the proposed BPE by a factor of 2 and 3, respectively, compared to 

conventional BPE. 

Multistage parallel pipelined FFT Architectures are presented in the companion 

paper entitIe - ."Parallel pipelined processing" - [15]. 
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This paper presents a solution to the FFT's parallel multiprocessing problem, and 

involves novel concepts wherein the realization of parallel pipelines and multistage 

parallel pipelines are possible. The problem resides in defining the mathematical 

model of the so-called combination phase, in which the concept of representing the 

Discrete Fourier Transform (DFT) in terms of its partial DFTs should be weil 

structured to obtain the right mathematical model. The resulting implementation in 

which r parallel processors operate simultaneously within a single instruction reduces 

the number of communications phases and the no-operation states (NOP) to their 

minimum values. The two papers, Butterfly Processing Element (BPE) and Parallel 

Pipelined Processing, provide a new FFT concept for efficient VLSI implementation. 

1. Introduction 

The computational of the fast Fourier transforms (FFTs) of size N = ? is the 

cornerstone ofmany super-computer applications. Theseinc\ude not only the common ones 

such as digital signal processing, speech recognition, image processing, communication 

systems (e.g. OFDM) and petroleum seismic analysis, but also other less obvious 

applications, su ch as in computational fluid dynamics, medical technology, multiple 

precision arithmetic and computational number theory. Computations worthy of a parallei 

computer generally fall into four categories: 

1) One or a few very long I-D FFTs; 
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2) Man'y sm ail or moderate-sized I-D FFTs; 

3) One or a few large 2-D FFTs; or 

4) One or a few large 3-D FFTs. 

The most significant problem in spectral analysis resides in its data's parallel 

multiprocessing. This difficulty arises in finding a feasible algorithm that could meet the 

following objectives: 

i) Build an algorithm that can be easily implemented on DSP cards using the 

newest technology; 

ii) Choose r parallel processors able to execute a single instruction simultaneously; 

iii) Maintain the number ofNOP (no operations) at a minimum value; 

iv) Maintain the communication load between r processors at a minimum value; 

v) Maintain the computationalload at its minimum value; 

vi) Allow no pipeline break (or "pipeline stail"): the delay caused on a processor 

using pipelines wh en a transfer of control takes place (or is absent); and 

vii) Ensure simplicity in VLSI design. 

To meet the growing demand for high-speed processing, highly efficient parallel 

pipeline FFT processors have been deployed. In order to keep these processors busy, the 

simultaneous distribution of ail data samples (N = 1) is necessary. This problem, which 

involves seriai word data coupled with limited 1/0 resources in FPGAs complicates the 

implementation ofhigh perforrning parallel pipelined radix-r FFT processors [1]-[4]. From 

a mathematical point of view the representation of the DFT in terrns of its partial DFTs has 

not been weil structured to date. The problem resides in finding a mathematical model of 

the combination phase, in which the concept of butterfly computation proposed in [6] , 
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should be weil structured in order to obtain the right mathematical mode!. This problem can 

be addressed by discovering how X = TNx (a vector with n components) can be recovered 

from r vectors that are r times shorter. 

This paper is organized as follows: Section 2 provides a detailed description of the 

proposed DFT factorization. Section 3 shows how various aspects of the parallel pipelined 

FFT and the multistage parallel pipelined FFT are proposed, while Section 4 describes the 

performance evaluation and Section 5 is devoted to the conclusion. 

2. DFT Factorization 

The DFT definition is shown as: 

N·I 

X[kl = LX[nlW~k, k E [O,N -1] (1) 
n=O 

where x[n] is the input sequence, X[k] is the output sequence, N is the transform length, 

W~k = e - j(27r/ N)nk is called the twiddle factor in the butterfly structure, and l = - 1. Both 

1:n] and ~k] are complex number sequences. 

Equation (1) could be factorized as follow [4] and [5]: 

To subdivide the' axis k into 2 new axes p and q, we place 

k = p+qN / rwithp = O,l, ... ,N/rs -1, s = 0,1, . . . ,logr N-l and q = O,I, .... ,r-l. 

Therefore, X(k) is replaced using new indices p and q 

x -x (k) - (p+qNlr) , (3) 

with 
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~I ~ ~ 
x - ° ~ n(p+qN/ r) (p+qN / r) ~ n(p+qN / r) (r-I)(p+qN /r) ~ n(p+qN/ r) 

(p+qN / r) -WN L..X(m)WN / r +WN L..X(rn+I)WN /r +···+WN L..X(rn+(r-l))WN /r • 
n=O n=O n=O 

(4) 

Equation (4) could be formulated in a matrix-vector equation, using the column 

vector operator, col(e), as follow 

(5) 

for p=O,1,2, .... ,(Nlr)-1, s=O,1, ... ,logrN -1 and q=O,1,2, .... ,r-l,with 

x = [ X(p)' X(p+Nlr),X(p+2Nlr)' 
_. 0 P 2P... (r-l)p 

JT ( ) ... , X(p+(r- I)Nlr) , W N -dzag WN ,WN ,WN , ,WN and 

WO 
N 

WO 
N 

WO 
N 

wN / r 
N 

T= 
WO W 2N /r 

N N 
r 

WO (r-I)N / r 
N W N 

WO 
N 

W 2N / r 
N 

W 4N / r 
N 

2(r - I) N / r 
W N 

WO 
N 

(r-I)N / r 
WN 

2(r- I)N/r 
WN 

From Eq. (5), we can write the well-known butterfly matrix Br, which can be expressed as: 

(6) 

and for the particular case when N=r input-output data elements therefore, the column 

vector in Eq. (5) becomes 

(7) 

and the BPE output is expressed as 

(8) 
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where x=[x(O), x(l ) , •• , x (r _,) fand X=[X(O), X ( I)' ... , X (r- l ) r are, the BPE input and 

output vectors respectively. 

3. Multistage architecture of parallel pipelined FFT 

An FFT of length ; is implemented in S stages where each stage performs a radix-r 

butterfly (Fig. 1). The switch blocks correspond to the data communication buses from the 

(S - 1)th to sn stages where S = logr N and s = 0, 1, ... ,S - 1 . Since r data paths are used, the 

pipelined BPE achieves a data rate S times the inter-module clock rate. 

X(v,s) [ü] 

X(v,s) [1] 

Stage S-l 

Figure 1: S Stages Radix-r Pipelined FFT 

N-l 

X (v,s) [ü] 

X (v,s) [l] 

If X (k) is the Nh order Fourier transform L>(n) w'); then, X (O), X(I ), ... and X (r- l ) 

n=O 

will be the Nh/r order Fourier transforms given respectively by the following expressions, 

(N /r )-l (N /r )- l (N /r )- l 
~ np ~ np d ~ np L... x rn wN/ r , L... x rn+1 wN/r , ... an L... x rn+(r- l ) wN/r . 
n=O n=O n=O 

In this section we refer to these smaller order DFT's as partial DFTs. As a result, 

Equation (5) can now be expressed as: 

(9) 

Finally Eq. (9) reveals that a DFT of size N can be decomposed into r shorter DFTs 

of size Nlr which could be computed in parallel, with no data dependency among these r 

DFTs pieces, and then combined according to the same equation to obtain DFTs of size N. 
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By doing so, a complete iteration would be replaced by a single multiplication for each 

parallelized stage. According to Fig. 1, a radix-r pipelined FFT of size N will produce the 

first r outputs in S cycles where S = log, N . The number of cycles needed to complete a FFT 

is therefore S + ( Ni,. -1) cycles. 

Fig. 2 illustrates the parallel implementation of r radix-r pipelined FFTs of size N/r, 

which are interconnected with r radix-r butterflies in order to complete an FFT of size N. 

-- ---1m ) § Radix-l' :Wl Radix-r Radix-r ---- ... ... , 
n BPE n , BPE BPE 
% % , 

Sta.ge 1 Stage" 

X( ... +l) --§ :Wl ---- Radix-r Radix-r Radix-J' ... ~ : n BPE BPE BPE 
% % , --Stage} Stage" 

X(m+j) 

~ Radix-T ::Wl Radix-J' -- Radix-J' Radix-J' : ... , 
BPE n BPE BPE ~ : BPE % , , --St.g~. O Sag' ft 

Figure 2: r-parallel pipelined radix-r for JBPE structure. 

In DSP Layman's language, the factorization of an FFT can be interpreted as a 

dataflow diagram (or Signal Flow Graph) depicting the arithmetic operations and their 

dependencies. Thus by labeling the Slh stage's r outputs of each pipeline by OUT(j,p); which 

are interconnected according to Eq. (5) to r butterfly processing elements (BPE) labeled as 

BPE(p,j) in which j=O,l, ... ,r-landp=O,l, ... ,r-l. This interconnection is achieved by 

feeding the /h output of the pth pipeline to the i h input of the /h butterfly. For instance the 

output labeled zero of the second pipeline will be connected to the second input of the 

butterfly labeled zero. 
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Compared to Fig. 1, the first r outputs will be also provided by S cycles. Meanwhile 

a complete FFT will require: 

and the gain G would be 

G = _S_+_rs_-~I -_1 
S+rs-2 -1' 

which for large N, could be approximated by: 

(11) 

(12) 

With the same reasoning as above, further DFT decomposition in terms of its partial DFTs 

yield to the multistage parallel pipelined FFT as shown in Figure 3 for the mixed radix-4 

and radix-2 case. Finally the decomposition of the DFT in terms of its partial DFTs will 

lead to the FFT array structure which will be executed in S cycles as shown in Fig. P6. 

-Xt4n) 00---- ... Q--
L--_----' 

-
------ 00 : '------' 

------ 00 : ~---' 

------ 00=,------, 
------ 00 ... --

Q--
'---;;-:------' 

Radix-4 
BPE 

Radix-4 
BPE 

5tag.4 

Figure 3: Two parallels radix-2 pipelined BPEs connected to two radix-4 BPEs. 

4. Performance Results 

(10) 

Our proposed parallel pipelined FFT will be targeting the OFDM application that 

mostly uses 64 complex points (N=64). This type of 26 FFT is implemented in 6 stages 
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(S=6) where each stage performs a radix-2 butterfly. The switch blocks correspond to the 

data communication buses from the (S - l)th to the /h stages (s = 0,1,2, ... ,5) in which we will 

consider the switching concept proposed in [7]. Since two data paths are used, the BPE 

pipeline achieves a data rate of 6 times the inter-module clock rate. Our comparison study 

will be based on the computational time of the 26 FFT implemented on a pipelined radix-2 

structure versus the proposed structures where we have assumed that aIl data is present at 

the input, in a pre-ordered manner. We quantified this comparison based on the BPE' s 

critical path delay in order to compute the 26 FFT with the proposed structures for radices 4 

and 8 as iIIustrated in Figures 4 and 5 of the cited reference [6]. By assuming that the time 

delay for real value addition (TA) is 4 times less than a real value multiplication (TM); 

Table 2-4 summarizes the critical path delay based on the delay time TM of each BPE. 

Table 1: Critical path delay for the conventional BPE and the proposed BPE for Radix-2, 4, 
8 and 16 in order to obtain the first r outputs. 

Radiees 

Radix-2 
èRadix-4 
Radi~-8 /'. m 

Radix-16 t ili' ~ 

Convêntional +ProposedFFT 
4.75 4.75 
5.25 5.00 
10.25 5.25 
18.0 6.0 

1 
1.05 
1.95 
3.0 

Figure 4: SFG ofthe proposed radix-4 BPE and the value of the multipliers Mi with i=1,2, ... ,5 . 
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X(v,s)[O] 
------------~--------~1 

Jl-V j8(S-s)1 Il-V j8(S-S)+!{1 Il-v j2x~S-S)1 Jl-v j3x~S-S)1 8(S-s) 8(S-s) 8 8(S-s) 8(S-s) 
M = N M =w N M =W N M = N 

1 ' 2 ' 3 ' 4 

Jl-v j3X8(S-S)+!{1 Jl-V j4X8(S-S) \ Jl-V j5X8(S-s) \ Jl-V j5X~S-S)+!{\ 8(S-s) 8 g(s-s) 8(S-s) g(s-s) 8 
M - N M- N M- N M- N 5- , 6 - , 7- , 8 -

Jl-~ j6X~S-S)\ Il-V j7X~S-S)\ Jl-V j7X8(S-S)+!{\ 8(5-s) g(s-s) 8(S-s) 8 
M 9= N, MlO=w N, MIl = N 

Figure 5: Fig. 5 SFG of the proposed radix-8 BPE and the value of the multipliers M; with 
i=1 ,2, .. . ,11. 

Tables 1 and 2 compares the critical path delay and the resources needed for the 

respective BPE, in terms of: 

i) Number ofreal multiplications and additions, 
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ii) Number of elementary unit as full adders (FA) needed to implement both fixed-

point arithmetic operators in VLSI. 

Table 2: Number of real multiplications and additions for BPEs in term of FA (Mult. on 16-bit 
and adder on 32-bit). 

Butterflies 
Conventional Proposed FFT 

Mult Add FA Mult Add 
Radix-2 3 9 1056 3 9 
Radix 4 9 31 3296 15 41 
Radix 8 27 93 9888 33 111 

Figure Pl: Pipelined radix-2 structure. 

Ituado.t 

Figure P2: Two-parallel pipelined radix-2 structure. 

Sta;C!:Z 

l:~adiX.2 l: 
~ BPE 2 

Stage 0 Stal:e 1 StaIl: 2 

x~m--~r~r~l:'" 
l!L-~l!1-~l!1-~ g 

Stag.O Stage 1 Stage Z 

'---------'l' 

'---------' 

Figure P3: Four-parallel pipelined radix-2 structure. 

FA 
1056 
5152 
12000 

Radlx-4 
BPE 

Radix-4 
BPE 

StaR'~ 
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Radix.2 
BPE 

Figure P4: Four-parallel pipelined radix-4 structure. 

Radix.2 
BPE 

~~~ 
l!J--~l!J--

Stage l '--0:-:-::":""'..--' 

Radix-2 
BPE 

tagt. 

Figure P5: Eight-parallel pipelined radix-2 structure. 

Stage 3 
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PE 

R.1fD;.I _fj 
PE ~ 

Figure P6: Eight-parallel pipelined radix-8 structure. 

Based on the partial DFT concept presented in the previous section; Fig. Pl to P6 

show the proposed multistage parallel pipelined FFT architectures. Table 3 compares all 

the proposed structures for N=64 (N=26
) which is currently used in OF DM wireless 

applications such as WIMAX and L TE that uses up to N = 2048. The computation time to 

execute the total 64 points FFT is based on Table l and the area in terms of FAis based on 

Table 2. Table 3 shows the area and computation times for various parallel pipelined FFT 

structures, where according to this table, the use of parallel resources result in higher gains 

due to the fact that our proposed butterfly proposed in [6] will have one multiplier in its 

critical path. In order to achieve the same fixed-point arithmetic precision compared to the 

conventional butterfly that uses more than one multiplier in its critical data path; this will 
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result in reduction in bit terms of the data' s word length. By doing so, our proposed models 

reach a closed area in term of FA as the convention al one, yet with better performance. 

Table 3: Area and computation time of the proposed multistage parallel pipelined FFT 
architectures as shown in Fig. PI-P6. 

As stated earlier, further DFT decomposition in terms of its partial DFTs will lead 

to the FFT array structure, which will be executed in S cycles as shown in Figure P6. 

Knowing that the first iteration of the DIT FFT process the coefficient multipliers are equal 

to 1 therefore, 64 complex DFT points will be executed in two cycles. If the proposed 

radix-8 butterflies shown in Figure 5 are used, 88 complex multipliers will be required for 

such implementation. Compared to the array structure of the convention al radix-2 FFT, 64 

complex points DFT will be executed in 6 cycles and will require the implementation of 

160 complex multipliers. For the same amount of complex data the conventional radix-8 

will require 72 complex multipliers and will be executed in two c10ck cycles, but the 

conventional radix-8 butterfly c10ck cycle is two times slower than our proposed butterfly. 

5. Conclusion 

High performance parallel computing is essential for solving very large and 

complex scientific and engineering problems within a reasonable amount of computation 

time. These two mains tasks must be carried out in order to deliver a proper parallel 

computing solution to a specific problem, and they involve choosing the appropriate 
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parallel VLSI implementation. In this article we proposed a solution to the FFT's parallel 

multiprocessing problem, wherein the mathematical model described the global philosophy 

and the detailed strategy, and its resolution method was presented in chronological order. 

We have cJearly shown that our proposed butterfly processing element structure in [5] is an 

effective solution for higher radix pipelined FFT implementation. This objective was 

achieved by reducing the complexity of the . critical path compared to the convention al 

radix-r that uses the adder tree simplification. On the other hand, we clearly showed that 

the number of stages S in a pipelined architecture could be reduced through implementation 

our parallel method which could boost the FFT's execution time. Future work will consist 

of implementing our proposaIs on FPGA and ASIC by using the switching concept 

proposed in [7]. 
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Abstract - This article describes a new approach for higher radix butterflies suitable 

for pipeline implementation. Based on the butterfly computation introduced by 

Cooley-Tukey [1], we will introduce a novel approach for the Discrete Fourier 

Transform (DFT) factorization, by redefining the butterfly computation, which is 

more suitable for efficient VLSI implementation. The proposed factorization lead us 

to present a new concept of a radix-r Fast Fourier Transform (FFT), in which the 

radix-r butterfly computation concept was formulated as composite engines to 

implement each of the butterfly computations. This concept enables the radix r 

butterfly-processing element (BPE) to be designed by maintaining only one complex 

multiplier in the butterfly critical path for any given r [2]. Aigorithmic description 

and performance of low complexity FFT methods are considered in this paper where 

the speed and accuracy evaluations of the proposed method in fixed point are also 

elaborated. 

1. Introduction 

The Discrete Fourier Transforrn (DFT) is a fundamental digital signal-processing 

algorithm used in many applications such as the orthogonal frequency division 

multiplexing wireless communication (OFDM), wherein the Fast Fourier Transform (FFT) 

is a major key operator [3], [4]. Most of the digital signal processing is treated in floating 

point in order to avoid the accuracy problem that is associated with a high cost in 
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implementation. However, in order to satisfy the cost constraints, these algorithms must be 

converted into fixed point algorithm where the computing accuracy los ses must be 

contained in order to ensure algorithm integrity and applications performance. We can find 

a lot of structures to complete a given task, but finding the best structure is not a trivial 

problem. This paper thus proposes a new FFT algorithm able to increase the computation 

speed, preserving the accuracy with an affordable cost of implementation. 

The definition of the DFT is represented by the following equation 

N-l 

X[k) = IX[n)w~k, k E [O,N -1] (1) 
n=O 

where X[n) is the input sequence, X[k) is the output sequence, N is the transform length, 

W~k = e- J(27r/N)nk called the twiddle factor in butterfly structure, and/ = -1. Both x[n] and 

X[k] are complex number sequences. 

From Eq. (1), it can be seen that the DFT computational complexity increases 

according to the square of the transform length, and thus becomes expensive for large N. 

Sorne algorithms are used for efficient DFT computation, that are collectively known as 

Fast Fourier Transform (FFT) su ch as Cooley-Tukey algorithm [1], Split-Radix Algorithm, 

Winograd Fourier Transform Algorithm (WFTA) and others, su ch as the Corn mon Factor 

Algorithms. The overall arithmetic operations involved in the computation of N-point FFT 

decrease with increasing r, however the complexity of the butterfly processing element 

(BPE) increases in term of complex arithmetic computation, parallel inputs, connectivity, 

number of phases and critical path delay in the butterfly. The higher radix butterfly 

involves a non-trivial VLSI implementation problem (i.e. increasing the butterfly's critical 

path delay), which explains why the majority of FFT VLSI implementations are based on 
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radix-2 or 4, due to their low butterfly complexity. The advantage of using a higher radix is 

that the number of multiplications and the number of stages to execute FFTs decreases [3] . 

The number of stages often corresponds to the amount of global communication and/or 

memory accesses in implementation, and thus reducing the number of stages becomes 

beneficial if communication is expensive, as is the case in most hardware implementations. 

Fewer attempts to reduce the computational load have failed, due to the added multipliers 

in the butterfly ' s critical path for higher radices [8], [9]. 

The most significant contribution in our proposition is that our proposed BPE 

structure maintains low arithmetic operations within its critical path (one complex 

multiplier and certain adders). Consequently, we propose a solution for higher radices BPE 

with low butterfly complexity in terms of complex multipliers in the butterfly critical path 

whicl1 is the key component in FFT implementation. By doing so, the butterfly VLSI 

implementation for higher radices would be feasible since it maintains approximately the 

same complexity of the radices 2 and 4 butterflies. 

The paper is organized as follows ; Section 2 the radix-r DFT factorization-

demystified while Section 3 provides a detailed to description of the proposed FFT and the 

modified radix-r FFT methods. Section 4 provides a performance evaluation of the 

proposed butterfly structure while Section 5 reports the conclusions. 

2. The Radix-r DFT Factorization 

Eq. (1) can be expressed in compact form as [2] , [5] and [6]: 

(2) 

Fork=O,l," ',N-l , p=O,l , .. .. ,(N/ r)-l and q=O,l , .... ,r - l , with 
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X (p) = [ X(P)' X (p+Nl r), X (p+2N l rl' ••• , X (p+( r-l)Nl r ) r , (3) 

W - d' ( 0 P 2p ( r - l )p ) 
N - lag wN ' W N' W N , ", W N ' (4) 

and 

WO 
N 

WO 
N 

w O 
N 

WO 
N 

WO w.-: I r W
2Nlr (r- I)Nlr 

N N N WN 

wO WJ;.Nl r W
4Nl r 2(r-I)Nlr 

T= N N N W N (5) r 

(r- I)Nlr 2(r - 1)Nlr 
2 

w O (r - I) Nlr 
N WN WN W N 

A recursive application of Eq. (2) can convert the DFT computation of length N = yS 

into S steps in order to compute yS DFTs of length r, where in each step N/r words have to 

be processed and the whole process is known as the FFT algorithm. 

The twiddle factor matrix W N is a diagonal matrix which IS defined by 

W - d' (1 p 2p (r-l)p ), h - OI s 1 N - zag , W N, W N " " ,wN Wlt p- , , .. . , r - , 

s =Û,l, . . . ,S wpereS=log r N - l and T r is the well-known DFT matrix within the 

butterfly structure. 

Since the higher radix automatically reduces the communication load, the only 

remaining problem was reducing the computational complexity in the butterfly structure. 

The best-known technique for reducing the computational load is factorin g the DFT matrix 

Fig. 1 shows the signal flow graph (SFG) for the conventional radix-8 butterfly 

(named FFT Conv.), where the computational reduction is achieved by incorporating the 

trivial multiplications} or - } into the summation by switching the real and imaginary parts 

of the data. Factoring the DFT matrix is the best-known method for computation reduction. 
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As we move to higher radices, the implementation complexity of such butterfly increases 

and the amount of non-trivial multiplications increases. In the radix-8 algorithm case, the 

butterfly complexity is significantly higher, and non-trivial multiplications are shown in 

Fig. 1 [3]. 

x(O) X(O) 

x(4) X( l ) 

x(2) 

>.:(6) -;>" i.-"" -
>.:(1) -~~ 

~". 

>.:(5) -E~ 
>.:(3) -{:l' 
x(7) .~~. -8 X(7) 

Figure 1: SFG of the radix-8 DIT butterflies [3] where the hlghlighted red portion 
represents the butterfly critical path used in FFT conventional. 

3. Proposed FFT Method 

It has been shown that the DFT matrix simplification method did not provide a 

complete solution for the FFT problem due to the increasing complexity of the butterflies 

for higher radices [3]. The problem' s solution resides in the structure of the DFT matrix 

and the twiddle factor matrix. Thus, if we pay attention to the elements of the adder tree 

matrix TT and to the elements of the twiddle factor matrix T" we notice that both of them 

contain twiddle factors. So, by controlling the variation of the twiddle factor during the 

calculation of a complete FFT, we can incorporate the twiddle factors and the DFT matrix 

matrices into a single stage of calculation. 

By defining [Tr lm as the zth and mth element of the matrix T r, we can rewrite 

equation (5) as: 
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[T] = [(tm N/r) ]N 
r I ,m W N , (6) 

with I=O,I, ... ,r-l , m=O,I, ... ,r-1 and [X]N represents the operation x modulo N and By 

defining W N(r,v,s) the set of the twiddle factor matrix (Eq. 4) as: 

(7) 

where I=O,I , ... ,r - 1, m=O,l , .. . ,r - 1, v = O,I , ... ,N/r - 1 and lx J represents the integer part 

operator of x. Therefore, the proposed modified radix-r DIF butterfly computation Br for 

the lth output is expressed as: 

(8) 

With the same reasoning as above, the zth output of the radix-r DIT FFT operation 

can be derived as: 

(9) 

Equations (8) and (9) yield to the BPE JFFT structures that maintain one complex 

multiplier in their critical data path [2] as shown in Fig. 2. 

4. Performance Evaluation 

FFTs are the most powerful algorithms that are used in communication systems 

such as OFDM. Their implementation is very attractive in fixed point due to the reduction 

in cost compared to the floating point implementation. One of the most powerful FFT 

implementation is the pipelined FFT which is highly implemented in the communication 

systems such as the Single-path Delay Feedback structure (SDF Fig. 3a), the Single-path 

Delay Commutator (SDC Fig. 3b) and the Multi-path Delay Commutator (MDC Fig. 3c) 
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from which the MDC structure will be the target in our performance evaluation. Our 

performance study will be conducted in two parts: the quantization effect and FPGA 

implementation. 

Jl-~ j8(S-S)1 Jl-~ j8(S-S)+~] Il-v j2X8(S-S)] 
8(5 - s) 8(5 - s) 8 8(S - s ) 

M - N M - N M - w N ,- , 2 - , 3- , 

Il-~ j3X8(S-S)1 Il-v j3x8(S-S)+~1 Il-v j4X8(S-S)] 
8(5-s ) g(s-s) 8 8(S-s) 

M 4 = w N,M s =w N,M 6 = W N, 

Il-~ jSX8(S-s)1 Jl-~ jSX8(S-S)+~] Il-v j6X8(S-S)1 
8(5 - s) 8(5 - s) 8 8(S- s) 

M - w N M - N M - w N 7 - , 8- , 9 - , 

Il-v j7xsts-s)1 Il-v j7X8(S-S)+~] 
8(S- s) 8(S- s) 8 

M IO = w N,M" = w N 

Figure 2: SFG of the proposed radix-8 BPE and the value of the multipliers M; are 
defined in [2] where the highlighted red portion represents the butterfly critical path 
(named BPE JFFT). 

A) Fixed-Point Accuracy 

In our fixed point comparative study, we used the native OF DM principle as shown 

in Fig. 4 [9]. The Signal to Quantization Noise Ratio (SQNR) is used to measure the FFT 
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accuracy at the receiver output versus the transmitted signal and in order to make a fair 

comparison between the two methods we implemented the FFT address generator proposed 

in [6] that could exclude the only trivial multiplication by one (i.e. w~ ) from the FFT 

process. Furthermore, in this comparison we will be elaborating two scenarios where the 

input/output data word-Iength is fixed to 16-bit and the twiddle factor word-Iength will 

vary (Fig 5). In the second scenario, the twiddle factor word-Iength is fixed to 8-bit and the 

input/output data word-Iength varies between 8 and 24 bits (Fig 6). 

R2 R2 
8PE I--~{)(}_..,j 8PE 

R2 
X)-_~ 8PE 

a) 

b) 

c) 

R2 
>-_~ BPE 

Figure 3: Pipelined FFT structures: a) Radix-2 SOF structure (R2S0F) for N = 16, b) 
Radix-4 SOC structure (R4S0C), and c) Radix-2 MDC structure (R2MDC). 

x ~ 

x 
IFFT FFT x .. 

(QPSK) Floating-Point Fixed-Point 

Figure 4: Fixed-point simulation with QPSK signais. 
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Fig. 5 reveals that the proposed method (called JFFT) has significant gains of 3 dB 

in the frrst scenario for a twiddle's factor word-length of 7-bit which is translated into 

reduction by 0.5-bit to obtain the same SQNR. In the second scenario, a gain of 3 dB is 

observed where the inputloutput's data word-length is greater than 16-bit as shown in 

Fig. 6. In these Figures, FFT2, 8 and 16 correspond to radix 2,8 and 16, respectively. 

B) FPGA Implementation 

For the FPGA implementation, we have targeted in our comparison the Spartan-3 

farnily, Virtex-E, Virtex-4 and Virtex-5 families and since the complex multiplication is a 

major concem in the FFT process; our performance study will be based on 4 different 

structures of the complex multiplier illustrated in Fig. 7 for the different cases labeled as: 

case 0 to case 3. 

FFT and JFFT 4096 points, variables 1S-bit 

45 

f 
35 

- - .12 Stages FFT2 
- ~ .4 Stages FFT8 
-'-4 Stages JFFT8 

- '" ·3 Stages FFT16 
......... 3 Stages JFFT16 

6 6.S 7 7.5 8 8.5 
Twlddle Factors Wordlength Bit 

Figure 5: Scenario 1: SQNR comparison for coefficients ' word-Iength 6 to 9-bit and 
input/output data' s word-Iength is fixed to 16-bit where N=4096. 

Our comparison will be based on the cost in term of MS/s/Slice as used in [7] where 

the comparative study was conducted on 1024 FFT. The FFT size was extended to 4096 
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points which is a multiple of 8 in order to elaborate the comparison between the proposed 

structures versus the R2"2SDF pipelined FFT structure. The cited structures [7] are based 

on the pipelined complex multiplier where it has been demonstrated that the R2"2SDF 

pipelined FFT structure performs better than the R4SDC structure. 

50 

45 

40 

20 

FFT and JFFT 4096 points, Twiddle Factor 8-bit 

~ --~ -- IIIQiIII -- -o- -- . := ...0- - -~ - - -D- - - -0- - - oG 

- - .12 Stages FFT2 
- ~ .4 Stages FFTS 
__ 4 Stages JFFT8 

- ~ .3 Stages FFT16 
__ 3 Stages JFFT16 

Figure 6: Scenario 2: SQNR comparison for input/output data's word-Iength 8 to 24-
bit and coefficients' word-Iength is fixed to 8-bit where N=4096. 

Table 1 reveals that the cost is maximized for the case 1 where our proposed radix-8 

butterfly on the MDC structure reveals a gain of 270%, 64% and 132% on the Spartan-3 , 

Virtex-E and Virtex-4 respectively, compared to the cited method in [7]. 

Table 2 shows that our proposed radix-8 JFFT on the MDC structure for case 1 

reduces the latency time by a factor of 10 on Spartan-3, 8 rimes faster on Virtex-4 and 6 

times faster on Virtex-E compared to the method cited in [7]. 

Table 3 reveals that the proposed radix-8 structure on the MDC structure performs 

the best in comparison to the conventional FFT butterfly and the cited method [7] due to 

the fact that the proposed method maxirnizes its use of the complex multipliers on Spartan-

3 and Virtex-E. 
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a) 

L ___ + (+. Q D~Q 

c) 

b) 

Figure 7: Complex Multiplier case studied: a) Case 0, b) Case 1, c) Case 2, and d) Case 3. 
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In conclusion and based on the results, we conclude that our proposed JFFT for case 

1 outperforrn the results obtained versus the conventional BPE (Fig. 2). Table 4 shows the 

resource's comparison in term of the total number of embedded multipliers involved in this 

comparative study. Our proposed JFFT structure uses more embedded multipliers than the 

other cited methods but less than the conventional butterfly for Virtex 4 and 5. 

Table 1: Cost Evaluation in MS/s/Slice for an FFT of size 4096 

Method Spartan 3 VutexE Vutex4 Vutex 5 

R2A2SDF [07] 0,0283 0,0158 0,0870 -

R4SDC [07] 0,0234 0,0111 0,0596 -

00 Cas ° 0,0098 0,0022 0,0219 0,0336 
1 ;; 
~ Cas 1 0,0486 0,0229 0,2014 0, 1817 ...... s:: 

"0 0 
cd U Cas 2 0,0408 0,0152 0,1583 0, 1513 
~ 

Cas 3 0,0398 0,0139 0,1493 0, 1483 

00 Cas ° 0,0064 0,0026 0,0272 0,0301 
1 

E-< .~ ~ Cas 1 0,1048 0,0259 0,2018 0,2447 
"0 ~ cd ...., Cas 2 0,0859 0,0171 0,1466 0,1779 
~ 

Cas 3 0,1001 0,0200 0,1510 0,1832 

Table 2: Latency time for an FFT ofsize 4096 (in /J.s) 

Method Spartan 3 VutexE Vutex4 Vutex 5 

R2A2SDF [07] 86,2 86,4 34,8 -
R4SDC [07] 66,3 87,1 37,4 -

00 Cas ° 101,6 154,7 57,0 45,3 
1 ;; 
~ Cas 1 17,3 15,7 4,9 4, 1 ...... ~ 

"0 0 

~ U Cas 2 23,7 23,0 7,5 6,2 

Cas 3 26,6 25,2 9,0 7,5 

00 Cas ° 98,1 104,8 38,9 30,5 
1 

~ ~ Cas 1 9,5 15,6 4,9 4, 1 ...... 
"0 ~ cd ...., Cas 2 12,8 22,9 7,5 6,2 
~ 

Cas 3 10,8 20,2 7,2 5,9 
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Table 3: Computational Time of the FFT execution for a size 4096 (in ilS) 

Method Spartan 3 VtrtexE Vtrtex 4 Vtrtex 5 

R2"'2SDF [07] 43,0 43,1 17,4 -

R4SDC [07] 33,1 43,5 18,7 -

00 Cas ° 46,4 70,7 26,0 20,7 
1 ;;> 7,8 7,1 2,2 1,8 ~ Cas 1 ....... t::: 

'\j 0 
10,5 3,4 2,8 cl:! U Cas 2 10,8 

~ 
Cas 3 12,1 11,5 4,1 3,4 

00 Cas ° 44,9 47,9 17,8 13,9 
1 

E---~ Cas 1 4,3 7,1 2,2 1,8 ....... ~ '\j 

~ cl:! Cas 2 5,8 10,4 3,4 2,8 
~ 

Cas 3 4,9 9,2 3,3 2,7 

Table 4: Number of embedded multiplier used for devices and methods 

DSP48 

Virtex 5 

5. Conclusion 

This article has presented an efficient implementation method for the FFT 

algorithm, -where various issues concerning FFT implementation processors were 

discussed, placing the emphasis on the butterfly processing elements (BPE) 

implementation. It can be argued that the higher radix FFT algorithms are advantageous for 

the hardware implementation, due to the reduced quantity of complex multiplications and 

memory access rate requirements. In this paper, we showed that the implementation of a 

radix-r PE for the FFT is feasible. In radix-8, we have shown an improvement of critical 

path delay for BPE by a factor of 2 and 3, respectively, and by maintaining higher SQNR 

compared to the radix-2. 
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Résumé Du Chapitre 3 

La transformée rapide de Fourier (TRF) avait et a toujours été une méthode de base 

dans les applications du traitement du signal et surtout dans l'analyse fréquentielle des 

signaux. Le calcul de la TRF nécessite pour chaque étape un schéma d' indexage pour 

contrôler d'une manière appropriée les données d'entrée / sortie et les coefficients 

multiplicateurs. La plupart des schémas d'indexages connues sont basées sur l'inversion des 

bits qui sont des techniques basés sur une table de consultation où on devra stocker ces 

indexes dans une mémoire supplémentaire. Ce chapitre décrit une nouvelle technique pour 

réordonner les données en se basant sur trois compteurs simples. Ces trois compteurs 

calculent les adresses de données avec les adresses de ses coefficients multiplicateurs 

correspondants qui doivent alimenter l'entrée du papillon. Un autre générateur d'adresse 

permet de stocker les données de sortie du papillon dans leur emplacement approprié de la 

mémoire. La méthode proposée peut réduire énormément l'accès mémoire des coefficients 

multiplicateurs en regroupant les données avec ses coefficients multiplicateurs 

correspondants tout en réduisant le temps d'exécution de la TRF: En agissant ainsi, toutes 

les multiplications triviales par ± 1 ou ± j ont pu être exclus du processus et en ajoutant à 

cela les accès à ces coefficients multiplicateurs ont été également réduits. 
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Abstract - The Fast Fourier Transform (FFT) had and always been a key role in 

signal processing applications which has been useful for the frequency domain 

analysis of the signais. The FFT computation requires for each stage an indexing 

scheme to address the input/output data and the coefficient multipliers in an 

appropriate way. Most of the indexing schemes to address the input/output data are 

based on the bit reversing techniques which will be boosted by a look up table that 

will need extra storage memory. This paper describes a novel technique in reordering 

the data based on three simple counters that computes the addresses of the butterfly's 

input data with the addresses of its corresponding coefficient multipliers and store the 

butterfly's output data into their proper memory location. FFTs are considered to be 

in place algorithms (or in situ) which transform a data structure by using a constant 

amount of memory storage. We showed that our proposed method reduces the 

memory usage by eliminating the look-up table traditionally used in the computation 

of the bit reversai indexes. 

1. Introduction 

The FFT algorithm is especially memory access and storage intensive, where the 

communication burden of an algorithm is a measure of the amount of data (written and 

read) that must be moved to or from the computing elements. Therefore, FFTs are typically 

used to input large amounts of data, perform mathematical transformation on that data, and 
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then output the resulting data ail at very high rates. In a real time system, data flow must be 

understood and controlled in order to achieve the high performance of a future wireless 

communication system based on orthogonal frequency division multiplexing wireless 

communication (OF DM) wherein the FFT is a major key operator [1]. Since the butterfly 

computation consists of a simple multiplication of the input data with an appropriate 

coefficient multiplier, the idea arises to have simple address generators (AG) that compute 

su ch address sequences from a small parameter set that describes the address pattern. 

Because the butterfly's CPU should only be used to compute matherhatical transformation, 

it is preferable for dataflow to be controlled by an independent device; if not, the system 

may incur performance degradation. Such peripheral devices, which can control data 

transfers between an 1/0 (Input/Output) subsystem and a memory subsystem in the same 

manner that a processor can control such transfers, reduce CP interrupt latencies and leave 

precious DSP cycles free for other tasks leading to increased performance [2]. 

Thus, given that dataflow control is a major con cern in the FFT process, inadequate 

AG burden the memory interface with additionalload and slow down computations [3]. 

One "rediscovery" of the FFT, that of Danielson and Lanczos in 1942, provides one 

of the clearest derivations ofalgorithms [4] and [5]. Danielson and Lanczos showed thata 

discrete Fourier transform could be written as the sum of two discrete Fourier transforms, 

each of length N12. In the mid-1960s, J.W. Cooley and J.W. Tukey proposed their first 

algorithm, known as the decimation-in-time (DIT) or Cooley-Tukey FFT algorithm, which 

first rearranges the input elements into bit-reverse order, then builds up the N-data output 

transform in log2N iterations; in other words, the radix-2 DIT algorithm first computes the 

transform of even-indexed and odd-indexed data, then combines these two results to 
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produce the Fourier transform of the entire data sequence [6]. Since that time, several 

techniques have been proposed for ordering and accessing the data at each stage of the 

FFT; the best known reordering technique is the bit-reversaI in which the data at index n 

are written in binary digits that are permuted in reversed order. 

In this paper we propose an innovative AG structure that is faster than the bit-reversaI 

technique most frequently proposed and compared with the most recent published bit­

reversaI techniques. 

The paper is organized as follows: Section 2 gives a brief outline of the bit-reversaI 

technique; Section 3 describes the proposed method, Section 4 provides the performance 

results ofthat method and Section 5 contains the conclusion. 

2. The Bit Reversing Techniques 

Many FFT users prefers the natural order outputs of the computed FFT and that is 

why they concentrated their efforts in reducing the computational time impact in the bit 

reversaI stage which is the first stage of the DIT process known as the bit reversaI data 

shuffling technique. The DIT FFT was attractive in fixed point implementation since 

Chang and Nguyen showed in [7] that DIT process executed in fixed-point arithmetic is 

more accurate than the decimation-in-frequency (DIF). Furthermore, it is highly 

recommended to reorder the intermediate stage of the FFT algorithm in order to facilitate 

the operation on consecutive data element which is required for many hardware 

architectures. To these ends, a number of alternative implementation has been proposed 

where one of which has greatly simplified this problem by adopting the out-of-place 

algorithm where the output array is distinct from the input one. Therefore, this section will 

be devoted in reviewing the existing current architecture of the bit reversing techn ique 
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which is needed at the first stage of the DIT process where a number of bit reversai 

algorithms have been published in recent years [8], [9] and [10]. The vector calculation 

method proposed by Pei & Chang for bit reversing technique as the "fastest known 

technique" is also used in our comparative study [10]. 

The operation count of the proposed algorithm In [8] by excluding the index 

calculations for each stage is 

N - 2 integer additions, 

2(N - 2) integer increments, 

(log2 N) -1 multiplications by 2, 

(log2 N) -1 divisions by 2, 

(1) 

plus two more divisions by NI2 and N14. In Eq. (1), multiplications and divisions can be 

efficiently implemented using bit-shift operations. On the top of that, this algorithm will 

require a storage table of NI2 index numbers [8]. 

On the other hand the proposed method in [10] showed a significant improvement 

in the operation count which will require N shifts, N additions and an adjusting index that 

will require the use of O(N) memories. 

3 The Proposed Method 

The proposed method is based on the radix-r DFT factorization proposed in [11]-

[15]. The definition oflhe DFT is represented by the following equation 

N-I 

X[k] = LX[n]w';, k E [O,N -1] (2) 
n=O 

which could be factorized as follow: 

(3) 
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where after simplification equation (3) could be expressed as 

for k = 0,1, ... , N - 1 . 

Finally, from Eq. (4), could be formulated in a matrix-vector notation as 

[ X(P) 

T 

X X ... ... 
X(p+(r _I)Nl r) ] = 

(p+Nl r) (p+ 2N l r) 

1i_1 
r 

° L w','P 
wO wO wO wO 

WN x (m) Nl r 
n=O 

N N N N 
Ii-I 

wO w Nl r w 2N l r (r- I)N l r r 
N N N WN w~ L x(m+1)~,0r 

wO w 2Nl r W4Nl r 2(r- I)Nl r n=O 
N N N w N Ii-I r 

2p L w'!P WN x (rn+2) Nl r .. n=O 

WO (r- J)N l r 2(r- I)Nl r (r_I)2 Nl r 
N WN WN WN Ii-I r 

w (r - I)p L x w'!P 
N n=O (rn+(r- I) N I r 

which could be expressed in a compact form as: 

x ~ T, W NCO{ ~X(m., )W;;; , q ~ 0,1, ... ,r-1 
forp = O,I, ... . ,(N /r)-land q=O,I, .... ,r - 1 with 

x = [ X(P ) ' X (p+Nl r ) ,X(p+2Nl r) ' • • • , X (p+( r_J) Nl r) ] T , 

W d· ( 0 P 2p (r - J)p ) N = lag WN ' WN ' WN , . • , WN , 

and 

WO 
N 

wO 
N 

wO 
N 

wO 
N 

wO wN l r 
W

2Nl r (r-I)N/r 
N N N wN 

WO W 2N /r W
4Nlr 2(r-I)Nlr 

T = N N N wN r 

(r - I)Nl r 2(r- J)Nl r 
2 

wO (r - I) Nlr 
N WN WN WN 

(5) 

(6) 

(7) 

(8) 

(9) 
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In DSP Layman language, the factorization of an FFT can be interpreted as 

dataflow diagram (or Signal Flow Graph), which depicts the arithmetic operations and their 

dependencies. When the equation (6) is read from left to right we will obtain the 

decimation in frequency algorithm, meanwhile if the dataflow diagram is read from right to 

left we will obtain the decimation in time algorithm 

By examining equation (5) or (6), we could easily conclude that first we have to 

compute the transform of r sets of data of size N/r and th en combines these r results to 

produce the Fourier transform of the whole data sequence. For the ail stages ordered input 

ordered output (0100) FFT algorithm, there is N/r vector sets of size r that has to be 

processed in each stage therefore, r specific data should be fed to the butterfly ' s input 

which are provided by the DIT Reading Address Generators (RAG). For this version of the 

FFT, the m1h butterfly ' s input x(m) of the i h word at the S lh stage (ilh iteration) is fed by the 

0100 DIT RAG rm(p, s) [3] as 

- ( N J [] l P J (n+l-s) rm (p,s) - m r (s+l) + P r'I-S + r (n-s) r , (10) 

for P = O,I, .... ,(N / r)-I and m=O, l , .. . ,r-I where [X]N represents the operation x modulo N 

and lx J represents the integer part operator of x. 

It is clearly evident that for the first iteration/stage (i.e. s = 0) equation (4) will be 

equal to 

(11) 

On the other hand equation (7) reveals that the transformed outputs are in a bit 

reverse order which means that the transformed outputs of each set of the input data are 
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obtained at a stride N/r, which means that in order to obtain ordered output, the Zth 

processed butterfly ' s output X (I.k.s) for the pth word at the s th stage should be stored into the 

memory address location given by: 

A (I. p) = Z (N/r) +p, 

for Z=q= 0, 1, ... , r - 1, and k =p= 0, 1, .. . , (N/r) - 1. 

(1 2) 

Equation (11) represents the bit reversaI stage in the DIT process meanwhile 

equation (12) which is identical to equation (11) represents the bit reversaI stage that is 

required at the end of the DIF process. In an 0100 radix-2 DIT FFT process, the two 

butterfly' s input will be labeled by m = ° for the first input and by m = 1 for the second 

input. As a result and according to equation (11), the first butterfly' s input will be driven by 

the data located at the memory address (Fig. 1) 

rO(p.s) = ox( ~)+ p = p (1 3) 

and the second butterfly' s input will be driven by the data located at the memory address 

#define WordLimit(N)\ 
WordLimit=(N)>1); 

'i (p,s) = lX( ~)+ p =( ~)+ p 

#define Reading(p, WordLmit)\ 
register UINT32 Sum;\ 
Sum= p+WordLimit;\ 

SrcMemory [p] .Real=lnO.Real;\ 
SrcMemory [p] .lmaginary=lnO.lmaginary;\ 
SrcMemory [Sum] .Real=ln1 .Real;\ 

SrcMemory [Sum].lmaginary=ln1.lmaginary;\ 

Figure 1: C Function of the proposed method. 

The DIT process that only requires: 

(1 4) 
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(r - 1) N/r additions, (15) 

which could be used in an 0100 for each stage/iteration of the FFT process where InO, Inl 

are the butterflies' inputs and SrcMemory refers the Source memory from which the data is 

picked up. By replacing SrcMemory in this Figure by DestMemory and InO, Inl by OutO, 

Outl we will obtain the proposed method for the DIF process where DestMemory is the 

sink memory in which the output data is stored and OutO, Out! are the butterfly ' s outputs. 

4 Performance ResuUs 

Increment operator is a unary operator that operates on single operand; but + is a 

binary operator which needs at least 2 operands to execute. So, logically unary operators 

are always faster than binary operators and the main reason for this is that an increment­

instruction that should be supported by the hardware is often a lot faster than an addition­

instruction. The addition-instruction that requires the access to two operands makes it 

slower than the increment instruction which is not always true on many of the RISC 

systems where the time spent on these will be the same (one c10ck cycle). 

By also assuming that the addition and bit-shift operations take only one c10ck 

cycle, as a result and based on these assumptions we will consider the operation count of 

the proposed method would be: 

(r -1)N 1 r cycles. (16) 

By ignoring the divisions by NI2 and NI4 the operation count of one bit reversing 

technique of the radix-2 FFT as described in [9] become: 

(3N -6)+ 2(log2(N )-I) Cycles, (17) 

where we considered that multiplication by 2 and division by 2 can be materialized using a 

one cycle bit-shift operation. 
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The operation count of the vector ca\culation method proposed in [10] is N shifts 

and N integer additions, we have 

2N cycles (18) 
The performance gain for the radix-2 FFT in terms of operation cycles between the 

proposed structure and the reference methods for the bit reversing technique is 

G = 6N +41og2 N -16 
N ' 

(19) 

for Rius & de Porrata-Doria [8] 

and 

G=4. (20) 

for the vector calculation method proposed by Pei & Chang [10]. Fig. 2 shows the 

performance gain for N = 2s . 

6 

, 5 

3 4 6 8 9 10 
Number of stages (S)in radix-2 

Figure 2: Performance gain of proposed method compared to Rius & de Porrata­
Doria [8], in solid line, and Pei & Chang [10], in dash line, for radix-2. 

The FFTW benchmark [16] is an FFT bench platform assembled by Matteo Frigo 

and Steven G. Johnson at MIT (Massachusetts Institute of Technology) that compares the 
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performance ofdifferent complex FFT implementations (40 FFT implementations) in terms 

of speed and accuracy where the performance in this benchmark is computed on a single 

processor environment even though this benchmark will be run on multi-processors 

systems [17] and [18]. This bench platform is intemationally recognized where the 

complex FFT performance is plotted in terms of "mflops" (Efficiency axis) and the FFT 

size N which is a scaled version of the speed defined by: 

mjlops = (SNlog2 N)lt , (21) 

where t is the computational time in ilS to execute the N-point FFT [64]. The FFTW 

benchmark of Fig. 3 shows the significant improvement on the FFT execution time by 

implementing our proposed method on a convention al radix-4 butterfly. 

Adding to that, our proposed method does not need extra memory needed for index 

storage and by doing so; we have reduced the memory usage at least by NI2 which is used 

as storage table of N/2 index numbers as shown in Table 1. 

__ Proposed 

" Frigo-old 
-:- Ooura 

Tem~rton (f2cl 

····. ····· FF1W 

--_ Green 

FFTPACK (f2c) 

--- Krukar 

- RMayer (sim ple) ... _ .... Singleton (f2c) 

3000,-------------------------------, 

2500 

~ 2ooo 
o 
....l 
tt.. 
~ 1500 

1l 
8.1000 

Cf) 

500 

N 

<T 
00 
M 
10 -

If) 
o 
+ 
Cil 
M 

Figure 3: FFTW benchmark results of the proposed method (JFFT) compared 
to reference methods for radix-4. 
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Table 1: Memory for table index number 

Methods Memory 

Rius [59] NI2 

Rius+Yong [59] NI8 

Prado [60] 
S even, JN 
S odd, ~N/2 

Pei [61] N 

Proposed 0 

5 Final Remarks and Conclusion 

As we have seen that the FFT algorithm is especially memory access and storage 

intensive where most studious task in this process is the data flow control. As we know 

that the butterfly main function is to multiply the input data with its corresponding 

coefficient multipliers in order to compute the transform. As a result, an efficient tool that 

could control efficiently the data flow would increase the overall system's performance. 

The FFT Address Generator presented in [3], has detailed an embodied address generator 

for use with a variety ofFFT algorithms in which the address generator is typically used to 

compute the addresses (locations in memory) where input data, output data and twiddle 

coefficients will be stored and retrieved from memory. In addition to its structure's 

simplicity, the speed of the address generators is greatly increased as shown in Figure 3 

where in [19], we proposed a fast method to detect specifie frequencies in monitored signal 

that is useful for OF DM communication systems. 

The present paper has presented a novel approach for the FFT data reordering 

algorithms that boosted the FFT execution. Compared to recent bit reversing techniques 

proposed in [8] and [10], we presented, respectively, speedups of 6 and 4 in terms of 
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operation cycles. The implementation of this method would be highly recommended on 

low power DSP processors and this is achieved by reducing the memory usage by NI2 

which is used as storage table of NI2 index numbers. By doing so the size and the power 

consumption of su ch processor will be reduced which are highly desirable for portable 

devices? 
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Résumé du Chapitre 4 

Une des techniques les plus importantes dans l' analyse des caractéristiques d' un 

signal est l' extraction des informations utiles d'un signal donné surveillé. La surveillance 

des signaux est un domaine en expansion qui visent la détection des changements brusques 

pour une fréquence spéciale comme: 

• dans la détection de panne dans les machines à roulement de billes 

• la détection d 'un ensemble présélectionné de fréquences tel que Radio 

Frequency Identification (RFID) 

• la reconnaissance du double-ton multifréquence (DTMF) 

• dans le système de communication sans fil orthogonal frequency division 

multiplex (OFDM) dans lequel la TRF est un opérateur clé principal, 

particulièrement pour la radio cognitive 

• et un grand nombre de domaines non cités. 

Ce chapitre introduit une méthode de calcul à base r qui permet de calculer une 

fréquence spécifique d ' un signal, que nous nommons JM-fiItre. Ce filtre permet une 

réduction d'opération arithmétique par un facteur tendant vers r soit le radice utilisé en 

comparaison avec le filtre de Goertzel. 
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Paper V: M. Jaber and D. Massicotte, "The Radix-r One Stage FFT Kernel 
Computation", International Conference on Acoustic, Speech, and Signal 
Processing (ICASSP), Las Vegas Nevada USA, April 2008. 
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Abstract - The FFT process is an operation that cou Id be performed through different 

stages. In each stage, the only operation that occurs is the butterfly computation in 

which the accessed data is multiplied by certain wa then, added or subtracted and 

finally it will be stored or it will be held for further processing. In the next stage, the 

processed data is accessed, multiplied by certain JJ1 then, added or subtracted and 

finally it will be stored or it will be held for further processing till the final stage 

where the processed data is driven to the output. So, by finding an appropriate 

indexing or mapping schemes between the input data and the coefficient multipliers 

through the different stages will yield to a single stage of computation in which those 

different stages will collapse into a single stage of computation. Therefore, this paper 

will elaborate the state of the art of computing the FFT in a single stage of 

computation by proposing the radix-r one iteration FFT kernel computation. 

Index Terrns- Discrete Fourier transforms Frequency domain analysis and parallel 

processing. 

1. Introduction 

The Discrete Fourier Transform (DFT) is a fundamental digital signal-processing 

algorithm used in many applications, including frequency analysis and frequency domain 

processing, such as speech compression, in wireless communication system based on 

Orthogonal frequency division multiplexing (OFDM) in which the FFT is an operator key 
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[4], meanwhile the frequency domain processing allows for the efficient computation of the 

convolution integral (for linear filtering) and of the correlation integral (for correlation 

analysis). 

The definition ofDFT is shown in equation (1), X[n] is the input sequence, X[k] is the 

output sequence, N is the transform length and WN is the !th root of unity (WN = e - ;2rt!N). 

Both X[n] and X [k] are complex sequences. 

N· l 

X[k] = L X[n ]w; , k E [O,N -1] (1) 
n=O 

DFT is the decomposition of a sampled signal in terms of sinusoidal (complex 

exponential) components, and because of its computational requirements, the DFT 

algorithm, which requires N2 complex multiplication plus a smaller number of operations to 

complete a complex addition or subtraction, usually is not used for real time signal 

processing. Several efficient methods have been developed to compute the DFT, "Cooley 

and Tukey presented their approach showing a number of multiplications required to 

compute the DFT of a sequence may be considerably reduced to Mog2N by using one of 

the fast Fourier transform (FFT) algorithms [1]". One of the bottlenecks in most 

applications, where high performance is required, is the FFT/IFFT processor. 

In this paper, the structure of the one stage algorithm for the dedicated FFT will be 

elaborated. The main objective o.f this proposai is reduction in communication load, 

reduction in computation and particularly reduction in the number of multiplications. The 

advantage of appropriately breaking the DFT in terms of its partial DFTs is that the number 

of multiplications and the number of stages may be controlled. The number of stages often 

corresponds to the amount of global communication and/or memory accesses in 

implementation, and thus, reduction in the number of stages is beneficial. Minimizing the 
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computational complexity may be done at the algorithmic level of the design process, 

where the minimization of operations depends on the number representation (word length 

in bit) in the implementation. 

Despite of the Cooley-Tukey's clear definition stating that the DFT is a 

combination of its partial DFTs, researchers used to express the DFT in terms of its partial 

DFTs as: 

_ rnk (rn+(r-I)lk 
(NIl-1 (NIl-1 

X[k] - x[m]w + ... + x[rn+(r_l l]w (2) 
n=O n=O 

As a result the mathematical representation of the DFT into its partial DFTs is not 

weil defined yet. The problem resides in finding the mathematical model of the 

combination phase, in which the concept of butterfly computation should be weil structured 

in order to obtain the right mathematical mode!. 

The paper is organized as follows; in Section 2 a butterfly operation is defined. 

Section 3 is devoted to describe in details the proposed FFT method and the modified 

radix-r FFT. The implementation aspects are given to Section 4, while Section 5 draws 

conclusions. 

2. The Butterfly Processing Element 

The basic operation of a radix-r BPE is the so-called butterfly in which r inputs are 

combined to give the r outputs via the operation [2]: 

(3) 

where x = [ x[O]' XiI]"'" x[r_l] J is the BPE' s input vector and X = [X [0]' X[I]" '" X[r_l] J 
" 

is the BPE's output vector. Br is the butterfly matrix, dim (Br) = r X r, which can be 

expressed as 
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B r = W~Tr (4) 

for the decimation in frequency (DIF) process, and 

B r = TrW~ (5) 

for the decimation in time (DIT) process. In both cases the twiddle factor matrix W N , is a 

diagonal matrix defined by WN = diag(I,W: ,W~p, ... ,wt -I )p ) with p = 0,1, .. . ,logr N - 1 

and Tris the adder-tree matrix in the butterfly structure 

0 
w N 

0 
w N 

0 
w N W

O 
N 

0 
W

Nl r 2Nl r ( r - I )Nl r 
w N N w N w N 

T= 
0 

W
2Nl r 

W
4N l r 2( r - I )Nl r (6) r 

W N N N w N 

0 
W N 

(r- I )N l r 
W N 

2( r - I )N I r 
W N 

( r - I )2 N l r 
W N 

where dim (Tr ) = r X r . 

If we pay attention to the elements of the adder-tree matrix T r and to the elements 

of the twiddle matrix W N , we could notice that both of them contain twiddle factors. So, by 

controlling the variation of the twiddle factor during the calculation of a complete FFT, 

results in incorporating the twiddle factors and the adder matrix in a single-stage of 

ca\culation. 

By defining [Tr lm as the zth line and the mth column element of the matrix T r 

therefore, equation (6) can be written as 

[T] = w [(tmN/ r) ]N 
r l,In N , (7) 

and by defining W N( r ,v,s) the set of the twiddle factor matrix W N as: 

W N (r,v ,s) = diag ( w ,v(O,v,s)' W N( I,v,s)" '" W N(r- I,V,S) ) ' (8) 
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in which each element of the diagonal matrix for the DIF process is represented as: 

[w ] - wN 

{ 

[lv/r' JI r'L 

N I,m(r ,v,s) - ° for 1 =m 

elsewhere 

therefore, the modified radix-r butterfly computation Brexpressed as: 

that could be simplified as 

[] 

[/mN/ r+lvl rS Ji rs
] 

B =w N 
r I,m (v ,s) N 

(9) 

(10) 

(11) 

with 1= 0,1, . .. ,r - 1, m = O,l , ... ,r-l , v=O,l, ... ,V -l , s=O,l, ... ,S-l , ris the radix-r, Vis 

the number of words (set of r inputs), V = Nlr, S is the number of stages (or iteration), 

S = logr N [X]N represents the operation x modulo N and lx J is defined as the integer , 

part operator of x. 

As a result, the operation of a radix-r for the DIF FFT is formulated by, the column 

vector: 

(12) 

where the ft output is 

(13) 

With the same reasoning as above, the operation of a radix-r DIT FFT can be derived. 

The conceptual key of the modified radix-r FFT butterfly is the formulation of the 

radix-r as composed butterflies with identical structures and a systematic means of 

accessing the corresponding multiplier coefficients. This enables the design of processing 

element (PE) which is referred as Butterfly PE (BPE) shown in Fig. 1 and in order to 
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maximize the data throughput; we can utilize r or r - 1 complex multipliers in parallel to 

implement each of the radix-r butterfly computations. 

Fig. 2 shows the radix-r BPE that is used to compute the overall butterfly's output 

where if implemented on a single processor environment; this would decrease the FFT time 

delay by a factor of O(r). A second aspect of the modified radix - r FFT butterfly, is that 

they are also useful in parallel multiprocessing environments (see (Fig. 2)). In essence, the 

precedence relations between the engines in the radix- r FFT are such that the execution of 

r engines in parallel is feasible during each FFT stage. If each engine is executed on the 

modified PE, it means that each of the r parallel processors would be always executing the 

same instruction simultaneously, which is very desirable for SIMD implementation on 

sorne of the latest DSP cards [43]. 

a) b) 
Figure 1: BPE for the FFT Radix-r (a) using Br in (11) and the symbol (b). 

XCv.,) [O]---, ___ -t--.... 
xcv.,) [I]-+~----1 [B 1 

r OCv.,) 

[Br t Cv.') X Cv.,) [I] 

0 
___ 1 

0 

[Br LI Cv.') X cv.,) [r - 1] 

Figure 2: Maximize the data throughput using r BPEs in parallel [3] . 
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3. DFT Factorization 

For a given r x r square matrix T r and for a given column vector x[n] of size N, we 

define a special product expressed with the operator *( p) (product of rad ix-a performed 
a ,y, 

on y column vector of size fJ) by the following operation, where the y column vectors are 

subsets of x[n] picked up at a stride a. 

x =* T [k] (r ,r ,Nlr) r ' =T r (14) 

X[rn+( r - Il ] X[rn+( r - Il ] 

1'0,0 1'0,1 TO,r - ' 

X[k] = 
7;,0 7;,1 7;,r - ' col( x . ) 

[rn+ JO ] Jo =O,I, ... ,r - 1 
(15) 

~-I ,O ~-I , I ~- I , r- I 

XJl] = [f [T]" Jo X[rn+Jo]] 
Jo=O 

(16) 

for v = O,l, ... ,N/r-l and}o=O,l, .. . ,r-1; X = [X[o]' X[I]"'" X[r-,]T is a column vector. This 

can be generalized to a r column vectors of length À,Bwhere À is a power of r in which the 

lth element X[l] of the vth product X (v) [1] is labeled as 

lev) = }oÀ,B +v (17) 

for v=O, 1 , ... ,..1,[3 - 1. Special properties are shown in Appendix. 

Based on our proposition in the previous section, Eq. (1) for the first factorization 

may be rewritten as 
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(N l r) - 1 

L 
n=O 

N-I 

X[k] = LX[n]w; = *(r ,r ,N l r) Tr , n=O 
n=O 

(Nl r) - 1 
" (rn+(r-I))vo 
L.. X[rn+(r - Il] W N 
n=O 

for vo=O,I, ... , (N/r) - l , and n=O,I, ... ,N - 1. Since 

W
rnk - wnk 
N - Nlr 

then Eq. (18) becomes 

x =* T [k] (r ,r ,Nl r) r' 

which for simplicity may be expressed as 

(Nl r)-I 

" nvo L.. x[rn] W Nl r 
n=O 

(N l r) - I 

w~ L x[rn+l] w~V?r 
n=O 

where for simplification in notation the column vector in (21) is set equal to: 

(N l r).1 

w~ L x[rn+l] w;?r 
n=O (

(Nl r).1 J 
_ nvo 
- col ~ x[rn+Jo]wN l r 

(18) 

(19) 

(20) 

(21) 

(22) 
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~ . -0 1 1 -0 1 (ATI ) 1 d [wJavaJ - d' (0 Va (r-I)Va) lorJo - , , ... ,r- , Vo- , , ... ,1V/r - an N - lag WN' WN ,", WN . 

For the second factorization, (22) is factored as follow: 

which could be simplified as: 

x -;j; 
[k] - (r.r.N l r) 

(24) 

(5)-1 
'" X wnV) ~ Ir(m)J N l r 2 
n=O 

(5)-1 
wr(r- ll"1 '" X wnV) 

N ~ Ir(m+(r·I»)J Nl r 2 
n=O 

(5)-1 
'" X w""l ~ Ir(m)+IJ Nl r 2 
n=O 

(5)-1 
'" X wnV) ~ Ir(rn)+(r- I)1 N l r 2 
n=O 

(5)-1 
wr(r - I)"! '" X wnk! 

N ~ Ir(m+r.I)+(r - I)J N l r 2 
n=O 

(23) 

~ . =0 -1' =0 -1 =0 1 lITI2 - 1 d [WrN'IJ - d' (0 rvl... r(r-I)'1) If lorJo , . . . ,r ,JI , . . . ,r , VI , , .••• 1Y/r , an N - lag wN'WN ' ,wN . 

the factorization process will continue till we get"s transform of size r, then Eq. (1) will be 

expressed as: 

X[kl =*( s ) (Tr[W~SjS Vs J'COI(fx (H I) (s) . . wnvsHIJ J. (25) r.r .ks [r n+r ls + .. ·+10 1 Nlr 
s=0,1, ... ,logrN-2 n;O vs;O.I ..... NlrHI-1 
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where [Wr(S)}svs ] = diag( wO W.svs ••. wrS(r- I)Vs ) 
N N' N ' , N . 

In DSP Layman language, the factorization of an FFT can be interpreted as 

dataflow diagram (or Signal Flow Graph), which depicts the arithmetic operations and their 

dependencies. To be noted that the dataflow diagram is read from left to right we will 

obtain the decimation in frequency algorithm and where A in Eq. (17) is equal to /-1 ), 

meanwhile if the dataflow diagram is read from right to left we will obtain the decimation 

in time algorithm and where A in (17) is equal to r. 

4. The One Stage FFT 

Eq. (25) could be simplified as: 

[JNI ( Nn)] r - l r-l r-l r - l -+ J+- v 

X [/] = '" '" ... '" '" x W r r N 
v ~ ~ ~ ~ [rsn+rs-l is_I+"" +io l N 

Jo=O JI =0 JS=O n=O 

(26) 

where J=rS-1Js_1 +rs-2i s_2 +···+ri, + io and for i s =0,1, ... ,r -1,s E[0,S -1], I=O,l , ... ,r-

l , v = 0,1 , .. . ,(N/r) - 1, S = logrN. The th output of X is stored at the address memory 

location given by the writing address generator (WAG): 

WAG=/(Njr)+v. (27) 

Finally, we can represent the execution ofFFT in one stage (or phase), by adopting 

the following notations: 

x( " " )[m]=x S S - I 
J(S- I) ," ",Jo [r m+r iS- 1 +" "+ io l 

(28) 

(29) 
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Fig. 3 illustrates the radix-r one stage processing element (OSPE) in which r 

multipliers are implemented in parallel and executed in one cycle. To increase the data 

throughput, we can easily increase the degree of parallelism as shown in Fig. 4, where the 

results are obtained in one clock cycle to satisfy high sustained throughput applications. 

The data, [Br J( . . )' is localized at each multiplier and use an address 
/,m,Js ... ,JQ,v 

generator based on simple digital counters. 

XU(S_I) "jo ) [0] 

x [r -1] 
U(S-I) ,··, Jo) 

a) b) 
Figure 3: Radix-r OSPE (a) using (26) and the symbol (b). 

X(J(S_ I) , ,Jo) [0] _.,..-___ ..["----

X (J(S_I), .. ,Jo) [1] -t--t------i[B ] 
1 r (O,JS_I , ... ,Jo, v) 
1 

X(v,s) [0] 

X( . . ) [r - 1] ---.;I-+-t-----I 
J(S-I) , .. ,Jo '-------

1 1 

1 1 

1 1 

X(V,S ) [r -1] 

Figure 4: Maximize the data throughput using r OSPE in parallel. 
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The one stage FFT structure is suitable to customize the hardware implementation 

that take into account the VLSI constraints su ch as data throughput, area, and power 

consumption. The localized communication, regularity and recursiveness of the equations 

make it flexible to satisfy large application domains. The proposed structure gives us the 

ability to divide a process into seriai and parallel portions (or pure parallel portions) where 

the parallel parts are executed concurrently. 

Tables 1 to 3 show the performance comparison of the adder matrix versus the 

proposed iteration FFT (Fig. 2 and 4) [4]. Table 2 shows more clock cycles than Table 1 

but with a lower number of hardware resources by applying a time multiplex 

implementation on the BPE (Fig. 2); however, we drastically reduce the clock cycles by 

using the r OSPE in parallel (Fig. 4) as shown in Table 3. 

Table 1: Number of cycles need to execute a 4096-points FFT for different radices by factoring the 
adder matrix 

Cycles Requirements Radix-2 Radix-4 Radix - 8 
Phases 2 4 7 

Memory accesses 71680 17408 5632 
Complex multiplication 24576 5120 3072 

Complex addition 24576 12288 6144 

Table 2: NUmber of cycles needs to execute a 4096-points FFT for different radices by 
implementing r BPEs in parallel (Fig. 2). 

Cycles Requirements Radix - 8 Radix-16 
Phases 4 3 

Memory accesses 3072 1536 
Complex multiplication 1536 512 

Complex addition 2048 768 

Table 3: Number of cycles needs to execute a 4096-points FFT for different radices by using r 
OSPE (Fig. 4). 

Cycles Requirements Radix- 8 Radix-16 
Phases 1 1 

Memory accesses 1024 512 
Complex multiplication 512 16 

Complex addition 512 16 
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5. Conclusion 

Finally this paper has presented an efficient way of implementing the FFT process 

by mean of the one iteration radix-r kernel where a seriaI parallel model and a pure parallel 

model have been represented. Also, it has been argued that a reduction in the chip size, a 

reduction of its power consumption and an increase of the performance of the system could 

be achieved 

Appendix 

Properties of special product *(r .r.Pl 

Lemma 

Proo! 

X[kl = *(r.r, fJ) (Tr,( Wrcol[ X[m+J01])) 

= *(r,r,fJ) (Tr Wr,( col [ x[rn+Jo1])) 

X[kl = *(r,r,fJ) (Tr,( Wrcol( X[rn+J01 ))) = Tr (Wrcol[ x(m+JO) ]) 

X[kl = (Tr W r )col[ x(m+Jo) ] = *(r,r,fJ) ((Tr Wr ),( col[ x(m+JO) ])) 

(30) 
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Abstract - The Discrete Fourier Transform (DFT) is a mathematical procedure that 

stands at the center of the processing that takes place inside a Digital Signal 

Processor. It has been known and argued through the literatures that the Fast Fourier 

Transform (FFT) is useless in detecting a specifie frequency in a monitored signal 

because most of the computed results are ignored. In this paper we will present an 

efficient FFT based method to detect specifie frequencies in a monitored signal which 

is compared to the most frequently used method "the Goertzel's Aigorithm". Parallel 

implementation structure show a fast computation method compared to the Goertzel's 

algorithm. Computational speedup gains by a factor of r when using radix-r 

butterflies are also shown. 

1. Introduction 

Digital Signal Processing (DSP) is the branch of engineering concerned with the 

representation and manipulation of signaIs in digital form. The discipline of signal 

processing, whether analog or digital, consists of a large number of specifie techn iques. 

One of the most important techniques is the Signal-analysis/feature-extraction techniques 

Manuscript received November 14, 2009. This work was supported in part by the Natural Sciences and 
Engineering Research Council of Canada. 
Marwan A. Jaber and Daniel Massicotte are with the Electrical and Computer Engineering Department, 
Laboratory of Signal and System Integrations, Université du Québec à Trois-Rivières, Quebec, G9A 5R7. 
Canada (D. Massicotte is the corresponding author: +1-819-376-5011 x3918; fax: +1-819-376-5219; e-mail : 
marwan.jaber@uqtr.ca and daniel.massicotte@uqtr.ca. 
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which aim to extract useful information from a given monitored signal. Signal monitoring 

is an expanding domain that deal in detecting any abrupt changes for a special known 

frequency such as fault detection machine or to scan a pre-selected set of frequencies, as in 

radio-frequency identification (RFID) tags [1], the recognition of the dual-tone multi­

frequency (DTMF) [2] and in the orthogonal frequency division multiplex wireless 

communication (OFDM), wherein the Fast Fourier Transform (FFT) is a major key 

operator [15], particularly for cognitive radio. Since the scope of our work will be targeting 

the wireless communications and specifically the OFDM applications, reduction in terms of 

complexity and increasing speed would be essential. 

It was cIearly evident that computing a specific frequency X(k) for a complex sequence 

{x(n) } with n=O,I, ... ,N-1 and k=O,I, ... ,N -1 by mean of the radix-r FFT is not 

advisable Since, the required number of complex multiplications is 0 (N log N) . In order to 

compute the same frequency X(k) by using the canonical DFT equation is N complex 

multiplications. 

For instance N=8 points DFT will require 12 complex multiplications when employing a 

radix-2 FFT algorithm meanwhile the canonical DFT equation will require 8 complex 

multiplications. As a result it seemed that the FFT algorithms are very useful for a wide 

cIass of problem but they are not the most efficient choice in ail situations. 

There were two other techniques for computing the DFT such as the Goertzel's 

algorithm [3] and the chirp transform [4]. In this paper we will be limiting our comparison 

study to the Goertzel ' s algorithm since the second one is unrealizable; it is neither causal 

nor stable [4]. However, the data dependency in the recursive form of Goertzel' algorithm 

limits seriously the parallel implementation. In this paper, our main objective is to propose 
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another approach enabling parallel pipeline implementations for fast specific frequencies 

computation. 

This paper is organized as follows: Section 2 describes the first and second order 

Goertzel's algorithm. Section 3 will detail the proposed method, meanwhile Section 4 will 

draw the performance results of the proposed method and Section 5 is devoted to the 

conclusion. 

2. The Goertzel's Algorithm 

As previously stated; there are various ways to detect the presence of a specific 

frequency in a monitored signal. The FFT algorithm which will require the highest amount 

of complex multiplications to compute a specific frequency X(k) plus an extra memory of 

size N which is used to store the intermediate result. A direct computation of the DFT that 

will require less complex multiplication than the FFT with no need of the extra memory of 

. size N to store the intermediate result, is the Goertzel's algorithm which is an efficient 

method (in terms of multiplications and memories) for computing X(k)' 

The derivation of the first-order Goertzel algorithm, which is developed in [4] , 

begins by noting that the DFT can be formulated in terms of a convolution. In fact the DFT 

of the signalx(k) : 

N-l 

X ~ nk 
(k) = L.x(n)wN , 

n=O 

N-l 

.21Ck 
-J-

wk -e N N -

_ ~ - k(N-n) - kN -1 
- L.x(n)wN , w N - , 

n=O 

(1 ) 

where * represents the convolution product of the signal X (n) through a linear time invariant 

(L TI) filter with the impulse response h (ll ) = w-nku (n) and evaluating the result, Yk(n), at 

n=N as illustrated in Fig. 1 [1]. 
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Figure 1: The L TI filter represented by Eg. (1). 

According to the same reference [1] , the representation of the L TI filter by its z 

transform will lead to the same filtering operation as illustrated in Fig. 2. The filtering 

operation of first-order Goertzel algorithm with the associated flow graph is depicted in 

Fig. 3. We can write the recurrent equations as; 

-k 
Yk (n) = W N Yk (n-I) + X (n) , (2) 

where Y k( -I ) = 0, n = O,1,2, .. . ,N -1, and k = O,1,2, . . . ,N-1. 

Figure 2: Representation of the LTI filter by its z transforrn. 

X(n) Yk(n 1) X(k) 

~-+---'--+-.~-+I-z--,~~ 

w-· 

Fig. 3 The first-order Goertzel 

After N iterations, the output of the filter for the kth frequency is 

X (k) = Y k(N- I ) • (3) 

The transfer function H(z) of the equivalent filter could be developed as [2] 

1 l -w-kz- I 1 
H ( z ) = 1 -k - 1 = 1 ~k - 1 x -1 ----:-k- --:-I 

-wNz -wNz -wNz 

1 - k - I 
-WN Z 

(4) 

where the second-order Goertzel algorithm is obtained and the filtering operation with the 

associated flow graph is depicted in Fig. 4. The recurrent equations are 
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Yk(n) = 2 cos(27rk / N)Yk(n-l) - Yk(n-2) + x(n)' (5) 

and after N iterations, we have the f(h frequency output 

X(k) = cos(27rk / N)Yk(N-l ) - Yk( N-2) + jsin(27rk / N)Yk(N- l) ' (6) 

where Yk(-2) = Yk(- l) = 0 . 

For applications with a real-valued measurement stream, the C implementation of 

the Goertzel's algorithm is illustrated in Fig. 5 where the results are the real and imaginary 

parts of the DFT transform for specifie frequency k. 

2cos(wd 

Fig. 4 The second-order Goertzel filter 

realW = 2.0*cos(2.0*pi*k1N); 
imagW = sin(2.0*pi*k1N); 
d1 = 0.0; 
d2 = 0.0; 
for (n=O; n<N; ++n) 
{ 
y = x(n) + realW*d1 - d2; 
d2 = d1; 
d1 = y; 
} 
resultr = 0.5*realW*d1 - d2; 
resulti = imagW*d1; 

Figure 5: C Function of the Goertzel 's algorithm [7]. 

The computational complexity of the first-order Goertzel's algorithm is: 

4N real multiplications and 4N real additions, 
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and from Fig. 4, the computational cost of the second-order Goertzel's algorithm is thus [7]: 

2N + 2 real multiplies and 4N - 2 real adds, 

which gives a reduction by almost a factor of two in the number of real multiplications if 

compared to the DFT equation. This cost is halved again if the data are real-valued. 

Furthermore, the first-order filter needs more resources due to the complex multiplication 

by twiddle factors in the feedback loop, Eq.(2). Beraldin and al. [16] showed an interesting 

overflow analysis in fixed-point implementations for the first and second-order Goertzel's 

algorithm. In fixed-point implementation, it was concluded that the first-order filter 

achieves better accuracy than the second-order filter. Thus, the first-order filter is more 

interesting than the second-order filter in practical way. 

3. The Proposed Method 

The definition of the DFT is represented by the following equation 

N- l 

X(k) = LX(k)W; , k E [O,N -1], (7) 
n=O 

which could be factorized as follow [8] , [9]: 

!:!.-l !:!.-l 

(8) 

with k = 0,1," ',N -1, v = O,I, .... ,(N / r) -1 and q = O,I, .... , r-1. 

Further decomposition of the DFT in terms of its partial DFT will yield to the one 

iteration FFT (one stage) expressed as [lOt: 

4 Patented 
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(9) 

where [X]N represents the operation x modulo N, A = rS
-

2 aS- 2 + rS
-

3 aS_3 + ... + ra, + ao and 

for as =O,I, ... ,r-l, s=0,1, ... ,S-2 withS=logrN-l. 

The input of X( RDAG) is read from the address memory location given by the reading 

data address generator (RDAG): 

(10) 

and the output ofX(wDAG) is stored by the writing data address generator (WDAG) [Il] : 

WDAG =qN /r+v. (11) 

The implementation of the radix-r one iteration FFT is illustrated in Fig. 6, where in this 

figure the coefficients are defined as: 

[
B ] = w[qAV+(A+n V)v]N 

r (n ,q,p,v) N , 
(12) 

The coefficients in equation 12 are provided by the reading coefficients (twiddle factors) 

address generator (RCAG) expressed as: 

RCAG = [qAV +(A+nV)v]N. (13) 

Fig. 6 represents the one stage FFT butterfly processing element (BPE) using r 

parallel complex value multipliers plus r input complex value accumulators (Fig. 6a) that 

could be simplified to one complex multiply-accumulator (C-MAC) as shown in Fig. 6b. 

Fig. 7 represents the implementation of the one iteration FFT for the specifie radices 4 and 

8. In order to perform a fair comparison with our proposed parallel structure, our 

performance study will take into consideration the parallel structure of the Goertzel's 

algorithm as illustrated in Fig. 8. 
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For such types of ordered input ordered output (0100) FFTs presented in [8], the k 

domain is subdivided into r equal sub-domain of size N/r-l as illustrated in Eq. (11). In 

order to compute a specifie frequency X(k) for a given k by mean of the one iteration radix-r 

FFT (the proposed method), we have to know the values of q and v which are computed 

according to: 

N 
O~k<­

r 
N 2N 
-~k<-
r r 

q = 0 and k = v 

N 
q = 1 and k - - = v 

r 

(r-I)N ~k<N q=(r-l) andkjr-I)N =v 
r r 

[Br ]CO,q,J ,V) 

[Br l,- I,q,J,V) 

a) 

b) 

Figure 6: Radix-r one iteration FFT using r consecutive complex multipliers (a) and 
one complex multiplier (b). 

(14) 
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Phase 1 Phase 2 Phase 3 Phase 4 

Phase 1 Phase 2 Phase 3 

$:/0' 
a) b) 

Figure 7: SFG ofthe radix-4 (a) and radix-8 (b) BPE from Fig. 5. 

dl, 

realW 

Re(x(n) )-+1---+-1 

d2, 
f-+-l4----' 

Re(y(n) ) 

realW 

lm ( x( n) ) -+1---+-1 

lm (y(n)) 

Figure 8: paraIlel Implementation of Goertzel' algorithm. 

4. Performance Results 

The computational complexity of our algorithm, Eq. (9), will be the same as the 

parallelized first-order Goertzel's algorithm with no feedback multiplication. This can 

reduce significantly the fixed-point arithmetic computation where both, first and second 

order versions of Goertzel filters, are very sensitive [16]. Furthermore, we can parallelize 

the implementation ofEq. (9) to show a fast computation method compared to the first and 

second-order Goertzel's algorithms. 
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To compare the computational time, te of our proposed approaches with the 

Goertzel's algorithm, we will define the number of clock cycle (Tc/k) needed for both 

approaches. 

Fig. 8 represents the hardware implementation of the Goertzel's algorithm Eq. (6) in 

which by adding a simple multiplexing control, we can reuse the hardware. The clock cycle 

in this architecture is defined by the time delay of one real multiplier (TM) plus two adders 

(TA), Tc/k=Tu+-2TA. Based on this approach, the computational cost of the second-order 

Goertzel's algorithm for /(h frequency will be: 

te Goertzel's = NTclk . (15) 

Our approach will be based on the one iteration FFT where we will consider two 

different implementations as shown in Fig. 6. Unlike Goertzel's algorithm (Fig. 3 and 4), 

our proposed structures are based on complex multipliers. We can reduce the number of 

real value multiplications to compute the product oftwo complex numbers 

(ar + jai)(br + jbi) = (arbr -aibi)+ j(aA +aA) = Pr + jPi 

by mean of pipelined complex multipliers as shown in Fig. Il a. 

(16) 

However, the number of real multiplier can be reduced by using the following 

simplification [12] 

(17) 

where e = ar(br +bj ). The pipelined structure of the complex multiplier which is based on 

three real multipliers is shown in Fig. 9b. Based on these pipeline structures, the number of 

clock cycle in the critical path is Tc/k= TM + TA+ Tlost in which Tlos! is the time lost in the 

control, communication and connection. We can assume that, Tlos/<TA which will be 

equivalent to Goertzel's algorithm clock p~riod, Tc/k=T u+-2TA, (Fig. 7). 
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Eq. (5), which is based on a simple nested summation, a straight feed-forward 

pipeline implementation can be applied where the computational cost in term of clock cycle 

of our proposed method is 

te Fig.6a = (N / r + log2 r + Sp + 2 ) Tc/kjSp , (18) 

for the BPE of Fig. 6a, where the log2 r + S p + 2 represents the clock cycles needed to drain 

the pipeline C-MAC and the adder tree. 

For BPE of Fig. 6b, we have 

(19) 

where Sp represents the number of pipelined stage applied to the real multiplier of the Fig. 

8. As, shown in [13], we can easily, implement a pipelined complex multiply-accumulator 

(C-MAC) in our BPE, which is based on the wave pipelined approach [13], [14] in order to 

decrease Tc/k up-to a factor of 5. In our evaluation study, we will consider Sp=2. 

Fig. 6b needs fewer resources with more clock cycles to compute the f(h frequency 

signal ' s output. The adder, in Fig. 6a, where the r complex multipliers are combined can be 

realized by adopting both solutions as shown in Fig. 10 where Table 1 shows the 

performance of the r-input adder tree structure. 

In our performance study, we will present the results in terms of time computation 

(te) between the proposed one iteration FFT, (Eq. (18) and (19) derived from (9)) which is 

implemented on the one iteration radix-r BPE as illustrated in Fig. 6. The gain G, compared 

to the Goertzel's algorithm, is shown in Fig. 11, for both proposed radix-r one iteration 

structures Fig. 6a and 6b where the gains are respectively: 
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ar 

br 
ai 
bi 
ar 
b· 1 

a · 1 

br 
a) 

ar Pr 

ai 

br 

bi 

b) 

Figure 9: Pipelined complex multiplier using 4 real multipliers (a) and three real multipliers 
(b). 

a) b) 
Figure 10: Adder tree circuit structures a, and b. 
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(20) 

and 

(21) 

Table 1: Performance of adder tree structures for r-input (Fig. 9) 

Structure a Structure b 

Critical path in number of delay of an adder 1 

Number of adders r-1 r-1 

N umber of registers o 

Fig. lIa and lIb reveal that the speedup gain is 2 for radix-2 and by using more 

resources (BPE Fig. 6a) the speedup gains for higher radices present significant speedup 

improvements (up to r for radix-r) in order to detect specific frequencies in monitored 

signal applications. 

The hardware resources in term of real multipliers and adders depend of the radix-r 

BPE. Table 2 presents the resources needed to compute the DFT for specific frequencies 

signal ' s output. The implementation's comparison of the resources needed to execute the 

respective method are exhibited in terms of: i) number of real number multiplications and 

additions, ii) number of full adders (FA) needed to implement both fixed-point arithmetic 

operators in the VLSI. In this comparison we considered 8-bit and 16-bit global lengths for 

the real multiplication and addition, respectively. The resources increase with the 

increasing BPE' s radix-r of Fig. 6a. In the case of BPE of Fig. 6b, we need 7 real adders 

and 3 real multipliers for a total of 304 FA. We need the same resources to implement the 

first-order Goertzel filter. 
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Using the proposed pipeline structure in Fig. 6b, we increase the implementation 

area by 58% to double the speed. We can conclude from the results shown in Fig. Il and 

Table 2 compared to Goertzel's algorithm, the following 

- we have a computation speedup of2 by using low complexity hardware implementation 

which is based on one pipelined complex multiplier and tree adders. 

- we have a computation speedup of r by using more resources in the radix-r butterfly 

(speedup of 16 for radice-16). 

radix-16 
E 16 ...... / ••.....•...•...............••.....................••....•.................•........... 

= 14 

i 12 ..... "" 

l': ,//' / ~.-._._._._._._._.""~~.-
radix-4 

·ffi 4 j / ____ - - - - - - - - - - - - - - - - - -
Cl !;" .. __ -

2V~ ...... "'''' 
or-

1 2 3 

a) 
4 5 6 7 
Number of point [I09r(Nl] 

8 

radix-2 

9 10 · 

2 . 2.---~-~-~--.--~--,----,---,---, 

radix-16 
2 ..... ;;.:.;,;.JA .•. -:-....-=.:a.----------

E •••• j"'-,,--
~ 1.8 •...•.. ,,"><.... 
5 .... /." radix-8 
en '. ' 

~ 1.6 / " al • 

~ 
al 

<3 14 

.8 1 
~ 1.2 1 

'" a. 
E 
8 1 
c: 
,;; 
Cl 0.8 

0.6 

1 
1 

1 
1 

radix-2 

2 3 4 5 6 7 8 9 10 
b) Number of point [log,(N)] 

Fig. Il Speed gain ofproposed one iteration compared to Goertzel's algorithms using a) the 
BPE Fig. 6a Eq. (20) with Sp =1 and b) the two stages pipelined MAC BPE Fig. 6b Eq. (21) 
with Sp =2. 
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Table 2: Hardware resources in terrn of real adders (Adder) and multipliers (Mult) to implement the 
different BPEs in our study 

Goertzel Aigorithms (Fig. 8) 
One iteration BPE 

Radices Fig. (6a) FA Ratio 
Adder Mult. FA Adder Mult. FA 

Radix-2 4 2 192 12 6 576 3 
Radix-4 - - - 26 12 1440 7.5 
Radix-8 - - - 52 24 2368 12.3 

Radix-16 - - - 110 32 3808 19.8 

5. Conclusion 

It is not unusual to find numerous algorithms to complete a given DFT task, so, 

finding the best trade off algorithm-architecture with the best performance is a crucial 

engineering problem for the real time signaIs' analysis. In this paper we have shown that 

the FFT algorithm known as tHe one iteration FFT algorithm could be the perfect choice for 

computing Xck) for a given k. Our performance comparison to Goertzel's algorithm had 

shown a significant speed gain as shown in Fig. Il. Furthermore, the feedback operation in 

the Goertzel's algorithm causes a high sensitivity to fixed-point operations [16] contrarily 

to our proposed method where we need only a complex multiplier accumulation operator in 

absence of any feedback. We should cumulate the input data multiplied with the 

corresponding twiddle factor to the specific detected frequency. 

Future works will be done in fixed-point analysis and FPGA implementation for 

FFT pruning in real time applications su ch as in OFDM based cognitive radio. 
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The JM-Filter to Deteet Specifie Frequencies 
In Monitored Signal 

Marwan A. Jaber and Daniel Massicotte, Senior Member, IEEE 

Abstract - The Discrete Fourier Transform (DFT) is a mathematical procedure that 

stands at the center of the processing that takes place inside a Digital Signal 

Processor. It has been known and argued through the literatures that the Fast Fourier 

Transform (FFT) is useless in detecting a specifie frequency in a monitored signal 

because most of the computed results are ignored. In this paper we will present an 

efficient JM filter (Jaber-Massicotte Filter) to detect specifie frequencies in a 

monitored signal which is compared to the most frequently used method "the 

Goertzel's Algorithm". Computational Speedup gains of r using radix-r JM filters are 

shown. 

1. Introduction 

Digital Signal Processing (DSP) is the branch of engineering concemed with the 

representation and manipulation of signaIs in digital form. The discipline of signal 

processing, whether analog or digital, consists of a large number of specific techniques. 

One of the most important techniques is the Signal-analysis/feature-extraction techniques 

which aim to extract useful information from a given monitored signal. Signal monitoring 

is an expanding do main that de al in detecting any abrupt changes for a special known 

frequency such as fault detection machine or to scan a pre-selected set of frequencies, as in 

radio-frequency identification (RFID) tags [1] , the recognition of the dual-tone multi-

frequency (DTMF) signaling and a lot of none cited domains [2]. The most well-known 

techniques to compute the DFT are the Goertzel's algorithm [3] and the chirp transform [4], 
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where in this paper we will be limiting our comparison study to the Goertzel ' s algorithm 

since the second one is unrealizable due to the fact that it is neither causal nor stable [4]. 

This paper is organized as follows: Section 2 describes briefly the first and second 

order Goertzel's algorithm and section 3 will deeply elaborate the One Iteration Radix-r 

JMFFT meanwhile section 4 will detail the first and second order JM-filter. Section 5 will 

detail the reduced complexity of the proposed method. Section 6 will draw the performance 

results of the proposed method Signal to Quantization Noise Ratio (SQNR) meanwhile 

Section 7 is devoted to the conclusion. 

2. The First and second order Goertzel's Algorithm 

As previously stated; there are various ways to detect the presence of a specifie 

frequency in a monitored signal. The FFT algorithm which will require the highest amount 

of complex multiplications to compute a specifie frequency Xck) plus an extra memory of 

size N which is used to store the intermediate result. A direct computation of the DFT 

which will require less complex multiplication than the FFT with no need of the extra 

memory of size N to store the intermediate results, is the Goertzel's algorithm which is an 

efficient method (in terms of multiplications and memories) for computing X (k). 

The derivation of the first-order Goertzel algorithm, which is developed in [4] , 

begins by noting that the DFT can be formulated in terms of a convolution. In fact the DFT 

ofthe signal X(k) : 

N-I 

X(k) = I X(n)w~, 
n=O 

N -I 

.21rk 
-J -

w k - e N N -

_ ~ -k(N-n) - kN 1 
- ~x(n)wN , w N = , 

n=O 

(1) 
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where * represents the convolution product of the signal x (n) through a linear time invariant 

(L TI) filter with the impulse response h (n) = w·nku (n) and evaluating the result, Yk(n), at 

n=N as illustrated in Fig. 1 [1]. 

_ * - nk 
h _ -nk Yk (II) - X(II ) WN U(n) 

(11) - WN U(n) 

Figure 1: The LTI filter represented by Eq. (1). 

According to the same reference [1], the representation of the L TI filter by its z 

transform will lead to the same filtering operation as illustrated in Fig. 2. The filtering 

operation of the first-order Goertzel algorithm with the associated flow graph is depicted in 

Fig. 3. We can write the recurrent equations as; 

(2) 

where Yk (-I ) = 0, n = O,I,2, .. . ,N -1, and k = O,I,2, . . . ,N -1. 

Figure 2: Representation of the LTI filter by its z transform. 

X(n) Yk( 1) X(k) 

~~--~~-,~n~l-z-.,~~ 

w·k 

Fig. 3 The first-order Goertzel 

After N iterations, the output of the filter for the kili frequency is 

X (k) = Yk (N-I ) • (3) 

The transfer function H(z) of the equivalent filter could be developed as [2] 
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1 1 - k - 1 1 -k-I H( z) - - -wN Z X = -wN Z 
- 1 -k -1 - 1 -k - 1 1 - k - 1 ( 2 k) -wN z -wNz -wNz 12 7r - 1 -2 - cos - Z + z 

n 

(4) 

where the second-order Goertzel algorithrn is obtained and the filtering operation with the 

associated flow graph is depicted in Fig. 4. The recurrent equations are 

Yk(n) = 2 cos(21ik / N)Yk(n- l) - Yk(n-2) + X(n) , (5) 

and after N iterations, we have the f(h frequency output 

X (k) = cos(21ik / N)Yk(N- l) - Yk(N-2) + j sin(21ik / N)Yk(N- l) , (6) 

where Yk(-2) = Yk(-l ) = 0 . 

For applications with a real-valued measurement stream, the C implementation of 

the Goertzel's algorithrn is illustrated in Fig. 5 where the results are the real and imaginary 

parts of the DFT transform for a specific frequency k. 

Fig. 4 The second-order Goertzel filter 

In case of complex-valued input sequences, the computational complexity of the first-

order Goertzel's algorithrn is: 

4N real multiplications and 4N real additions, (7) 

and from Fig. 4, the computational cost of the second-order Goertzel's algorithrn is thus: 

2N + 2 real multiplications and 4N - 2 real additions, (8) 
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which gives a reduction by almost a factor of two in the number of real multiplications if 

compared to the DFT equation. This cost is halved again if the data are real-valued. 

Furthermore, Furthermore, the first-order filter needs more resources due to the complex 

multiplication by twiddle factors in the feedback loop, Eq.(2). Beraldin and al. [16] showed 

an interesting overflow analysis in fixed-point implementations for the first and second-

order Goertzel's algorithm. In fixed-point implementation, it was concluded that the first-

order filter achieves better accuracy than the second-order filter. Thus, the first-order 

version is more interesting than the second-order version in practical way. 

realW = 2.0*cos(2.0*pi*k/N); 
imagW = sin(2.0*pi*k/N); 
d1 = 0.0; 
d2 = 0.0; 
for (n=O; n<N; ++n) 
{ 
y = x(n) + realW*d1 - d2; 
d2 = d1; 
d1 = y; 
} 
resultr = 0.5*realW*d1 - d2; 
resulti = imagW*d 1 ; 

Figure 5: C Function of the second-order Goertzel's algorithm [7]. 

3. The One Iteration Radix-r JMFFT 

The definition of the DFT is represented by 

N -I 

X (k ) = IX(k )W~k, kE [0,N-1l, 
n=O 

which could be factorized as follow [9], [10]: 

r r 
w2vw2qNlr~ X w/1V + ••• +w(r-l ) vwq(r-I)Nlr~ X w nv 

N N L..J ( rn+2) N l r N N L..J (rn+( r - I )) N l r 
n=O n=O 

(7) 

(8) 
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with k = 0,1,.· ',N -1, v=O,l, .... ,V -l,q = O,l, .... ,r-l, and V = N / r. 

Further decomposition of the DFT in terms of its partial DFT will yield to the one 

iteration FFT (one stage) expressed as [11] and [12]: 

(9) 

where [X]N represents the operation x modulo N, A = r S- 2aS _2 +rS- 3aS _3 + .. '+ral +ao and 

for ao = al = ... = a(S_2) = 0,1, . . . ,r-1, S = 0,1, .. . ,S -2 with S=logr N - 1. 

Further simplification ofEq. (9) will yield 

V-l r-l 
X = '"' '"' X w[p(q v+v)+mvV]N 

(q V+v ) L...JL...J (Vm+p) N , 
p=O m=O 

(10) 

where the memory address location from which the data X(k) are collected is given by the 

reading data address generator (RDAG): 

RDAG=mV+p, (11) 

and the processed data X(k) is stored by the writing data address generator (WDAG) [13]: 

WDAG=qV +v. (12) 

For such types of FFTs, the k do main is subdivided into r equal sub-domain of size 

N/r-1 as presented in [9] and in order to compute a specifie frequency X(k) for a given k the 

values of q and v should be known as shown in Eq. (13). 

O~k<V q = ° and v = k 
V ~ k < 2V q = 1 and v = k - V 

(13) 

(r -l)V ~ k < N q = (r -1) and v = k - (r -l)V 

The implementation of the radix-r one iteration FFT is illustrated in Fig. 6 where in 

this Figure the coefficients are defined as 
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[J = Ip(q V+v)+mvVIN 
Br WN ' (m,q,p,v) 

(14) 

which are picked up by the reading coefficients (twiddle factors) address generator 

(RCAG) expressed as: 

RCAG =[p(qV +v)+mvV]N' (15) 

and the one iteration DIT FFT algorithm will be expressed as: 

V- \ Ip(qv+v)1 r-\ [mvVI 
X ="w N "X W N 

(qv+v) fo6 N f:6 (mV+p) N . 
(16) 

Fig. 6 represents the two structures of the one iteration FFT butterfly processing 

element (BPE) in which r parallel complex multipliers are used (Fig. 6a) or one complex 

multiply-accumulator (C-MAC) is implemented as shown in (Fig. 6b). In order to perform 

a fair comparison for our proposed structure; our performance study will take into 

consideration the parallel structure of the Goertzel's algorithm as illustrated in Fig. 7. 

X(p) [O]----+t 

[Br t -l ,p ,q ,V) 

a) b) 

X ace 
(k) 

Figure 6: Radix-r one iteration JMFFT using r consecutive complex multipliers (a) and one C-MAC 
(b), 
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dl, 

realW realW 

Re (x( n) ) ---+t--+-i lm ( x( n ) ) ---+t--+-i 

- d2, _ d2; 

Re(y(n)) lm(y(n)) 

Figure 7: Parallel Implementation of Goertzel' algorithm. 

4. The DFT as an Output Filter: The First and Second Order JM-filter 

As stated earlier that in order to compute a specific frequency X(k) for a given k; the 

values of q and v are known in advance and by adopting the following notation 

2Jfti 
r-l ImvV) r-l _ j _ r mv r-l _ j2Jf mv 

a =""x w N=""X e N =""x e r 
(p) ~ (Vm+p) N ~ (Vm+p) ~ (Vm+p) 

(17) 

therefore, Eq. (16) can be expressed as: 

V-l () 
X = "" a wP qV+v 

(qv+v) f;o (p) N ' 
(18) 

_j2Jfk -/Jf(qv+v) 
where k = q V + v, and w~ = e N = eN, 

as a result the radix r-first order lM (Jaber Massicotte) filter could be derived as 

-(qV+v) y -w y +a 
(p ,(qV +v)) - N (p-l ,(qV +v)) (p)' 

(19) 

where y(-I,(qV + v)) = 0 withp=O,l, ... , V-l, and the kth computed frequency is given by 

__ j2;(qV+v) -(qV+v) 

X(qV+v) - e wN y(V-l ,(qV+v))' (20) 

and the radix-r second-order lM-filter will be: 
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YCp,(qv +v) = 2cos(27rk / N)YCP-1,(qV +v) - YCp-2,(q V +v) + aCp) , 

from which the kth computed frequency is 

_/7f (q V+v) ( . ) 
X (k) = e r 0.5 cos(27rk / N)Y(V-l ,(q V+V )) + sm(27rk / N) - Y(V-2 ,(qV+v)) , 

where YC-2,(qv+v) = YC-1,(qv+v) =0. 

(21 ) 

(22) 

The filtering operation for first and second-order JM-filter with the associated flow 

graph is depicted in Fig. 8 and 9, respectively. 

-k 
W 

Figure 8: The radix-r first arder JM-fiIter. 

W
k 

- N 

Figure 9: The radix-r second arder JM-fiIter. 

Z-I 
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5. Complexity reduction 

By examining Eq. (17) further reductions in terms of complexity could be achieved 

for the radix-2 case since: 

.27r 
e-Jrmv =e-j;rmv = (_l)mv , (23) 

therefore; based on equation (23), we can re-write Eq. (17) as: 

r-l mv v 
a =" x (-1) =x +(-1) x (p) ~ (Vm+p) (p) (Vm+p) ' 

(24) 

and the radix-2 lM first order filter would be: 

Y 
_w-(qv+v)y +(x +(_l)V x ) 

(p ,(qV+v)) - N (p-l ,(qv+v)) (p) (Vm+p) , (25) 

where the ktn computed frequency according to equation (20) is given by as shown in figure 

10: 

_ ( )(qV +v) -(qV +v) 
X(k) - -1 wN y(V -I ,(qV +v)) . (26) 

X (f' ' , Dl.;.p,l 

-{qV+V'1 W · , 

Figure 10: The radix-2 first arder JM-filter. 

The radix-2 second-order lM-filter will be (Figure Il): 

= 2 cos 27r k / - + x + -1 x ( ( ) v ) 
Y(p ,(qv+v)) ( N)Y(P-l ,(qV+v)) Y(p-2 ,(qV+v)) (p) (Vm+p) , 

(27) 

from which the kth computed frequency is 
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l 
_( )(qV+v) ( . ) 

X(k) - -1 0.5cos(27rk / N )Y(V-l.(qV+V) +sm(27rk / N)- Y(V-2.(qV+v) , (28) 

where y =y =0 (-2.(qV +v) (- I.(qV +v) . 

Figure Il : The radix-2 second arder JM-filter. 

With the same reasoning as above, further reductions in terms of complexity for the 

radix-4 could be achieved, in fact: 

.2lT .lT - J- mv - J- mv mv 
e 4 = e 2 = (-i) , (29) 

therefore, based on equation (29) ), we can re-write Eq. (17) as: 

r - l 

a(p) = ~ x(vm+p) (_l)"'v = ( x(P) + (-i)" x(v+p) + (-it X(2V +p) + (-if X(3V +P» ) • (30) 

and the radix-4 JM first order filter would be: 

(31 ) 

where the kth computed frequency according to equation (20) is given by as shown in 

Figure 12 

_ ( .)(qV +v) -(qV +v) 
X (k) - - J wN Y(V-l.(qV+v) · (32) 
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(-i f 

x~ (1'+ p 
1-+--+---, 

x(p 

(_ j )~ V 

Figure 12: The radix-4 first order JM-filtero 

The radix-4 second-order JM-filter will be (Figure 13): 

Y = 2cos(21rk / N)y -y +(x + (_Jo)V X +(_Jo)2V X +(_Jo)3V X ) (p,(qV +v) Cp-I ,(qV +v) (p- 2,(qV +v) (p) (V+p) (2V +p) (3V+p) 

(33) 

from which the kth computed frequency is 

X (k ) = (-iiqV 
+v) ( 005 cos(27l"k / N)Ycv-I ,(qV +v) + sin(27l"k / N) - YCV- 2,(qV +v) ) , (34) 

where YC-2,(q v+V) = YC-1,(qv+V) =0 , with k=qV +v and k=0,1,0 00,N-i. 

(_ j)~v 

Figure 13: The radix-4 second order JM-fiIter. 
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6. Performance Results and Signal to Quantization Noise Ratio (SQNR) 

6.1 Performance results 

As detailed in Section 2, the computational complexity of the first order Goertzel 

algorithm in the case of complex-valued input sequences is: 

4N real multiplications and 4N real additions, (35) 

and from Fig. 4, the computational cost of the second-order Goertzel's algorithm is thus 

[14]: 

2N + 2 real multiplications and 4N - 2 real additions, (36) 

which gives a reduction of almost a factor of two in the number of real multiplications and 

if the data are real-valued, this cost is almost halved again. 

In general for the radix-r case, the computational complexities of the first and 

second order radix-r JM-filters are respectively: 

4N/r+ N::ULT real multiplications and 4N/r + N: DD real additions, (37) 
~ ~ 

2N/r +2 + N::ULT real multiplications and 4N/r - 2+ N: DD real additions, (38) 
~ ~ 

where N:DD and N::ULT are the total number ofthe required operations required to compute 
{pl (pl 

a(p) . As a result and according to figures 10 and Il, the computational complexity of the 

first and second order radix-2 JM-filter, inc1uding N MULT and N ADD 
, is respectively: 

O{ p) O{p) 

2N real multiplications and 3N real additions, (39) 

N + 2 real multiplications and 3N - 2 real additions, (40) 

which give us a reduction in the multiplications' computational cost by a factor of 2 where 

N::ULT = 0 and we need 3N real additions compared to 4N real additions for Goertzel as 
{pl 

shown in table 1. 
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According to figures 12 and 13, the computational complexity of the first and second order 

radix-4 JM-filter is respectively: 

N real multiplications and 5N/2 real additions, (41) 

N/2 + 2 real multiplications and 5N/2 - 2 real additions, (42) 

which give us a reduction in the multiplications ' computational cost by a factor of 4 where 

N::ULT = 0 and we need 5N/2 real additions compared to 4N-2 real additions for Goertzel. 
(pl 

A summary for complexity analysis is shown in Table 1 and Table 2 for the first and 

second order, respectively. 

Table 1: Computational complexity in terms of real arithmetic operation of the proposed FIRST 
d d' 2/4 JM Fït d fi t d G rt 1 filt fi d'ffl t' fi' tN or er ra IX- - 1 ers an Irs or er oe ze 1 er or 1 eren slzes 0 complex mpu 

Operation Goertzel Radix-2 JM fllter 
Radix-4 JM 

fllter 
Mult 2N+2 2N N 
Add 4N 3N 5N/2 

Table 2: Computational complexity in terms of real arithmetic operation of the proposed 
SECOND order radix-2/4 JM-Filters and second order Goertzel filter for different sizes of 

1 tN compl ex mpu 
Operation Goertzel Radix-2 JM fllter Radix-4 JM fllter 

Mult 4N N+2 N/2+2 
Add 4N-2 3N-2 5N/2-2 

6.2 Signal to Quantization Noise Ratio (SQNR) 

Goertzel's algorithm is the most powerful algorithm that is used in the detection of 

specific frequency in monitored signal's applications. Their implementation is very 

attractive in fixed point due to the reduction in cost compared to the floating point 

implementation. In digital processing, signal-to-quantization noise ratio, often written 

SQNR, is a measure of signal strength relative to background noise. The ratio is usually 

measured in decibels (dB).The higher the ratio, the less obtrusive the background noise is. 
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Two major concerns about the computation of the Goertzel's algorithm which are the speed 

and the high SQNR. The fixed point implementation generates noise sources due to the bit 

representation in hardware implementation that propagate through the system which will 

modify the overall system accuracy. 

According to [16] in which it was cited that the first order Goertzel's algorithm 

performs better than the second order in fixed point implementation of real-valued input 

sequences by using the scaling factor liN for the first order and 1/N2 for the second order. 

Meanwhile, the proposed scaling factor in [17], based on complex-valued input sequences, 

for the proposed first order a scaling factor of 1t / (4N). Based on this proposed scaling 

factor, [17] assures no significant error for all frequency. This is not the case for the scaling 

factor proposed in [16] currently used in practice since long time where [17] had shown 

that one frequency output is affected by the factor lIN. Therefore, our comparative study 

will be based on the cited reference [16] since it performs better than [17] as shown in 

Figure 14 where we will be considering complex valued input data that has been quantized 

to 16 and 24 bits width and coefficient multiplier that has been quantized to 16 bits width in 

order to reduce the implementation cost. 

Figure 15 shows the SQNR comparison between the proposed radix-2 and radix-4 

JM-filter and the first order Goertzel's algorithm that is based on the method cited in [16] 

which reveals a significant gain up to 4.5 dB as illustrated in Figure 16 for a complex input 

data of size 256. 
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Figure 14: SQNR Comparison between the cited method in [16] with a scaling factor 
11 N and the cited method in [17] with a scaling factor 1t I( 4N) where the data and 
twiddle factor are quantized to 16 bits width . 
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Figure 15: SQNR Comparison between the proposed first order radix-2/4 and the 
first order Goertzel's algorithm on a data and twiddle factor of 16 bits width where 
the Scaling factor for ail method is liN. 

Figure 17 shows the SQNR comparison between the proposed radix-2/4 JM-filter and the 

first order Goertzel's algorithm on a data of 24 bits width and twiddle factor of 16 bits 
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which reveals a significant gain up to 6.5 dB as illustrated in Figure 18 for a complex input 

data of size 256. 
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Figure 16: Difference in SQNR between the proposed first order radix-2/4 and the 
first order Goertzel's algorithm on a data and twiddle factor of 16 bits width the 
Scaling factor for ail method is liN. 
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Figure 17: SQNR Comparison between the proposed first order radix-2/4 and the 
first order Goertzel's algorithm on a data of 24 bits width and twiddle factor of 16 
bits width where the Scaling factor for ail method is liN. 
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Figure 18: Difference in SQNR between the proposed first order radix-2/4 and the 
first order Goertzel's algorithm on a data of 24 bits width and twiddle factor of 16 
bits width where the Scaling factor for ail method is lIN. 

7. Conclusion 

Finally, this paper has presented an efficient algorithm to compute a specific 

frequency compared to the well-known Goertzel's algorithm in which we have proven a 

reduction in the multiplication computational load by a factor of r and a significant gain in 

SQNR. The significant gain in the SQNR is due to the fact that the recursive equation of 

Goertzel's algorithm has been reduced from N to N/r where r is the radix of the introduced 

JM Filter. 
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Chapter 5 The JMFFT Core Kernel 

Computation 

The JMFFT Core Kernel Computation 

Paper VIII: M. Jaber and D. Massicotte, "The Self-Sorting JMFFT Aigorithm Eliminating 
Trivial Multiplication and Suitable for Embedded DSP Processor", accepted 
in NEWCAS, Montreal Canada, June 2012. 

Paper IX: M. Jaber and D. Massicotte, "A Novel Radix-23 JMFFT Suitable for 
Embedded DSP Processor", ta be submitted ta a Journal after the end of the 
canfidentiality. 
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Résumé du Chapitre 5 

Une des stratégies récentes visant à réduire la complexité de la transformée rapide 

de Fourier (TRF) est de cibler la multiplication triviale en regroupant les données avec ses 

coefficients multiplicateurs correspondants en se servant de nos générateurs d'adresses 

proposés pour la TRF. En agissant ainsi toutes les multiplications triviales par ± 1 ou ± j 

ont été exclus du processus et en ajoutant à cela les accès à ces coefficients multiplicateurs 

ont été également exclus. Notre méthode proposée dans ce chapitre, qui se repose sur la 

même stratégie, permettra de réduire davantage les accès mémoire en prédisant l'apparition 

des coefficients multiplicateurs ±.f"X ± j.f"X. En obtenant ceci, le nombre d'opérations 

ar.ithmétiques pour la multiplication par ±.f"X ± j.f"X peut être réduite de 6 à 2 et les accès 

à ces coefficients multiplicateurs ont été également exclus. L'architecture de l'algorithme 

obtenue nous a permis de définir un noyau de calcul à base 23 (papillon) dont la structure 

est basée sur 4 noyaux de calcul à base 2. L 'avantage de cette structure permet au noyau 

d'accéder 8 entrées simultanées avec un seul accès au coefficient multiplicateur ce qui est 

traduit par une énorme réduction d'accès mémoires d'une part et d'autre part la quantité 

mémoire requise pour stocker les coefficients multiplicateurs est réduite de N/2 - 1 jusqu'à 

N/8 - 1. Comme l'accès mémoires est très coûteux en cycle sur une carte DSP ce qui 

entraîne une réduction en cycle dans l'exécution de la TRF. 
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The Self-Sorting JMFFT Aigorithm Eliminating Trivial 
Multiplication and Suitable for Embedded DSP Processor 

Marwan A. Jaber and Daniel Massicotte 

Université du Québec à Trois-Rivières, Electrical and Computer Engineering Department 
Laboratory of Signal and System Integration 
{marwan.jaber, daniel.massicotte }@uqtr.ca 

Abstract: The Discrete Fourier Transform (DFT) is a mathematical procedure that 

stands at the center of the processing that takes place inside a Digital Signal 

Processor. Speed and low complexity are crucial in the FFT process; they can be 

achieved by avoiding trivial multiplications through a proper handling of the 

input/output data and the twiddle factors. Accordingly, this paper presents an 

innovative approach for handling the input/output data efficiently by avoiding trivial 

multiplications. This approach consists of a simple mapping of the three indices (FFT 

stage, butterfly and element) to the addresses of the input/output data with their 

corresponding coefficient multiplier. A self-sorting algorithm that reduces the amount 

of memory accesses to the coefficient multipliers' memory can also reduce the 

computational load by avoiding ail trivial multiplications. Compared with the most-

recent work [5], performance evaluation in terms of the number of cycles on the 

general-purpose TMS320C6416 DSP shows a reduction of 29% (FFT of size 4096) 

and 87.5% memory reduction to stock the twiddle factors. The algorithm has also 

shown a speed gain of24% on the FFTW platform for a FFT ofsize 4096. 

1. Introduction 

DSPs are typically used to input large amounts of data; perform mathematical 

transformations on that data and output the results at very high rates. In a real time system, 
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data flow must be understood and controlled in order to achieve high performance. Such 

peripheral devices that control data transfers between IIO (Input Output) subsystems in the 

same manner as a processor can reduce CP (Computational Processor) interrupt latencies 

and leave valuable DSP cycles free for other tasks leading to increased performance. 

Handling input/output data in a FFT process is based on the bit reversing technique [1] , and 

in order to reduce the computational load by avoiding trivial multiplication, several well­

structured C library codelets known as planners (i.e. FFTW) adopt the algorithm to the 

available hardware by maximizing its performance [2]. This paper presents a data mapper 

based on the concept introduced in [3] - [4], which will be compared with the latest work 

done on the implementation of the FFT on embedded processors [5]. 

The paper is organized as follows: Section 2 describes the proposed method; Section 3 

provides the performance results of that method on the TI' s DSP TMS320C6416 in terms 

of c10ck cycles and on FFTW platform. Finally, Section 4 discusses the conclusion. 

2. Proposed Method 

The basis of the radix-r FFT is that a DFT can be divided into r sm aller DFTs, each 

of which is divided into r smaller DFTs, in a continuing process that results in a 

combination of r point DFTs. The advantage of properly dividing the DFT into partial 

DFTs is to control the number of multiplications and stages. The number of stages often 

corresponds to the amount of global communication and/or memory accesses in 

implementation; a reduced number of stages is therefore beneficial. The conceptual key to 

the use of our proposed FFT Address Generator is the simple mapping of the three indices 

(FFT stage, butterfly, and element) to the addresses of the multiplier coefficients needèd 

[4]. 
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The definition of the DFT is represented by the following equation: 

N-I 

X1kl = L:>lnjW:, k E [O,N -1] (1) 
n=O 

where x[n) is the input sequence, X[k) is the output sequence, N is the transform length, 

W'j}' = e - j(27r/N)nk called the twiddle factor in butterfly structure, and l = - 1_ Both x[n) and 

X[k) are complex number sequences. 

Equation (1) can be expressed in compact form as [4]: 

(2) 

for k = O,1,2," ,N -1, p = O,I,2, ... . ,(N / r)-1 and q = O,I,2, .... ,r- 1 , with 

x = [X(Pl ' X (p+N lrl, X (p+2N lrl' ••• , X (p+( r- 1lN1rl J , (3) 

(4) 

and 

° wN 
0 wN 

0 wN W
O 
N 

0 
W

Nl r 
W

2N1r (r-l)N l r wN N N W N 

0 2Nlr 4N lr 2(r-l)Nlr 

T= 
wN wN wN wN (5) r 

(r- l)N l r 2(r-l)Nl r wN wN 

Therefore, by defining [Tr l ,rn as the element of the th line and the mth column in the 

matrix T r, equation (5) could be rewritten as: 

[T ] = )(itnN/r)]N 
r I,tn N , (6) 
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where 1=0,1 , ... ,r-l, m=O, 1, . .. ,r-l and [X]N represents the operation x modulo N. 

The set of the twiddle factor matrix W N( m,v,s) is defined as 

[WN Lm(v,s) = diag( w N(O,v ,s) ' w N (1 ,v,s)" '" W N(r-l ,V,S) ) ' (7) 

where the indices r is the FFT' s radix, v = 0,1, ... , V -1 represents the number of words of 

size r (V = N / r) and s = 0,1, ... , S is the number of stages (or iterations S = logr N - 1 ). 

Finally, Eq. (7) can be expressed for the different stages in an FFT process as [3] and [4]: 

{ 

[lv/rs J rS t 
[w ] - wN 

N I,m(v,s) -

° for the DIF process and Eq. 7 would be expressed as: 

for 1 = m 

elsewhere 

[w ] W for 1 = m 
{ 

llv//s-s) Jt /S-S)]N 

N I,m(v,s) = N ° elsewhere 

(8) 

(9) 

for the DIT Process, where I=O,I , ... ,r - 1 is the Ith butterfly ' s output, m=O,l , .. . ,r-l is the 

mth butterfly ' s input and Lx J represents the integer part operator ofx. 

As a result, the zth transform output during each stage can be illustrated as: 
~ [lmN/r+lvlr

S J r S t 
X (v ,s) [i] = L.J x (v,s) [m] W N , (10) 

m=O 

for the DIF process and 

(11) 

for the DIT process. 

In this article we will be adopting respectively the following abbreviation (RAG) 

for the reading address generator, (W AG) for the writing address generator and (CAG) for 

the coefficient address generator for DIF and DIT process. 
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The m1h butterfly 's input of v1h word x(m) at the Slh stage (ih iteration) is fed by 

equations (12) and 13 for the DIF process and by equation (13) for the DIT process 

illustrated as [4]: 

and for s>O 

N 
RAG(m .v.o) = mx-+v 

r 

- N Il v J NI [k] l v J (s-I) RAG(m.v.s) - m x? + r(s-I) x ---; N + / ,-1) + -;:; x r 

for the DIF process and 

RAG ( N ) [] l v J (S+ I-s) (m,v,s) = m x r (s+ I) + V r (S-,) + r (S-s) r , 

(12) 

(13) 

(14) 

for the DIT process where the butterfly 's input m=O,l, ... ,r-l, v=O,l, .. . ,V-l and 

s=O,l, ... ,S, S=logrN-l. 

For both cases, the zth processed butterfly' s output Xcl.v.s) for the vth word at the Slh 

stage should be stored into the memory address location given by the WAG: 

WAG(I .v,S) = I(N / r)+ v. (15) 

It should be noted that for both algorithms the input and output data are in natural 

order during each stage of the FFT process known as the Ordered Input Ordered Output 

(0100) algorithms. 

The coefficients multipliers (Twiddle Factors) needed du ring each stage, which are 

fed to the m1h butterfly 's input ofvth word x(m) at the i h stage (ih iteration), are provided by: 

(16) 

for the DIF process and 
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(17) 

for the DIT process. 

By examining equations (16) and (17) we can c1early see that the data in both 

algorithms were grouped with their corresponding coefficient multipliers at each stage 

because the mth coefficien~ multiplier of the zth butterfly's output shifts if and only if v 

( v = 0, 1, ... , V -) is equal to r (S-s) in the DIF process or v = 1 in the DIT process. As a result 

and since V=N/r = rS; the total number of shifts during each stage in the DIT process would 

be 1 and the total number of shifts during each stage in the DIF process is r(S-s). Therefore, 

by implementing the word counter r (S-s) (wordcounter = 0, 1, ... , r (S-s)_l) and the shifting 

counter 1 (shiftcounter = 0,1, ... , 1- 1) in the DIT pro cess or the word counter r S and the 

shifting counter r (S-s) in the DIF process, we obtain highly efficient self-sorting DIT/DIF 

radix-r algorithms in which the access to the coefficient multiplier's memory is reduced 

compared with the conventional radix-r DIT/DIF algorithms. 

As weil, the occurrence of the multiplication by one (i.e., the elements of the 

twiddle factor matrix illustrated in (4) are ail equal to one) can be easily predicted when the 

shifting counter in both cases is equal to zero (i.e. v < 1 or v < r(S - s» . The trivial 

multiplication by one (wo) during the entire FFT pro cess is consequently avoided. 

Furthermore, by manipulating the exponent of the twiddle factor, the occurrence of the 

multiplication by ±} can be predicted where this multiplication can be incorporated into the 

additions by switching the real and imaginary parts of the data. The trivial multiplication 

±"7{ ±j"7{ can also be predicted where the number of arithmetical operation of this 

multiplication can be reduced from 6 to 2. 
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Compared with the cited reference [5] (referred in this paper as REF) in which a 

combination of2 butterflies that requires one memory access per 4 complex inputs (Fig. 1); 

the comparison was initially made in terms of memory accesses (the most costly in DSP 

implementation) to the coefficient multiplier as shown in Table 1. 

x[v]Q----J>---o x[v~ + x[v+N/2S ] 

x[v +N/2s+11Q-~~-J>---o xlv +N/2s+1] + xlv +3N/2s+1] 

(b) 

W m+N/4 
N 

Fig. 1: Computing two butterflies together in one stage of the radix-2 DIF FFT 
diagram [5] where mis given in equation (16). 

Table 1: Comparison in terms of memory accesses to the coefficient multiplier 
in [5] versus the proposed method where each complex access is counted as 1: 

Memory accesses 
reduction (%) 

N TI [5] Cited [5] Proposed TI Cited 
8 7 1 0 100 100 
16 15 5 2 86.7 60 
32 31 15 8 74.2 46.7 
64 63 37 22 65.1 40.5 
128 127 83 52 59.1 37.35 
256 255 177 114 55.3 35.6 
512 511 367 240 53.1 34.7 
1024 1023 749 494 51.7 34.1 
2048 2047 1515 1004 49.1 33 .7 

1 
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Table 2: Comparison in terms of real multiplication between the cited methods 
in [5] versus the proposed method 

Multiplication reduction ~ 
(% 

N TI r51 Cited [51 Proposed TI Cited 
8 48 8 4 91.7 50 
16 128 40 28 78.1 30 
32 320 136 108 66.25 20.5 
64 768 392 332 56.77 15.3 
128 1792 1032 908 49.33 12.01 
256 4096 2568 2316 43.45 9.8 
512 9216 6152 5644 38.75 8.25 
1024 20480 14344 13324 34.94 7.11 
2048 45056 32776 30732 31.79 6.23 

Table 3: Comparison in terms of real addition between the cited methods in [5] 
versus the proposed method 

Addition reduction (%) 1 
N TI [5] Cited [5] Proposed TI Cited 
8 72 52 48 33.34 7.69 
16 192 148 136 29.16 8.1 
32 480 388 360 25 7.21 
64 1152 964 904 21.52 6.22 
128 2688 2308 2184 18.75 5.37 
256 6144 5380 5128 16.53 4.68 
512 13824 12292 11784 14.75 4.13 
1024 30720 27652 26632 13.30 3.68 

. 2048 67584 61444 59400 12.10 3.32 

Furthermore, the prediction of the multiplication by ±.J3{ ± j.J3{ is also beneficial 

when the number of real value arithmetical operations can be reduced from 6 to 2 as shown 

in Tables II and III, in which the split radix algorithm was excluded from this comparison 

since it has the lowest number ofreal value arithmetical operations [6] and [7]. 
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3. Performance Evaluation 

In our comparative study we will be testing the proposed DIT FFT structure on a general 

purpose DSP and FFTW platforms. 

A) DSP Platform 

This comparison was conducted on the TMS320C6416 DSP platform using TI ' s 

Code Composer Studio (CCS version 4.2), where the beauty of this platform ·lies in its 

capacity for executing 8 instructions in parallel; this is highly desirable for our proposed 

structure, which maximizes the use of the platform ' s resources. We compared the 

performance of our proposed method with the TI' s DIF radix-2 FFT referred as "TI" [8], 

and with the best DIT method (to our knowledge) referred as "REF" [5]. 

In our performance study, the simulation results of the referenced methods are obtained in 

bit reverse order, whereas our obtained results are in natural order where the bit reversing 

process was not taken into consideration in the simulation results. 

The simulation environment for ail methods is detailed as follows: 

• Clock 1000 MHz. 

• Memory clock 100 MHz. 

• Mode Release 

• C6416 Device Cycle Accurate Simulator, little Endian. 

Table 4 and Fig. 2 reveal the simulation results of the TI and REF methods cited in [5] 

where the performance evaluation was based on the number of clock cycles. The simulation 

was tested on the general-purpose DSP that shows a significant reduction of 15% to 29% 

for 64 and 1024 points, respectively. 
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Table 5 represents the required size (in bytes) of the coefficient multiplier for ail methods 

where our proposed method demonstrates further reduction ofthis memory size. 

Table 4 Comparative results in tenn of clock cycle of the cited methods versus 
the proposed method for different FFT sizes. 

Cycle Reductions (%) 

Length TI REF Proposed TI REF 
64 5252 4210 3648 43,97 15,41 
128 11363 9048 7612 49,28 18,86 
256 24578 19246 15832 5524 21,56 
512 53025 40676 32852 6141 23,82 
1024 113984 85594 68048 67,51 2578 
2048 244063 179536 140748 73,40 27,56 
4096 520574 375622 290760 79,04 29,19 

80~----~--~~--~----~----~----~ 

70 

~ 
-;; 60 
u 
>-

(.) 

~ 50 
.2 
(.) 

~ 40 

~ 
u 
::s 
-g 30 
II:: 

------------------- FTiI 
~-REF 

7 8 9 10 11 12 
FFT length log2(N) 

Fig. 2: Comparison of clock cyCle reduction between our proposed method and 
the Referenced methods (TI and Cited). 

Table 5: Comparison of the coefficients multiplier's memory requirement of the 
cited methods versus the proposed method where the size is computed in tenn of 
byte 

FFT Length TI [5] REF [5] Proposed 
N 2N N/2-2 N/8 -1 
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B) FFTW Platform 

Furthermore, the proposed DIT FFT method was benchmarked on the FFTW 

platform (version 2.0) as shown in Fig. 3 in which our proposed structure revealed that the 

execution of the FFT was greatly accelerated. This gain is occurred because the proposed 

structure first reduced the amount of the coefficient multiplier's memory accesses, (which 

is costly in DSP implementation) and then, reduced the computational load achieved by 

eliminating the multiplication by ±j. The FFTW benchmark [9] is an FFT bench platform 

assembled by Matteo Frigo and Steven G. Johnson at MIT (Massachusetts Institute of 

Technology). This platform compares the performance of different complex FFT 

implementations (40 FFT methods) based on speed and accuracy where the performance is 

computed on a single processor environment even though the benchmark is run on multi-

processor systems [9] and [10]. The FFTW platform includes an FFT method known as 

FFTW _ESTIMATE that outperform an other methods and is actually used in Matlab® 

software R2009a. 
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Figure3: FFTW benchmark results of the proposed method for the radix-4. 
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Figure 4: FFTW benchmark results of our previous work (JFFT) for the radix-4 [4]. 

This bench platform is intemationally recognized; the complex FFT performance is plotted 

in terms of "MFLOPS" (efficiency axis), and the FFT size N, which is a scaled version of 

speed defined by: 

MFLOPS = ( SN 10g2 N) / t , (18) 

where t is the computational time in ~s to execute the N-point FFT [10]. 

Furthermore, the FFTW benchmark of Fig. 3 shows that the FFT's execution time is 

significantly improved when our proposed method is implemented on the radix-4 butterfly 

which manifested a gain of 24% for an FFT size of 4096. The JFFT result in figure 3 is an 

optirnized version of our previously proposed code cited in [4] as shown in Fig. 4. The 

greatest impact of our proposed method is the reduction in complexity compared to 
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FFTW _ESTIMA TE that requires complex and lengthy codelets plus an exhaustive search 

which is costly in time in order to achieve the obtained results. For ail results, the 

computational time of the FFTW planner is not included in MFLOPS' computation as 

shown in Fig. 3 and 4. 

4. Conclusion 

Finally, this paper has presented an efficient ordered input ordered output algorithm 

that reduces the complexity and the computational effort in comparison to the most recent 

proposed ~ethods. Furthermore, the proposed method had showed a significant reduction 

in term of c10ck cycles compared to the cited methods in [5]. In addition to that and by 

predicting the 8th root of unity, the memory size needed to stock the coefficient multiplier 

is reduced to N/8 - 1. 

Acknowledgment 

The authors wish to thank the Natural Sciences and Engineering Research Council 

of Canada and labertech Canada Inc. for their financial and technical support. 

167 



References 

[1] J.W. Cooley, J.W. Tukey, "An Algorithm for the Machine Calculation of Complex 
Fourier Series", Mathematical Computer 19, pp. 297-301 , April 1965. 

[2] M. Frigo and S.G. Johnson, "FFTW: An Adaptive Software Architecture for the 
FFT", IEEE International Conference on Speech, and Signal Processing, Seattle, pp. 
1381-1384, 12-15 May 1998. 

[3] M. Jaber, D. Massicotte, "A New FFT Concept for Efficient VLSI Implementation: 
Part 1 - Butterfly Processing Element" , International Conference on Digital Signal 
Processing, Santorini, Greece, pp. 1-6, 5-7 July 2009. 

[4] M. Jaber and D. Massicotte, "A Novel Approach for FFT Data Reordering", 
International Symposium. on Circuits and Systems, Paris, pp. 1615-1618, May 
2010. 

[5] Y. Wang and al. , "Novel Memory Reference Reduction Methods for FFT 
Implementations on DSP Processors", IEEE Transactions on Signal Processing, vol. 
55, no. 5, pp. 2338-2349, May 2007. 

[6] L. Moreno and al , "Digital Signal Processors for a Signal Processing Laboratory", 
IEEE Transactions on Education, vol. 42, no. 3, pp. 192-199, August 1999. 

[7] I. Uzun, A. Amira, and A. Bouridane, "FPGA Implementations of Fast Fourier 
Transforms for Real-Time Signal and Image Processing", IEE Proceeding on 
Vision, Image and Signal Processing, vol. 152, no. 3, pp. 283-296, June 2005. 

[8] "TMS320C64x DSP Library Programmer' s Reference", Literature Number: 
SPRU565B, Oct. 2003, (code DSP-radix-2, p. 4-9,4-10). 

[9] M. Frigo and S.G. Johnson, "The Design and Implementation of FFTW3", 
Proceeding of IEEE, vol. 2, no. 2, Feb. 2005, pp. 216-231. 

[10] FFTW, http://www.fftw.org, (visited in 2012). 

168 



Paper IX: M. Jaber and D. Massicotte, "A Novel Radix-23 JMFFT Suitable for 
Embedded DSP Processor", ta be submitted ta a Journal after the end of the 
confidentiality. 

169 



A Novel Radix-23 JMFFT Suitable for Embedded DSP 
Processor 

Marwan A. Jaber and Daniel Massicotte 

Abstract - Digital Signal Processing is a technique by which analog, or continuously 

varying, signais are converted to digital form and mathematically manipulated by a 

specialized computer (a digital signal processor), to modify or improve the signal in 

some way. Discrete or digitized signais can be transformed into the frequency domain 

using the discrete Fourier transform where any signal can be analyzed into its 

frequency components to understand the characteristics of the signal's pattern 

information and to compare it to other types of signais. Memories' accesses are major 

concerns in implementation on DSP cards which on the most cases are costly in DSP 

cycles. Therefore, in a real time implementation, executing and controlling the data 

flow structure is important in order to achieve high performance that could be 

obtained by regrouping the data with its corresponding coefficient multiplier. This 

article will present a novel hardware oriented Radix 23 JMFFT (Jaber-Massicotte 

FFT) which is an alternative way of representing higher radices by mean of less 

complicated and simple butterflies in which we used the symmetry and periodicity of 

the root unity to further lower down the coefficient multiplier memories' accesses, 

since the proposed core requires one memory access per eight inputs compared to the 

conventional radix-2 FFT. Finally this article will present the performance evaluation 

of the proposed method on the TMS320C6416 DSP by using the Tl's Code Composer 

Studio (CCS V 4.0) that will be compared to the most recent methods. Fixed-point 

arithmetic evaluations are done with respect to the two reference methods where we 
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have showed an SQNR gain that is maximized for 10-bit twiddle factor and 16-bit for 

the other variable data in the FFT process. 

Key-words: FFT, SQNR, FFT Address Generator, Access Memory Reduction, Trivial 

Multiplication, DSP). 

1. Introduction 

One "rediscovery" of the FFT, that of Danielson and Lanczos in 1942, provides one 

of the clearest derivations of the algorithm [1] as shown in Figure 1. Danielson and 

Lanczos showed that a discrete Fourier transform could be written as the sum of two 

discrete Fourier transforms each of length N/2. One of the two is formed from the even­

numbered points of the original N, the other from the odd-numbered points. An important 

advance then changed the situation completely: the discovery by Cooley and Tukey of a 

numerical algorithm, which aUows the DFT to be evaluated with a significant reduction in 

the amount of ca1culation required. This algorithm, caUed the Fast Fourier Transform, or 

FFT, aUows the DFT of a sampled signal to be obtained rapidly and efficiently. In essence, 

Cooley and Tukey realized that the straightforward approach to the DFT had the computer 

doing the exact same multiplications over and over [2]. The idea behind the FFT is to 

breakdown the DFT problem into sequences and to organize the computation in a manner, 

which takes advantage of the algebraic properties of the Fourier matrix. By doing so, they 

found that they could eliminate almost aU of these redundant ca1culations. The 

computational saving achieved by the Cooley and Tukey algorithm is staggering which 

reduces the computational load from N2 to Nlr logr N. Since the breakthrough by Cooley 

and Tukey, several other FFT algorithms have been devised such as Common Factor 

Aigorithms (decimation-in-time (DIT) or Cooley-Tukey FFT algorithm [2] and 
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decimation-in-frequency (DIF) or Sande-Tukey FFT algorithrn [3]), Prime Factor 

Algorithrn (PFA) [4], Mixed Radix Algorithrn (MRA) [4], Winograd Fourier Transform 

Algorithrn (WFTA) [5] and Split-Radix Algorithrn (SRA) [6]. 

It is hard to make a fair and general comparison between the different algorithrns 

because the importance of different properties of the algorithrns is depending on the 

implementation. In the case of hardware implementation of FFT processors there are 

number of other algorithrn's properties that should be dealt with such as: Regularity, 

Modularity, Parallelism and simplicity which is mostly offered by the common factor and 

prime factor algorithrns. 

One of the recent strategies to reduce the computational load is to target the trivial 

multiplication that could be achieved by grouping the data with its corresponding 

coefficients multipliers [7] - [9]. By doing so in our cited references 8, all trivial 

multiplications by ± 1 or ± j have been excluded from the process and adding to that the 

accesses to the coefficient multipliers have been also reduced. 

Our proposed method which is based on the same concept, will further reduce the 

memory accesses and adding to that the multiplication by ± -F1{ ±j-F1{ can be also 

predicted where the number of arithrnetical operation required for the complex 

multiplication can be reduced from 6 to 2. 

The paper is organized as follows; Section 2 provides a brief description on the 

background of the DITIDIF FFT algorithrns while Section 3 will deeply elaborate the 

proposed method. Section 4 provides a performance evaluation of the proposed method on 

the TMS320C6416 DSP by using the TI 's Code Compose Studio (CCS V 4.0) meanwhile 

section 5 will report the conclusions. 
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2. Background of the DITIDIF FFT 

Fourier analysis is named after Jean Baptiste Joseph Fourier (1768-1830) who was 

interested in heat propagation, and presented a paper in 1807 to the Institut de France on 

the use of sinusoids to represent temperature distributions. The paper contained the 

controversial daim that any continuous periodic signal could be represented as the sum of 

properly chosen sinusoidal waves. Among the reviewers were two of the history's most 

famous mathematicians, Joseph Louis Lagrange (1763-1813), and Pierre Simon de Laplace 

(1749-827). While Laplace and the other reviewers voted to publish the paper, Lagrange 

adamantly protested. For nearly 50 years, Lagrange has insisted that such an approach 

could not be used to represent signaIs with corners, i. e., discontinuous slopes, such as in 

square waves. The Institut de France bowed to the prestige of Lagrange, and rejected 

Fourier's work. It was only after Lagrange died that the paper was finally published, sorne 

15 years later [10]. 

1 Signal of 
16 points 

2 Signais of 
8 points 

4 Signais of 
4 points 

8 Signais of 
2 points 

16 Signais of 
1 point 

Figure 1: The FFT decomposition. An N point signal is decomposed into N signais each 
containing a single point. Each stage uses an interlace decomposition, separating the ev en 
and odd numbered samples. 

The definition of the DFT is represented by the following equation 

N· I 

X[kl = IX[nlw~, k E [O,N -1], 
n:O 

(1) 
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where x[n] is the input sequence, X[k] is the output sequence, N is the transform length, 

W~k = e - i(21f/ N)nk is called the twiddle factor in butterfly structure, and l = - 1. Both X[n] and 

X[k] are complex number sequences. 

In mid-1960s, J.W. Cooley and J.W. Tukey proposed their first algorithm known as 

decimation-in-time (DIT) or Cooley-Tukey FFT algorithm, which first rearranges the input 

elements into bit-reverse order, then builds up the output transform in log2 N iterations [2] 

and [4]. This process of splitting the 'time domain' sequence into even and odd samples is 

what gives the algorithm its name, 'Decimation In Time' (DIT). Based on the divide and 

conquer approach, the input data is subdivided into two sets of even-numbered and odd 

numbered data. If NI2 is even, as it is when N is equal to power of 2, then we can consider 

computing each of the NI2 points DFTs by breaking each of the sums into two NI4 points 

DFTs, which could be then combined to yield the NI2 points DFTs. If we proceed by 

decomposing NI4 into NI8 points transforms and continue until left with only 2 points 

transforms, this requires m stages where m = log2 N Figure 2. Then, the butterfly 

computation (in place computation Figure 3 or pre-multiplication technique) is used by 

obtaining a pair of values in one stage from a pair of values in the previous stage Figure 4. 

l-point 
DIT 

2-paint 
DIT 

l-point 
DIT 

l-point 
DIT 

Combine 
2 point 
DFI's 

Combine 
l-point 
DFT's 

Combine 
4-poÏllt 
DFT's 

1-__ ._1\.\ 
I--_.....:X{. 

Figure 2: Three stages in the computation of an N = 8-point DIT DFT [16]. 
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a ---.:-------.! f----A=a+b~ a A=a+b~ 

b f---_B=a-b~ b B=a-b~ 

Figure 3: Basic butterfly computation for the DIT FFT algorithm [16]. 

It is also possible to derive FFT algorithms that first go through a set of log2 N 

iterations on the input data, and rearrange the output values into bit-reverse order. These are 

called decimation-in-frequency (DIF) or Sande-Tukey FFT algorithm [3] and [4]. The 

process of splitting the 'frequency domain' sequence into even and odd samples is what 

gives the algorithm its name, 'Decimation In Frequency' (DIF Figure 5). In fact, the output 

sequences X(k) is decimated (split) into the even- and odd-numbered samples, then, the DIF 

is obtained by performing the butterfly computation (in place computation or post 

multiplication technique) of the type shown in Figure 6. In this case the input data is sorted 

in normal order to provide an output in bit-reversed order Figure 7. 

Briefly, the basic operation of a radix-r butterfly in which r inputs are combined to 

give the r outputs via the operation: 

x = Br x, (2) 

where X = [X(O), X( I), ... , X(r_I )] T is the input vector and X = [ X(O), X(I), .. .. , X (r-I ) ] T is the 

output vector and T denotes the transpose of the vector. 

Br is the r x r butterfly matrix, which can be expressed as : 

Br = W NTr , (3) 

for the decimation in frequency (DIF) process, and 

Br = TrWN 
(4) 

for the decimation in time (DIT) process where for both cases W N is defined as : 
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(5) 

and 

° W N 
0 

W N W
O 
N W

O 
N 

0 W N /r W 2N /r (r-I)N/ r 
W N N N W N 

W
O W 2N /r W 4N / r 2(r- I)N/ r 

T= N N N wN (6) r 

(r-I)N/r 2(r-I)N/ r wN wN 

X(O) 

X(4) 
}O) 

(4) 

X(Z) }1) 
X(6) (5) 

X(1) }Z) 
X(5) (6) 

X(3) }3) 
X(7) (7) 

Figure 4: Eight-point DIT FFT Signal Flow Graph (SFG) [16]. 
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Figure 5: Three stages eight-point DIF FFT algorithm [16] . 
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Figure 6: Basic butterfly computation for the DIF FFT algorithm [16]. 
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Figure 7: Eight-point DIF FFT Signal Flow Graph (SFG) [16]. 

3. The Proposed Method JMFFT 

One of the bottlenecks in most applications, where high performance is required, is 

the FFTIIFFT processor. Given that higher radix implementation is attractive for reduction 

in computation, researchers have sought a higher radix butterfly implementation. Since the 

higher radix will reduce automatically the communication load, the only problem left, will 

be the computational load. The most well-known attempt to reduce the computationalload 

is by factoring the adder matrix (or adder tree simplification) which did not provide a 

complete solution for the FFT problem due to the increasing complexity of the butterflies 

for higher radices due to the added multipliers in the butterfly's critical path [11] and 

[12](Figure 8). Thus, ifwe pay attention to the elements of the adder tree matrix Tr and to 

the elements of the twiddle factor matrix, we notice that both of them contain twiddle 
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factors. So, by controlling the variation of the twiddle factor during the calculation of a 

complete FFT, we can incorporate the twiddle factors and the adder tree matrices into a 

single stage of calculation. 

Therefore, by defining [Trl.m as the element at the lh line and m th colurnn in the 

matrix T, as a result equation (6) could be rewritten as: 

[T] = [(ImN/ r)]N 
r l ,m wN ' 

(7) 

with 1=0,1 , .. . ,r-1 , m=O,l , . .. ,r - 1 and [X]N represents the operation x modulo N and by 

defining W N(m ,v,s) the set of the twiddle factor matrix as 

[WN l ,m(v,s) = diag( w N(O,v ,s) ' W N( I,v,s) "'" W N (r-l ,V,S) ) ' (8) 

where the indices r is the FFI' s radix, v = 0,1, ... , V -1 represents the number of words of 

size r (V = N / r ) and s = 0,1, .. . , S is the number of stages (or iterations S = log, N -1 ). 

x(O) 

x(4) 

x(2) 

x(l) 

x(5) 

x(3) 

x(i) 

X(O) 

X( l ) 

X(2) 

X(3) 

X(4) 

X(6) 

X(i) 

Figure 8: Radix-8 DIT butterflies where the highlighted red portion represents the butterfly critical 
path 

Finally Eq. (8) could be expressed for the different stages in an FFT process as [11] 

and [12] : 
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{ 
[l vi rS 

JI r' t 
[w ] - WN 

N l,mCv,s) -

° 
for the DIF process and Eq. 8 would be expressed as: 

{ 

[lv/rCS-S) Jt ,cs-·,t 
[w ] - wN 

N I,m(v.s) -

° 

for [= m 

elsewhere 

for [= m 

elsewhere 

(9) 

(10) 

for the DIT Process, where [=0,1, ... ,r-1 is the [Ih butterfly's output, m=0,1 , ... ,r-1 is the m1h 

butterfly's input and Lx J represents the integer part operator ofx. 

Consequently the zth transform output during each stage could be illustrated as: 

(11 ) 

for the DIF process and 

(12) 

In this article we will be adopting respectively the following abbreviation (RAG) 

for the reading address generator, (WAG) for the writing address generator and (CAG) for 

the coefficient address generator for DIF and DIT process. 

The m1h butterfly's input ofv1h wordx(m) at the Slh stage (Slh iteration) is fed by [71]: 

And for s> ° 
N 

RAG(m.v.O) = m x -+v 
r 

RAG(m ,,) =m x ~ +[lr(~-I) Jx ~t +[k],"'1 +l:, JXr(,-I) 
for the DIF process and 

(13) 

(14) 
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G ( 
N ) [] l v J (S+ l-s) RA (m,v,s) = m x r (s+ l ) + v ,(s.s) + r (S-s) r , (15) 

for the DIT process wherem = 0,1, .. . ,r -1, v = 0,1, ... , V -1 and s = 0, 1, . . . ,S , 

S = log, N -1 in which [X]N represents the operation x modulo N and Lx J represents the 

integer part operator of x. 

For both cases, the zth processed butterfly's output X(I,v,s) for the v1h word at the i h 

stage should be stored into the memory address location given by the W AG: 

WAG(I ,v,s) =1(N /r)+v, (16) 

and to be noted that for both algorithms; the input data and the output data are in natural 

order during each stage of the FFT process known as Ordered Input Ordered Output 

(0100) algorithms. 

The coefficients multipliers (Twiddle Factors) needed during each stage, which are 

fed to the m1h butterfly's input ofv1h word x (m) at the Slh stage (Slh iteration), are provided by: 

(17) 

for the DIF process and 

(18) 

for the DIT process. 

By examining equations (16) and (17) we could c1early notice that in both 

algorithms the data are grouped with its corresponding coefficients multipliers during each 

stage due to the fact that the m1h coefficient multiplier of the zth butterfly' s output will shift 

if and only if v (v = 0,1, ... , V -1) will be equal to r (S-s) in the DIF process or v = r
S in the 

DIT process. As a result and since V = N/r = 1; the total number of shifting during each 
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stage in the DIT pro cess would be " and the total number of shifting during each stage in 

the DIF process is /s-s). Therefore, by implementing the word counter rCS-s) (wordcounter = 

0, 1, . . . ,rCS-
s
) - 1) and the shifting counter rS (shiftcounter = 0,1 , ... , " - 1) in the DIT 

process or the word counter " and the shifting counter /s-s) in the DIF process, we will 

obtain high efficient DIT/DIF radix-r algorithms in which the access to the coefficient 

multiplier's memory is reduced compared to the conventional radix-r DIT/DIF algorithms. 

In addition to that, the occurrence of the multiplication by one (i.e. the elements of the 

twiddle factor matrix illustrated in equation (8) are all equal to one) could be easily 

predicted when the shifting counter in both cases is equal to zero (i.e. v < " or v < rCs - s)). 

By doing so, the trivial multiplication by one (wo) during the entire FFT process is avoided. 

With the same reasoning as above the complexity of the DITIDIF reading 

generators could be obtained and will be replaced with simple counters. 

In this paragraph we will be deeply elaborating the radix-2 DIT FFT since it has 

higher Signal to Quantization Noise Ratio (SQNR) compared to the DIF technique [14]. 

Further reduction in computation and further reduction in the coefficient 

multiplier's memory access could be materialized and which will be elaborated in the next 

paragraph. 

For simplicity and in order to reduce the complexity of the equations that will 

follow we will be defining the following terms: 

a = r(S-s ) = 2(S- s) 

x=a 

{
a forÀ=O 

a A = Àa for À ~ 1 

XA = {
o forÀ = 0 

Àa forÀ~1 

13 = r x r(S- s) = 2 x 2(S- s) 13). = Àf3 

For the radix 2 case equation (12) at the Slh stage could be rewritten as: 

(19) 
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(20) 

that could be simplified as: 

l 
II v/ 2(S-,) j 2(S-,) 1 ] x x +x w N 

[ 

(k+X',) ] = (n+p,.) (n+p .. +a).) N , 

X llv/2(S-,) j 2(S- , ) 1 
(k+x .. +V) N 

X -x W (n+p..l (n+p .. + a;.) N 

(21) 

where x denotes the input from the previous stage and X represents the transform output. 

By replacing the termlv/2(S-') J with À which is the value of the shifting counter that 

cannot exceed 2s 
- ltherefore, equation (21) that represents the proposed radix-2 algorithm, 

will have the final form as: 

(22) 

For the first iteration (s = 0) the maximum value that v can attain is V - 1 as a result 

the term lv/ v J = À is always zero therefore equation (22) for the first iteration will become: 

(23) 

During the second iteration (s = 1) À is either zero or one as a result equation (22) will be 

expressed as: 

X(k) x(n) + x(n+a) 

(24) 
X(k+V) x(n) - x(n+a) 

= 

x -x wa 
(n+p) (n+p+a) N 

that could be simplified as : 
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X (k) X(n) + X(n+a) 

X (k+V) X(n) - x(n+a) 
(25) = 

X (k+a) x (n+p) + ( - j) x(n+P+a) 

X (k+a+V) x(n+p) -( - j) x(n+p+a) 

Finally for the third iteration (s = 2) À could have the following values 0, 1, 2 and 3 

as a result equation (22) will be illustrated as: 

X (k) 

X (k+V) 

X (k+a) 

X (k+a+V) 

X (k+2a) 

X (k+2a+V) 

X (k+3a) 

X (k+3a+V) 

that could be simplified as: 

X (k) 

X (k+V) 

X (k+a) 

X (k+a+V) 

X (k+2a) 

X (k+2a+V) 

= 

= 

x(n) + x(n+a) 

x(n) - x(n+a) 

x(n+P) + x(n+P+a) w~ 
wa 

x(n+p) - x(n+p+a) N 

2a 
x(n+2p) + x(n+2p+2a) wN 

2a 
x(n+2P) - x(n+2P+2a) wN 

3a 
x(n+3P) + x(n+3P+3a) wN 

3a 
x(n+3P) - x(n+3P+3a) wN 

X(n) + x(n+a) 

x(n) - x(n+a) 

, 

xI.',) +( ~(I - j ) ]xXI."") 

\.,P) -( ~(1- j) Jx xI."'.) 

x(n+2p) + ( - j ) X x(n+2p+2a) 

x(n+2p) - ( - j ) X x(n+2p+2a) 

X (k+3a) 

X (k+3a+V) 
(-J2 . J x(n+3p) + -2- (I+ J ) xX(n+3P+3a) 

(-J2 . J x(n+3p) - - 2- (1 + J) X x(n+3p+3a) 

(26) 

(27) 
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and the signal flow graph of an 8 point DIT FFT according to equation (27) is illustrated in 

Figure 9. 

The multiplication by - j in Figure 9 can be easily incorporated in the additions by 

switching the real and imaginary parts of the data and the multiplication cost of the input 

data by ± F;{ ± jF;{ is 2 real multiplication; as a result the total cost of real multiplication 

of the proposed structure will be 4 real multiplication compared to the structure of Figure 4 

that will cost 20 real multiplication (5 complex multiplication). 

Figure 9: Signal flow graph (SFG) of 8 point DIT FFT on the proposed structure. 

From the ab ove (equations (23), (25) and (27)) we can conclude that the first, 

second and the third iterations of the DIT FFT process will contain only trivial 

multiplication. 

In order to predict the occurrence of the trivial multiplication in the rest of the 

iterations (i.e. s ~ 3) which is a multiple of Wg as shown in Figure 10; we will be 

introducing the term 2(s - 2) (will be referred in this article as separator) that will subdivide 
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2s into 4 sub regions. The choice of the separator's value will be based on the following 

lemma: 

Lemma 1: 

For the all stages 01000 FFT algorithm the product ofis
-

2
) and i S

-
s
) is always = 

N/8Vs . 

Prao!, 

(28) 

In this sub-section we will be computing equation (22) for the different values of À.: 

1. À=O 

u. Ào E [1 2(S-2) [ 

Ul. À = i s - 2) 

IV. ÀI E [ 2(s-2) + 1 . .. 2 x 2(s- 2)[ 

v. À = 2xi s- 2) 

VI. À2 E [ 2 x 2(s- 2) + 1 ... 3 x 2 (S- 2)[ 

vu. À = 3xi s- 2) 

VUl. À3 E [3 x 2(s-2) + 1 ... 2
S

[ 

For the ith case at the sth iteration (stage) equation (22) will be expressed as : 

[ 
X(k) ] [x(n)+x(n+a)] 

X(k+V) - x(n)-x(n+a) , 
(29) 

and for the iiith case equation (22) would be illustrated as: 
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[ 

X(k+2(S-2)) ] [X(n+2(S-I))+X(n+2(S-I) +2(S_2) )T] (30) 

X(k+2(S-2)+V) - x(n+2(S-I))-x(n+2(S-I)+2(S-2))T ' 

where T = .fi (1- j) 
2 

For vth and viith cases, equation (22) would be respectively: 

-.fi 
wherea = -(1 + j). 

2 

(31) 

(32) 

Therefore; for s 2: 3 there is four sets of size r Cs - s) words that have ±~ (1 ± j), 1 

and - j as trivial multiplications that should be grouped yielding to the following 

expressIOn. 

X(k) x(n) + x(n+a) 

X(k+V) X -x (n) (n+a) 

X (k+2(S-2) ) x +x T (n+ 2(S-I) ) ( n+ 2(S-I) + 2(S-2) ) 

X (k+2(S-2)+V) X -x T (n+2(S-I» ) (n+2(S-I) +2(S-2») 

X = x +x (-j) (33) 
(k+2 x2(S-2) ) ( n+ 2S ) ( n+ 2S + 2x2(S-2) ) 

X (k +2X 2(S-2)+V) X -x (-j) (n+2S) (n+2S+2x2(S-2») 

X (k+3 x 2(S-2) ) x +x a 
(n+3x2(S-I») (n+3x2(S-I) +3x2(S-2» ) 

X (k+3 X 2(S-2)+V) x +x a 
(n+3x2(S-I» ) (n+3x2(S-I) _3x2(S-2») 

and the resulting structure for this particular case is sketched in Figure Il . 
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w2 
8 

Figure 10: 8th root of unity 

For the other cases and by comparing À's domain; we could clearly notice that each 

domain of À can be represented as: 

(34) 

(35) 

By regrouping these four cases where each of which will share the same coefficient 

multiplier; this will yield to the following expression: 

X (k+a,.) 

X (k+aJ. +V) 

x +x W
a

;. 
(n+pJ.) (n+p;. + a).) N 

X -x wa
;. 

(n+p,.) (n+p).+a .. ) N 

(r(S-2 ) + Â )a 
X +x w 

(n+r(S-2) PJ. ) (n +r(S-2) PJ. +r(S-2)a .. ) N 

(/.-2)+Â)a 
x -x w 

(n+r(S-2) P;. ) (n+r(' -2) P;. +r(,-2)a;. ) N 

(2r(,-2)+Â )a 
X +x W 

(n+2r(' -2) PJ. ) (n+2r('-2) Pl. +2r(S-2)a). ) N 

(2,(S-2) +Â)a 
X - x W 

(n+2r(S-2)p .. ) (n+2r(,-2)p;. +2 r(S-2)aJ. ) N 

(3r(,-2)+Â )a 
X +x w 

(n +3r(' -2) P .. ) (n+3r(' -2) PJ. +3r(,-2)aJ. ) N 

(3r(,-2)+Â)a 
X - x W 

(n+3r(' -2) p). ) (n +3r(S-2) P;. +3r(S-2)a;. ) N 

(36) 
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h 1 [1 2(s-2) [ . w erel\. E •.. 

(2,(,-2) +J.)a 
The entity wN in the fifth and the sixth terms of equation (36) could be 

simplified as: 

(37). 

(38) 

therefore, these entities could be expressed respectively as: 

(39) 

(40) 

where con} in equations (39) and (40) refers to the complex conjugate process; as a result 

we can rewrite equation (36) as: 

X (k+a;.) 

X (k+al+V) 

X 
(k+,('-2)a;.) 

x +x wa
• 

(II+P.) (II+Pl +aJ N 

X -x wa;. 
(II+Pl) (II+Pl +al) N 

X + X x conj(jwa
. ) 

(1I+,(~2) Pl) ("+2,(,-2) P;. _( 2,(,-2) -I)a;.) N 

(41 ) 
X - X x conj (jwa

;. ) 
("+,(,-2) Pl) ("+2,('-2) P. _( 2,(,-2) _1 )al ) N 

x -x (~)w~ 
("+2,k2) P.) ("+2,(,-2) P. +2,(,-21a . ) N 

X + X X -conj(wa
. ) 

(1I+3,(~2) P.) (11+3,(~2)p. _(3,(~2)_I)a.) N 

X - x x - conj (wa
. ) 

(11+3,(~2)p. ) ("+3,(,-2)Pl -(3,(~2)- I)al) N 

From equation (41) the JMFFT radix 23 butterfly can be derived (as shown in 

Figure 12 in which one complex coefficient multiplier (or twiddle factor) is needed for each 
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8 complex input. In addition to that, the coefficient multiplier memory is accessed once 

each 4 x2s word (a set of two inputs) for the DIT process and 2(S - s) in the DIF process 

where s is the actual stage (iteration) of the FFT process and Sis the total number of stages 

of the FFT process (S = log2 (N) - 1). 

x(O) ~--:I"-:-------------7 X(O 

x(2) X(I) 

x(4) --t---+-t---.---r-:------~ X(2) 

x(6) -+-+----t---++--.----:r--~ X(3) 
+ 

X(4) 

X(5) 

x(5) X(6) 

X(7) 

Figure Il: The proposed JMFFT 23 butterfly structure for trivial computation where 
the inputs/outputs are provided by equation (32). 

~R+AJ---'--,,----------7 

+ 

Figure 12: The proposed JMFFT 23 butterfly structure for non-trivial computation. 
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Compared to the cited methods in [8] and [9] that requires respectively 2 memory 

accesses per 4 inputs and 1 memory access per 2 inputs, our proposed method will require 

one memory access per 8 inputs; furthermore, the multiplication by ± -f";{ ±j-f";{ can be 

also predicted where the number of arithmetical operation required for the complex 

multiplication can be reduced from 6 to 2 as shown in Tables 1 and 2 meanwhile the 

reduction in memory access to the coefficient multiplier' s memory is illustrated in table 3 

for different FFT sizes. 

Table 1: Comparison in terrns of real multiplication between the cited methods 
in [8] versus the proposed method 

Multiplication reduction 
(% 

N TI r81 Cited r81 Proposed TI Cited 
8 48 8 4 91.7 50 
16 128 40 24 81.25 40 
32 320 136 88 72.5 35.29 
64 768 392 264 65.62 32.65 
128 1792 1032 712 60.26 31.1 
256 4096 2568 1800 56.05 29.90 
512 9216 6152 4360 52.69 29.12 
1024 20480 14344 10248 49.96 28.55 
2048 45056 32776 23560 47.70 28.11 

Table 2: Comparison in terrns of real addition between the cited methods in [8] 
versus the proposed method 

Addition reduction (%) l 
N TI r81 Cited r81 Proposed TI Cited 
8 72 52 48 33 .34 7.6 
16 192 148 140 27.08 5.40 
32 480 392 380 20.83 3.06 
64 1152 988 972 15.62 1.6 
128 2688 2400 2380 Il.45 0.83 
256 6144 5668 5644 8.13 0.77 
512 13824 13096 13068 5.46 0.21 
1024 30720 28740 28708 6.54 0.11 
2048 67584 66612 66572 1.49 0.06 
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4. Performance Evaluation 

The proposed structure has been tested on the TMS320C6416 DSP platform by 

mean of TI's Code Composer Studio (CCS version 4.2). The beauty of this platform is its 

capability to execute 8 instructions in parallel that is highly desirable for our proposed 

structure which will maximize the use of the platform's resources. We compared the 

performance of our proposed method with the TI's DIF radix-2 FFT, referred as "TI" [15], 

and with the best DIT method referred as "Cited "[8] . 

Table 3: Comparison in terms of memory accesses to the coefficient multiplier 
in [8] versus the proposed method where each complex access is counted as 1: 

Memory accesses 
reduction (%) 

N TI [8] Cited f81 Proposed TI Cited 
8 7 1 0 100 100 
16 15 5 2 86.7 60 
32 31 15 8 74.2 46.7 
64 63 37 22 65.1 40.5 
128 127 83 52 59.1 37.35 
256 255 177 114 55.3 35.6 
512 511 367 240 53.1 34.7 
1024 1023 749 494 51.7 34.1 
2048 2047 1515 1004 49.1 33.7 

In our performance study, the simulation results of the cited methods are obtained in 

bit reverse order meanwhile our obtained results are in natural order where the bit reversing 

process was not taken into consideration in the simulation results. 

The simulation environment for aIl methods is detailed as foIlow: 

• Clock 1000 MHz. 

• Memory dock 100 MHz. 

• Mode Release 
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• C6416 Deviee Cycle Aeeurate Simulator, little Endian. 

Table 4 reveals the simulation results of the eited methods in [8] versus the 

proposed one where the term Loss is defined as the ratio of the eited method over the 

proposed method where Figure 13 illustrate the values ofthis ratio. 

Table 4: Comparative results in term of c10ck cycle of the cited methods versus 
the proposed method for different FFT sizes 

Length 
64 
128 
256 
512 
1024 
2048 
4096 

Cycle Reductions (%) 

TI REF Proposed TI 
5252 4210 3648 43,97 
11363 9048 7612 49,28 
24578 19246 15832 55,24 
53025 40676 32852 61,41 
113984 85594 68048 67,51 
244063 179536 140748 73,40 
520574 375622 290760 79,04 

80~--~----~----~--~----~--~ 

70 

~ 
;- 60 
"[ 
(J 

~ 50 o 
U 

~ 40 
o 
:e 
:s 
~ 30 

20 

F-Tïl 
~-REF 

1~~--~7----~8-----9~---1~0----~11~--~12 

FFT length log2(N) 

REF 
15,41 
18,86 
21 ,56 
23,82 
25,78 
27,56 
2919 

Figure 13: Reference methods, TI and REF, c10ck cycle reduction compared 
with our proposed method. 

Table 5: Comparison of the coefficients multiplier' s memory requirement of the 
cited methods versus the proposed method where the size is computed in term of 
byte 

FFT Length TI [8] REF [8] Proposed 
N 2N N/2-2 N/8 - 1 
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5. Conclusion 

Finally, this paper has presented an efficient ordered input ordered output radix 23 

algorithm that reduces the complexity and the computational effort in comparison to the 

most recent proposed methods. Furthermore, the proposed method had showed a significant 

execution time in term of clock cycles compared to the cited methods and by predicting the 

8th root of unity and the memory size needed to stock the coefficient multiplier is reduced 

to N/8. 
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Chapter 6 _Low Complexity Input/Output 

Pruning JMFFT Kernel Core 

Paper x: M. Jaber and D. Massicotte, "Low Complexity Input/output Pruning JMFFTs 
Suitable for the OFDMA's 3GPP LTE Implementation", to be submitted to a 
Journal after the end of the conjidentiality. 
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Résumé du Chapitre 6 

Dans de nombreuses applications telles que la radio cognitive, qui est basée sur 

l'OFDM, sera principalement basée sur la taille de la TRF où on applique de manière 

efficace des zéros pour les entrées avec des distributions arbitraires. Ceci sera la cible de 

notre travail futur du fait que les algorithmes existants sont principalement concentrés sur 

les séquences où on applique de manière efficace des zéros à la fin des entrées. Les aspects 

théoriques d ' élagage de la TRF (PFFT - Pruning FFT) ont été soigneusement élaborés au 

cours des trois décennies et ont été principalement concentrés sur les séquences où on 

applique de manière efficace des zéros consécutifs à l'entrée Dans de nombreuses 

applications telles que la radio cognitive, qui est basée sur l'OFDM, on aura besoin de 

calculer un certain nombre de sorties de la TRF où on a appliqué de manière efficace des 

zéros sur les entrées. Notre contribution dans ce sujet est basée sur l'introduction d'un 

algorithme qui peut réduire la complexité du calcul en se comparant avec les méthodes les 

plus récemment proposées. 

Les résultats expérimentaux montrent que l'utilisation de notre méthode d'élagage 

de la TRF peut en effet accélérer le processus de calcul jusqu'à 30% lorsque la taille de la 

TRF et le modèle des entrées /sorties non utilisées sont connus à l'avance. 

197 



Paper X: M. Jaber and D. Massicotte, "Lowest Complexity Input/output Pruning FFT", to 
be submitted to a Journal after the end of the confidentiality. 
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Lowest Complexity Input/Output Pruning FFT 

Marwan A. Jaber and Daniel Massicotte, Senior Member, IEEE 

Abstract - FFTs algorithms are used in digital signal processing which break down 

complex signais into elementary components and where the transform length N, is 

decomposed into arbitrary factors (N = rI, r), ... , rÜ. Input Pruning FFT's are 

efficient Fast Fourier Transform (FFT), where the efficiency can be increased by 

removing operations on input values which are zero. Furthermore, Output pruning 

FFT is a method used to compute a dis crete Fourier transform (DFT) where only a 

subset of the outputs are needed. In this paper, we will propose a generalized radix-r 

input-output pruning FFT, which will compute efficiently the selected spectrum's bin 

of a sequence of size N that contains M consecutive non-zero input points from which 

only Lo outputs are desired. 

Index terms-Discrete Fourier Transform, Input/output prunmg FFT, cognitive radio, 

VLIWDSP. 

1. Introduction 
, . 

Input pruning FFTs are commonly used in the padded FFT pro cess which is known 

as the up-sampling process in digital signal processing that consists of extending a signal 

(or spectrum) with zeros. By doing so, this can increase the time sampling which is known 

as the time domain interpolation that people commonly use and which is translated into 

forcing the FFT algorithm to sample the spectrum at smaller frequency intervals. 

Theoretical aspects of the Pruning FFT (PFFT) have been thoroughly elaborated in past 

three decades and which was mainly concentrated on sequences that have Li consecutive 

non-zero input points at the beginning. In many applications such as the OF DM based 
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Cognitive Radio will be mainly based on FFT pruning which applies efficiently zeros to the 

inputs with arbitrary distributions and this will be the target of our future work. In many 

applications the percentage of required input/output bins is very small and that is why our 

performance study will be targeting these applications. For instance, in the 3GPP LTE 

(Long Term Evolution) where the OFMDA's symbol size is 1024 in which 12 users equally 

share the available 600 sub-carriers, as a result only 50 of the 1024 FFT output bins 

(4.88%) are required for each mobile terminal [1]. These partial output/input cases are 

extraordinarily important for the future wireless systems and due to the fact that the PFFT 

can potentially achieve a significant speedup which is made it as a target by many 

applications such as: OFDMA (Orthogonal Frequency Division Multiplexing Access) 

cognitive radio [2] , VLIW DSP for mobile Application [3] , in multi-channel OFDM system 

[4] - [5] , the latest MIMO-OFDM (Multiple Input Multiple Output - Orthogonal Frequency 

Division Multiplexing) systems and a lot of none cited applications. The paper is organized 

as follows; Section 2 will elaborate the proposed method of input Pruning FFT while 

Section 3 provides a detailed description of the proposed methods for input/output pruning 

FFT. Section 4 provides a performance evaluation while Section 5 reports the conclusions. 

2. The Proposed Input Pruning FFT 

The basis of the radix-2 FFT is that a DFT can be divided into two smaller DFTs, 

each of which is divided into two smaller DFTs, and so on, resulting in a combination of 

two points DFTs [6]. Several methods are used repeatedly to split the DFTs into smaller 

(two or four-point) core calculations. The advantage of appropriately breaking the DFT in 

terms of its partial DFTs is that the number of multiplications and the number of stages 

may be controlled. The number of stages often corresponds to the amount of global 
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communication and/or memory accesses in implementation, and thus, reduction in the 

number of stages is beneficial. The research of the PFFT can be traced back to 1971 where 

the theoretical aspects of the PFFT have been thoroughly studied in the last three decades. 

The most important drawback is in the data-flow control which was the obstacle for 

efficient implementations on parallel architectures. In this paper we will derive a recursive 

general radix-r pruned FFT that is suitable for the input pruned FFTs where the proposed 

prunmg FFT algorithm has fewer complex multiplications than the most recent other 

pruning FFT algorithms. The proposed algorithm shows substantial gam m the 

computational load and a significant speed up in the pruning FFT algorithm due to the data 

transfers and address computations [7] and [8]. The conceptual key to the use of the 

modified radix-r FFT butterfly is the formulation of the radix-r as composed engines with 

identical structures and a systematic me ans of accessing the corresponding multiplier 

coefficients [9] and [10]. This enables the design of an engine with the lowest rate of 

complex multipliers and adders, which utilizes r or r - 1 complex multipliers in parallel to 

implement each of the butterfly computations. There is a simple mapping from the three 

indices (FFT stage, butterfly, and element) to the addresses of the multiplier coefficients 

needed. 

The DFT computation expressed as: 

.2"* -J -
where wk 

- e N N -

N-I 

X(k) = L: x(n)w~k for k = 0,1,. ",N -1, 
n:Q 

(1) 

Let us consider that the number of consecutive input elements that can be different 

of zero is Li S M = N/Dip, equation (1) could be factorized into: 
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where we have adopted 

~ = 0,1,.··, M -1 

n2 = 0,1, . .. , D;p -1 

k = k) +D;pk2 

Is = 0,1,. .. , D;p -1. 

k2 = 0,1,. ··,M-1 

(2) 

(3) 

The indices n2 will detennine the position of the nonzero consecutive inputs into the 

sequence where we have applied efficiently zeros to the inputs with arbitrary distributions. 

Since we will be only interested in this article on sequences that have Li consecutive non-

zero input points at the beginning therefore, n2 will be set to zero and as a result, equation 

(3) could be rewritten as: 

(4) 

The computational complexity of equation (4) could be perfonned in two ways 

where this subsection will deeply elaborate the comparison between these proposed 

methods. 

The first method is known as the direct way where equation (3) can be expressed in: 

(5) 

Where Yn is illustrated as: 

nk1 
Y(n) = x(n)wN • (6) 

The computational complexity of equation (4) would be: 

(7) 

where {cFFT is the complexity of the FFT algorithm of size (M) and {cm is the complexity of 

the complex multiplier. 
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Logically, the optimal solution of equation (5) is obtained by optimizing the 

complexity of the FFT algorithm where through the literature researchers were oriented in 

the optimization of the FFT algorithm. In this paper we are going to show another method 

of optimizing equation (5) which could be achieved by incorporating the twiddle factors 

W~kl and the adder tree matrices into a single stage of calculation. Therefore, since we are 

targeting industrial applications this comparison will be devoted to the radix-2 algorithm in 

which the split radix algorithm has been excluded due to its L shaped butterfly that made it 

hard in hardware implementation. 

The complexity of the Cooley-Tukey algorithm in term of complex multiplication 

IS: 

(8) 

where SM = log2 M . 

On the other hand, each radix-2 butterfly will reqmre 2 complex 

additions/subtractions; as a result the total number of complex of additions/subtractions in 

tcals DIT process will require: 

tcals-cooley-Iukey = ( ~}Og2 M • (9) 

Knowing that each complex multiplication will require 6 arithmetic operations and 

each additionlsubtraction will require 2 arithmetic operations therefore, the total number to 

ofthe arithmetic operations in the DIT Cooley-Tukey algorithm will be estimated as: 

to-cooley-Iukey =6( ~)SM +2(~)(SM )=4MSM =4Mlog2M, (10) 

as a result the total amount required to compute the input pruning FFT is [13]: 

tC-inpul-PuninLMedina = DiPM( 4MSM + M + 6) = N( 4M log2 M -3M +6), (11) 

Our proposed method is based on the same reasoning of the radix-r DFT 

factorization introduced in [9] and [10]; equation (5) could be re-written as: 
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~-I ~-I 

X - ~ rnk, mkz ~ (m+(r-I))k, (rn+(r-I))kz 
(k k) - L. X( )WN WM + ... + L. X( ( _I))WN WM • 

l ' 2 n=O m n=O ml + r 
(12) 

In the summations, the variables r, kl and k2 are independents of n2. We factorize 

W~2 in (12) and considering that w,;,/z = w~Îr and rewrite (12) as follow: 

(13) 

To subdivide the axis k2 in Eq. (13) in 2 new axis v and 1, we pose k
2 

= v+lV with 

v = 0,1, .... , V -1 and 1 = 0,1, .... , r -1 where V=M Ir. Therefore, X( ) is replaced by 
k,+D;iz 

using new indices v and 1 with k
1 
= 0,1,.· " D. -1. As a result we can rewrite (13) in r 

lp 

equations as shown in Eq. (14), Eq. (15) and Eq. (16). 

~-I 
r 

+ (r-I)v (r-I)k, 'Ç' nv nk, 
... WM W N L.J x(m+(r_I))wM /rwN 

n=O -

~-I 
(r-I) (v+(r-I )V) (r -I)k, ~ n(v+(r-I )V) nk, 

"'+wM WN L.J x(m+(r-I))wM /r W N (14) 
n=O -
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Considering thatW~V = (W~ r = la = 1 and V=Mlr, therefore Eq. (14) could be 

expressed as follow 

(15) 

~-I 
( 1)2M r 
r- -; (r-I)v (r-I)kl ~ nv nk1 

"'+wM wM w N ~ x(m+(r_I))wM 1rwN 
n:O -

X(v) W
O 
N 

0 
w N 

0 
w N 

X(v+V) W
O 

W
Nlr (r-I)(N l r) 

X - N N w N 

(kl'v) -

X W
O (r-I)(N l r) (r_I)2(N lr) 

( v+(r-I)V) N w N w N 

~-I 

(16) 
0 

w N 0 o 

x 
0 D,pv k1 

X 
w N w N 

0 

We recognize the first matrix, the well-known adder tree matrix Tr and the second 

matrix will be known as the IP JMFFT (Input Pruning JMFFT) twiddle factor matrix W N ' 

respectively. Equation (16) can be expressed in a compact form as: 

X(k1 +D,p(v+/V)) =X(kp k2) =TMWNC01(Ix(rn+I)W~Vw~kl I=O,l, . . . ,r -lJ, 
n=O r 

(17) 
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for k1 = 0,1,. .. ,D;p -1 and v = 0,1, .. , V -1 with 

W = diag (WDiPIV W 1kl Il = 0 1 ... r -1) 
N N N '" 

and 
WO 

M 

WO 
M 

TM = 
WO 

M 

WO 
M 

W
Mlr 
M 

W
2Mlr 
M 

(r-l)M Ir 
WM 

WO 
M 

W
2Mlr 
M 

W
4Mlr 
M 

2(r-l)M Ir 
WM 

WO 
M 

(r-l)M Ir 
W M 

2(r-l)M Ir 
W M 

(18) 

(19) 

(20) 

In DSP Layman language, the factorization of an FFT can be interpreted as 

dataflow which depicts the arithmetic operations and their dependencies. When equation 

(16) is read from left to right we will obtain the decimation in frequency algorithm, 

meanwhile if the equation is read from right to left we will obtain the decimation in time 

algorithm. We note that the DIF algorithm requires one shuffling stage in order to obtain an 

ordered output data. 

In this section we will be limited to the DIT IPJMFFT where the DIF IPJMFFT 

could be easily derived. We can write the read address generator (RAG), write address 

generator (WAG) and coefficient address generator (CAG) for the DIT process, 

respectively [Il] and [12] 

WAG=IV+v, (21) 

and 
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(22) 

with a slight modification in the DIT Coefficient address generator the DIT IPJMFFT 

could be obtained as : 

(23) 

where [X]N represents the operation x modulo N, Lx J represents the integer part operator 

ofx, the indices are v=O,l, ... ,V-l , and s=O,l,,,,,SM where r is the radix-r, V is the 

number of words ( V = M / r), and SM is the number of stages ( SM = logr M -1). By the 

using the JFFT introduced in [9] , the JMPFFT would be: 

(24) 

The computational complexity of the second proposed algorithm is similar to the 

complexity of the DIT Cooley-Tukey algorithm therefore; the complexity of equation (17) 

in term of arithmetic operation for the IPJMFFT is expressed as follow: 

IC-input-lPJMFFT = DiPM( 4MSM) = N( 4MSM) = N( 4M log2 M). (25) 

For real value arithmetic operations, the complexity ratio between our proposed 

method, IP-JMFFT, and cited input pruning FFT is [13]: 

(4MSM) (4Mlog2M) 
GIPJMFFTlinput-PuninL Medina = (4MS

M 
+ 8) = (4M log2 M + 8) , (26) 

This ratio is sketched in Figure 1 for N=8192 and the input pruning, M , changes from 2 to 

N. We observe a complexity reduction for M<26
. 
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Figure 1 Comparison of real operations reduction between our proposed method and [13] . 

3. The Proposed Input/Output Pruned JMFFT Algorithm 

Output pruning FFT is a method used to compute a discrete Fourier transform 

(DFT) where only a subset of the outputs are needed or if you have a transform of size M 

which has been zero padded to a size N and where only La :s P consecutive outputs of the 

sized N transform are desired. Suppose that P is the required consecutive outputs which are 

computed from the Li non-zero consecutive inputs and where it is assumed that Loi Dir 

P=M! Dop therefore, equation (5) could be expressed as according to [13]: 

(27) 

which could be simplified as: 

(28) 

where 

(29) 
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The direct implementation of equation (29) would have a complexity t C-lolal 

expressed as [13]: 

t C- IOlal = t C-inpul-slage + t C- iniermediole-slage + t c- oUlpul-slage ' (30) 

The complexity of the input stage In term of complex multiplication t cm IS 

approximated by [13]: 

t C-inpul - sloge = (Li -1) (DiP -1 )tcm, (31) 

The complexity of the input stage in term of arithmetic operation t o in which the 

DIT Cooley-Tukey algorithm is implemented is [13]: 

N 
t O-inl ermediole-sloge = DiPD OP (4PSp + P + 6) = p( 4PSp + P + 6), (32) 

and finally the complexity of the output stage is as follow: 

(33) 

where Sp = log2 P -1 and tais is the complexity of the complex additionlsubtraction. 

Similarly to the same concept introduced in the input pruning and based on the 

radix r factorization introduced in [9] and [10] , we can rewrite equation (5) as: 

(34) 

where we have assumed: 
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Byadopting 

we can rewrite equation (34) as: 

n, = ~ + D OP n4 

n3 = 0, l, ... , D op -1. 

n4 =O,I,.··,P-I 

k2 = k3 + Pk4 

k3 = O,I,··· ,P-I , 

k4 = 0,1,. .. , D op -1 

(35) 

(36) 

(37) 

Equation (37) could be broken into two equations where we have assumed that 

(38) 

and as a result equation (37) would be: 

(39) 

where 

(40) 

With the same reasoning as above by incorporating the twiddle factors w~Opn2kl and 

the adder tree matrices into a single stage of calculation and by incorporating W~kl and 

W~ipk2 into a single stage of calculation, equation (39) could be expressed as: 

X( k k) = TrWNX ni. 1. '3 

(41) 
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for v = O,I, .. ,V -1 and with 

1 = 0 1 ... r -IJT '" , (42) 

W = d' ( D;plv ~lkJ Dop Il = 0 1 ... -1) 
N lag wN wN '" r • (43) 

Finally, the input/output pruning FFT algorithrn which computes any of the P 

consecutive outputs of the FFT spectrum could be expressed as [7]-[10]: 

(44) 

where the WA G is expressed in equation (21) and the RAD is expressed in equation (22) 

and the DIT Coefficient address generator of the DIT JMIOPFFT (Jaber Massicotte Input 

Output Pruning FFT) could be obtained as: 

CAG =[nD (n (IV +l-v J r(Sp-S) J+(r(SP-S)k )JI op 'p (Sp-s) l' 
r N 

(45) 

where [X]N represents the operation x modulo N, Lx J represents the integer part operator 

of x, the indices are v = 0,1, . . . , V -1 , and s = 0,1, . .. , S p where r is the radix-r, V is the 

number of words ( V = PI r ), and Sp is the number of stages (S p = logr P -1 ). 

4. Performance Evaluation 

The complexity of the proposed algorithrn te is computed as follow: 
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therefore; the complexity of the proposed IOPJMFFT which is the same as the DIT Cooley-

Tukey algorithm would be exactly: 

' c-limput IOutput-JMIOPFFT = 6N + ; (4PSp + P + 6)+ 2(; + 2N ) 

N 
=10N +-(4PSp +P+8) 

P 
=N(4PSI'+11P+8) 

(47) 

The complexity comparison between our proposed method and the one cited in 

reference [13] that uses the radix-2 DIT Cooley-Tukey is illustrated in Figure 2. Figure 2 

reveals that both methods have the same complexity for Li = 8192 and that our method for 

Li = 307 is approximately equivalent to the cited method for Li = 33 for the number of 

outputs is greater than 28
. The operation's reduction ratio between the proposed method 

and the cited method is presented in Figure 3 where our proposed method manifested a gain 

that ranges between 1.4 and 1.2 for Li = 307 and L;>28
• 

According to equation (33), it seems that the output stage would be costly in 

implementation for Lo > Dip therefore, the author in [13] has combined the direct method 

and the 2 BF filtering method proposed by Sorensen et al [14] for 1 < Dap ~ 4 in order to 

achieve a gain estimated at 30% for large N that should be weighed against the loss in 

precision as shown in Figures 4-a and 4-b in which the SQNR was computed as: 

SQNR = 10/aglo ( IIXMatlabl12 J 
IIX Matlab - X Method 112 

(48) 

where IIXI1 2 is the norm function of X , X Matlab is the results obtained with fft.m Matlab® 

function meanwhile X is the results obtained by either our proposed method, Method 
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IOPJMFFT, or the cited method [13] where an results were obtained in floating point using 

Matlab®. 

a) 

b) 
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Figure 2: Number of operations required by the one cited in reference [13] in direct 
implementation and our proposed method for N=8192 and Li = 8192, 307 and 33 for 
linear (a) scale and logarithmic scale (b). 
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Figure 3: Operation 's reduction ratio between the proposed and the cited method in a) 
and b) is the zoomed version of figure 4a. 
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filtering, 
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Figure 5 represents the complexity comparison between our proposed method 

and the cited one for N = 1024 and Li = Lo by using the 2BF filter method meanwhile 

the operation's reduction ratio is revealed in Figure 6. 
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Figure 5: Comparison between the proposed and the cited pruned FFTs for N =1024 
and Li = La by using the 2BF filter method. 
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Figure 6: Operation 's reduction ratio between the proposed and the cited method by 
using 2 BF method when Li = Lo and N = 1024. 
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5. Conclusion 

Finally, this paper has presented an efficient input/output pruning FFT algorithm 

that reduces the complexity and the computational effort in comparison to the most recent 

proposed methods. The work put forth by this article on improvement of the input/output 

pruning FFT is a key contribution to advances in wireless communications. Reduction in 

computational time offered by the proposed method finds applications in the most recent 

wireless industry such as OFDMA and L TE technologies. 
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In this Thesis, we gave a solution for the FFT's parallel multiprocessing problem, 

where two mathematical models have revealed the global philosophy and the detailed 

strategy, in which the method was elaborated upon in a chronological order. 

For the first Model, this thesis has developed and presented a radix-r fast Fourier 

butterfly that reduces the computational effort (as measured by the number of 

multiplications) by a factor of r in comparison to the most proposed radix-r FFT butterflies. 

The conceptual key to the modified radix-r FFT butterfly is the formulation of the radix-r 

as composed engines with identical structures and a systematic means of accessing the 

corresponding multiplier coefficients. This enables the design of an engine with the lowest 

rate of complex multipliers and adders which utilizes r or r-1 complex multipliers in 

parallel to implement each of the butterfly computations. There is a simple mapping from 

the three indices (FFT stage, butterfly, and element) to the addresses of the multiplier 

coefficients needed. For a single processor environment, this type of PE with r parallel 

multipliers would result in decrease in time delay for the complete FFT by a factor of OCr). 

Furthermore, this thesis has proven that the higher radix FFT algorithms are 

advantageous for the hardware implementation, due to the reduced quantity of complex 

multiplications and memory access rate requirements. In this thesis, we showed that the 

implementation of a radix-r PE for the FFT is feasible by maintaining one complex 

multiplier in its critical path-compared to radix-r butterfly as it was elaborated in paper 1 

presented in chapter 2. 

High performance parallel computing is essential for solving very large and complex 

scientific and engineering problems within a reasonable amount of computation time. 

These two mains tasks must be carried out in order to deliver a proper parallel computing 
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solution to a specific problem, and they involve choosing the appropriate parallel VLSI 

implementation. In this thesis we proposed a solution to the FFT's parallel multiprocessing 

problem, wherein the mathematical model described the global philosophy and the detailed 

strategy, and its resolution method was presented in chronological order. We have clearly 

shown that our proposed butterfly processing element structure in is an effective solution 

for the pipelined FFT implementation by means of higher radix butterflies. This objective 

was achieved by reducing the complexity of the critical path contrarily the conventional 

radix-r method. On the other hand, we clearly showed that the number of S stages in a 

pipelined architecture could be reduced through implementing our parallel method that 

boosts the FFT' s execution time as it was demonstrated in paper II of chapter 2. 

In addition to that this thesis has presented has presented an efficient way of 

implementing the FFT process by mean of the one iteration radix-r kernel where a seriai 

parallel mode l, and a pure parallel model have been represented from which we have 

derived the JM-filter that is used to detect specific frequencies in monitored signais. The 

key contribution to our proposed JM-filter elaborated in chapter 4 (Papers V, VI, and VII) 

is that we have reduced the multiplication complexity by a factor of r compared to 

Goertzel's filter which is mostly used to detect specific frequencies in monitored signais 

and DNA analysis. 

As we have se en that the FFT algorithm is especially memory access and storage 

intensive where the most studious task in this process is the data flow control. As we know 

that the butterfly, main function is to multiply the input data with its corresponding 

coefficient multipliers in order to compute the transform. As a result, a tool that could 

control efficiently the data flow would increase the overall system's performance. The FFT 
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Address Generator presented in this thesis, has detailed an embodied address generator for 

use with a variety of FFT algorithms in which the address generator is typically used to 

compute the addresses (locations in memory) where input data, output data and twiddle 

coefficients will be stored and retrieved from memory and based on this scheme, the design 

of the address generators is greatly simplified. In addition to the simplicity of structure, the 

speed of the address generators is by a considerable amount increased as it was proven in 

paper IV of chapter 3. Therefore, the present thesis has presented a novel approach for the 

FFT data reordering algorithms that boosted the FFT execution compared to recent bit 

reversing techniques where the implementation of this method would be recommended on 

low power DSP processors and this is achieved by reducing the memory usage by NI2 

which is used as storage table of NI2 index numbers. By doing so the size and the power 

consumption of such a processor will be reduced which are desirable for portable devices? 

One of the most relevant contributions of this thesis is the development of an efficient 

ordered input ordered output radix-23 algorithm that reduces the complexity and the 

computational effort in comparison to the most recent proposed methods. Furthermore, the 

proposed method had shown an execution time reduction in term of c10ck cycles compared 

to the cited methods and by predicting the 8th root of unity in which one memory access to 

the coefficient multiplier is needed per 8 inputs and the memory size needed to stock the 

coefficient multiplier is reduced to NI8 as it was proven in papers VIII and IX of chapter 5. 

Input pruning FFTs are commonly used in the padded FFT process which is known as 

the up-sampling process in digital signal processing, which consists of extending a signal 

(or spectrum) with zeros. By doing so, this can increase the time sampling which is 

translated into forcing the FFT algorithm to sample the spectrum at sm aller frequency 
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intervals. Output pruning FFT is a method used to compute a discrete Fourier transform 

where only a subset of the outputs is needed. Our second significant contribution on this 

level is by developing an input/output pruning FFI that offers a reduction in the 

computationalload compared to the most-recent recent method as it was revealed in paper 

X of chapter 6. 

Our future work will be devoted to compare the JM-filter to the input/output pruning 

FFI and to integrate the JMFFT's 23 kernel core into the input/output pruning FFI which 

is mostly used in OF DM wireless communication system. In many applications such as the 

OFDM based Cognitive Radio will be principally relying on FFI pruning, which applies 

efficiently zeros to the Li consecutive non-zero inputs with arbitrary distributions, and this 

will be the target of our future work due to the fact that the existing algorithms are mainly 

concentrated on sequences that have Li consecutive non-zero input points at the beginning. 

Future work will also include the implementation of our proposed JMFFI on FPGA and 

ASIC by using our FFI Address Generator. 
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