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Abstract 

In this thesis, a novel framework for paraUel processing is introduced. The main aim is to 

consider the modem processors architecture and to reduce the communication time among 

the processors of the paraUel environment. 

Several paraUel algorithms have been developed since more than four decades; aU of it 

takes the same mode of data decomposing and parallel processing. These algorithms suffer 

from the same drawbacks at different levels, which could be summarized that these 

algorithms consume too much time in communication among processors because of high 

data dependencies, on the other hand, communication time increases gradually as number 

of processors increases, also, as number of blocks of the decomposed data increases; 

sometime, communication time exceeds computation time in case of huge data to be 

parallel processed, which is the case of parallel matrix multiplication. On the other hand, all 

previous algorithms do not utilize the advances in the modem processors architecture. 

Matrices multiplication has been used as benchmark problem for aU parallel algorithms 

since it is one of the most fundamental numerical problem in science and engineering; 

starting by daily database transactions, meteorological forecasts, oceanography, 

astrophysics, fluid mechanics, nuclear engineering, chernical engineering, robotics and 

artificial intelligence, detection of petroleum and mineraIs, geological detection, medical 

research and the military, communication and telecommunication, analyzing DNA 

material, Simulating earthquakes, data mining and image processing. 



In this thesis, new parallel matrix multiplication algorithm has been developed under the 

novel framework which implies generating independent tasks among processors, to reduce 

the communication time among processors to zero and to utilize the modem processors 

architecture in term of the availability of the cache mem. The new algorithm utilized 97% 

of processing power in place, against maximum of 25% of processing power for previous 

algorithms. 

On the hand, new data decomposition technique has been developed for the problem where 

generating independent tasks is impossible, like solving Laplace equation, to reduce the 

communication cost. The new decomposition technique utilized 55% of processing power 

in place, against maximum of 30% of processing power for 2 Dimensions decomposition 

technique. 
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Chapter 1 - Introduction 

The need for vast computing power in so many fields like forecasting the weather, 

analyzing DNA material, simulating earthquakes etc. has led for looking for paraUel and 

distributed computing, in the light . of the limited speed of the classic computers and 

processing power due to the physical constraints preventing frequency scaling. On the other 

hand, the physicallimits been achieved at the hardware level in processors industry, which 

leads for opening the do ors to design paraUel processors in the mid of 1980's by introducing 

the paraUel processing and networks of computers [1-8]. By the 1990's, the Single 

Instruction Multiple Data (SIMD) technology show up, and later multi-core platforms in 

the mainstream industry such as multi-core general purpose architectures (CPUs) and 

Graphics Processing Units (GPUs) where several cores working in paraUel inside the 

processor chip [4, 9, 10- 12]. New processors show vast computing power [4, 6, 13-15]. 

Multi-core i7 CPU is the most updated paraUel CPU produced by Intel at PC level; While 

latest NVidia Graphics Processing Unit has 1536 core at its VGA card Tesla KI0, which 

has two GPUs, which implies 1536 x 2 = 3,072 processors running in paraUel [16], which 

is needed for applications of seismic, image, signal processing, video analytics. This 

implies that the future software development must support multi-core processors, which is 

paraUel processing. 
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Parallel processing has opened an era to have super computing power at the cost of several 

PCS. 80, connecting several PCs into a grid could be utilized as one single supercomputer 

by the help of certain algorithm to manage the distributing of the load among the active 

connected PCS. Well, parallel processing did not stop here, but parallel processing extends 

to inc1ude computers and super computers connected over internet, where the load could be 

distributed over connected super computers to have enormous parallei processing power. 

AU paraUel algorithms until the moment depended in decomposing the data of a problem 

into blocks and perform the functionality on it, in parallel mode taking in consideration the 

data and the functional dependency among the data. 

Data Decomposition in general having two modes, one dimension (ID), where the data 

will be set of strips, where each processor will process one single strip at a time; and the 

other mode is two dimensions decomposing (2D), where the data will be set ofblocks, and 

each processor will process single block at a time. 

In addition, existing parallel algorithms did not address and utilize the parallei capabilities 

of the new processors, like multicore and other enhancement like cache memory and wide 

address bus of 64 bit. AlI paraUel algorithms have kept looking at the processor on the old 

architecture design. For example, they are considering the grain applications, where the 

application will be divided into the most simple functions, so each processor will process 

these simple functions and getting the next afterword; while aU these algorithms are not 

looking at high capabilities of the new processors, where it can process more than a 

function at a time, dual core processors processes two functions a time, while Intel Xeon 

Phi processor has 61 cores, which implies it processes 61 functions at a time. Existing 

parallei algorithms sends one single function to each processor regardless number of cores 
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it has. In addition, the new processors architecture has different levels of cache memory 

which allows for more data upload capacity to reduce the access time of RAM, so cache 

memory leads to faster processing for complex functions which need huge chunk of data; 

Existing parallel algorithms do not consider the availability of cache memory and keep 

send simple math functions to each processor, which is a bad exploitation of modem 

architecture processors. 

In this thesis, new technique for parallel processmg will be introduced, which will 

overcome the drawbacks of the previous algorithms. The technique is called ITPMMA 

algorithm, it depends on dividing the problem into set of tasks, which implies the data will 

not be decomposed in ITPMMA algorithm, and instead the problem will be decomposed 

into independent sets of operations, where each processor will execute independent 

operations and will upload what data it needs. In addition, ITPMMA algorithm will utilize 

the capabilities of the parallel and multi-core processors, which is absent in the existing 

parallel algorithms. 

1.1. Motivation 

Numerical problems consume a lot of processing resources which leads to utilize the 

parallel processing architecture. Since 1969, parallel algorithms start showing up, [17-21]. 

Parallel Matrix Multiplication algorithms were one of the earliest parallel processing 

algorithms that appeared since then. So, since 1969 for homogenous clusters like Systolic 

algorithm [22], Cannon's algorithm [23], Fox and Otto's algorithm [24], PUMMA (parallel 

Univers al Matrix Multiplication) [25], SUMMA (Scalable Universal Matrix Multiplication) 

[26] and DIMMA (Distribution Independent Matrix Multiplication) [27]. Ali these 

algorithms had been designed for distributed memory platforms, and most of them use the 
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popular ScaLAP ACK library [28, 29], which inc1udes a highly-tuned, very efficient routine 

targeted to two-dimensional ptocessor grids. 

PUMMA algorithm maximizes the reuse of the data that have been hold in the upper levels 

of the memory hierarchy (registers, cache, and lor local memory) [16]. PUMMA, which 

had been developed in 1994, did not address the time consumption by exchanging 

intermediate results between processors. 

SUMMA algorithm, been developed in 1997. It has introduced the pipelining in PUMMA 

to maximize reuse of data. In addition, SUMMA reformulated the blocking method in 

terms of matrix-matrix multiplications instead of matrix-vector multiplications, which 

reduced the communication overhead [26]. In general, SUMMA did not address the time 

consumption of the communication between processors. In addition, SUMMA did not 

address the cache memory of the modem processors. 

On the same year, 1997, Choi [27] has developed DIMMA algorithm. "The algorithm 

introduced two new ideas: modified pipelined communication scheme to overlap 

computation and communication effectively; and to exploit the least common multiple 

(LCM) block concept to obtain the maximum performance of the sequential BLAS - Basic 

Linear Algebra Subprograms - routine in each processor" [27]. But still, DIMMA did not, 

address the huge time consumed on communication between processors to exchange the 

intermediate results. 

In 2005, NGUYEN et al. [29] combined the use of Fast Multipole Method (FMM) 

algorithms and the parallel matrix multiplication algorithms, which gave remarkable 

results. Nevertheless, the algorithm still suffers data dependency and high communication 
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cost among the processors. Moreover, the algorithm does not address heterogeneous 

environments. 

In 2006, Pedram et al. [30], have developed high-performance parallel hardware engine for 

matrix power, matrix multiplication, and matrix inversion, based on distributed memory. 

They have used Block-Striped Decomposition (BSD) algorithm directly to implement the 

algorithm. There was obvious drawback related to processors' speed up efficiency. The 

algorithm reduces memory bandwidth by taking advantage of reuse data, which results in 

an increase in data dependencies. 

On 2008 James Demmel developed a new algorithm to minimize the gap between 

computation and communication speed, which continues to widen [31]. The performance of 

sparse iterative solvers was the aim of this algorithm, where it produced speedup of over 

three times of seriaI algorithm. In fact, the increasing gap between computation and 

communication speed, is one of the main points to be addressed by reducing the 

communication between processors as much as possible. The algorithm still suffers data 

dependency and communication; especially for large matrices sizes. 

In 2008 Cai and Wei [32] developed new matrix mapping scheme to multiply two vectors, 

a vector and a matrix, and two matrices which can only be applied to optical transpose 

interconnection system (OTIS-Mesh), not to general OTIS architecture, to reduce 

communication time. They have achieved sorne improvements compared to Cannon 

algorithm, but it was expensive in term of hardware cost. In addition, the algorithm did not 

add any new value in term of algorithm design. 
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In 2009, Sotiropoulos and Papaefstathiou implement BSD algorithm using FPGA device 

[33]. There was no achievement in terms of reducing data dependencies and 

communication co st. 

In 2012, Nathalie Revol and Philippe Théveny developed new algorithm, called "Parallel 

Implementation of Interval Matrix Multiplication" to address the implementation of the 

product of two dense matrices on multicore architectures [34]. The algorithm produced 

accurate results but it fails to utilize the new features of the multicore architectures 

processors, as it has targeted in advance. 

In 2013 Jian-Hua Zheng [35] proposed new technique based in data reuse. It suffers from a 

lot of data dependency and high communication cost. 

In 2014, another decomposition technique called Square-Corner instead of Block Rectangle 

partition shapes to reduce the communication time has been proposed in [36] . The research 

was limited to only three heterogeneous processors. For sorne cases, they have reported less 

communication time and therefore showed a performance improvement. 

AIso, in 2014 Khalid Hasanov [37] introduced hierarchy communication scheme to reduce 

the communication co st to SUMMA algorithm. Although achieved sorne better 

performance, pre ITPMMA algorithm drawbacks like data dependency and communication 

cost are still there. Moreover, this algorithm is for homogenous environment. 

Other algorithms have been designed later on to enhance the . process of matrix 

multiplication and to reduce the processing time. In 2014, Tania Malik et al. [38] proposed 

new network topology to decrease communication time among the processors. The 

algorithm suffers from more data dependencies between the processors. The major 
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drawback of aIl prevlOus parallel algorithms developed until now need homogenous 

processor architecture, and never addressed heterogeneous processors, except NGUYEN et 

al. [29], which conclude very negative results, so, by executing these algorithms in a grid of 

several PCs - heterogeneous environment - would have a lot of incompatible latency 

factors. 

Having homogenous environment, aIl parallei algorithms, either for parallel matrix 

multiplication as we will see in this thesis, or for any numerical problem else, all existing 

algorithms suffer from classic drawbacks, like: 

1. The optimal size of the block ofthe decomposed matrices. 

2. The communication time of the exchanged messages among the processors, which 

is proportional to number of processors and number of the blocks of the decomposed 

matrices. 

3. Data and functional dependency between the processors. 

4. Poor load balance especially with non-square matrices. 

1.2. Originality 

In this thesis, a new novel framework for parallel processing has been developed to add the 

following new values: 

1. Reducing the communication time among the parallel processors to ZERO. 

2. No processor becomes idle or in ho Id, waiting other processors output until the 

parallei operations over. 

3. Eliminating the need for a certain topology ofprocessors. 
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1.3. Objectives 

Thesis objectives to develop a novel framework for parallel processing which implies 

reconstruct the parallel problem into independent tasks to: 

1. Reduce the idle time of the processors to increase the efficiency, and this to be 

achieved by: 

a. Proper load balance among the processors. 

b. Utilizing the modem processor architecture capabilities in term of multicore 

and cache memories of different levels. 

2. Reduce the communication time among the processors, by eliminating the data 

dependencies by reconstructing the parallel problem into set of independent tasks, to 

reduce the communication time among processors to zero. 

On the other hand, for numerical problems where reconstructing the parallel problem into 

independent tasks is not within hands, like solving Laplace equation in parallel, a new data 

decomposing technique is developed, to reduce the communication time among the 

processors, and reduce idle time of the processors, to increase the efficiency. 

1.4. Methodology 

To satisfy the objectives ofthis thesis, 1 am to follow the procedure below: 

1. Review literature of parallel matrix multiplication and data decomposition 

techniques. 

2. Study in details different parallel algorithms and data decomposition techniques to 

find out its drawbacks. 
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3. Develop common diagram to setup new framework for parallel processing to 

address the drawbacks of the previous algorithms. 

4. Develop new parallel matrix multiplication algorithm and new data decomposition 

technique within the new framework. 

5. Test the new framework on small environment of 4 and 16 processors. 

6. Test the new framework on the advanced supercomputer CLUMEQ. 

7. Compare the results of the performance of the new framework with benchmark 

algorithms like Cannon algorithm and Fox algorithm. 

1.5. Thesis Organization 

This thesis is organized into six chapters. Chapter 1 is an introduction for the thesis to show 

the motivation, originality, objectives of the research and the methodology. 

Chapter II, titled "Matrix Multiplication", 1 will discuss the common Parallel Matrix 

Multiplication Aigorithms in terms of performance, which incIudes speed up, time 

complexity, load balancing, data dependencies. 

Chapter III, titled "ITPMMA algorithm for Parallel Matrix Multiplication (STMMA)", 

presents the proposed algorithm followed by the results and comparisons with parallel 

matrix multiplication algorithms. 

Chapter IV, titled "Analysis and Results", presents the experimental results which showed 

that the ITPMMA algorithm achieved significant runtime performance on CLUMEQ 

supercomputer and also a considerable performance compared by other algorithms like 
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Cannon Algorithm and Fox Algorithm. In these experiments 1 have used up to 128 

processors in parallel, and about 40000 matrices size. 

Chapter V, titled "The clustered 1 Dimension decomposition technique" presents the new 

data decomposition technique, developing paralle1 solution for Laplace equation using 

Gauss-Seidel iterative method, and test the results and compare it with same of 1 dimension 

and 2 dimensions data decomposition techniques. 

Finally, Chapter VI presents the conclusion and explores the opportunities for the future 

that build upon the work presented in this dissertation. 
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Chapter 2 -Matrix Multiplication 

2.1.Introduction 

In this chapter 1 will address the matrix multiplication problem in seriaI and parallel mode. 

This problem will be used to describe the efficiency of the parallel algorithms; in fact, 

matrix multiplication has been used as benchmark problem for parallel processing 

algorithms for several reasons: 

1. It is easily scaled problem for a wide range of performance; its size grows like N3 for 

matrices of order N. 

2. It has two nested loops plus the outer loop, total of three loops; the most inner loop 

consists at least a single multiply and add operation. Where the loops can be 

parallelized or to achieve high performance. 

3. Computation independency, where the calculation of each element in the result matrix 

is independent of all the other elements. 

4. Data independence, where the number and type of operations to be carried out are 

independent of the data type of the multiplied matrices. 

5. Different data types like short and long integers and short and long floating-point 

precision can be used, which promises for different levels of tests. Aiso it allows for 

utilizing of the capabilities of the new processors, which has high cache memories, by 
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multiplying long type matrices, which needs high SlZe of cache memory for 

intermediate results. 

6. Number offloating point operations (flops) easily is calculated. 

7. Matrix multiplication is used as bench mark problem to test the performance of so 

many processors, like Intel, as shown in the figure 2-1, below. 
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LINPACK* MKl Il.0.5 

1 .36 

'. I ntel® Xeon® Proœsoor E5-2697 v2 (3or-t Cache, 2JO GHz) !. I nte!® Xeon® Proœssor E5-2687W v2 (2Srlll: Cache, 3.40 GHz) 

• Intel® Xeon® Proœsoor E5-2687W (20M Cache, 3.10 GHz, S.OO GTJs Intel® QPl) 

Figure 2-1 Matrix Multiplication problem as benchmark problem for Intel processor 
performance [39]. 

In this chapter, sorne important aspects of matrix multiplication will be addressed, together 

with the outstanding characteristics of the already developed parallelization algorithms, like 

cannon and fox algorithms. 
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2.2. Matrix Multiplication Definition 

It is defined between two matrices only if the number of columns of the first matrix is the same as 

the number of rows of the second matrix. If A is an i-by-k matrix and B is a k-by-j matrix, then 

their product AB is an i-by-j matrix, is denoted by Cij=Aik x Bkj, which be given by 

c·· = In A' k X Bk' U ~ J 
k=l 

Eq.21 

And it is calculated like 

So, 

Eq.2-3 

Which is different than BA, which is denoted by Dij= Bkj x Aik, given by 

= In Bk' xA ' k .} 1. 
k=l 

Eq.2-4 

So, 

Eq.2-5 

Which implies matrix multiplication is not commutative; that is, AB is not equal to BA. 

The complexity of matrix multiplication, if carried out naively, is O(N3), where N is the size of 
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product matrix C. So for the Matrix multiplication of 4x4 size, the complexity is O(~) = 

0(43)= 64 operations, or the timing of 64 operations. 

In 1969, Volker Strassen has developed Strassen's algorithm, has used mapping of bilinear 

combinations to reduce complexity to 0(n1081(7) (approximately 0(n2.807 .. ». The algorithm is 

limited to square matrix multiplication which is considered as a main drawback. 

ln 1990, another matrix multiplication algorithm developed by Don Coppersmith and S. Winograd. 

The algorithm has complexity of 0(n2.3755). [40] 

In 2010, Andrew Stothers gave an improvement to the algorithm, 0(n2.3736) [41]. In 2011, 

Virginia Williams combined a mathematical short-cut from Stothers' paper with her own 

insights and automated optimization on computers, improving the bound to 0(n2.3727) [42] . 

2.3. Seriai Matrix Multiplication Algorithm 

2.3.1. SeriaI Algorithm 

The seriaI algorithm for multiplying two matrices is taking the form: 

for (i = 0; i < n; i++) 
for (j = 0; i < n; j ++) 

c[i][j] = 0; 
for (k = 0; k < n; k++) 

c[i][j] += a[i] [k] * b[k] [j] 
end for 

end for 

end for 

with the complexity O(N3) = 0(43)= 64 operations, or the timing of 64 operations. 
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2.3.2. Strassen 's algorithm 

In 1969, Prof essor v. Strassen [36] developed new algorithm known by his name, 

Strassen's algorithm, where the complexity ofhis algorithm is 0(Nl097jl092) = 0(NL092 7) 

= 0(N1n7), which will be equal to 0(4L0927) = 14.84, which is less than 64, i.e. to multiply 

two 4x4 matrices using Strassen's algorithm, the algorithm needs the time of 14.84 

operations, rather than the time of 64 operations using the standard algorithm . 

To simplify Strassen's algorithm, 1 will implement it on the following matrices 

multiplications: 

So, we ron the below 7 quantities: 

Pl = (AI2 - A22) x (B21 + B22) 

P2 = (An + A22) x (Bn + B22) 

P3 = (AlI - A2I) x (BII + BI2) 

P4 = (AlI + A12) x B22 

Ps= AlI x (B12 - B22) 

P6 = A22 x (B21 - Bn) 

P7 = (A21 + A22) x BII 
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And produce the product matrix C, we run the below summations 

The main drawback of Strassen's algorithm is the size product matrix should be product of 

2, i.e. 21
, 22

, 23, 24
, 25, ... , so for matrices multiplication of size 5, where 22 < 5 < 23, we 

need to pad the matrices by zeros, till we have 8x8 matrices and multiply them. Recent 

studies study the arbitrary size of the multiplied matrices by Strassen algorithm in more 

details [43] but without getting better performance. So for Strassen's algorithm for matrices 

multiplication of size 3x 3, we have 7 multiplies and 18 adds. The complexity of the 

algorithm for matrices multiplication of size nXn can be computed as 7*T(n/2) + 18*(n/2)2 

= 0(NL092 7)= 0(8L0927)= 0(2310927)= 0(2l0927)3 = 73; while if we use standard matrices 

multiplication, the complexity is 0(53) = 53 = 125 which is less than 73= 343, which is 

2.744 times the complexity of Strassen's algorithm. And the difference become so huge 

when we have big matrix size, let us say a matrices multiplication ofsize 127x I27, and 127 

is not multiplicand of 2, the nearest multiple of 2 is 128, so, 128x128 matrices 

multiplication, we do have complexity of O(128L0927)= 0(2710927)= O(2l0927)7 = 77= 

823,543; while if we go for the standard matrices multiplication where the complexity is 

0(N3) = 0(1273
) = 2,048,383; which is 2.49 times the complexity of Strassen's algorithm, 

so Strassen's algorithm has positive effect. While ifwe consider matrices multiplication of 
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slze 70x70, agam, we need to pad it with zeros till we reach 128x 128 matrices 

multiplication, where the complexity of standard multiplication is 0(JV'3) = 0(703) = 

343,000, so, the complexity of Strassen's algorithm is 2.4 times the complexity of standard 

multiplication, so Strassen's algorithm has negative effect. 

It is clear that the evaluations of intermediate values Pl, P2, P3, P4, Ps, P6, and P7 are 

independent and hence, can be computed in parallel. 

Another drawback of Strassen's algorithm is the communication between the processors 

[44, 45, and 46]. Sorne other researches [47] focus on optimizing the communication 

between processors at the execution of Strassen's algorithm, where they could obtain sorne 

success at different ranges according to the size of the matrices and number of processors; 

but they could not eliminate the communication among the processors to zero. 

On the other hand, many researches have tried to extract parallelism from Strassen's 

algorithm, and standard matrices multiplication algorithm [48], and many researches have 

tried to extract the algorithm on multi-core CPUs [49, 50, and 51] to exploit more 

performance. In 2007, Paolo D'Alberto, Alexandru Nicolau [52] have tried to exploit 

Strassen's full potential across different new processors' architectures, and they could 

achieve sorne success for sorne cases, but still, they have to work with homogenous 

processors. While in 2009, Paolo D'Alberto, Alexandru Nicolau have developed adaptive 

recursive Strassen-Winograd's matrix multiplication (MM) that uses automatically tuned 

linear algebra software [53], to achieve up to 22% execution-time reduction for a single 

core system and up to 19% for a two dual-core processor system. 
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2.4. Parallel Matrix Multiplication Algorithms 

Parallel algorithms of matrices multiplication are parallelization of the standard matrices 

multiplication method. 

2.4.1. Systolic Algorithm 

One of the old parallel algorithms returns to 1970, but still active algorithm till moments 

[54]. It is limited to square matrix multiplication only. In this algorithm, matrices A, B are 

decomposed into submatrices of size .JP X .JP each, where P is number of processors. The 

basic idea of this algorithm is the data exchange and communication occurs between the 

nearest-neighbors. 

MatrixA MatrixB 

A(l,ll AI1,l} Atl,3 A(lA) B(l,l) B(1,2) B(1,3) B{VI 
A(2,l) A(2,2) A(2,3) A(1,4) B(2,l) B(2,2) B(2,3) B(2,4) 

A(3, l) A(3,2) A(3,3) A(3A) B(3,l) B(3,2) B(3,3) B(3,4) 

A(4, l) A(4,2} A(4,3) A(4A) 8(4,1) B(4,2) B(4,3) BIII,4) 

C(1,11=Atl,l)4B{1,4J+A(1,2)"B(1.4)+A(1,3)"B('!,4)+A(1,4)"B{4,4! 

Figure 2-2 Systolic Algorithm 



A 

n 
Figure 2-3 Layout of the A and B matrices in the systolic matrix-matrix multiplication 
algorithm for A4x4xB4x4 task mesh. The arrows show the direction of data movement 
during execution of the systolic algorithm. [55] 

Table 2-1 The performance of the algorithm being studied by [33] 

Task 
Transpose B matrix 
Send A, B matrices to the processors 
Multiply the clements of A and B 
Switch processors' B sub-matrix 
Gcnerate the resulting matrix 
Total execution time 

2.4.2. Cannon Algorithm 

2n2 tf 
2m2p te 
m2n tf 
n2 te 
n2 tf+ n2 'te 

Execution time 

tc(m2 n + 3n2 ) + tc(4n2 ) 
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It is a memory efficient if the multiplied matrices are square. The blocks of matrix A to 

rotate vertically while matrix B blocks to rotate horizontally, this can be handled using 

circular shifts to generate the product matrix C. In fact, it replaces the traditionalloop 



With the loop 

..fP-l 

C- . = " A· k X Bk' l,} L l, .} 

k=O 

..fP-l 

Ci,j = L AW+ j+k)mod..fP X B (i+ j+k)mod..fP,j 

k=O 
The Pseudo-code for the Cannon Matrix multiplication algorithm 
% P number of processors 
% s size of the matrix 
For i = 0 to P - 1 
A(i, j)=A(i,(i+j) mod p %left-circular-shift row i of A by i shifts 
(skew of A) 

For j = 0 to P - 1 
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B(i, j)=B((i+j) mod p, j) %up-circular-shift row j ofB by j shifts (skew ofB) 

For (i = 0 to p-l) and (j = 0 to p-l) 
C(ij) = C(ij) + L~=l A(i, k) * BCk, j) 
A(i, j)=A(I,(i-j) mod p % lefl-circular-shifl each row of A by 1 
B(i, j)=B«i-j) mod p, j) % up-circ1.l1ar-shift each columll of B by 1 

A, B initially A, B after skewing A, B after shift k = 1 A, B after shift k = 2 

C{2,31 = A(2,1)*8(1,3) + A(2,2r B{2,3) .. A(2,3)"B(3,3) 

Figure 2-4 Cannon's algorithm layout for n = 3 



1/ SkewA & N 
for i = 0 to 8-1 Il s = sqrt (P) 
left-circular-shift row i of A by i Il cost = s*(a + 1Il/pIP) 
for i = 0 to 8-1 
up-circular-sbift column i of B by i // cast = s*(n + Ill/pIP) 

Il ,l .. lultiply and shift 
for k = 0 to s-1 
local-multiply 
left-circular-shift each row of A by 1 
up-circular-shift each column ofB by 1 

Il cost = 1 *(1I/s)3 = 2*n3/p3/2 
! / cost = a + Ill/pif) 
I! cost = a + n2.p/fl 

• Total Time = 2*n3/p + 4* s*a + 4*~*n2/s 

• ParaUel Efficiency = 2*n3 1 (p * Total Time) 

= 1/( 1 + a * 2*(s/n)3 + ~ * 2*(s/n) ) 

= 1/(1 + O(sqrt(p)/n» 

• Grows to 1 as nls = nlsqrt(p) = sqrt( data per processor) grows 

• Better than ID layout, which had Efficiency = 1/(1 + O(p/n» 

Table 2-2 The performance ofthe algorithm being studied by [56] 

Task 

~hift A. B matrices * '"' 

Send A, B matrices to the processors 
Mumplytlie=êlemenis~of A"andB' ,. ~"'w.~ __ , 

Shift A, B matrices 
Generate th~ resulting mairix 
Total execution time 

2.4.3. Fox and Otto's algorithm 

4n2 tr 
2n2 t.~ 
n2 tr 

Execution time 

2(mn te + 2m2 n tf) 
n1 tr+ ù2 te '" 
tr(5m2 n + 5n2 ) + tc(2n2 + 2mn) 
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Fox's algorithm for multiplication organize C =A x B into submatrix on a P processors. The 

algorithm runs P times, in each turn, it broadcasts corresponding submatrix of A on each 
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row of the processes, run local computation and then shift array B for the next turn 

computation. The main disadvantages, it is applied only for square matrices. 

This algorithm being written in general in HPJava, we still use Adlib.remap to broadcast 

submatrix, matmul is a subroutine for local matrix multiplication. Adlib.shift is used to shift 

arra~, and Adlib.copy copies data back after shift, it Can also be implemented as 

nested over and for loops. 

Group p=new Procs2(P,P); 

Range x=p.dim(O); 
Range y=p.dim(l); 

on(p) 
//input a, b here; 

z] ] ) ; 

mode; 

float [[#,#, ]] a 
float [[#,#, ]] b 

new float [ [x,y,B,B]]; 
new float [[x,y,B,B]]; 

float [[#,#, ]] c new float [[x,y,B,B]]; 
float [[#,#, , ]] temp = new float [[x,y,B,B]]; 

for (int k=O; k<p; k++) { 
over(Location i=xl:) { 

float [[,]] sub = new float [[B,B]]; 

IIBroadcast submatrix in 'a' ... 
Adlib.remap(sub, a[[i, (i+k) %P, z, z]]); 

over(Location j=yl:) { 
IILocal matrix multiplication 

ma tmul (c [ [i, j, z, z]], sub 1 b [ [i 1 j 1 z, 

} 

//Cyclic shift lb' in 'yi dimension 
Adlib.shift(tmp, b , 1, 0, 0); Il dst, src, shift, dim, 

Adlib.copy(b, tmp); 
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"Two efforts to implement Fox's algorithm on general 2-D grids have been made: Choi, 

Dongarra and Walker developed 'PUMMA' [50] for block cyclic data decompositions, and 

Huss-Lederman, Jacobson, Tsao and Zhang developed 'BiMMeR' for the virtual2-D toms 

wrap data layout"[57]. 

2.S.Conclusion 

In this chapter 1 have addressed the use of matrix multiplication as benchmark and the 

defmition of matrix multiplication, seriaI algorithms and parallel algorithms. 

Parallei algorithms for carrying out matrix multiplication in different architecture since 

1969 had been studied and analyzed. Parallei algorithms for matrix multiplication have 

common mode, it is subdividing the matrices into small size matrices and distributing them 

among the processors to achieve faster running time. 

We found out that although so many parallei matrix algorithms have been developed since 

Cannon Aigorithm and Fox algorithm four decades ago, aIl these algorithms - described in 

Appendix B - still use the same methodology and framework of Cannon and Fox 

algorithms in term of data decomposition and communication among the processors. On 

addition, aIl these algorithms could not achieve a distinguished performance against both 

Cannon and Fox algorithms, which keep both algorithms as bench mark algorithms in 

parallel matrix multiplication. 

Finally, Identification of BLAS, and the development till considering multi-core 

architecture had been shown in Appendix A. 



Chapter 3 - ITPMMA algorithm for Parallel Matrix 
Multiplication (STMMA) 

3.1.lntroduction 
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Several parallel matrix multiplication algorithms had been described and analyzed in the 

previous chapter. AlI parallei matrix multiplication algorithms based on decomposing the 

multiplied matrices into smaller size blocks of data~ the blocks will be mapped and 

distributed among the processors, so each processor run matrix multiplication on the 

assigned blocks; this will reduce the whole time of the matrix multiplication operation to 

less than the time needed to complete this operation by utilizing one processor. AlI existing 

parallei matrix multiplications algorithms suffer from four drawbacks: 

1. To defme the optimal size of the block of the decomposed matrices, so the whole 

operation can be produced by the minimum time. For example, multiplying matrices of size 

64x64 over 4 processors, should the block size be 4x4 or 8x8 or 16x16. 

2. The number of exchanged messages between the processors are highly time 

consuming; it is proportional to the number of the processors. On the other hand, the time 

of forwarding the messages relays partly on the network structure. 

3. Data dependency between the processors, where sorne processors will stay idle 

waiting an intermediate calculation results from other processors. Data dependency 

increases as number ofblocks/processors increases. 

4. Sorne algorithms suffer from another drawback, which IS the load balance, 

especially with non-square matrix multiplications. 
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In this chapter, new paralle1 matrix multiplication algorithm will be introduced, to 

overcome the above four drawbacks, which returns in vast difference in the performance in 

terms of processing time and load balance. For example, for a matrices multiplication of 

5000x5000, it consumes 2812 seconds using cannon algorithm, while only 712 seconds 

needed using the new algorithm, which implies 4 times faster. 1 have implemented the 

algorithm initially using Microsoft C++ ver. 6, with MPI Library. 1 have execute it at 

Processors Intel(R) Core(TM) i5 CPU 760 @2.80GHz 2.79 GHz, the installed memory 

(RAM) was 4.00 GB, System type: 64-bit Operating System, Windows 7 Professional. 

Later 1 have implemented the algorithm using CLUMEQ supercomputer, where 1 have used 

up to 128 processors in parallel. 

1 will reference to the new algorithm by the name ITPMMA algorithm. The basic concepts 

of ITPMMA algorithm were published on "Sub Tasks Matrix Multiplication Aigorithm 

(STMMA)", [59]. 

3.2.ITPMMA algorithm for Parallel Matrix Multiplication (STMMA) 

Unlike previous algorithms, ITPMMA Aigorithm for ParaUe1 Matrix Multiplication does 

not defme new data movement or circulation; instead, it generates independent seriaI tasks 

follows the seriaI matrix multiplications shown below: 

l:forIII=Otos-1 { 
2: for 1=0 to s-1 { 
3: for K=O to s-1 { 
4: CU = CU + AIK xBKJ } } } 

ITPMMA A1gorithm decomposes the paralle1 matrix multiplication problem into several 

independent vector multiplication tasks, keeping the processing details of each independent 

task to the processors, which are multicore processors, so 1 am utilizing the modem 
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architecture processors' capabilites. ITPMMA Aigorithm has the advantage to utilize the 

up-to-date processor architecture features in tenus of multicores and cache memories. In 

fact, ITPMMA Aigorithm defmes each independent task as set of instructions to produce 

one element of the result matrix. Each single set is fully independent of production of any 

other set, or independent task. Each single independent task is being processed by one· 

single processor. Once each processor has completed the independent task been assigned to 

it, and produced an element of the result matrix, it processes the next independent task, to 

produce the next element, and so on. ITPMMA Aigorithm implies: 

1. Zero data dependences so better processors' utilization since no processor stays on 

hold, waits for other processors' output, 

2. Zero data transfer among the processors of the cluster, so faster processmg. 

Communications in ITPMMA Aigorithm is limited to the time needed to send the 

independent tasks lists by the server node processor to different processors, and to the 

time needed to receive back alerts and results by the other processors to the server node 

processor. 

In this context ITPMMA Aigorithm has advantages of efficient use of the processors' time. 

Figure 3-1 simulates the seriaI matrix multiplication using one single core processor. Figure 

3-2 simulates the previous parallel algorithms. It is clear that both processors P2 and P3 are 

on hold, till processor Pl over and switch to idle status. On addition, processors P4 will not 

start processing till both P2 and P3 over. The efficiency of using the processors' time is so 

poor. Each processor computes for 4 units oftime and 3 units for communication, and been 

on hold or idle for 9 units of time. So the computing efficiency of each processor is 4/16 

=25%. On the other hand, figure 3-3 simulates paraUel multiplication using new algorithm 
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which is called Independent Tasks Parallel Matrix Multiplication Aigorithm (ITPMMA). 

Instead of decompose the data among the processors; we distribute the independent tasks 

among the processors. 80, processor Pl should produce the frrst row of Matrix C shown in 

figure 2, while processor P2 should produce the second row of Matrix C, and processor P3 

should produce the third row, finally processor P4 should produce the fourth row ofMatrix 

C. For that, we need only 4 units of time to accomplish the tasks, in addition, no 

communication among the processors, aIso, no time for assembling the results, only to 

deliver it. One of the major advances of ITPMMA algorithm is efficiency of using the 

processors, no processor gets on hold or idie. The efficiency of each processor is 4/5 = 

90%. 

x I---+--+-+---l = 

Matrix A4x8 Matrix C 4x4 

Matrix B 8x4 

• 
• Computation Time 

Figure 3-1, SeriaI Matrix Multiplication 
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3.2.1. ITPMMAflowchart 

ITPMMA Aigorithm for paraUel matrix multiplications, on the contrary of other parallel 

matrix multiplication algorithms, it depends on reformatting the matrix multiplication 

process into many independent vector multiplication operations, each vector multiplication 

operation will be carried out by single processor, to avoid any data dependency and 

processor-to-processor data transferring time. Figure 3-3 shows ITPMMA Aigorithm 

flowchart. 
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Figure 3-4 ITPMMA Algorithm flowchart 
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ITPMMA Algorithm uses MPI library to defme the number of active processors on the 

c1uster and rank them. In addition, MPI library is used to transfer the lists of tasks to the 

processors and to forward task completion alerts from different processers to the node 

processor. So the server node: received bird sow 

1. Defmes the processors available in the parallel c1uster and to rank them. 

2. Generate the the independent tasks, so produce an element of the result matrix is 

considered as independent task. 

3. Divides the last of independent tasks by the number of active processors in the c1uster. 

So for the output matrix of size 7000x7000 and number of processors is 128 active 

processors, (7000x7000)/128=382812.5, so 64 processors produce 382,812 independent 

tasks and 64 processors produce 382,813 independent tasks. So the time needed to 

process 7000x7000 matrix multiplication in paraIlel of 128 processors is equivalent 

process 620x620 in one processor. 

4. Sends for each processor li st of independent tasks to be carried out. 

5. Receives from each processor alert of completion when aIl assigned tasks have been 

carried out. 

6. Redistributes the processor of any faulted processor(s) to other active ones by sending 

extra tasks for the high computing power processors, once the initial sent list of tasks of 

these processors had been carried out. Redistribution inc1udes shifting tasks from the 

over queued low computing power processors to the high computing ones; so this 

algorithm address the hetregenious enviroment. 
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MPI library will not be used to exchange any data at aIl, as aIl tasks are independent, so, no 

processor receives any data from another processor to be able to complete its work, nor any 

processor communicate with non-server node processor. 

1 will explain the algorithm using different four examples: 

1. Square Matrix multiplication, and the size of the result matrix is multiple of the 

number of processors being used in parallel, like A4x4 x B4x4 = C4x4, for four 

processors in parallel; weIl, the size of the result matrix is 4x4, is multiple of the 

number ofprocessor in use, which is 4. 

2. Square Matrix multiplication, and the size of the result matrix is not multiple of the 

number of processors being used in parallel, A12x12 x B12x12 = C12x12, for eight 

processors in parallel; it is obvious that 12 is not multiple of 8. 

3. Non Square Matrix multiplication, and the size of result matrix is multiple of the 

number of the processors being used in parallel, like A12x12 x B12x16 = C12x16, for four 

processors in parallel; it is obvious that both 12 and 16 are multiple of 4. 

4. Non Square Matrix multiplication, and the size result matrix is not multiple of the 

number of the processors being used in parallel, like A12x12 x B12x18 = C12xl8, for 

four processors in parallel; it is obvious that 18 is not multiple of 4. 

The second and the fourth example will help me to show how ITPMMA algorithm will 

address the problem of load balance to be very obvious. On the other hand aIl previous 

algorithms for parallel matrix multiplication are limited to square matrix multiplication 

only. 
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3.3.ITPMMA applied to different matrices sizes 

3.3.1. Square Matrix multiplication, size of the result matrix is multiple of the number 
of processors in paraUel 

In this example, A4x4 x B4x4 being executed on four processors Po, Pl, P2, and P3, matrix A 

will be sent to aU processors, while one single column of matrix B will be sent to each 

matrix, so each processor produces part of the matrices multiplication result as shown of 

Figure. 3-4. 

Processo·r O 

Ë 
~x4; B.h* Cb4 

Proces·so·r l 

Ë 
A b ... B..:.. .. 1 Ct,,4; 

Pr oces.so·r 2 

Ë 
A b .4 B ....... C4,,4 

Proces·so r 3 

Ë 
A .b4 ~".. C4",.4 

Figure 3-5 Task distribution of A4x4 x B4x4, where each processor will produce part of the 
result matrix C4x4 

Each processor processes separate independent tasks, so no messages of intermediate 

results will be exchanged, instead each processor produces what it needs when needed, that 

is to reduce the time consumed for exchange intermediate results between the processors 
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and to avoid data dependencie which put the processor on hold waiting results from other 

processors. So, Po will execute the code shown in Figure 3-5: 

1 - far J =O ta 3{ 
2 - for K=O ta 3 { 
3: CJO + AlK )( BK,] 

4 : } 
5 - } 

Figure 3-6: Pseudo code executed by processor PO 

While Pl will execute the code shown in Figure 3-6: 

1: for J - Q ta 3 { 
2: for K= O ta 3 { ~. 

3: CJl - en + AlI< xBKJ 

4: 
5- } 

} 

Figure 3-7: Pseudo code executed by processor Pl 

While P2 will execute the code shown in Figure 3-7: 

1 : for J =O ta 3 { 
2; for KOta 3 { 
3: CJ2 = CJ2 + kK x B KJ 

4: } 
5: } 

Figure 3-8: Pseudo code executed by processor P2 

While P3 will execute the code shown in Figure 3-8: 
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1 : for J=O ta 3 { 
2; for K=O ta 3 { 
3: 
4: } 
5: } 

Figure 3-9: Pseudo code executed by processor P3 

As we can see, no processor waits its entries from another processor( s), and no processor 

sends sorne results to other processor, so we could reduce the data dependency and 

exchanged messages to zero, which has played backward role on the performance of the 

previous paraUe1 matrix multiplications. To generalize the case mentioned above, for 

different matrices size, 1 will use the example of A12x12 x B12x12 = C12x12, for four paraUel 

processors. So, each processor will produce three columns of the matrix C, processor Po 

will produce three columns, these are the first and fifth and ninth columns of the matrix 

C12x12, Figure 3-9 shows task distribution of A12x12 x B12x12 = C12x12. 



36 

ProcessorO 

...... 
Processor 1 

...... 
B:12x:12 C:12x:12. 

Processor 2 

...... 

Figure 3-10 Task distribution of AJ2x12 x B12x12, where each processor will produce part of 
the result matrix CJ2x12 

Processor 0 executes the code shown in Figure 3-10, to produce the frrst and the fifth and 

the ninth columns of the result matrix C12x12. 



1: for 3=0 to 11 { 
2: for K=O to 11 { 
3 : C JO - C ,JO + AaR xBK,J 

4 : } 
5: } 

1: for J=O ta 11 { 
2 : for K=O to 11 { 
3: 
4: } 
5: } 

1 : for 3 =0 ta 11 { 
2: f o r K= O t o 11 { 
3: C JS = CJ8 + AaR xBRJ 

4: } 
5: } 
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Figure 3-11 : Pseudo code executed by pro cess or PO, to pro duce the first and the fifth and 
the ninth columns of the result matrix Cl2xl2 

While processor Pl produces different three columns, these are the second and sixth and 

tenth columns of the matrix C12x12, and so on for the remaining processors. Figure 3-11 

shows the details of ITPMMA algorithm for the multiplication of A12x12 x B12x12, using four 

processors in parallel. 



Matrix A12x12 

The first processor wi Il 
produce the first and fifth 
and ninth columnsof the 

result matrix, that is 
C[O][O]- C[ll][O], and 
C[O][4] --->- C[1l][4], and 

C[O][8] --->- C[1l][8] 

The second proc,essor 
will produce the second 

and sixth and tenth 
columnsof the result 

matrix, that is C[O][l]­
C[11][1], and C[O]{S] ----. 
C[11][5], and C[O][9] --->-

C[11][9] 

The third processor will 
produce the third and 
seventh and eleventh 
columnsof the result 

matrix, that is C[O][2]­
C[1l][2], and C[O][6] ----. 
C[llJ[6], and C[O][lO] 

- C[ll][lO] 

The fourth processor will 
produce the fourth and 

eighth and twel:fth 
co lumns of the result 

matrix, that is C[O][2]----. 
C[1l][2], and C[O][7] -
C[ll][7], and C[O][ll] 

- C[ll][ll] 

rvlatrix B 12x 12 Matrix Cl 2>< 12 

x 

Result of the mst processor 

Result of the .second processor 

Result of the fourtIl processor 

Figure 3-12: A12x12 x B12x12 using ITPMMA algorithm for paraUe1 matrix multiplication 
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The tasks are fully independent tasks - so no processor needed to ex change data with other 

processors - so there was no time being wasted by exchanging messages, and no processor 

has stayed idle waiting its input from other processors, weIl, this is the essence of ITPMMA 

algorithm. 

3.3.2. Square Matrix multiplication, size of the result matrix is not multiple of the 
number of processors in paral/el 

For this case, the size of the multiplied matrices is not multiple of the number of the 

processor. In this example, we are to multiply A12x12 x B12x12, while the number of 

processors is eight, where 12 is not multiple of 8. In this case, we have to overcome this 

issue, and schedule the independent tasks between the processors equaIly, so the load is 

balanced, and no processor will stay idle while other processors still overloaded. So, we can 

run the schedule shown in Table 3-1, which satisfy the criteria of ITPMMA algorithm. 

Table 3-1 Tasks to be performed by each processor 

Processor erformed 

PO 
Pl 
P2 
P3 
P4 
P5 
P6 
P7 

Each processor produce 18 elements of the output matrix C, which satisfies the load 

balance between the processors, also, each task - and so each processor - is independent 

from any other tasks, and so, there is no exchanged messages. Figure 3-12 (A) shows the 

time chart for the eight processors for this example A12x12 x B12x12 = C12x12 , it is obvious 

that aIl processors working, and no processor is idle, and no processor finishes its tasks 

before the others, which implies the highest efficiency of using the processors and the 
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highest load balance been achieved. On the other hand, Figure 3-12 (B) shows the map of 

between the elements of the output matrix C 12x12, and the processor that will pro duce each. 

Finally, Figure 3-12 (C) shows the total number oftasks being produced by each processor. 

(A) Tasks rustnbuted pet' processor per rime 

o l 2 3 4 5 6 7 8 9 10 Il 

(B) Elements ofMatrix Cl2X l1. mapped per processor where 

each element being produced 

Total elements being 

produced by a processor 

PO 18 

Pl 18 

P2 18 

P3 18 

P4 18 

P5 18 

P6 18 

P7 18 

(C) Toral tasks per each 

processor 

Figure 3-13 Tasks to be performed by each processor of the eight processor to produce the 
matrix C12X12 



3.3.3. Non - square Matrix multiplication, size of the result matrix is multiple of the 
number of processors in paral/el 
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First of all, the previous parallel matrix multiplication algorithms avoided non-square 

matrices multiplications, as they cannot perform it proper, sorne algorithms pad zeroes to 

make the matrices square, and then execute the multiplication. The main point here is to 

define and schedule the tasks within the three constraints: 

1. Task independency, implies no processor will get intermediate results from another 

processor, to process its tasks. 

2. Load balance, implies all processors will execute same size of tasks in term of 

number and size of math operations. 

3. Processor efficiency, which implies no processor, will stay idle while another 

processors still over queued with tasks. 

1 will use the example of multiplying A12x12 x B12x16 = C12x16 at four processors. The tasks 

distribution is shown in Figure 3-13. In this case, the algorithm defmes producing each 

element of the result matrix as an independent task, so total number of the independent 

tasks is 12x16= 192, so each processor produces 192/4=48 independent tasks, which is 

equavelent to four columns. 

The frrst processor will produce the frrst and fifth and ninth and the thirteenth columns of 

the result matrix, that is C[O][O]--+ C[ll][O], and C[O][4] --+ C[1l][4], and C[O][8] --+ 

C[11][8] and C[O][12] --+ C[11][12]. 

The second processor will pro duce the second and sixth and tenth and the fourteenth 

columns of the result matrix, that is C[O][l]--+ C[ll][l], and C[O][5] --+ C[11][5], and 

C[O][9] --+ C[11][9] , and C[O][13] --+ C[11][13]. 
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The third processor will produce the third and seventh and eleventh and fifteenth columns 

of the result matrix, that is C[O][2]~ C[1l][2], and C[O][6] ~ C[1l][6], and C[O][lO] ~ 

C[ll][lO], and C[O][14] ~ C[11][14]. 

The fourth processor will produce the fourth and eighth and twelfth and sixteenth columns 

of the result matrix, that is C[O][2]~ C[11][2], and C[O][7] ~ C[11][7], and C[O][ll] ~ 

C[ll][ll], and C[O][15] ~ C[11][15]. 

ProcessorO 

• A12x12 Bl2Jd6 C12xl.6 

Proces50r 1 

• A12x12 Bl.2Jd6 C12xl.6 

Processor 2 

• A12x12 Bl2x:16 C12xl.6 

Processor 3 

• A12x12 Bl2Jd6 C12x16 

Figure 3-14 Task distribution of A12xl2 x B12x16, where each processor will produce 
different part of the result matrix C12x16 



3.3.4. Non - square Matrix multiplication, size of the result matrix is not multiple of 
the number of processors in paral/el 
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The other case that to test, is the matrix multiplication where the size of the multiplied 

matrices is not multiple of the number of the processors, so distribution of the independent 

and equal tasks will take different way. 1 will use the example ofmultiplying A12x12 x B12x18 

= C12x18 at four processors. Figure 3-14 shows task distribution of the tasks to multiply 

A12x12 x B12x18 in parallel using 4 processors. So, we have 12x18=216 independent tasks, 

each processor should process 216/4=54 tasks. The output matrix has 18 columns each of 

12 elements or independent tasks. So, 54/12=4.5, so each processor of the four processors 

produces 4 columns (each column of 12 elements) of the result matrix C12x18, plus six 

elements, this makes the total number of elements is 4x 12+6=54 elements. Each element 

will be produced by single one processor from A to Z, which implies the independency, so 

no intermediate values to be exchanged. 

Last example in this subsection, for multiplying matrices A(3 x 3) * B(3 x 5) = C(3 x 5) 

and we have 3 processors. So we have 3 x 5 = 15 independent tasks for 3 processors, so 15 

(independent tasks) / 3 (processors) = 5 independent tasks to be processed by each 

pro cess or. 

Output Matrix C{3 x 5) 

Figure 3-15 Multiplions ofmatrices A(3 x 3) * B(3 x 5) = C(3 x 5) using 3 processors 
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ProcessorO 

A.12x12 B12x18 Cl2x:18 

Processor 1 

A12x12 B12)(18 Cl2x1Z 

Processor2 

A.12x12 Bl2x18 Cl2x1.8 

Processor 3 

A.12x12 B12x18 Cl2x18 

Figure 3-16 Task distribution of A 12x12 x B12x18, where each processor will produce part of 
the result matrix C12x18. 

3.4.ITPMMA properties 

In ITPMMA A1gorithm: 
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1. No processor stays idle to wait output of sorne processor else. Since aIl tasks are 

independent tasks, and equal in size, in term of number and size of the mathematical 

operations. 

2. No communication time cost among the processors in term of data movement; 

communication is only between the server node processor and other processors to 

defme the rank of each processor, and to send the tasks lists. 

3. Each processor utilizes its full capabilities, like the multicores and cache memo'ry, 

to complete the CUITent task as fast as possible. This implies ITPMMA algorithm 

consider the up-to-date structure of the processor to complete the task in shortest 

time. 

4. Load balanced as the tasks already balanced among the processors. In case a 

processor completed its tasks before other processors, the server no de processor will 

be alerted, so, the server no de processor may redirect sorne other' s over queued 

task(s) to it. The over queue phenomenon could happen when different processors 

architectures of different capabilities are involved in the parallei cluster. 

3.4.1. ITPMMA Complexity 

ITPMMA Aigorithm execution time equals to (SeriaI matrix multiplication time divided 

by number of processors) - time for creating and distribution the lists of tasks. 

TpCcalc) = (:2). (2n - 1). T Eq. 3-1 

Multiplying two N x N matrices requires N multiplications and N - 1 additions 

operations for each element of the result matrix. Since there are N2 elements in the 
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matrix this yields a total ofN2 (2N - 1) floating-point operations, or about 2N3 for large 

N. 

So for multiplying two matrices of 10xl0 each, total number of operations is 102 (2xl0 

- 1) = 1900 floating-point operations (FLOP). For N = 1000, 2N3 =2 megaFLOP 

(million floating point operations). For N = 32768, Number of float point operations is 

105,553,116,266,496 ;::::: 100 teraFLOP (trillion floating point operations). Using 

ITPMMA algorithm, for 16 processors in the cluster, this number of operations must be 

divided by 16 which yield 6,597,069,766,656 ;::::: 6 teraFLOP. So, the speedup is 

100/6=15. The experiment in Table 3 shows the speed up of 13, with less of 2 times, 

which is result of time to upload the required data and the time which the server no de 

needs to create and distribute the independent tasks. 

On the other hand, the analytical solution of ITPMMA Aigorithm shown in equation 3 

- 1, implies the communication time is negligible, since the communication through the 

cluster is limited to sending the li st of tasks to the processors, and neither the elements 

of the multiplied matrices nor the intermediate results to be transmitted between the 

processors. By comparing ITPMMA analytical solution with the analytical solutions of 

Fox algorithm and Cannon algorithm developed at the experiments have been carried 

out on 2005 at Lobachevsky State University ofNiznhi Novgorod [60] where the total 

execution time of Fox algorithm is 

Tp = q[(~). e: -1) + (~). T + (q I09,q + (q -1)(a + w~) . Eq.3 - 2 

And the total time of Cannon algorithm is 
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Tp = q[(:') .C; -1) + (~). T + (2q + 2)(a + w~)) Eq. 3-3 

Equations 3-1 and 3-2 and 3-3 are compatible with the experiments we carried out in 

next section. 

3.4.2. ITPMMA Load Balancing 

Multi-core processors have very high specifications were not familiar before: 

1. ~ 1 TFLOP of compute power per core 

2. 61 + of cores, 100+ hardware threads 

3. Highly heterogeneous architectures (cores + specialized cores + 

accelerators/ coprocessors) 

4. Deep memory hierarchies. 

The pre ITPMMA Aigorithms had been developed before the availability of these 

specifications, and so, these specifications have never been utilized before. In ITPMMA 

Aigorithm, we decompose the paraUe1 matrix multiplication into independent seriaI tasks to 

be executed in paraUel, so each seriaI task utilizes new modem processor architecture. 

ITPMMA Aigorithm does not interfere how each processor should process its task. The 

modem multicore processors have its own management algorithm to decompose the tasks 

into smaUer tasks and distribute these tasks in paraUe1 among the cores of the processor, 

also, it has own algorithm to use different levels of cache memory. The pre ITPMMA 

Aigorithms aUow each processor in the c1uster to process simple equal multiplication or 

addition tasks using only one single core. In addition, these tasks are simple, so it does not 

utilize the multiple cores or cache memory at aU. In addition, the modem processors 
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implement the concept of multithreading, which results in better speed up levels, and it is 

used when the modem processor to process huge tasks. 

ITPMMA Aigorithm utilizes the new features of the modem processors in terms of their 

ability to process huge size and complicated tasks faster than old processors - single core 

and without cache - which implies that the concept that has been used long by aIl previous 

parallei algorithm which states that the smaller block size the much faster parallei 

processing speed is not valid anymore. Instead, the smaller block size, where there is less 

number of mathematic operations, is the less utilizing the modem processors ' capabilities. 

Figure 3-2 simulates Block-Striped Decomposition parallei matrix multiplication algorithm, 

where processor Pl and P4 are idle, while processor P2 and P3 still working. Figure 3-3 

simulates ITPMMA Aigorithm, where most of the processors become idle at the same time. 

3.4.3. ITPMMA Communication Cost 

Communication cost between processors in ITPMMA Aigorithm among the processors 

equals to zero. There is no communication to take place between processors. Processors 

receives list of tasks to be executed from the server node processor, once they executed 

individuaIly, they alerts and server node processor using MPI libraries. The tasks aIl are 

independent, so no data dependency needs any communication among the processors. 

3.4.4. ITPMMA algorithm (STMMA) Efficiency 

We will consider the below equation to calculate the efficiency of ITPMMA (STMMA) 

algorithm: 

Eq.3-4 

Sequential time of matrix multiplication algorithm TSEQ is ~ (in case of square matrix 

multiplications where m=n=k=N). The parallei time of multiplying the same square 
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matrices using ITPMMA (STMMA) algorithm TPRL lS N3/p, while p lS number of 

processors being used in the parallel processing. 

The startup cost or latency is to be neglected in the network of sufficient bandwidth. 

The speed up is the Sequential Time TSEQ ta parallel time TpRL 

Speed up = TSEQ / TpRL 

While 

Efficiency (11) = Speedup / p 

3.4.4.1. Camparisans aflTPMMA with selected algarithms 

In this part, 1 will compare analytically between ITPMMA algorithm and selected parallel 

matrix multiplication algorithms. The comparison of ITPMMA (STMMA) algorithm will 

consider the following algorithms: 

1. Systolic algorithm. 

2. Cannon's algorithm. 

3. Fox's algorithm with square decomposition. 

4. Fox's algorithm with scatlered decomposition 

While the comparison of ITPMMA (STMMA) algorithm with the algorithms PUMMA 

(MBD2), SUMMA and DIMMA will be shown in Appendix C. 

The above selected algorithms being compared theoretically and experimentally on so 

many journal and conference papers, also, it appears on so many literature and books which 

target parallel matrix multiplication. 
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Through the theoretical analysis, the following symbols will be used 1: 

• f = number of arithmetic operations units 

• tf= time per arithmetic operation« tc (time for communication) 

• c = number of communication units 

• q = f / c average number of flops per communication access 

• Minimum possible time = f* tf when no communication 

• Efficiency( speedup) SP=q * (tf/tc) 

• f* tf+ c* tc = f* tf* (1 + tc/tf* l/q) 

• m2 =n2/p 

1 will summarize the ITPMMA (STMMA) algorithm's tasks and execution time in Table 3-

4. As it is shown, there is no tasks like shift or transpose or broadcast or switch as it is on 

the other algorithms shown on the tables 3-5 till Table 3-11. ITPMMA (STMMA) 

algorithm implies send the matrices to the processors, each processor will generate the 

result matrix elements by perform multiplication and addition operations on the matrices 

being transferred to it, finally the results will be collected from different processors to have 

on single complete result matrix. 

Table 3-2 ITPMMA (STMMA) algorithm's tasks and execution time [59] 

Task Execution time 

1 These definitions appeared in severalliteratures. 
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Send'A, B màtri~es to thé procestors* 

Multiply A and B m2n tf 

Generate the resûlting matrÎX 2nm te 

Total execution time 2mn te ( l + P ) + m2n tf 

Table 3-3 Systolic Algorithm [61] 

Task Execution time ITPM.MA (STMMA) 

Transpose B matrix 2n2 tf 0 

Send A, B matrices to the 
2m2p te 2m2p te 

processors 

Multlply the elements of A 
m2n tr m2ntf 

andU 

ii!; ? .' .. .... , ... ! 

Switch processors' B sub-
n2 te 0 

matrix 

Generate the resulting matrix n2 tr+n2 te 2mnto 

."" ii. 

Total execution time tt(m2 n+ 3n2 ) +. te(4n2 

2mn te ( 1 + P ) + m2n tf 
) 
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Table 3-4 Cannon's Algorithm [62] 

Task Execution time ITPMMA (STMMA) 

Shift A, B matrices 4n2 tf 0 

'}, " 

Send A, B matrices to the 
2n2 te 2mnp te 

processors 

l\'lultiply the clements of A 
n2 tr n2 tf 

andB 

Shift A, B matrices 2(mn te + 2m2 n tt} 0 

Generate the resulting matdx n2 tf+ n2 tc 2mn te 

( " 

Total cxccution timc tt(5m2 n + 5n2 
) + te(2n2 2mn te ( 1 + P ) + m2n 

+2mn) tf 

Table 3-5 Fox' s Algorithm with square decomposition [63] 

Task Execution time ITPM"MA (STMMA) 

Send B matrix n2 te 2mnpte 

}'! ?\ ,'" i, 

Broadcast the diagonal 
mnp te 0 

elements of A 



53 

"y" ,q 

in2nlr ", ~~" 

nl tr Multiply A and B 

Shift A, .B matrices mn te + 2m2 n tf 0 

Generate the resulting n'iatrix nZ' tf+ n2 te 2mn 1<: 

Total execution time tt(3m2 n + n2 
) + te(2n2 

2mn te ( 1 + P ) + m2n tf 
+ mn(p+l) 

Table 3-6 Fox's Algorithm with scattered decomposition, [64] 

Task EX.ecution time ITPMMA 

(STMMA) 

Scatter A i n2 te 0 

N' ,,' 

Hroadcast the diagonal 
mnptc 2mnp te 

clements of.B 

Mulfiply A and B mZn tr n 2 tf 

" 
Switch processors' A submatrix mn te 0 

Generate the resulting matrix nZ tr+n2 te 2mnte 
~::~ 

Total execution time tt(m2 n + n2 ) .1- te(2n2 .+ 2mn te ( 1 + P ) + m 2n 

2m2 n+mnp) tf 
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By summarizing the above tables (Table 3-4 till Table 3-11) 1 will conclude the following 

execution time table for aIl algorithms, Table 3-12. 

Table 3-7 Aigorithms' execution time summary table 

Aigorithm Execution Time 

ITPMMA (STMMA) Algorithm 2mn te ( 1 + P ) + m2u tr 

Systolic Algorithm tt{m2 n + 3n2 
) + te( 4n2 

) 

"'" 

Cannon Algopthm tt{5m2 n + 5n2 ) + te(2n2 + 2mn) 

Fox' s Algorithm with square decomposition tt{3m2 n + n2 ) + te(2n2 + mn(p+ 1) 

Fox's Algorithm with scattered decomposition tt{m2 n + n2 ) + te(2n2 + 2in2 n + mnp) 

PUMMA (MBD2) tt{m 2n + n2 
) + te(2n2 + m2root(p )(P+ 1» 

SUMMA tt{m 2n + n2 ) + te(n2 + 2mnp) 
";';: 

DIMMA tt{m 2n + n2 ) + te(n2 + 2mnp) 

It is so obvious that ITPMMA (STMMA) algorithm has the minimum execution cost. 
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3,S,Conclusion 

In this chapter, 1 have introduced new parallel matrix multiplication algorithm, ITPMMA 

algorithm, which is faster than the previous parallel matrix multiplication in term of 

analytical analysis against Cannon Algorithm and Fox algorithm. 

On the other hand, ITPMMA algorithm had been compared analytically against PUMMA, 

SUMMA, and DIMMA as shown in Appendix C. 
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Chapter 4 - ITPMMAAnalysis and Results 

4.1. Introduction 

In this chapter, 1 will implement and execute ITPMMA algorithm into two different real 

paraUel environments: 

1. Simple paraUel environment of four PCs, and then sixteen PCs connected via 

Ethernet cardo The PCs exchange the data using MPI library. The PCs processors 

are Intel(R) Core(TM) i5 CPU 760 @2.80GHz 2.79 GHz, instaUed memory (RAM) 

is 4.00 GB, System type: 64-bit Operating System, Windows 7 Professional. This 

environment is considered as heterogeneous environment since aU PCs been 

assembled by different vendors and no consideration of homogeneity has been 

considered in assembling the PCs. 

2. CLUMEQ supercomputer homogenous environment to be utilized here to test the 

algorithm in big size environment in term of number of processors. CLUMEQ is a 

Supercomputer Consortium Laval UQAM McGill and Eastern ITPMMA based in 

Mc Gill University founded in 2001. It has three clusters, Colosse, Krylov, and 

Guillimin. 1 have used GuiUimin Cluster in this thesis. Guillimin is a compute 

cluster comprised of 1200 compute nodes and 34 infrastructure nodes. These nodes 

are each a pair of Intel Westmere-EP processors each with 6 cores and 24,36 or 72 

G Bytes of RAM memory per node. In total, Guillimin consists of 14400 cores and 

46 T Bytes of memory. AlI nodes are connected via a high-performance QDR 
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InfmiBand network. Guillimin is also connected to the outside world via a 10 

Gigabit Ethemet network. A parallel file system (GPFS) provides a usable capacity 

of2 P Bytes, [65]. 

ITPMMA algorithm will be tested against both Cannon Aigorithm and Fox Aigorithm. The 

advantages of ITPMMA algorithm like reducing the exchanged messages among 

processors to zero will be explored. The load balance mechanism of ITPMMA algorithm 

will be explored against the other two algorithms, especially in the case of non-square 

matrix multiplication. The speedup and the efficiency of ITPMMA algorithm will be 

explored lively. 

4.2.Simple parallel environment 

1 have executed both algorithms, ITPMMA and Cannon for three square matrices size, 

100x 100, and 500x500, and 5000x5000. And 1 have executed each experiment twice, one 

time for four processors, and the second time for sixteen processors. The reading of these 

experiments and the calculations are shown in Table 4-1. 

Table 4-1 Comparison between the performance ofITPMMA (STMMA) and Cannon 
Aigorithms for matrices of 100x 100, 500x500, and 5000x5000 

Test ID 1 2 3 4 5 

Algorithm Cannon STMMA Cannon Cannon 

Matrix Size (n) 100 100 100 100 500 

Decomposition 
(number of 4 16 4 16 4 16 

Numberof 
4 16 4 16 4 16 4 16 

processor 
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Ts 
(1 processor) 43 874 11121 

(ms) 

Tp (ms) 39 154 31 25 594 601 4102 2812 

Speed up 1.1 0.28 1.39 1.72 1.48 1.45 2.7 3.95 

Efficiency(1-2) 27.5 1.75 34.75 10.75 9.25 9.06 67.5 24.675 

The table above shows the following facts: 

1. Speedup for Cannon algorithm is: 

a. For 4 processors, speedups obtained are: 1.1 , 1.48, and 2.7. 

b. For 16 processors, speedups obtained are 0.28, 1.45, and 3.95. 

2. Speedup for ITPMMA algorithm is: 

a. For 4 processors, speedups obtained are: 1.39, 2.8, and 3.68. 

b. For 16 processors, speedups obtained are: 1.72, 3.9 and 15.62. 

It is so clear, that ITPMMA algorithm exceed Cannon algorithm by several times ranging 

between 1.72/0.28 ~ 6 times to 3.9/1.45 ~ 2 times at test IDs 4 and 8 respectively. 

ITPMMA algorithm is 15.62/3.95 ~ 4 times better than cannon algorithm, obtained at test 

ID 12, where ITPMMA algorithm completed the matrix multiplication of 5000 matrix size 

at 16 parallel processors at 712 seconds, where Cannon algorithm completed the same 

operations at 2812 seconds. Figure 4-1 shows a chart of the speedup ofboth ITPMMA and 

Cannon algorithm. 
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--

The chart above on figure 4-1 shows ITPMMA algorithm for 4 processors is better than 

Cannon algorithm for 16 processors in case matrix size of 100 and 500. 

Another distinguished point is clear in the chart that Cannon algorithm for 4 processors -

figure 4-1 - is better that Cannon algorithm itself for 16 processors for matrix size 100 in 

term of speed up. It is shown in test ID 2, where the speedup is less than one, which implies 

the seriaI test is faster than the parallel one. That happened at Cannon algorithm when 

multiplying two matrices at size 100, at 16 parallel processors, it takes 154 seconds while 

the seriaI multiplication takes only 43 seconds. This low speedup shows the high 

dependency of several calculations on other calculations. In Cannon algorithm, matrix of 

100 size - figure 4-3 - divided between 16 processors, that means, each processor of the 16 

processors did sorne task (addition and multiplication) on producing each element of the 
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result matrix; that means the total 100 operations of multiplication and the total 100 

operations of addition to produce one single element of the output matrix being distributed 

among the 16 processors, so fifteen processors will not be able to complete their tasks 

unless each receives output from the adjacent processor. Figure 4-2 and 4-3 show the speed 

up charts for 4 and 16 processors respectively. 
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Another point, the comparison between both algorithms in terms of speedup is varying, 

which 1 will return it to the PCS 1 have used and to the compatibilities between the 

hardware parts. This point will fade when using CLUMEQ supercomputer, when the 

compatibility between the hardware parts is high. 

4.3. Guillimin Cluster at CLUMEQ supercomputer environment 

In this subchapter, 1 will analyze four groups of experiments being carried out on Guillimin 

Cluster at CLUMEQ supercomputer. That is to address the speedup, efficiency, load 

balance and the performance of ITPMMA algorithm, against both Cannon Aigorithm, and 

Fox Aigorithm. These four groups are: 

1. Several sizes of matrices, where the matrices size is multiple of the number of 

processors, to address the speedup aspects, Table 4-2. 

2. Several sizes of matrices, where the matrices size is not multiple of the number of 

processors, to address the load balance aspects, Table 4-3 and Table 4-4. 

3. Non-square matrices with different number of processors, to address the load 

balance aspects, and to address the advantages of ITPMMA algorithm over other 

algorithms in dealing with this case, non-square matrices multiplication, Table 4-5. 

4. Fixed sizes of matrices with different number of processors, where the matrices size 

is multiple of the number of processors, to address the performance, where fewer 

resources (number of processors) are needed by ITPMMA algorithm less than 

resources needed by other algorithms to do the same task, Table 4-6. 



62 

4.3.1. Speedup ca/cu/ations 

Speed up of a parallel algorithm is the time consumed in execution the parallel algorithm 

divided by the time consumed in executing the same problem in seriaI mode. In this test, 1 

have used different sizes matrices and multiplied them in seriaI first, then in paralleL 

Parallel execution repeated three times, the first time, 1 have used ITPMMA algorithm, 

while the second time 1 have used Cannon Aigorithm, and the third time 1 have used Fox 

Aigorithm. In this test, 1 have used the matrices size as multiple of the number of the 

processors to guarantee equaled distribution of the data blokes on the processors for both 

Cannon and Fox Aigorithms, to guarantee full efficiency of both algorithms, while this is 

not the case for ITPMMA algorithm to guarantee equaled distribution of the data. These 

tests show the speed of ITPMMA algorithm over both Cannon and Fox Aigorithms. Table 

4-2, shows the readings ofthese tests. 

For matrix multiplication of size 32768x32768 and double precision floating point type -

each element of the matrix occupy 8 bytes, ITPMMA algorithm needs 1098 seconds to 

complete this operation over 16 processors. While, Cannon Aigorithm needs 6010 seconds, 

Fox Aigorithm needs 7150 seconds, over the same conditions and same number of 

processors. Full comparison of the time consumed for different matrices size for the 

different algorithms, and the speed up are shown on Table 4-2. In figure 4-4 speed up of 

ITPMMA·algorithm against both Cannon and Fox Algorithm. 
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Table 4-2 Different sizes of matrices with 16 processors in paraIlel, where the matrices size 
. 1 . r d fth b f IS mu tlpllcan 0 enum er 0 processors. 

Algorithm 
.Matrix SÎle 

128 512 1024 2048 40% 8192 16384 32768 

Processing Time 
li Seri3l 40.00 222,00 535.00 ii 998,00 1900,00 3810;00 7900,00 16300,00 

ITPMMA 3,00 17,00 40,00 75,00 130,00 251,00 499,00 1098,00 

Cannon 11,00 65,00 152,00 320,00 605,00 1400,00 2700,00 6010,00 

Fox 14,00 88,00 212,00 430,00 820,00 1701,00 3980,00 7150,00 

ITPMMA 

Task- {} 5 112 181 356 455 565 601 

Adjustment 
Speedup 

ITP~L<\ 13,33 13.()6 13,38 13.31 14,62 15,18 

Cannon 3,64 3,42· 3,52 3,12 3,14 2,72 

Fox 2,86 2.52 2,52 2,32 2,32 2,24 

Speed Up 
18 ~------------------------------------------------

16 r---------------~==~~~~~~ 
14 +---------------------~~~~---------------------­--
12 +-------------------------------------------------
10 ----.--.. -.-... ----.... -... ---------.. --.... --.. -.. ----.-.. -... ----.--.. -.. --.--.. -.----.. --.--.---.... --.-

6 +-------------------------------------------------

o ~------------------------------------------------
128 512 1024 2048 4096 8192 16384 32768 

Matrix Size 

15,83 14,85 

2,93 2,71 

1,98 2,28 

- ITPMMA 

- Cannon 

- FOX 

Figure 4-4 ITPMMA Algorithm Speed up against both Cannon Algorithm, and Fox 
Algorithm where the matrices size is multiplicand of the number of processors 

From Table 4-2 we can notice that the processing time at small size matrices are close to 

each other for aIl algorithms, then it diverges as the size of the matrices increases. It is quite 

clear the differences between the results of ITPMMA algorithm against both Cannon 
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Aigorithm, and Fox Aigorithm. The resources and the data - the matrices - are identical in 

this test; it is only the way of processing. For ITPMMA algorithm, each element of the 

result matrix will be produced by one single processor, while this is not the case for the 

other two algorithms, where several processors will work in producing each element of the 

result matrix. To produce one element of the result matrix in case of A32768, 32768 x B32768, 

32768, a raw of matrix A to be multiplied by a column of matrix B, element by element and 

then to sum up the results to produce the result matrix element, that is total of 32,768 

multiplication operations and 32,768 addition operations, with total of 65,536 operations, 

utilizing its advanced capabilities of multicore and different level of cache memories. In the 

case of ITPMMA algorithm, one single processor will be processing these 65,536 

operations, while the other two algorithms, several processors will share these operations as 

each processor will work on a small block size of matrix A and B, and then, each processor 

will send its local results to other processor - which could be on ho Id waiting the results of 

other processors because of the high data and functionally dependencies of Cannon and 

FOX algorithms - to complete the processing of several elements of the result matrix once. 

Sending the local result of each processor to other processor(s) it is time consuming, in 

addition to that, sorne processor will complete processing its current block, and then staying 

on ho Id till it receives the local result of other processor(s). So 1 conclude here that the 

difference between ITPMMA algorithm and Cannon and Fox algorithms are: 

1. The time consumed in sending local results to other processors in both Cannon and 

Fox algorithms increases as number of processors increases and as number of 

blocks increases, while it is zero in ITPMMA algorithm. 
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2. The time, where sorne processors stay on hold waiting local results of other 

processor( s) to complete its task, or to start new tasks in both Cannon and Fox 

algorithms fluctuate from time to time and from processor to processor, while it is 

zero in ITPMMA algorithm. 

Finally, the above two advantages of ITPMMA algorithm make it faster than Cannon and 

Fox algorithms. 

4.3.2. Load balance calculations 

Load balance implies all processors will do the same size of work, for example, same 

number of same types of operations on same type of data. In heterogeneous parallel 

environment, the above deflnition is not fruitful as long as the processors of the 

environment have different capabilities in term of computing power, nodes, and cache 

levels and sizes; so we are interested in keeping all processors working, and not turned idle 

as long the whole operation of matrix multiplication is not completed yet. In this sub 

chapter, 1 will consider two groups of experlments: 

1. Different sizes matrices being multiplied by different algorithms with same number 

of processors, where the matrices size is not multiple of the number of processors. 

In this case, the load of data is not multiple of the number of processors, this issues 

being solved for both Cannon and Fox Aigorithms by padding zeroes to the 

multiplied matrices, so its size is multiple of the number of processors, so each 

matrix will be divided in several blocks where each block size is N/p, where N is 

the size of the matrix and p is the number of the processors in use. This implies 

multiplying more size matrices - with extra data to be multiplied, while these data is 
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not needed - in case of Cannon and Fox Aigorithms, more than the size of the 

multiplied matrices in case of ITPMMA algorithm. This experiment will show the 

vast differences between the time needed to carry out the matrices multiplication of 

the three algorithms, to show the poomess of the load balance strategy used by both 

Cannon and Fox Aigorithms, which implies padding zeros to have the optimized 

matrices sizes, which will consume same time as matrix have adjusted size. 

2. Non-square matrices with different number of processors, to show much worse case 

for both Cannon and Fox Aigorithms, where the multiplied matrices are not square 

too, which implies padding more zeroes to adjust the both number of columns and 

number of rows of the multiplied matrices to be multiple of the number of the 

processors in use. Again we will see vast difference between the results of 

ITPMMA algorithm and Cannon and Fox Aigorithms. This experiment in addition 

the previous experiment, shows the absent of load balance concept and strategy at 

both Cannon and Fox Aigorithms, while it is a default concept at ITPMMA 

algorithm. 

Table 4-3 multiplying different sizes of matrices on 16 processors, where the matrices size 
is not multiplicand of the number of processors (balanced load will be clear with 
ITPMMA algorithm). 

Algorîthm 
MatrL" Size 

100 500 700 1000 1200 2000 3000 5000 

Processing Time 
SeriaI 39 210 322 525 645 978 1499 2494 

ITPl\.1M. .:\ 2.50 14.00 21.00 34.00 42.00 63.00 98.00 166.00 

Cannon 11.00 66.00 150.00 150.00 270.00 270.00 389.00 700.00 

Fox 16.00 80.00 210.00 210.00 391.00 391.00 588.00 978.00 

Speed.up 
ITPMMA. 15.60 15.00 1533 15.44 15.36 15.52 1530 15.02 

Cannon 3 . .55 3.18 2.15 3 . .50 2.39 3.62 3.85 3.56 

Fox 2.44 2.63 L53 2.50 1.65 250 2.55 2.55 
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Figure 4-5 Speed up of ITPMMA algorithm against both Cannon Algorithm, and Fox 
Algorithm where the matrices size is not multiple of the number of processors 

The differences between the above tests are so clear conceming time of execution, since 

sorne processors in case of Cannon and Fox Algorithms are busy with multiplying extra 

zeroes data being padded to matrices to flx its sizes, to let the processors accept the blocks 

have sorne . actual data, while the remain of the block data is just zero es to complete the 

block to the defmed size. Different block sizes can have better effects for both Cannon and 

Fox Algorithms. For example for matrices size 100 and number of 16 processors in paraIlel, 

to calculate the block size 100/16 = 6.25, so both multiplied matrices to be padded by extra 

zeroes to be able to generate blocks of 7 size, so the matrix size will be 7 * 16 = 112, so aIl 

processors will keep busy all the time of the multiplication operation of matrix size of 112 

instead of 100 for both Cannon and fox algorithms but not for ITPMMA algorithm. 
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Table 4-4 comparison between different size matrices multiplication, where the size of the 
matrices are and of the OrC)CeiSSOrs 

128 4096 8192 16384 32768 
3 130 251 499 1089 
11 605 1400 2700 6010 
14 820 1701 3980 7150 

Matrix Size 

500 700 1200 2000 3000 5000 
4,]4 21 42 98 166 

d,? 66 ", 150 270 270 389 700 

80 210 391 391 588 978 

By having a look at Table 4-4, data being summarized from Table 4-2 and Table 4-3, it so 

obvious that Cannon algorithm needed 11.0 seconds to multiply matrices of size 128 at 16 

processors, which is equa1 the time needed Il.0 seconds to multiply a smaller matrix size of 

100, at the same number of processors. Whi1e the case is different when ITPMMA 

algorithm is used, where 3 seconds where enough to multip1y 128 matrices sizes while 2.5 

seconds were needed for multiplying 100 matrices sizes at the same number of processors. 

Similar cases cou1d be noticed at the matrices of size 512 and 500, 1024 and 1000, 2048 

and 2000, as shown in Table 4-4 and Figure 4-6. 

On the other hand, mu1tip1ying matrices of sizes 700 and 1000 consumed 150 seconds by 

Cannon and 210 seconds by Fox algorithms, while multiplying matrices of sizes 700 

consumed only 21 seconds using ITPMMA algorithm, and mu1tip1ying matrices of sizes 

1000 consumed only 34 seconds, which implies the successful load balance strategy 

app1ied by ITPMMA a1gorithm, Table 4-3, Figure 4-5. 
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Figure 4-6 Matrices multiplication of size multiple and non-multiple of the processors in 
use 

The third and fourth groups of experiments ho Id in this sub-chapter are shown in Table 4-5 

and Figure 4-7. Here, 1 have considered more limitation ofboth Cannon and Fox algorithm 

for generating the blocks when the matrices in is non-square plus its sizes is not multiple of 

number of processors in use. 

Table 4-5 Non-square matrices -750 x 700 - with different number ofprocessors 

Algorithm 
Number ofProcessors 

2 4 16 32 64 128 

ITP~>L4. 112 58 30 16 9 5 

Cannon 589.00 297.00 152.00 120.00 85.00 65.00 

Fox 756.00 400.00 212.00 135.00 92.00 75.00 
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Figure 4-7 Parallel Processing Time ITPMMA algorithm against both Cannon Aigorithm, 
and Fox Aigorithm where the matrices size of 750x700 is not multiple of the 
number of processors 

Last two tests show clearly that multiplying two matrices of size 750x700 using Cannon or 

Fox Aigorithms needs same time as multiplying two matrices of size 1 024x 1024 using the 

same algorithm. while the result was completely different when using ITPMMA algorithm, 

where the time needed for multiplying two matrices of size 750x700 is less than the time 

needed to multiply two matrices of size 1024xl024 by about 4/34=11.7%, while the for 

both Cannon and Fox algorithms, the time consumed to multiply two matrices of size 

1024x1024 on 16 processors is 152 and 212 seconds respectively, which is the same time 

consumed by both algorithms to multiply two matrices of size 750x700 on 16 processors. 

The test been conducted for several different numbers of processors, where it is so obvious 

in figure 4 -8, A, B, C. 
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Figure 4-8 Parallel Processing Time for matrices multiplication of two different sizes 
750x700, and l024xl024. A: ITPMMA algorithm, B: Cannon Algorithm, C: Fox 
Algorithm 
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4.3.3. Efficiency Ca/cu/ations 

The efficient implementation of certain algorithm implies the maximum utilization of the 

resources, which are the processors in parallel processing. In the test below, 1 have applied 

same matrix data and size at several numbers of processors for the three algorithms, 

ITPMMA, Cannon and Fox Aigorithms, so the mathematic operations will be same in 

number and size, since 1 am using the same matrices. So the different in processing time is 

result of time consumed in non-common tasks - in both Cannon and Fox algorithms -

where it is absent in ITPMMA algorithm, like: 

1. Podcasting the data blocks over the parallel environment using MPI library. 

2. Communication among processors and sending the local results of each processor to 

the adjacent processors, so it cames out its tasks. 

3. The time that some processors stay on hold as a result of data dependencies, which 

is fluctuate from case to case. 

4. The time that some proce~sors turned idle, as no more tasks to be executed. 

After processing the matrix multiplication of matrices of size 1024 using the three 

algorithms Cannon and Fox and ITPMMA, on different number of processors, time of 

execution is summarized in Table 4-6, and Figure 4-9. 

Table 4-6 Fixed size of matrices with different number of processors, where the 
matrices size is multiple of the number of processors 

Algoritbm 
Number of Proc.essors 

2 4 16 32 64 128 

ITPMl\1...<\ 180.00 79.00 40.50 20.30 10.10 5.06 
Cannon 589.00 297.00 152.00 120.00 85.00 65.00 

Fox 756.00 400.00 212.00 135.00 92.00 75.00 
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Figure 4-9 ParaUe1 Processing Time for ITPMMA algorithm against both Cannon 
Aigorithm, and Fox Algorithm where the matrices size is multiple of the number of 
processors for matrices of 1 024x 1 024 

In fact, calculating the exact time consumed on non-common tasks listed above was not 

possible because of the lack of functions provided by the operating system of Guillimin 

cluster at CLUMEQ super computer. 

4.3.4. Performance ca/cu/ations 

In performance calculation, 1 will compare the performance of ITPMMA algorithm by 

Cannon and Fox algorithm using the time of execution only. Unfortunately, 1 do lack for 

the tools to calculate the size of memory - RAM and Cache - utilized for each execution. 

AIso, 1 do not have tools at CLUMEQ to calculate the utilization of the processors time, 

wither as whole or individuaUy. For that, 1 will consider the start and end time of the whole 

execution, supposed the same resources - same hardware - have been used in aU 

executions. For example, for multiplying matrices of 1024 size using Cannon Aigorithm on 
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64 processes needs 85 seconds, while same job - multiplying matrices of 1024 size -

could be achieved using ITPMMA algorithm on 4 processors at 79 seconds. So 1 would say 

that ITPMMA algorithm performance is 64/4= 16 time over Cannon Aigorithm, in this 

case, according to Table 4-6. Figure 4-10 uses bubbles to show the execution time for 

multiplying matrices of 1024 size using the three algorithms, ITPMMA, Cannon and Fox, 

at different number ofprocessors that is 2, 4, 16, 32, 64, and 128 processors. It is obvious 

that the green blue at processor 64 is close to the red bubble at processor 4, which confirms 

that ITPMMA algorithm needs fewer resources than what Cannon algorithm needs to 

complete same tasks at same time. 

Execution time for multiplying two matrices of size 1024 over different number 
ofprocessors using ITPMMA, Cannon, and Fox algorithms 
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The performance of ITPMMA algorithm shown in the last experiment implies its 

advantages of other two algorithms, Cannon and Fox. 

4.4.Conclusion 

In this chapter, 1 have applied several experiments on CLUMEQ supercomputer, to 

evaluate the speedup, efficiency and the performance of ITPMMA algorithm against very 

well-known algorithms in parallel matrix multiplication, Cannon and Fox algorithms. 

The experiments showed obviously the vast differences between the three 

algorithms in terms of speedup, efficiency and the performance. In fact, this vast difference 

return to the fact, that both Cannon and Fox algorithms which being developed about four 

and half decades ago, both algorithms do not consider the development and the advances in 

computer architecture which added to the computer different level of cache memories, and 

different number of cores; also, the vast size of RAMs available nowadays for use, in 

addition to the new address bus mother boards, which has reached 64 bits. Another basic 

reason is the communication time between the processors which consume time more than 

the time for execution the multiplication. 

Finally, 1 would like to state, upon the experiments being hold in this chapter, and 

upon the results being obtained, that Cannon Aigorithm and Fox Aigorithm, and other 

algorithms based on blocking the input data onto smaller blocks, these algorithms which 

have been developed based on poor computer architecture in term of RAM and single core 

and absent of cache memories, these algorithms become part of the past. While new era 

will be open for ITPMMA algorithm, and for algorithms base on defining the problem in 
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tenn of smaller size problem, to avoid data exchanged between processors and to avoid 

dependency of sorne processors, let us caU them x processors, on the output of other 

processors, let us caU them y processors, which if y processors fail, the whole algorithm 

will fail. 



Chapter 5 - The clustered 1 Dimension decomposition 
technique 
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Implementing aU numerical problems as independent tasks is not within hands 

always. So, within the novel frame work for paraUel processing we developed new data 

decomposition technique, called clustered 1-dimension decomposition technique, to 

overcome the limitation of different data decomposition techniques which have been 

utilized by different parallel algorithms, which were the primary idea behind the parallel 

processing, and to reduce communication time among processors. One dimension and two 

dimensions' data decomposition techniques dominate since the start of parallel algorithm 

on 1969. Data decomposition techniques irnply performing two tasks: 

a. Mapping array of processes into n-dimensional grid. 

b. Distributing data over process grid 

5.1.Previous work 

Over the last few years, a lot of attention was paid to load balancing for linear 

algebra kemels. One-dimensional data decomposition is used in different applications and 

computational kemels [66, 67]. Sorne few customizations for linear algebra problerns were 

proposed in [68,69]. 

Kalinov and Lastovetsky [70, 71] proposed extension of two-dimensional data 

decomposition. Their data decomposition technique has the same disadvantage as the 

technique ofCrandaU and Quinn and Kaddoura et al. Barbosa at al [72]. 
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Beaumont at al [69, 73] stressed attention on intercoupling ofmapping ofprocesses 

into 2D grid and data distribution. Crandall and Quinn [74] have developed three-

dimensional decomposition technique, which suffers from heavy data dependences. 

5.2. One and two dimensions' data decomposition techniques 

One and two dimensions' data decomposition techniques dominate on parallel 

algorithms since 1969. The best way to present the se techniques is to solve Laplace 

Equation using Gauss-Seidel method shown in equation 5-1. 

Eq.5-1 

Can be solved using Gauss-Seidel algorithm using the following seriaI pseudocode 

repeat until conv ergence 
for i from 1 unti l n do 

C ~ 0 
for j from 1 until n do 

if j 1 i then 
C~C+Aij *Cj 

end if 
end (j-loop) 

Ci ~2.. (hi - c) 
Aii 

end (i-loop) 
c heck if conve r gence is reached 
end (repeat) 
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Figure 5-1 Laplace Equation problem presentation, reds are boundary points while 
blue are interior points 

Figure 5-1 present Laplace Equation problem, where red color are the boundary 

points and it is given, while the blue points to be calculated using equation 5-1. For parallel 

solution, the matrix of Laplace equation be decomposed and distributed among the 

processors. For that we have two classic techniques: 

a. One-dimension data decomposition, shown in Figure 5-2. 

b. Two dimensions' data decomposition, shown in Figure 5-3. 
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Figure 5-2 ID Decomposition 
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Figure 5-3 2D Decomposition 
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2D decomposition suggests better performance since processors 2 and 3 work at the 

same time, so, processor1 starts working, once it is over, processors 2 and 3 start 

immediately since aIl input data, including boundary points, are available. Figure 5-4 shows 

the Data Dependency in 2D decomposition algorithm. 

J 1 1 r 

!~~r-
Figure 5-4 Data dependency of 2D Decomposition 

Table 5-1 shows the results of several experiments being conducted on 2 

dimensions' a1gorithm. Still, while processor 1 is working, other three processors are idle, 

and while processors 2 and 3 are working, processors and 4 are idle, and while processor 1 

is working, other three processors are idle, which implies poor resource utilization. 
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Table 5-1 Parallel Laplace' s Equation Solution using Gauss-Seidel Iterative method on 2D 

Teat ID 1 2 3 4 5 6 
Matrix Size (n) 48 96 192 48 96 192 

Number of processors 
4 4 4 16 16 16 

(nproc=nblock*nblock) 

Decomposition (Number of 
4 4 4 16 16 16 the blocks) 

Node edge (nodeedge) 24 48 96 12 24 48 

ts (Seriai processing time) 1 2 8 1 2 8 
tp (Parallel processing 

0.866 3.192 5.2 39 30.845 166.303 254.562 rime) 
Speed up 1.155 0.626 1.527 0.032 0.012 0.031 
Efficiency 0.288 0.156 0.381 0.002 7·50E-04 0.002 

5.3.Clustered one-dimension data decomposition technique 

The new decomposition technique guarantees better resources utilization, so idle 

time of processors will be reduced. In ID decomposition computing power is %25 since 

one processor works at a time, and the speed up equals to zero, as shown in Figure 5-5. 
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Figure 5-5 ID decomposition technique, total time units is 196 units 
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While computing power is better in 2D decomposition, since processors 2 and 3 

work at same time, the speed up is 1.33, so the job will be completed within %75 of the 

seriaI processing time, as shown in figure 5-6. But we should expect 4 speed up since we 

use 4 processors. In the suggested algorithm, we reached speed up of about 3.5 times. 

Figure 5-7 shows the data decomposition of the new algorithm, and figure 5-8 shows the 

processors utilization of the new data decomposition technique. 

39 41 

• 29 30 31 3.2 33 34 

• 22 .23 24 25 26 27 

• 15 16 11 18 19 .20 

• 8 9 10 11 12 13 

• 1 .2 3 4 5 6 

• • • • • • • 
Processor l 

Processor 4 
••• ".:::<, 

l,i2Ji) 121 '122 :L:i~t~4 1iS 12;'~ 

",î13 1:14 .115 1,lt; 1;111;18 11;$l • 
.:~. .c" ';'.,- -;. : .... , -:'.,. }:::>.' ',. ·:':··':""',;i. ::tt:,t: ,,";...:. 

;B; 

,:,,~, ",,86 ~7 88 

35 78 7CJ 80 8l S~ 83 
S~ 

11 
'";:;:i 

74 
q~.? 

28 12 73 15 16 
21 64 65 66 ~7 68 69 

14 51 58 59 p1) ql ~~ ;'::'~ ~.: .. ,~ ':.X:"-: 

7 50 51 5.2 53 54 55 .. • ':":,: 

• • • • • • ., • 
Processor 2 

Figure 5-6 2D decomposition technique, total time units is 147 units 
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Figure 5-8 Clustered ID decomposition processors utilization 

5.4.Analytical Analysis 
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For ID decomposition, each process holds n x n/p sub-grid, while for 2D 

decomposition each process holds ni JP x ni JP sub-grid. For clustered ID 

decomposition each process holds n x c, repeatedly, where c is the cluster size. In fig 4, c 

equals to 3. 
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Sequential time Ts = (N - 2)2 X tcalc, where tcalc equals the time to calculate the 

value of one element in the grid. 

S.S.Experimental Results 

Several experiments have been carried out on the clustered l-dimension data 

decomposing the same tests being carried out into 2 dimensions data decomposition 

technique. The results are shown in the table below: 

Table 5-2 Parallel Laplace' s Equation Solution using Gauss-Seidel Iterative method on 
Clustered 1 D 

Teat ID 7 8 9 10 U u 
Matrix Size (n) 48 96 192 48 96 192 

Number of processors 
4 4 4 16 16 16 

(nproc=nblock*nblock) 

Decomposition (Number of 
48/12=4 96/12=8 192/12=16 48/12=4 96/12=8 192/12=16 the blocks) 

Node edge (nodeedge) 96 384 1536 24 96 384 
ts (Seriai processing time) 1 2 8 1 2 8 

tp (Parallel processing 
0.6u 1.076 3.61 0.204 0.448 1.569 time) 

Speed up 1.637 1.858 2.216 4.902 4.464 5.099 
Efficiency 0.409 0.465 0·554 0.306 0.279 0.319 

Figure 5-9 shows the speedup and efficiency of parallel gauss-seidel iterative 

solution of Laplace' s equation in 2 dimensions, where the speedup and efficiency drop 

when matrix size increased to 96 for the half, and raised up when matrix size increased to 

192. Figure 5-10 shows the same parameters of speedup and efficiency of parallel gauss-

seidel iterative solution of Laplace' s equation in clustered l-dimension data decomposition, 

where we can see the advantages of the in clustered 1 dimension data decomposition 

technique. Figure 5-11 and 5-12 compare the speed up of the parallel gauss-seidel iterative 

solution of Laplace' s equation over both data decomposition techniques, on 4 processors 

and 16 processors respectively. 
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2 Dimension Decomposition 
- Speed up - 4 processors - Efficiency - 4 processors 

- Speed up - 16 processors - Efficiency - 16 processors 
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Figure 5-9 Speed up and efficiency of paraUel gauss-seidel iterative solution of Laplace' s 
equation in 2 dimentions 

Better speedup has been achieved. Speed up of 42%, 296%, and 180% at 4 

processors for matrix size of 48, 96, 192 respectively, as shown in figure 11. While at 16 

processors, better speedup has been achieved, it was about 5 using clustered 1-dimension 

data decomposition, while there was no any speed up using 2 dimensions data 

decomposition, where the seriaI algorithm is faster than the paraUel algorithm, as shown in 

figure 12. 

It is noticed that the speed up at clustered 1 dimension data decomposition using 16 

processors at 96 matrix size is less than in case of matrix size is 48 or 192, which is a direct 

result of more overhead communication between the processors, where it has been reduced 

when the matrix size is more huge in size, which implies the scalability of the paraUel 

gauss-seidel iterative solution of Laplace' s equation in clustered 1 dimension data 

decomposition. 
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Figure 5-10 Speed up and efficiency of paraUe1 gauss-seidel iterative solution of 
Laplace' s equation in clustered 1 dimensional decomposition 
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Figure 5-11 Speed up of paraUel gauss-seidel iterative solution of Laplace' s 
equation in both data decomposition techniques at 4 processors 

Speed Up at 16 processors 
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Figure 5-12 Speed up ofparaUel gauss-seidel iterative solution of Laplace's 
equation in both data decomposition techniques at 16 processors 

Figure 5-13 and 5-14 show comparison of the speed up and efficiency of paraUel gauss-
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seidel iterative solution of Laplace' s equation in c1ustered ID vs Decomposition 2D, for 

four and sixteen processers respectively. 
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Figure 5-13 Speed up and efficiency of paraUel gauss-seidel iterative solution of Laplace' s 
equation in clustered ID vs Decomposition 2D, for four processers 
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Figure 5-14 Speed up and efficiency of paraUel gauss-seidel iterative solution of Laplace' s 
equation in clustered ID vs Decomposition 2D, for sixte en processers 

Finally, 1 have carried out the tests for very large matrices sizes on 128 processors, where 
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we have used matrices of size 1024,4096, 16384,65536,262,144 and 1,048,576. The tests 

been carried out using both algorithms Decomposition 2D and c1ustered ID, as shown in 

Figure 17 and 18 respectively, while figure 19 shows the comparison between them, where 

the speed up vary from Il times to 197 times. 

Table 5-3 Speed up and efficiency ofparallel gauss-seidel iterative solution of Laplace's equation 
in Decomposition 2D, for 128 processers, for very large matrices sizes 

Test ID 13 14 15 16 17 18 

Aigorithm Decomposition 2D 

Matrix Size 1024 4096 16384 65536 262144 1048576 

Number of processors 128 128 128 128 128 128 

Decomposition 
1024/8=128 512 2048 8192 32768 131072 

(number ofblocks) 

Node edge 
Ts (seriaI processing 

55 229 1647 NA NA NA 
time) 

Tp (ParaUel processing 
8 101 135 25847 NA NA 

time) 

Speed up 6.77 2.28 12.2 NA NA NA 

Efficiency 0,054 0,018 0,095 NA NA NA 

Table 5-4 Speed up and efficiency of paraUel gauss-seidel iterat~ve solution of Laplace' s 
equation in Clustered ID, for 128 processers, for very large matrices sizes 

Test ID 19 20 21 22 23 24 

Aigorithm Clustered ID 

Matrix Size 1024 4096 16384 65536 262144 1048576 
Numberof 

128 128 128 128 128 128 
processors 

Decomposition 
1024/8=128 512 2048 8192 32768 131072 

(number ofblocks) 

Node edge 16 64 256 1024 4096 16384 
Ts (seriaI processing 

55 229 1647 NA NA NA 
time) 

Tp (ParaUel 
0.75 23 66 131 399 958 

processing time) 



Speed up 73 10 25 NA NA NA 
Efficiency 0.57 0.07 0.19 NA NA NA 

Table 5-5 Speed up comparison for clustered ID vs Decomposition 2D for paraUel gauss-seidel 
iterative solution of Laplace' s equation in, for 128 processers, at very large matrices size 

Matrix Size 1024 4096 16384 65536 262144 1048576 

Tp (Decomposition 2D 
8 101 135 25847 NA NA 

parallel processing time 

Tp (Clustered ID parallel 
0.75 23 66 131 NA NA 

processing time 

Speed up of clustered ID 
11 4 2 197 NA NA 

over Decomposition 2D 

It is obvious that clustered ID is scalable compared with Decomposition 2D technique. 

5.6.Conclusion 
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The advantages of clustered 1 dimensional decomposition technique over 2D 

decomposition are quite obvious. It reduces the communication among the processors, on 

the other hand, it utilizes the processors time better, which results in higher efficiency than 

before. The speed up of c1ustered 1 dimensional decomposition ranges between 1.5 and 5 

while efficiency ranges 30% and 55%. For 2D decomposition, the speed up ranges between 

0.012 and 1.527 while efficiency ranges 0.075 % and 38.1 %. 
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On the other hand, the scalability of c1ustered ID decomposition technique for 

carrying the calculation at very large matrices size exceeded 1 million elements, is very 

obvious; 2D decomposition algorithm technique could not carry out the ca1culations and 

there were no results. 



Chapter 6- Conclusion and Recommendation 

The factors to be considered when evaluate parallel algorithms are: 

2. Accuracy, where the result of the seriaI and parallel are same. 

3. Efficiency, which implies the full successful utilization of the resources. 

4. Stability for different type and size of resources. 

5. Portability, which is hardware independent. 

6. Maintainability, where the algorithrn can solve different sizes of the problem at 

different number of resources. 

To gain high parallel efficiency, three figures must be minimized: 

1. Communication costs. 

2. Load imbalance level. 

3. Dependency level. 
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ITPMMA could minimize these three figures by redefining the problem in terms of several 

independent problems, as much as we can, keeping the three figure at lowest, so we grantee 

full successful utilization of the resources. 

The term defming the problem in terms of several independent problems is requiring full 

understand of the hardware resources, which include the amount of cache memory 

available , size of RAM in use, motherboard address system, 32 or 64 bits, number of cores 
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in the processor. AIso, the operating system methodology for managing the users' tasks is 

important to manage distributing cost of the data to the different processors. 

In this thesis, several parallel matrix multiplication algorithms have been studied in details, 

and an advanced algorithm has been developed to address the drawbacks of the existing 

algorithms and address the advances in the modem processors architecture, which use multi 

cores per processor, plus the advances in the availability of severallevels of cache memory, 

on one single chip. 

In summary, l have addressed four essential issues in the design of parallel independent 

subtask algorithms: 

1. Reform the problem in terms of independent tasks, to reduce the communication 

time to zero. 

2. Load balancing. 

3. Efficiency of the processors. 

4. Compatibilitywith both homogenous and heterogeneous environment ofprocessors, 

so the algorithm do es not require certain amount of cache memory for example, or 

any certain hardware requirement. 

On the other hand, for numerical problems that we could not redefine it in term of 

independent tasks, new data decomposition techniques has been developed to minimize the 

three figures of: 

1. Communication costs. 

2. Load imbalance level. 
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3. Dependency level. 

6.1.Future Research Directions 

Large-scale computing clusters of parallei heterogeneous nodes equipped with multi-core 

processing units are getting increasingly popular in the scientific community as weIl as in 

commercial community since it provides mainframe computing power at low priee. To 

advance the developing of parallei programming algorithms, a lot of work to be done in this 

filed, and this could be summarized as following: 

1. Common intermediate results to be executed at certain server and to be broadcasted. 

The communication between processors are eliminated in ITPMMA algorithm, while 

the intermediate results, which was material of exchange messages, will be generated 

locally at each processor needs any, as the time consumed in generating these 

intermediate result is less, and cannot be compared by the time of communication, 

especially in light of the high in-cache memory available with modem processors. But 

still, there is enough room to analyze this issue and study it, so the intermediate results 

to be utilized and to be transferred to the processors that it need it, while these 

processors are busy executing another operation. 1 have utilized intermediate results in 

solving Laplace equation using Jacobi iteration - which is shown in chapter 5. 

2. To consider the new architecture of the dual cores, and quad cores and multi cores. 

When looking at Strassen's matrix multiplication [52], Strassen achieved success in his 

algorithm by replacing computationally expensive MMs with matrix additions (MAs). 

For architectures with simple memory hierarchies, having fewer operations directly 

translates into an efficient utilization of the CPU and, thus, faster execution. However, 
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for modem architectures with complex memory hierarchies, the operations introduced 

by the MAs have a limited in-cache data reuse and thus poor memory-hierarchy 

utilization, thereby overshadowing the (improved) CPU utilization, and making 

Strassen's algorithm (largely) useless on its own. WeIl, we do need to consider the new 

modem architectures with complex memory hierarchies, as there is new approach 

recently started recently targeting new processors architecture as in [44,46, 75] 

3. Memory allocation for huge matrices. Another issue to be addressed in matrices 

multiplication and any other algorithms deal with massive amount of data. This issue is 

being addressed in [76]. In fact, a lot ofwork to be done in this field, when we take the 

architecture of the modem processors, which has a lot of in-cache memory. 

4. Data flow and data decomposition techniques to be advanced, by following backward 

view strategy that is to look at the result of the numerical problem and to divide it to 

smaller tasks. 

5. Finally, this topic, parallel processing is not limited for matrix multiplication, it is 

being used heavily in so many classic field as mentioned in the introduction; in fact, it 

extended recently on the world of database, where billions of records to be 

manipulated, and it is so compatible with independent tasks. 
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Appendix A- Basic Linear Algebra Subroutine (BLAS) 

In 1973, Hanson, Krogh, and Lawson adopted a set of basic routines for problems in linear 

algebra, which known later as basic linear algebra subprograms (BLAS) fully described in 

[77, 78]. 

It contains subprograms for basic operations on vectors and matrices, to achieve high 

performance for calculations involving linear algebra. So, instead of processing one 

multiplication or one addition operation, the compiler will send block of data (vector or 

matrix) to the processor to be executed. Linear Aigebra Package (LAPACK) is a higher­

level package built on the same ideas. There are three levels ofBLAS subroutines: 

1. Levell (or LI BLAS): for operations between vectors, such as y = ax + y, where the 

complexity O(n) operations. 

2. Level 2 (or L2 BLAS): for operations with matrices and vectors, such as in the 

equationy = aAx + by, where the complexity O(n2
) operations. [79, 80]. 

3. Level3 (or L3 BLAS): for operations with matrices, such as C = aAB + bC, where 

the complexity O(n3
) operations. 

The performance obtainable by each subroutine of level 3 BLAS is similar to the one that 

can be obtained with matrix multiplication. [81]. 

Unfortunately, this approach of software construction is often not weIl suited to computers 

with a hierarchy ofmemory (such as global memory, cache memory, and vector registers) 

and true parallel-processing computers, like multi cores (dual and quad cores) computers; 
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Linear algebra algorithms have to be reformulated or new algorithms have to be developed 

in order to take advantage of the architectural features on these new processors, [82]. 

New functions to be included afterwards in level 3 BLAS, to consider the multi-core 

processors, like the function xGEMM (matrix multiplication) multi-core implementation 

being presented on BittWare's Anemone floating-point FPGA co-processor that has 16-

core Epiphany cores on an eMesh, [83]. 
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Appendix B- Parallel Matrix Multiplication Aigorithms 

B.l. PUMMA (ParaUel Universal Matrix Multiplication) 

PUMMA[84], SUMMA, and DIMMA are numerical algorithms for dense matrices on 

distributed- memory concurrent computers are based on a block cyc1ic data distribution 

[85]. The tbree algorithms have the same matrix-point of-view and processor point-of-view 

as shown in the figure below: 

Figure B-Q-l matrix-point of-view and processor point-of-view for PUMMA, SUMMA, 
andDIMMA 

The figure above shows that processor Pl will produce the yellow cells of the result matrix, 

while processor P2 will produce blue cells of the result matrix, and processor P3 will 

produce orange cells of the result matrix, and so on. So, each processor has several blocks 

of the matrices A and B, need to be passed to the processors, PUMMA [86] suggested tbree 

variant distributions of the algorithm: 

1. Single Diagonal Broadcast: Only one wrapped diagonal is column cast in each 

stage. In implementing the algorithm, the size of the sub matrices multiplied in each 
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processor should be maximized to optimize the performance of the sequential 

xGEMM routine, as shown in the figure below, where the broadcasted column is 

shown in gray, in the two adjacent broadcasting steps shown. 

;\(J% 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 ,il ' 
3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 
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Figure B-O-2 PUMMA Single Data Broadcasting 

2. Multiple Diagonal Broadcast 1 (MDBl). 

PUMMA algorithm utilize the concept of Lowest Common Multiplicand (LCM) to fmd an 

optimal size of the block where each processor can process, optimal conceming the size of 

the multiplied matrices and number of processors, so the algorithm belong to certain 

processor conceming certain block, need not to be changed for another block, i.e. each 

processor will have pro gram to process certain cells of the input matrices, while the input 

matrices will be broadcast in what is called Multiple Diagonal Broadcast 1 as shown in the 

figure below, this will result in better performance as it reduces the communication latency. 
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Figure B-Q-3 PUMMA Multiple Data Broadcasting 1 

3. Multiple Diagonal Broadcast 2 (MDB2). 

In this algorithm, the granularity if the algorithm is increased [86] and this can be 

achieved by broadcasting more diagonals to feed more processors, avoiding keep 

sorne of them idle waiting data of next operation. So and according LeM 

computation, the figure below shows MDB2 broadcasting diagonals. 
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Figure B-0-4 PUMMA Multiple Data Broadcasting 2 

However, PUMMA makes it difficult to overlap computation with communication since it 

always deals with the largest possible blocks for both computation and communication, and 

it requires large memory space to store them temporarily, which makes it impractical in real 

applications. On the other hand, PUMMA, SUMMA, and DIMMA like other algorithms, 

are not utilizing the parallel structure of the new processors like dual core processors. 

B.2. SUMMA (Scalable Universal Matrix Multiplication) 

Agrawal, Gustavson and Zubair [87] proposed another matrix multiplication algorithm by 

efficiently overlapping computation with communication on the Intel iPSC/860 and Delta 

system. Van de Geijn andWatts [88, 89] independently developed the same algorithm on 

the Intel paragon and called it SUMMA. 

In SUMMA, matrices A and B are divided into several columns and rows of blocks, 

respectively, whose block sizes are kb. Processors multiply the first column of blocks of A 
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with the frrst row of blocks of B. Then processors multiply the next column of blocks of A 

and the next row ofblocks ofB successively. 

k ) / B(k,j) 

/ 
k 
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A(i,k 

- ~ "" "'-
i 1 ......... 

~ \ '\ 
/~ 
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'~ 
~ 
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Figure B-0-5 SlJM!'v1A algorithm 

While this equation will take place 

C(i,j) = c(i,j) + LkA(i,k) * B(k,j) 

Iteration 1 2 3 1 2 :3 4 5 6 4 5 6 

1 2 :1 4 5 6 7 8 9 10 11 12 Iteration 

-r~-r-r-+-+~~-1--r-r-~l 

Figure B-0-6 SUMMA Aigorithm iterations 

As the snapshot of the figure above shows, the first column of processors PI and P4 begins 

broadcasting the first column ofblocks of A (A(:; 1» along each row ofprocessors . 



112 

The same time, the frrst row ofprocessors, Pl, P2, and P3 broadcasts the frrst row ofblocks 

of B (B(O; :)) along each column of processors. After the local multiplication, the second 

column of processors, P2 and P5, broadcasts A(:; 2) rowwise, and the second row of 

processors, P4, P5, and P6, broadcasts B(2; :) columnwise. This procedure continues until 

the last column ofblocks of A and the last row ofblocks ofB. 

In 2009 Martin D. Schatz, Jack Poulson, and Robert A. Van De Geijn [90] have extended 

SUMMA to SUMMA 3D, where each processor will multiply vector by vector and rather 

than multiplying ceU by ceU, this results in minimizing the communication time 

significantly. This development synchronize with the new architecture of multi-code 

processors, where the vectors multiplication will be paraUelized between the cores of the 

processors, Yet, 1 will have extra development in my ITPMMA algorithm rather than to 

consider the new architecture of multi-code processors to reduce the communication time, 1 

have independent sub tasks, where it is not the case in SUMMA 3D, also, 1 will not be able 

to apply vector multiplication in different problem like solving Laplace equation using 

Jacobi iteration. 

B.3. DIMMA (Distribution Independent Matrix Multiplication) 

DIMMA algorithm is based on two new ideas [91]: 

1. It uses a modified pipelined communication scheme to overlap computation and 

communication effectively. 

2. Exploits the LeM block concept -where the size of the block will be the lowest 

common multiplier of the matrices size - to obtain the maximum performance of 

the sequential BLAS - Basic Linear Aigebra Subprograms - routine in each 
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processor even when the block size is very small as weIl as very large. Basic Linear 

Algebra Subprograms (BLAS) is API which performs matrix multiplication. This 

includes: 

1. SGEMM for single precision, 

2. DGEMM for double-precision, 

3. CGEMM for complex single precision, and 

4. ZGEMM for complex double precision. 

GEMM is often tuned by high-performance computing vendors to mn as fast as possible 

because it is the building block for so many other routines. 

The figure below shows how this -DIMMA - algorithm works. The numbered squares 

represent blocks of elements, and the number indicates the location in the processor grid -

an blocks labeled with the same number are stored in the same processor. The slanted 

numbers, on the left and on the top of the matrix, represent indices of a row of blocks and 

of a column of blocks, respectively. Figure 1 (b) reflects the distribution from a processor 

point-of-view, where each processor has 6x4 blocks. 
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Processor point of view 

With this modified communication scheme, DIMMA is implemented as follows. After the 

first procedure, that is, broadcasting and multiplying A(:; 0) and B(O; :), the first column of 

processors, PO and P3 , broadcasts A(:; 6) along each row ofprocessors, and the first row of 

processors, PO, Pl , and P2 sends B(6; :) along each column of processors, as shown in 

Figure 6. The value 6 appears since the LeM ofP = 2 and Q = 3 is 6. 

For the third and fourth procedures, the frrst column of processors, PO and P3, broadcasts 

row wise A(:; 3) and A(:; 9), and the second row ofprocessors, P3, P4, and P5, broadcasts 

column wise B(3; :) and B(9; :), respectively. After the frrst column ofprocessors, PO and 

P3, broadcasts aIl oftheir columns ofblocks of A along each row ofprocessors, the second 

column ofprocessors, Pl and P4, broadcasts their columns of A. 

The parallei matrix multiplication requires 0 (N3) ops and 0 (N2) communications, i.e., it 

is computation intensive. For a large matrix, [91] the performance difference between 
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SUMMA and DIMMA may be marginal and negligible. But for small matrix ofN = 1000 

on a 16x16 processor grid, the performance difference is approximately 10%. 

DIMMA algorithm depend in dividing the matrices into small blocks, small enough to be 

utilized by the 'upper levels of the memory hierarchy like registers, cache, which is faster 

than to data in lower levels memory like RAM or any shared memory else. 

The absent point here is, the advance in the development of operating systems take this 

point in its duties, while keep transferring the data between the processors is more time 

consuming, which will result in massive success my algorithm ITPMMA. 

B.4. SRUMMA a matrix multiplication algorithm suitable for clusters and scalable shared 
memory systems (2004). 

SRUMMA algorithm [92] create list of tasks where a task computes each of the AikxBkj 

products, corresponding to the block matrix multiplication equation 

np 

Cij = l AikBkj 

k=l 

Reorder the task list according to the communication domains for processors at which the 

Aik xBkj are stored. The "diagonal shift" algorithm is used to sort the task list so that the 

communication pattern reduces the communication contention on clusters. The processor 

start producing the products, then each processor will gather the results from the other 

processors to perform the summation procedure and to pro duce the final matrix result. 
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The main advantage of this algorithm will appear with shared environment where the 

shared memory will be available like Cray Xl and the SGI Altix, where the communication 

time between processors will be reduced to almost zero. 

In clustered parallel environment, SURMMA algorithm has no significant advance. Also, it 

is not considering the new multi core CPU s, where it is parallelized. 

After three months, Manojkumar Krishnan and Jarek Nieplocha advanced their SURMMA 

algorithm [93] to improve its performance over transpose and rectangular matrices; it 

differs from the other parallel matrix multiplication algorithms by the explicit use of shared 

memory and remote memory access (RMA) communication rather than message passing. 

The new advances in SURMMA algorithm was succeful for sorne cases shown in the paper 

[93], but still suffers from Shared memory model characteristic, which is much easier to use 

but it ignores data locality/placement. Given the hierarchical nature of the memory 

subsystems in modem computers this characteristic can have a negative impact on 

performance and scalability. Careful code restructuring to increase data reuse and replacing 

fine grain load/stores with block access to shared data can address the problem and yield 

performance for shared memory that is competitive with message-passing [94, 95, 96]. 

B.5. Coppersmith and Winograd (CW) Algorithm 

This algorithm have been developed in 1987 [97] by Don Coppersmith and Shmuel 

Winograd, then being advanced later on, mainly by them [98, 99, 100]. The algorithm 

running rime has improved to 0 (n2
.
38

). The basic idea behind this algorithm is to apply 

Schonhage Theorem [101, 102], which implies embedding the matrices as elements of 

group algebra 



117 

The algorithm outlined by Jenya Krishtein as following: 

• Embed matrices A,B into the elements A, B of the group algebra C[G] 

• Multiplication of A, B in the group algebra is carried out in the Fourier domain after 

performing the Discrete Fourier Transform (DFT) of A, B 

• The product A B is found by performing the inverse DFT 

• Entries of the matrix AB can be read off from the group algebra product AB. 

This algorithm being refined in 2010 by Henry L. Cohn, Balâzs Sxegedy, Christopher M. 

Umans [103] as shown in the following fig. [3-12][3-13] 
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Figure B-0-8 Coppersmith and Winograd 2010 (112) [13] 
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Figure B-0-9 Coppersmith and Winograd 2010 (2/2) [102] 
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WeU, this algorithm was an open in developing new approach having different terms rather 

than the terms of Systolic Aigorithm, which result in less running time of 0 (n2.38), rather 

than running time of Systolic Aigorithm which is 0 (n2
.807). 

Here, in this thesis, l am introducing new approach by ITPMMA algorithm, as l am not 

using the terms of any previous approach; instead l am defining new approach that has 

several independent tasks to eliminate the consuming time for waiting intermediate results 

and consuming time for transferring the intermediate results between the processors. Also, 

the both previous approaches suffering from non-optimized load balance. 

The remaining sections of this chapter will give the reader ideas about the algorithms being 

advanced (CW) Algorithm. 

B.6. Group-theoretic Algorithms for Matrix Multiplication 

In 2003, Cohn and Umans [104] introduced a new, group-theoretic framework for 

designing and analyzing matrix multiplication algorithms. In 2005, together with Kleinberg 

and Szegedy [105], they obtained several nov el matrix multiplication algorithms using the 

new framework; however they were not able to exceed I1lIllling time of 0 (n2.376). 

B.7. NGUYEN et al Algorithms for Matrix Multiplication 

In 2005, NGUYEN et al. [106] combined the use of Fast Multipole Method (FMM) 

algorithms and the paraUel matrix multiplication algorithms, which gave remarkable 

results. Nevertheless, the algorithm stiU suffers data dependency and high communication 

cost among the processors. Moreover, the algorithm does not address heterogeneous 

environments. 
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B.8. Pedram et al Algorithms for Matrix Multiplication 

On 2006, Pedram et al. [107], have developed high-performance parallel hardware engine 

for matrix power, matrix multiplication, and matrix inversion, based on distributed 

memory. They have used Block-Striped Decomposition algorithm directly to implement the 

algorithm hardware wise. There was obvious drawback in term of speed up of efficacy of 

using the processors; instead the algorithm reduces memory bandwidth by taking advantage 

of reuse data, which increases the data dependencies. 

B.9. James Demmel A 19orithms for Matrix Multiplication 

On 2008 James Demmel developed a new algorithm to minimize the gap between 

computation and communication speed, which continues to widen [108] . The performance 

of sparse iterative solvers was the aim of this algorithm, where it produced speedup of over 

three times of seriaI algorithm. In fact, the increasing gap between computation and 

communication speed, is one of the main points to be addressed by reducing the 

communication between processors as much as possible. The algorithm is still suffering 

data dependency and communication; especially for large matrices sizes. 

B.lO. Cai and Wei Algorithms for Matrix Multiplication 

On 2008 Cai and Wei [109] developed new matrix mapping scheme to multiply two 

vectors, a vector and a matrix, and two matrices which can only be applied to optical 

transpose interconnection system (OTIS-Mesh), not to general OTIS architecture, to reduce 

communication time. They have achieved sorne improvements compared to Cannon 

algorithm, but it was expensive. 
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B.11. Sotiropoulos and Papaefstathiou Algorithms for Matrix Multiplication 

On 2009, Sotiropoulos and Papaefstathiou implement Block-Striped Decomposition 

algorithm using FPGA device [11 0]. There is no achievement in terms of reducing data 

dependencies and communication cost. 

B.12. Andrew Stothers 2010 

In his PhD thesis [111], Andrew Stothers worked in the complexity of matrix 

multiplication algorithms generated by CW and the advanced algorithms of CW, and he 

conclude it is likely that any gains obtained in reducing running time will be very smaU. 

B.13. Breaking the Coppersmith- Winograd barrier 2011 

Virginia Vassilevska Williams [112] has developed new tools for analyzing matrix 

multiplication constructions similar to the Coppersmith- Winograd construction, and obtain 

a new improved bound on 0 (n2.3727). 

B.14. Nathalie Revol and Philippe Théveny 2012 

On 2012, Nathalie Revol and Philippe Théveny developed new algorithm, called "ParaUe1 

Implementation of Interval Matrix Multiplication" to address the implementation of the 

product of two dense matrices on multicore architectures [113]. The algorithm produced 

accurate results but the performance was po Dr. 

B.15. Jian-Hua Zheng 2013 

On 2013 Jian-Hua Zheng [114] proposed new technique based in data reuse. It suffers from 

a lot of data dependency and high communication cost. 
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B.16. Fast matrix multiplication using coherent configurations 2013 

Henry Cohn and Christopher Umans [115] found that running time of matrix multiplication 

could be reduced by embedding large matrix multiplication instances into small 

commutative coherent configurations. 

B.17. Square-Corner algori/hm 2014 

Another research has been conducted on 2014 [116], a new decomposition technique called 

Square-Corner instead of and Block Rectangle partition shapes to reduce the 

communication time is proposed. The research was limited to only three heterogeneous 

processors. For sorne cases, they have reported less communication time and therefore 

showed a performance improvement. 

B.18. Khalid Hasanov algorithm 2014 

Also, on 2014 Khalid Hasanov [117] introduced hierarchy communication scheme to 

reduce the communication cost to SUMMA algorithm. Although achieved sorne better 

performance, pre ITPMMA algorithm drawbacks like data dependency and communication 

cost are still there. Moreover, this algorithm is for homogenous environment. 

B.19. Tania Malik et al algori/hm 2014 

On 2014, Tania Malik et al. [118] proposed new network topology to decrease 

communication time among the processors. The algorithm suffers from more data 

dependencies between the processors. 



Appendix C- ITPMMA execution time VS different 
Parallel Algorithms 

Table C-O-I PUMMA (MBD2), [119] 

Task Execution time ITPMMA (STMMA) 

Scatter A ru" te 0 

Broadcast the diagonal 
npte 0 

clements of B 

Multiply A and B m2utf n2 tf 

Switch processors' A submatrix m2 root(p) te 0 

Generate the resulting matrix nl tr+ n2 t: 2mntc 

Total execution time tI(m 2n + n2 
) +tc(2n2 + 2mn te ( 1 + P ) + m2n 

m2root(p )(p+ 1 » tf 

Table C-O-2 SUMMA, [120] 

Task Execution time ITPMMA (STMMA) 

Broadèast A and B 2mnptc 2mnp te 

Multiply A and B m2n tr m2n tf 
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Total execution time 

2mnp) tf 

Table C-O-3 DIMMA, [121] 

Task Execution time ITPMMA (STMMA) 

Broadcast A and B 2mnptc 2mnp te 

Multiply A and B m2n tf m2n tf 

Generate the resulting matrix n2 tf+ n2 te 2mntc 
œ 

Total execution time tt{m 2n + n2 ) +tc(n2 + 2mn te( 1 + P ) + m2n 

2mnp) tr 
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Appendix D- ITPMMAAlgorithm pseudocode 

ITPMMA pseudo code for four processor and the multiplied and multiplicand matrices are square of size 

12. 

int numprocs, myrank; 
int ML = 12; IImatrix length 

MPUnit(&argc, &argv) 
MPI_Comm_size(MPCCOMM_WORLD, &numprocs); 
MPC Comm_rank(MPC COMM_ WORLD, & myrank); 
MPCStatus status; 

if ( myrank = 0) { 
j 1 Load Matrix A from a file 
For (int i=O; i< ML, i++) 
For (int k= 0, k< ML k++) 
Load A[i][k]; 

i* Load the required columns of matrix B, that 1S columns BUlO], BlJ[4], Bm3] 

*/ 
For (int i=O; i< ML, i++) 
For (int k= myrank, k< ML k=k+ numprocs) 
{ 
BB[i] = B[i][k]; 
/* mulfiply the loaded matrices"! 
for 1 1 /=0 to ML { 
for K=O to ML { 

COI = COI + A OK xBBI 

}} 

/1 Send the l'esuIt to the 
/1 server no de of processor 0 using batch command, so we do 
Il not need to use the MPCSend and MPCReceive as 
Il these data is matured and not to be processed any more. 
} 
if (myrank = 1) { 
Il Load Matrix A from a file 
For (int i=O; i< ML, i++) 
For (int k= 0, k< ML k++) 
Load A[i][k]; 

Il Load the required columns of matrix Bf that is columns //B[][O], B[1[41, BmS1 
For (int i=O; i< ML, i++) 
For (int k= myrank, k< ML k=k+ numprocs) 
{ 
BB[i] = B[i][k]; 
/ multiply the loaded matrices"! 
for 1 1 J=O to 3 { 

forK=O to 3 ( 
C l) = Cl) + AIK xBB) 



}} 

Il Send the result to the 
Il server node of processor 0 using batch command, so we do 
Il not need to use the MPI_Send and MPCReceive as 
Il these data is matured and not to be processed any more. 
} 

if ( myrank = 2) { 
li Load Matrix A from. a file 
For (int i=O; i< ML, i++) 
For (int k= 0, k< ML k++) 
Load A[i][k]; 
li Load th e required co111mn5 of malrix B, that is columns liB[][O], B[][4], Bm8] 
For (int i=O; i< ML, i++) 
For (int k= myrank, k< ML k=k+ numprocs) 
{ 

BB[i] = B[i][k]; 
f* multiply the loaded lIIatrices"} 

for 1 1 J=O to 3 { 
for K=O to 3 { 

C21 = C21 + A2K XBBI}} 

} 

Il Send the result to the 
Il server n ode of processor 0 using batch command, 50 we do 
Il not need to use the MPCSend and MPCReceive as 
Il these data is matured and not to be processed any more. 
} 

if ( myrank = 3) { 
il Load Matrix A from a file 
For (int i=O; i< ML, i++) 
For (int k= 0, k< ML k++) 
Load A[i][k]; 

il Load the required colunms of matrix 5, that is colunms J!B[][O], B[][4J, B[][B] 
For (int i=O; i< ML, i++) 
For (int k= myrank, k< ML k=k+ numprocs) 
{ 

BB[i] = B[i][k]; 

!* 1tl1fltiply the loaded matrices"! 

for 1 1 J=O to 3{ 
for K=O to 3 { 

C31 = C31 + Alx xBBJlJ 
} 

Il Send the result to the 
Il server node of processor 0 using batch command, so we do 
Il not need to use the MPCSend and MPCReceive as 
Il these data is matured and not to be processed any more. 
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Annexe E - Résumé détaillé 

Dans cette thèse, un nouveau cadre pour le traitement parallèle est introduit. L'objectif 

principal est de considérer l'architecture moderne des processeurs et de réduire le temps de 

communication entre les processeurs de l'environnement parallèle. 

Plusieurs algorithmes parallèles ont été développés dans les quatre dernières décennies, en 

se basant sur une décomposition des données et un traitement parallèle. Ces algorithmes 

souffrent de deux groupes d'inconvénients: 

1. Tous les algorithmes n'utilisent pas les avancées dans l'architecture des processeurs 

modernes, comme des noyaux multiples et le niveau de mémoire cache différent. 

Lorsque chaque processeur est capable de traiter plusieurs multiplications simples et 

sommations. Les processeurs (à cette époque) ne disposaient pas d'un nombre élevé 

de processeurs et une grande quantité de mémoire cache. 

2. Tous les algorithmes ne présentent pas de solution optimale en termes de : 

a. La défmition de la taille optimale de bloc de matrices à décomposer. 

b. Le temps de communication des messages échangés entre les processeurs, 

qui est proportionnelle au nombre de processeurs et le nombre de blocs des 

matrices décomposées, qui dépasse parfois le temps de calcul. 

c. La dépendance des données entre les processeurs, par conséquent plusieurs 

processeurs demeurent en attente jusqu'à ce qu'il obtenir les résultats des 

processeurs précédents. 

d. Mauvais équilibre de charge, en particulier avec des matrices non carrées. 
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Le nouveau cadre pour le traitement parallèle qui est proposé dans cette thèse permettra de 

surmonter les inconvénients ci-dessus. Pour cela, le nouveau cadre est basé sur le 

développement de deux techniques: 

1. Une technique pour reconstruire le problème à exécuter en parallèle dans la nouvelle 

structure qui se compose d'un ensemble de tâches indépendantes. Donc, chaque 

. processeur exécute certaines de ces tâches de manière indépendante. La nouvelle 

structure réduit les dépendances entre les processeurs, de sorte que le temps de 

communication est réduit. 

2. Une nouvelle technique de décomposition de données. Certains problèmes numériques 

comme l'équation de Laplace ne pourraient pas être reconstruites en ensemble de 

tâches indépendantes. Pour cela, afin de réduire le temps de communication entre les 

processeurs, nous utilisons une nouvelle technique de décomposition de données, 

appelée la technique « clustered one dimension decomposition » 

La première technique sera mise en œuvre sur les multiplications de matrices parallèles. En 

fait, la multiplication des matrices parallèles été utilisée comme problème référence pour 

tous les algorithmes parallèles. Il est l'un des problèmes numériques les plus fondamentaux 

dans les sciences et l'ingénierie; en commençant par les transactions quotidiennes de base 

de données dans les index, les prévisions météorologiques, l'océanographie, 

l'astrophysique, la mécanique des fluides, le génie nucléaire, le génie chimique, la 

robotique et l'intelligence artificielle, la détection de pétrole et de minéraux, la détection 

géologique, le recherche médicale et . l'armée, la communication et télécommunication, 

analyse de l'ADN matériel, les simulations du tremblement de terre, l'extraction de données 

et le traitement de l'image. 
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Dans cette thèse, un nouvel algorithme parallèle de multiplication de matrice a été 

développé en utilisant un nouveau cadre qui implique de générer des tâches indépendantes 

entre les processeurs, de réduire le temps de communication entre les processeurs à zéro et 

d'utiliser l'architecture moderne des processeurs pour des résultats d'efficacité à 97% 

contre 25% précédemment. 

3. D'autre part, la seconde technique, « c1ustered one dimensions decomposition» a été mise 

en œuvre et appliquée à la résolution de l'équation de Laplace en utilisant la méthode de 

Gauss-Seidel. Ainsi, la décomposition des données lors de la résolution de l'équation de 

Laplace, en utilisant la nouvelle technique de décomposition en réduisant le coût de la 

communication entre les processeurs; se traduit par un taux d'efficacité de 55% contre 30% 

pour la technique de décomposition de données à deux dimensions. 

Les algorithmes de traitement parallèle précédents 
Tous les algorithmes parallèles basés sur la décomposition d'un produit de matrices en 

blocs de données de taille plu petite, les blocs seront bien assortis et répartis entre les 

processeurs, de sorte que chaque processeur exécute une partie du calcul. Ceci réduit le 

temps de calcul entier. Dans le cas de tous les algorithmes parallèles de produit de matrices, 

nous avons utilisé la multiplication de matrices comme un problème de référence, car il 

avait été utilisé historiquement à cet objectif. D'autres facteurs influencent également la 

performance de ce genre d'algorithmes: 

1. La taille optimale de blocs de matrices décomposées, de sorte qu'on minimise le 

temps d'exécution. 

2. Les messages échangés entre les processeurs sont très gourmands en terme de temps 

d'exécution, et il dépend grandement de la structure du réseau. Le temps de 
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communication est proportionnel au nombre de blocs et le nombre de processeurs, 

ce qui dépasse en général le temps requis d'exécution. 

3. La dépendance de données entre les processeurs où certains processeurs demeurent 

en attente le temps que les calculs intermédiaires des autres processeurs se fassent. 

4. Certains algorithmes souffrent d'un autre inconvénient, qui est l'équilibrage de 

charge, en particulier avec les multiplications de matrices non carrées. 

Figure E-l ci-dessous simule la multiplication de matrices en série à l'aide d'un seul 

processeur. La Figure E-2 montre le comportement des algorithmes parallèles précédents. Il 

est clair que les deux processeurs P2 et P3 sont en attente, jusqu'à ce processeur Pl passe à 

l'état de repos. P4 ne pourra commencer le traitement avant que P2 et P3 ne complètent 

leurs tâches. L'efficacité du temps des processeurs est ainsi affectée grandement. 

L'efficacité de calcul de chaque processeur est 16/4 = 25%. 

x = t--~-

Matrix A4x8 Matrix C 4x4 

Matrix B 8x4 

• 
• Computation Time 

Figure E - 1 Multiplication de matrice en série 



x = 

Matrix A4x8 Matrix C 4x4 

Matrix B 8x4 

--,----r-,------,.--.----.-,--.---+-+---+-Time 

Computation Time 
Communication Time - among processors 
Communication Time - assembling and delivering data 

Figure E - 2 Schématisation des Algorithmes pré ITPMMA 

Nouveau cadre pour le traitement parallèle 
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Dans cette thèse, un nouvel algorithme parallèle est proposé pour la multiplication parallèle 

des matrices basée sur la reconstruction du problème de multiplication en un ensemble de 

tâches indépendantes, de sorte que chaque processeur ne repose pas sur un autre processeur 

pour traiter certaines tâches, car chaque tâche est indépendante. Figure E-3 schématise la 

multiplication parallèle en utilisant le nouvel algorithme qui est appelé « Independent Tasks 

Parallel Matrix Multiplication Algorithm » (ITPMMA). Au lieu de décomposer les données 

entre les processeurs; nous distribuons les tâches entre les processeurs. Alors, le processeur 

Pl devrait produire la première ligne de la matrice C (voir Figure E-2), tandis que le 

processeur P2 devrait produire la deuxième ligne de la matrice C, le processeur P3 devrait 

produire la troisième, enfin processeur P4 devrait produire la quatrième ligne de la matrice 
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C. Pour cela, nous avons besoin de seulement 4 unités de temps pour accomplir les tâches. 

Il est à noter qu'il n'y a pas de communication entre les processeurs et pas de temps pour 

assembler les résultats; seulement pour le livrer. L'une des avancées majeures de 

l'algorithme ITPMMA est l'efficacité de l'utilisation des processeurs, aucun processeur 

n'est en attente ou inactif. L'efficacité de chaque processeur est 4/5 = 90%. 

x 

Matrix A 4x8 Matrix C 4x4 

Matrix B 8x4 

~-+--Time 

• Computation Time 
D Communication Time - delivering data 

Figure E - 3 Schématisation de l'Algorithme ITPMMA 

ITPMMA 

ITPMMA est un algorithme pour la multiplication parallèle de matrices. Contrairement aux 

autres algorithmes de multiplication de matrice parallèles présents dans la littérature, 

l' ITPMMA propose un reformatage du processus de multiplication de matrice en plusieurs 

opérations indépendantes de multiplications vectorielles. Chaque opération de 
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multiplication vectorielle est affectée à un seul processeur, afm d'éviter toute dépendance 

de données et temps pour transfert de données processeur à processeur. La figure E-4 

montre l'organigramme de l'ITPMMA. 
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dividingthe result matrix 

size by the numb er of 
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in 

to 

columns 

ISE!"ial 

Receive the pro duced 

colurnns of resultantmatrix 

MP! is used tD drfine 
numœr ifprocessors 

and grants rank tD each 

processor 

Load specified colurnns 

of Matrix A and B as p E!" 

thelist of tasks 

to other processors and 1E===== = "1 Send the prod uced 
resultant matrix of result matrix tD Server 

N ode' TNithout usingMPI 

Figure E - 4 organigrammes de l'Algorithme ITPMMA 
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L'algorithme ITPMMA utilise la bibliothèque MPI pour défInir le nombre de processeurs 

actifs sur le cluster et les classer. En outre, la bibliothèque MPI est utilisée pour transférer 

les listes de tâches à des processeurs et de transmettre des alertes d'accomplissement des 

tâches de différents transformateurs au processeur de nœud. Ainsi, le nœud de serveur: 

1. DéfInit les processeurs disponibles dans le cluster parallèle et les classes. 

2. Envoie pour chaque liste de processeurs des tâches à effectuer. 

3. Reçoit une alerte d'achèvement de chaque processeur lorsque toutes les tâches assignées 

sont effectuées. 

4. Envoie des tâches supplémentaires pour les processeurs possédant une grande puissance 

de calcul, une fois la liste initiale des tâches transmises à ces processeurs ait été 

effectuée. Ces tâches seront transférées à partir de processeurs à faible puissance de 

calcul. 

La bibliothèque MPI ne sera pas utilisée pour échanger les données, car toutes les tâches 

sont indépendantes. Aucun processeur ne reçoit des données d'un autre processeur pour 

compléter ses travaux. Aucun processeur ne communique non plus avec le processeur de 

nœud non-serveur. 

Quatre cas différents peuvent se manifester : 

1. Multiplication de matrices carrées avec une taille de la matrice résultante qui est un 

multiple du nombre de processeurs utilisés en parallèle. Par exemple, A4x4 x B4x4 

= C4x4, en utilisant quatre processeurs en parallèle. 
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2. Multiplication de matrices carrées avec une taille de la matrice résultante qui n'est 

pas un multiple du nombre de processeurs utilisés en parallèle. Par exemple, 

Al2xl2 x B12x12 = C12x12, et pour huit processeurs en parallèle. 

3. Multiplication de matrices non carrées, et la taille de la matrice résultante est un 

multiple du nombre de processeurs utilisés en parallèle. Par exemple, A12x12 x 

B12x16 = C12x16, en utilisant quatre processeurs en parallèle. 

4. Multiplication de matrices non carrées avec une taille de la matrice résultante qui 

n'est pas un multiple du nombre de processeurs utilisés en parallèle. Par exemple, 

Al2x12 x B12x18 = C12x18, pour quatre processeurs en parallèle. 

Les deuxième et quatrième exemples aideront à montrer comment l'algorithme 

ITPMMA abordera le problème de l'équilibre de charge. D'autre part, tous les 

algorithmes précédents pour la multiplication parallèle de matrices sont optimisés dans 

le cas de multiplication de matrices carrées. 

Multiplication de matrice carrée, la taille de la matrice résultante est 
multiple du nombre de processeurs en parallèle 
Figure E - 5 montre la mise en œuvre de l'ITPMMA dans le cas du produit A12x12 x 

B 12x 12 = C 12x 12, en utilisant quatre processeurs parallèles. Chaque processeur produira 

trois colonnes de la matrice C. Le processeur PO produira trois colonnes: la première, la 

cinquième et la neuvième colonne de la matrice C12 x 12. Le processeur Pl produira la 

deuxième, la sixième et la dixième colonne. P2 produira la troisième, la septième et la 

onzième colonne. Enfin, P3 produira la quatrième, la huitième et la douzième colonne. 



Matrix A12x12 

The first processor '\vill 

produce the first and fifth 

and ninth columnsof the 

result matrix, that is 

C[O][O]- C[ll][O], and 

C[O][4] - C[11][4], and 

C[O][8] - C[ 11][8] 

The second processor 

will produce the second 

and sixth and tenth 

columnsofthe result 

matrix, that is C[O][1]­
C[ll][l], and C[O][5] ---+ 

C[ll ][5], and C[O][9] ---+ 

C[ 11][9] 

The third processor '\vill 

produce the third and 

seventh and eleventh 

columnsof the result 

maù'ix, that is C[O][2]­
C[1l][2], and C[O][6] ---+ 

C[11][6], and C[O][lO] 
-+ C[1l][10] 

TIle fourth processor 'will 

pro duce the fourtil and 

eighth and twelfth 

columnsofthe result 

matrix, that is C[O][2]-+ 
C[1l][2], and C[O][7]-+ 
C[11 ][7], and C[O](11] 

-+ C[ll][ll] 
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Matrix B12x l 2 ~fatrix C12x12 

x 

Result of the second proc.,ssor 

Result of the tltird processor 

R<>sult of th., fourth processor 

Figure E - 5 x A12x12 B12x12 utilisant l'algorithme ITPMMA pour une multiplication matricielle 
en parallèle 

D'autres exemples sont présentés dans les chapitres 3 et 4. 
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Propriétés de l'ITPMMA 

1. Aucun processeur ne reste inactif à attendre la sortie de d'autres processeurs sachant 

que toutes les tâches sont indépendantes. 

2. Aucun coût pour le temps de communication entre les processeurs en terme de 

transfert de données. La communication est seulement entre le processeur de nœud 

du s,erveur et d'autres processeurs pour l'envoi de la liste des tâches. 

3. Chaque processeur utilise sa pleine capacité, comme les noyaux multiples et la 

mémoire cache, pour compléter la tâche actuelle, aussi vite que possible. Cela 

implique que l'algorithme ITPMMA prend en charge la structure des processeurs 

afin d'accomplir la tâche dans le temps le plus court. 

4. La charge est équilibrée sachant que les tâches sont déjà équilibrées entre les 

processeurs. Dans le cas où un processeur a terminé ses tâches avant d'autres 

processeurs, le processeur serveur sera alerté et pourra rediriger des tâches (s). Le 

phénomène de sur file d'attente pourrait se produire lorsque des processeurs 

d'architectures différents avec différentes capacités sont impliqués dans le cluster 

parallèle. 

Accélération des calculs à l'aide de l'algorithme ITPMMA 

En effectuant plusieurs expérimentations sur CLUMEQ supercomputer, nous avons obtenu 

les résultats suivants. Tableau E - 1 et Figure E-6 montrent des résultats de multiplication 

de matrices de tailles différentes sur 16 processeurs, où la taille des matrices est un multiple 

du nombre de processeurs. 
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Tableau E - 1 Différentes tailles de matrices avec 16 processeurs en parallèle, où la taille 
des matrices est un multiple du nombre de processeurs 

Algorithm 
Matrix Sile 

128 512 1024 2048 4096 8192 16384 32768 
Process1ng Time 

Serial 40.00 222,00 535,00 99&.00 1900,00 3810,00 79OQ,00 16300,00 
ITP}"-~<LA. 3,00 17,00 40,00 75,00 130,00 251,00 499,00 1098,00 

C annon 11,00 65,00 152,00 320,00 605,00 1400,00 2700,00 6010,00 
Fox 14,00 88,00 212,00 430,00 820,00 1701,00 3980,00 7150,00 

ITPM~1A. 

Task- () 5 112 ISI 356 455 565 601 
Adjustment 

Speed up 

ITPMMA 13,33 13,06 13,38 13,31 14,62 15,18 15,83 14,85 
Cannon 3,64 3,42 3,52 3,12 3,14 472 2,93 2,71 

Fox 2,86 2,52 2,52 2,32 2,32 2,24 1,98 2,28 

Speed Up 
18 

16 

14 .",--
.."".. 

12 

10 
- ITPMMA 

8 
- Cannon 

6 - FOX 
4 = 
2 

0 

128 512 1024 2048 4096 8192 16384 32768 

Matrix Size 

Figure E - 6 Comparaison des performances dans le cas où la taille des matrices est un multiple du 
nombre de processeurs. 

Tableau E - 2 et Figure E-7 montrent les résultats de multiplication de matrices de tailles 

différentes sur 16 processeurs, où la taille des matrices n 'est pas un multiple du nombre de 

processeurs (équilibrage de charge sera pris en charge par l'algorithme ITPMMA). 
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Tableau E - 2 multipliant les matrices de tailles différentes sur 16 processeurs, où la taille 
des matrices n'est pas un multiple du nombre de processeurs 

A1gorithm 
Matrix Size 

100 500 700 1000 1200 2000 3000 5000 

Proc.essing Time 

Serial 39 210 322 525 645 978 1499 2494 

lTPMMA 2.50 14.00 21.00 34.00 42 .00 63.00 98.00 166.00 

Cannon 11.00 66.00 150.00 150.00 270.00 270.00 389.00 700.00 

Fox 16.00 80.00 210.00 2 10.00 391.00 391.00 588.00 978 .00 

Speedup 

lTPMMA 15.60 15.00 15.33 15.44 15.36 15.52 15.30 15.02 

Cannon 3.55 3.18 2 .15 3.50 2.39 3.62 3.85 3.56 

Fox 2.44 2.63 1.53 2.50 1.65 2.50 2.55 2.55 

1 5 

1.2 .......................... ............................... _ ............................................................................................................................................ _ ............................................ . 

--·rrPMMA 

- Cannon 
.8 ............. _ .......... _._ ...................... _ .......... _ .. _ .. _ .. _._ .. _ .. _ .. _ .. _ .. _ .. _ .. __ ._._ .............. _............... . ........................................... _ ...... _ .......... _.................... . ......................... . 

- Fox 

-4 .. __ ._ .. _ ....... _ .... _ .......... __ ... _ .. . 

= 
o 

100 500 700 1.000 1200 2000 3000 SOOO 

Matrix Si:z:e 

Figure E - 7 Comparaison des performances dans le cas où la taille des matrices n'est pas un multiple 
du nombre de processeurs. 

Les troisième et quatrième groupes d'expérimentation sont présentés dans le Tableau E - 3 

et la figure E-8. Nous avons considéré davantage de restriction aux algorithmes de Cannon 

et Fox pour générer des blocs lorsque les matrices sont non carrées et en plus, la taille des 

matrices n'est pas un multiple du nombre de de processeurs utilisés. 
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Tableau E - Produit de matrices non carrées - 750 x 700 - avec un nombre différent de 
processeurs 

AIgoritbm 
Nmnber of Processors 

2 4: 16 32 64 128 
ITPMM.A. 112 58 30 16 9 5 

Cannon 589.00 297.00 152.00 120.00 85.00 65.00 

Fox 

aoo 
700 

600 

200 

100 

{} 

756.00 400.00 212.00 135.00 92.00 

PARAL:LEL PROCESStNG Tl M 'E FOR MATRIX. SIZE OF 
750)(700 

~-~--_ . . ~.-. --~--~--:"_:.:::~::. 
Hi .32 128 

UUMSER Of PROCfSSORS 

75.00 

Figure E - 8 Délai de traitement parallèle ITPMMA algorithme contre les deux l'algorithme Cannon, 
et l'Algorithme Fox où la taille des matrices de 750 x 700 n'est pas multiple du 
nombre de processeurs 

Les deux derniers tests montrent clairement que la multiplication de deux matrices de taille 

750 x 700 en utilisant l'algoritlune proposé ITPMMA présente de meilleurs résultats que 

les algoritlunes Cannon et Fox. La Figure E-9 montre également l'efficacité de la 

proposition lorsque la taille des matrices est augmentée; et ceci pour différents nombres de 

processeurs .. 
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Figure E - 9 Délai de traitement parallèle pour les multiplications de matrices de deux tailles 
différentes de 750 x 700 et 1024 x 1024. A: L'algorithme ITPMMA, B: 
L'Algorithme Cannon, C: L'Algorithme Fox. 
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Pour les calculs d'efficacité, le Tableau E-4, la Figure E-I0 et Figure E-ll présentent les 

résultats dans le cas d'une multiplication de matrices carrées avec un nombre de 

processeurs multiple de la taille des matrices. 

Tableau E - 4 matrices de taille fixe avec un nombre différent de processeurs, où la taille 
des matrices est multiple du nombre de processeurs 

Algorithm 
Number ofProc.essors 

2- 4 16 32 64 128 

ITP~~lA. 180.00 79.00 40.50 20.30 10.10 5.06 

Cannon 589.00 297.00 152.00 120.00 85.00 65.00 

Fox 

S 

E 

C 

0 

N 
[} 

5 

&10 

700 

600 

500 

400 

300 

200 

100 

0 

756.00 400.00 212.00 135.00 92.00 

PARAll.EL PROCESSING TIME FOR MATRIX SI'ZE OF 
1024><1024 

-+-ITPMMA ___ cannon ~Fox 

NUMBER Of PROCESSORS 

75.00 

Figure E - 10, Temps pour traitement parallèle de l'algorithme ITPMMA contre l'algorithme Cannon 
et l'Algorithme de Fox où la taille des matrices est multiple du nombre de 
processeurs pour les matrices de 1024 x 1024. 

Par exemple, pour multiplier les matrices de la taille 1024 en utilisant l'algorithme Cannon 

sur 64 processus, 85 secondes sont nécessaires. Alors que l'algorithme proposé permet 

d'exécuter le même produit matriciel en seulement 79 secondes et en utilisant que 4 
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processeurs. Dans ce cas, l'algorithme ITPMMA présente une efficacité 64/4 = 16 fois plus 

grande. 

Fox 

n 

Execution time for multiplying two matrices of of size 1024 over 
different number of processors using ITPMMA, Cannon, and Fox 

algorithms 

ITPM 
MA 

128 

. 0,1 W.~0,_3 . ...------_ 
32 16 

64Number of the pro cess ors 

4 
2 

Figure E - Il Le temps d'exécution par processeur pour ITPMMA, Cannon, et Fox. 

La technique de décomposition lD en grappe 
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Une mise en œuvre de tous les problèmes numériques en tâches indépendantes n'est pas 

toujours possible. Nous avons développé une nouvelle technique de décomposition de 

données, appelé «cluster I-dimension decomposition technique» pour surmonter la 

limitation de différentes techniques de décomposition de données qui ont été utilisées par 

différents algorithmes parallèles. Les techniques de décomposition à une dimension (ID) et 

à 2 dimensions (2D) dominent depuis le début des propositions d"algorithmes parallèles. 

Les techniques de décomposition de données impliquent deux tâches: 

a) Mise en correspondance de tableau processus en grille de n-dimensions. 
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b) Distribution des données sur la grille de processeurs. 

Équation de Laplace en utilisant la méthode itérative Gauss-Seidel en grappe lD 

La résolution de l'équation de Laplace en utilisant la méthode de Gauss-Seidel sera utilisée 

comme méthode de référence dans le domaine de la décomposition de données. Figure E-

12 montre la décomposition de données en 2D. L'équation est résolue en utilisant la 

méthode de Gauss-Seidel en deux environnements parallèles, 4 processeurs et 16 

processeurs. Le Tableau E - 5 montre les résultats du calcul de l'équation de Laplace en 

utilisant la méthode de Gauss-Seidel utilisant la matrice de données de 48, 96 et 192, et en 

utilisant 4 et 16 processeurs en parallèle. On constate principalement la dépendance des 

données. 

Processor 4 

• • • • 
• • • • 
• • • • • 
• • • • 
• • • • 

• 
• • • 
• • "' 

• .. 
• " 

• • • • • • • • • • 0: 

• • • • • • • • • • • • 
• • • • • • • • • • • 
• • • • • • • • • .. 
• • • • .. • • .. 

Processor 1 Processor 2 

Figure E - 12, décomposition 2D. 
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Tableau E - 5 La Solution parallèle de l'équation Laplace en utilisant la méthode itérative 
de Gauss-Seidel sur 20 

Teat ID 1 2 3 4 5 6 

Matrix Size (n) 48 96 192 48 96 192 

Number of processors 
4 4 4 16 16 16 

(nproc=nblock*nbIock) 

Decomposition (Number of 
4 4 4 16 16 16 

the blocks) 

Node edge (nodeedge) 24 48 96 12 24 48 

ts (SeriaI processing time) 1 2 8 1 2 8 
tp (Parallei processing 

0.866 3.192 5.239 30.845 166.303 254.562 , time) 

Speed up , 1.155 0.626 1.527 0.032 0.012 0.031 

Efficiency 0.288 0.156 0.381 0.002 7·50E-04 0.002 

Proce'Ssor 4 . ",. 

40 41 
., 29 30 31 32 33 34 35 82 
.. 22 23 24 25 26 27 2.8 74, 75 76 
.- 15 16 17 18 19 20 21 64 65 61' 67 68 69 70 • 
., 8 9 10 11 12 13 14 57 58 59, 6Q 61 62 63 .. , , 
• 1 .2 3 4 5 6 7 50 S4 5S 56 .. 
;; ;; • .. .. ;; .. • .. • .. ... .. .. 

Processor l Proct'ss()r 2 

Figure E - 13 La technique de décomposition 2D, les unités de temps total est 147 unités . 

Figure E - 14, schématise l'algorithme proposé. Les unités du temps de traitement 

pour chaque processeur utilisant «cIuster ID technique de décompositioll». Le nombre 

_ d'unités de temps est de 73 au lieu de 147. Figure E - 15 montre l'utilisation de chaque 

processeur. La vitesse est jusqu'à 196/73 = 2,31, donc l'efficacité = 2,31 /4= 57,9. Le 
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Tableau E - 6, montre les résultats du calcul de l'équation de Laplace en utilisant la 

méthode de Gauss-Seidel sur ID cluster, en utilisant trois dimensions de la matrice de 

données de 48, et 96 et 192, en 4 et 16 processeurs en parallèle. Les avantages de la 

technique de décomposition cluster 1-dimensions pa rapport à la décomposition 2D sont 

évidents. 

. . . . . . . . . . . .. ., . . . 
• 46 47 

r 

., .. • 

6 13 14 

3 10 11 
.. • .. 
Processor 1 

Proœssof2 

58 59 

15 22 23 
12 19 20 
.. ' • ,. 

24 31 
21 28 
., .. 

68 69 72 73 • 

32 33 39 

29 30 37 ., .. .. 
Proœssor3 
Processor .. 

40 • 
38 ., 
.. . . 

Figure E - 14,« cluster 10 technique de décomposition» les unités de temps total est 73 unités 

13000000000000000000 
i .' ' -++++td, H-t+t-t-H-++++t+t-++++H-t+l 
Pt D 0 G 0 0 0 G 0 01111 1111 ! 11 r Ill! 11111 1 J f 1111111 t 11 11111111 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58% 
j;.: • ., }. .~.< "' '. '; 

Pl ! ll111!!! 1111 111 ! Ill! 1111. i 1111 î 1111111 ! î t 1! t 11 1111111111 t î li 0 0 0 1 ;1 .~ 111111 96% 

Figure E - 15 C1uster 10 décomposition - utilisation de processeurs. 



Tableau E - 6, La Solution parallèle de l'équation Laplace utilisant méthode itérative de 
Gauss-Seidel sur 1 D c1uster 

Teat ID 7 8 9 10 11 

Matrix Size (n) 48 96 192 48 96 

Number of processors 
4 4 4 16 16 

(nproc=nblock*nblock) 
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12 

192 

16 

Decomposition (Number of 
48/12=4 96/12=8 192/12=16 48/12=4 96/12=8 192/12=16 the blocks) 

Node edge (nodeedge) 96 384 1536 24 
ts (Seriai processing time) 1 2 8 1 

tp (Parallel processing 
0.611 1.076 3.61 0.204 time) 

Speed up 

Efficiency 
1.637 1.858 2.216 4.902 

0.409 0.465 0·554 0.306 

2 Dimension Decomposition 

- Speed up - 4 processors - Efficiency - 4 processors 

- ' - Speed up - 16 processors - Efficiency - 16 processors 

~1S5 

--.Q 38 1 

~---------tM'm~------ 0.288 6.1::'15 
-=-'*,lIillilllil~!'-' ..... _. ------I9~.e!&.2!<1c6EM4-----..-=="'""'-Il, Il~!_ 

192 96 48 

96 384 
2 8 

0.448 1.569 

4.464 5.099 
0.279 0.319 

Figure E - 16 L'accélération et l'efficacité de la solution itérative Gauss-Seidel parallèle de l'équation 
Laplace en 2 dimensions 
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Clustered 1 Dimension Decomposition 
- Speed up - 4 processors - Efficiency - 4 processors 

- Speed up -16 processors - Efficiency - 16 processors 

-5Jl9Q. 4.902 
- 4:<464-

~ U6 
1:8108 1.637 
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Figure E - 17 L'accélération et l'efficacité de la solution itérative Gauss-Seidel parallèle de l'équation 
Laplace en 2 dimensions 
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Figure E - 18 Accélération de la solution parallèle Gauss-Seidel itérative de l'équation Laplace avec 
les deux techniques de décomposition de données à 4 processeurs. 
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Figure E - 19 Accélération de la solution parallèle Gauss-Seidel itérative de l'équation Laplace avec 
les deux techniques de décomposition de données à 16 processeurs 


