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Abstract

In this thesis, a novel framework for parallel processing is introduced. The main aim is to
consider the modem processors architecture and to reduce the communication time among

the processors of the parallel environment.

Several parallel algorithms have been developed since more than four decades; all of it
takes the same mode of data decomposing and parallel processing. These algorithms suffer
from the same drawbacks at different levels, which could be summarized that these
algorithms consume too much time in communication among processors because of high
data dependencies, on the other hand, communication time increases gradually as number
of processors increases, also, as number of blocks of the decomposed data increases;
sometime, communication time exceeds computation time in case of huge data to be
parallel processed, which is the case of parallel matrix multiplication. On the other hand, all

previous algorithms do not utilize the advances in the modern processors architecture.

Matrices multiplication has been used as benchmark problem for all parallel algorithms
since it is one of the most fundamental numerical problem in science and engineering;
starting by daily database transactions, meteorological forecasts, oceanography,
astrophysics, fluid mechanics, nuclear engineering, chemical engineering, robotics and
artificial intelligence, detection of petroleum and minerals, geological detection, medical
research and the military, communication and telecommunication, analyzing DNA

material, Simulating earthquakes, data mining and image processing.



In this thesis, new parallel matrix multiplication algorithm has been developed under the
novel framework which implies generating independent tasks among processors, to reduce
the communication time among processors to zero and to utilize the modern processors
architecture in term of the availability of the cache mem. The new algorithm utilized 97%
of processing power in place, against maximum of 25% of processing power for previous

algorithms.

On the hand, new data decomposition technique has been developed for the problem where
generating independent tasks is impossible, like solving Laplace equation, to reduce the
communication cost. The new decomposition technique utilized 55% of processing power
in place, against maximum of 30% of processing power for 2 Dimensions decomposition

technique.
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Chapter 1 -Introduction

The need for vast computing power in so many fields like forecasting the weather,
analyzing DNA material, simulating earthquakes etc. has led for looking for parallel and
distributed computing, in the lighf of the limited speed of the classic computers and
processing power due to the physical constraints preventing frequency scaling. On the other
hand, the physical limits been achieved at the hardware level in processors industry, which
leads for opening the doors to design parallel processors in the mid of 1980's by introducing
the parallel processing and networks of computers [1-8]. By the 1990’s, the Single
Instruction Multiple Data (SIMD) technology show up, and later multi-core platforms in
the mainstream industry such as multi-core general purpose architectures (CPUs) and
Graphics Processing Units (GPUs) where several cores working in parallel inside the
processor chip [4, 9, 10- 12]. New processors show vast computing power [4, 6, 13-15].
Multi-core i7 CPU is the most updated parallel CPU produced by Intel at PC level; While
latest NVidia Graphics Processing Unit has 1536 core at its VGA card Tesla K10, which
has two GPUs, which implies 1536 x 2 = 3,072 processors running in parallel [16], which
is needed for applications of seismic, image, signal processing, video analytics. This
implies that the future software development must support multi-core processors, which is

parallel processing.



Parallel processing has opened an era to have super computing power at the cost of several
PCs. So, connecting several PCs into a grid could be utilized as one single supercomputer
by the help of certain algorithm to manage the distributing of the load among the active
connected PCs. Well, parallel processing did not stop here, but parallel processing extends
to include computers and super computers connected over internet, where the load could be

distributed over connected super computers to have enormous parallel processing power.

All parallel algorithms until the moment depended in decomposing the data of a problem
into blocks and perform the functionality on it, in parallel mode taking in consideration the

data and the functional dependency among the data.

Data Decomposition in general having two modes, one dimension (1D), where the data
will be set of strips, where each processor will process one single strip at a time; and the
other mode is two dimensions decomposing (2D), where the data will be set of blocks, and

each processor will process single block at a time.

In addition, existing parallel algorithms did not address and utilize the parallel capabilities
of the new processors, like multicore and other enhancement like cache memory and wide
address bus of 64 bit. All parallel algorithms have kept looking at the processor on the old
architecture design. For example, they are considering the grain applications, where the
application will be divided into the most simple functions, so each processor will process
these simple functions and getting the next afterword; while all these algorithms are not
looking at high capabilities of the new processors, where it can process more than a
function at a time, dual core processors processes two functions a time, while Intel Xeon
Phi processor has 61 cores, which implies it processes 61 functions at a time. Existing

parallel algorithms sends one single function to each processor regardless number of cores



it has. In addition, the new processors architecture has different levels of cache memory
which allows for more data upload capacity to reduce the access time of RAM, so cache
memory leads to faster processing for complex functions which need huge chunk of data;
Existing parallel algorithms do not consider the availability of cache memory and keep
send simple math functions to each processor, which is a bad exploitation of modern

architecture processors.

In this thesis, new technique for parallel processing will be introduced, which will
overcome the drawbacks of the previous algorithms. The technique is called ITPMMA
algorithm, it depends on dividing the problem into set of tasks, which implies the data will
not be decomposed in ITPMMA algorithm, and instead the problem will be decomposed
into independent sets of operations, where each processor will execute independent
operations and will upload what data it needs. In addition, ITPMMA algorithm will utilize
the capabilities of the parallel and multi-core processors, which is absent in the existing

parallel algorithms.

1.1. Motivation

Numerical problems consume a lot of processing resources which leads to utilize the
parallel processing architecture. Since 1969, parallel algorithms start showing up, [17-21].
Parallel Matrix Multiplication algorithms were one of the earliest parallel processing
algorithms that appeared since then. So, since 1969 for homogenous clusters like Systolic
algorithm [22], Cannon's algorithm [23], Fox and Otto's algorithm [24], PUMMA (Parallel
Universal Matrix Multiplication) [25], SUMMA (Scalable Universal Matrix Multiplication)
[26] and DIMMA (Distribution Independent Matrix Multiplication) [27]. All these

algorithms had been designed for distributed memory platforms, and most of them use the



popular ScaLAPACK library [28, 29], which includes a highly-tuned, very efficient routine

targeted to two-dimensional processor grids.

PUMMA algorithm maximizes the reuse of the data that have been hold in the upper levels
of the memory hierarchy (registers, cache, and /or local memory) [16]. PUMMA, which
had been developed in 1994, did not address the time consumption by exchanging

intermediate results between processors.

SUMMA algorithm, been developed in 1997. It has introduced the pipelining in PUMMA
to maximize reuse of data. In addition, SUMMA reformulated the blocking method in
terms of matrix-matrix multiplications instead of matrix-vector multiplications, which
reduced the communication overhead [26]. In general, SUMMA did not address the time
consumption of the communication between processors. In addition, SUMMA did not

address the cache memory of the modern processors.

On the same year, 1997, Choi [27] has developed DIMMA algorithm. “The algorithm
introduced two new ideas: modified pipelined communication scheme to overlap
computation and communication effectively; and to exploit the least common multiple
(LCM) block concept to obtain the maximum performance of the sequential BLAS — Basic
Linear Algebra Subprograms — routine in each processor” [27]. But still, DIMMA did not
address the huge time consumed on communication between processors to exchange the

intermediate results.

In 2005, NGUYEN et al. [29] combined the use of Fast Multipole Method (FMM)
algorithms and the parallel matrix multiplication algorithms, which gave remarkable

results. Nevertheless, the algorithm still suffers data dependency and high communication



cost among the processors. Moreover, the algorithm does not address heterogeneous

environments.

In 2006, Pedram et al. [30], have developed high-performance parallel hardware engine for
matrix power, matrix multiplication, and matrix inversion, based on distributed memory.
They have used Block-Striped Decomposition (BSD) algorithm directly to implement the
algorithm. There was obvious drawback related to processors’ speed up efficiency. The
algorithm reduces memory bandwidth by taking advantage of reuse data, which results in

an increase in data dependencies.

On 2008 James Demmel developed a new algorithm to minimize the gap between
computation and communication speed, which continues to widen [31]. The performance of
sparse iterative solvers was the aim of this algorithm, where it produced speedup of over
three times of serial algorithm. In fact, the increasing gap between computation and
communication speed, is one of the main points to be addressed by reducing the
communication between processors as much as possible. The algorithm still suffers data

dependency and communication; especially for large matrices sizes.

In 2008 Cai and Wei [32] developed new matrix mapping scheme to multiply two vectors,
a vector and a matrix, and two matrices which can only be applied to optical transpose
interconnection system (OTIS-Mesh), not to general OTIS architecture, to reduce
communication time. They have achieved some improvements compared to Cannon
algorithm, but it was expensive in term of hardware cost. In addition, the algorithm did not

add any new value in term of algorithm design.



In 2009, Sotiropoulos and Papaefstathiou implement BSD algorithm using FPGA device
[33]. There was no achievement in terms of reducing data dependencies and

communication cost.

In 2012, Nathalie Revol and Philippe Théveny developed new algorithm, called “Parallel
Implementation of Interval Matrix Multiplication” to address the implementation of the
product of two dense matrices on multicore architectures [34]. The algorithm produced
accurate results but it fails to utilize the new features of the multicore architectures

processors, as it has targeted in advance.

In 2013 Jian-Hua Zheng [35] proposed new technique based in data reuse. It suffers from a

lot of data dependency and high communication cost.

In 2014, another decomposition technique called Square-Corner instead of Block Rectangle
partition shapes to reduce the communication time has been proposed in [36]. The research
was limited to only three heterogeneous processors. For some cases, they have reported less

communication time and therefore showed a performance improvement.

Also, in 2014 Khalid Hasanov [37] introduced hierarchy communication scheme to reduce
the communication cost to SUMMA algorithm. Although achieved some better
performance, pre ITPMMA algorithm drawbacks like data dependency and communication

cost are still there. Moreover, this algorithm is for homogenous environment.

Other algorithms have been designed later on to enhance the process of matrix
multiplication and to reduce the processing time. In 2014, Tania Malik et al. [38] proposed
new network topology to decrease communication time among the processors. The

algorithm suffers from more data dependencies between the processors. The major



drawback of all previous parallel algorithms developed until now need homogenous
processor architecture, and never addressed heterogeneous processors, except NGUYEN et
al. [29], which conclude very negative results, so, by executing these algorithms in a grid of
several PCs — heterogeneous environment — would have a lot of incompatible latency

factors.

Having homogenous environment, all parallel algorithms, either for parallel matrix
multiplication as we will see in this thesis, or for any numerical problem else, all existing

algorithms suffer from classic drawbacks, like:
1. The optimal size of the block of the decomposed matrices.

2. The communication time of the exchanged messages among the processors, which
is proportional to number of processors and number of the blocks of the decomposed

matrices.
3. Data and functional dependency between the processors.

4. Poor load balance especially with non-square matrices.

1.2.  Originality

In this thesis, a new novel framework for parallel processing has been developed to add the

following new values:

1. Reducing the communication time among the parallel processors to ZERO.
2. No processor becomes idle or in hold, waiting other processors output until the
parallel operations over.

3. Eliminating the need for a certain topology of processors.



1.3. Objectives

Thesis objectives to develop a novel framework for parallel processing which implies

reconstruct the parallel problem into independent tasks to:

1. Reduce the idle time of the processors to increase the efficiency, and this to be
achieved by:
a. Proper load balance among the processors.
b. Utilizing the modern processor architecture capabilities in term of multicore
and cache memories of different levels.
2. Reduce the communication time among the processors, by eliminating the data
dependencies by reconstructing the parallel problem into set of independent tasks, to

reduce the communication time among processors to zero.

On the other hand, for numerical problems where reconstructing the parallel problem into
independent tasks is not within hands, like solving Laplace equation in parallel, a new data
decomposing technique is developed, to reduce the communication time among the

processors, and reduce idle time of the processors, to increase the efficiency.

1.4. Methodology

To satisfy the objectives of this thesis, I am to follow the procedure below:

1. Review literature of parallel matrix multiplication and data decomposition

techniques.

2. Study in details different parallel algorithms and data decomposition techniques to

find out its drawbacks.



3. Develop common diagram to setup new framework for parallel processing to

address the drawbacks of the previous algorithms.

4. Develop new parallel matrix multiplication algorithm and new data decomposition

technique within the new framework.
5. Test the new framework on small environment of 4 and 16 processors.
6. Test the new framework on the advanced supercomputer CLUMEQ.

7. Compare the results of the performance of the new framework with benchmark

algorithms like Cannon algorithm and Fox algorithm.

1.5.  Thesis Organization

This thesis is organized into six chapters. Chapter I is an introduction for the thesis to show

the motivation, originality, objectives of the research and the methodology.

Chapter II, titled “Matrix Multiplication”, I will discuss the common Paralle] Matrix
Multiplication Algorithms in terms of performance, which includes speed up, time

complexity, load balancing, data dependencies.

Chapter III, titled “ITPMMA algorithm for Parallel Matrix Multiplication (STMMA)”,
presents the proposed algorithm followed by the results and comparisons with parallel

matrix multiplication algorithms.

Chapter IV, titled “Analysis and Results”, presents the experimental results which showed
that the ITPMMA algorithm achieved significant runtime performance on CLUMEQ

supercomputer and also a considerable performance compared by other algorithms like
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Cannon Algorithm and Fox Algorithm. In these experiments I have used up to 128

processors in parallel, and about 40000 matrices size.

Chapter V, titled "The clustered 1 Dimension decomposition technique" presents the new
data decomposition technique, developing parallel solution for Laplace equation using
Gauss-Seidel iterative method, and test the results and compare it with same of 1 dimension

and 2 dimensions data decomposition techniques.

Finally, Chapter VI presents the conclusion and explores the opportunities for the future

that build upon the work presented in this dissertation.
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Chapter 2 -Matrix Multiplication

2.1.Introduction

In this chapter I will address the matrix multiplication problem in serial and parallel mode.
This problem will be used to describe the efficiency of the parallel algorithms; in fact,
matrix multiplication has been used as benchmark problem for parallel processing

algorithms for several reasons:

1. It is easily scaled problem for a wide range of performance; its size grows like N> for
matrices of order N.

2. It has two nested loops plus the outer loop, total of three loops; the most inner loop
consists at least a single multiply and add operation. Where the loops can be
parallelized or to achieve high performance.

3. Computation independency, where the calculation of each element in the result matrix
is independent of all the other elements.

4. Data independence, where the number and type of operations to be carried out are
independent of the data type of the multiplied matrices.

5. Different data types like short and long integers and short and long floating-point
precision can be used, which promises for different levels of tests. Also it allows for

utilizing of the capabilities of the new processors, which has high cache memories, by
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multiplying long type matrices, which needs high size of cache memory for
intermediate results.

6. Number of floating point operations (flops) easily is calculated.

7. Matrix multiplication is used as bench mark problem to test the performance of so

many processors, like Intel, as shown in the figure 2-1, below.
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Matrix Multiplication
LINPACK* MKL 11.0.5

B Intel® Xeon® Processor E5-2697 vZ {300 Cache, 2.70 GHz)
B Intel® Xeon® Processor E5-2687W w2 {25M Cache, 3.40 GHz)
B Intel® Xeon® Procassor E5-2687wW {20M Cache, 3.1G GHz, 8.08 GT/s Intel® QPI)

Figure 2-1 Matrix Multiplication problem as benchmark problem for Intel processor
performance [39].

In this chapter, some important aspects of matrix multiplication will be addressed, together
with the outstanding characteristics of the already developed parallelization algorithms, like

cannon and fox algorithms.
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2.2. Matrix Multiplication Definition

It is defined between two matrices only if the number of columns of the first matrix is the same as

the number of rows of the second matrix. If A is an i-by-k matrix and B is a k-by-j matrix, then

their product AB is an i-by-j matrix, is denoted by Ci=Aix * Byj, which be given by

n
Cij = k_lAi'k X Bk,j Eq 21

And it is calculated like

Cll CIZ Cl3 Cl4 A11 A12 A13 A14 Bll BIZ Bl3 Bl4
CZI CZZ CZ3 CZ4 — A21 AZZ A23 A24 X BZI BZZ BZ3 BZ4 Eq 22
C31 C32 C33 C34 A31 A32 A33 A34 B31 B32 B33 B34 -
C41 C42 C43 Cl4 A41 A42 A41 A44 B41 B42 B43 B44
So,
Cll —_—A11XBll +A12X321 +A13X331 +A14XB41 Eq 2-3

Which is different than BA, which is denoted by Dj= By * Aik, given by

n
Dij = Bk.j X Ai,k Eq 2-4
k=1
So,
D1 =By XA11X+Blz XA21+Bl3XA31+Bl4XA41 Eq 2-5

Which implies matrix multiplication is not commutative; that is, AB is not equal to BA.

The complexity of matrix multiplication, if carried out naively, is O(N°), where N is the size of
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product matrix C. So for the Matrix multiplication of 4x4 size, the complexity is O(N®) =

O(4*)= 64 operations, or the timing of 64 operations.

In 1969, Volker Strassen has developed Strassen's algorithm, has used mapping of bilinear
combinations to reduce complexity to O(n'#”) (approximately O(n*#%7-)). The algorithm is

limited to square matrix multiplication which is considered as a main drawback.

In 1990, another matrix multiplication algorithm developed by Don Coppersmith and S. Winograd.

The algorithm has complexity of O(n>37>%). [40]

In 2010, Andrew Stothers gave an improvement to the algorithm, O(n**7*¢) [41]. In 2011,
Virginia Williams combined a mathematical short-cut from Stothers' paper with her own

insights and automated optimization on computers, improving the bound to O(n**7*") [42].

2.3. Serial Matrix Multiplication Algorithm

2.3.1. Serial Algorithm
The serial algorithm for multiplying two matrices is taking the form:

for (i = 0; 1 < n; i++)
for (3 = 0; 1 < n; j++)
c[i][3] = 0;
for (k = 0; k < n; k++)
clil[3] += alillk] * bl[k]I[]]
end for
end for
end for

with the complexity O(N?) = O(4*)= 64 operations, or the timing of 64 operations.
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2.3.2. Strassen’s algorithm
In 1969, Professor V. Strassen [36] developed new algorithm known by his name,
Strassen’s algorithm, where the complexity of his algorithm is Q(N'°97/1042) = Q(NL0927)
= O(N'™7), which will be equal to O(4-°927) = 14.84, which is less than 64, i.e. to multiply
two 4x4 matrices using Strassen’s algorithm, the algorithm needs the time of 14.84

operations, rather than the time of 64 operations using the standard algorithm .

To simplify Strassen’s algorithm, I will implement it on the following matrices

multiplications:
(Cn C12) _ (An A12) . (311 B12)
C1 Gy Az Ai By1 By
So, we run the below 7 quantities:
Pi=(A12 — A22) X (B21 + B22)
P2 =(An + Az) x (B11 + B2)
P3=(Au — A21) x (Bi1 + B12)
Ps= (A1 +Ar2) X B2
Ps= Ay x (B12— B22)
Ps = A2 x (B21 — B11)

P7=(A21+ A) xBn
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And produce the product matrix C, we run the below summations
Cii=P1+P2-Ps+Ps

Ci2=Ps+Ps

Ca=Pst Py

Cn=P,-P3+Ps-P;

The main drawback of Strassen’s algorithm is the size product matrix should be product of
2,i.e. 21,22 23 24 25 ... so for matrices multiplication of size 5, where 22 < 5 < 23, we
need to pad the matrices by zeros, till we have 8x8 matrices and multiply them. Recent
studies study the arbitrary size of the multiplied matrices by Strassen algorithm in more
details [43] but without getting better performance. So for Strassen’s algorithm for matrices
multiplication of size 3x3, we have 7 multiplies and 18 adds. The complexity of the
algorithm for matrices multiplication of size nxn can be computed as 7*T(n/2) + 18*(n/2)2
= O(NL0927)= O(8L09:7)= (239" )= O(2!9927)3 = 73, while if we use standard matrices
multiplication, the complexity is O(5%) = 5° = 125 which is less than 7°= 343, which is
2.744 times the complexity of Strassen’s algorithm. And the difference become so huge
when we have big matrix size, let us say a matrices multiplication of size 127x127, and 127
i1s not multiplicand of 2, the nearest multiple of 2 is 128, so, 128x128 matrices
multiplication, we do have complexity of O(128L9927)= O(27'°9%")= O(2!0927)7 = 77=
823,543; while if we go for the standard matrices multiplication where the complexity is
O(N*) = O(127°) = 2,048,383; which is 2.49 times the complexity of Strassen’s algorithm,

so Strassen’s algorithm has positive effect. While if we consider matrices multiplication of
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size 70x70, again, we need to pad it with zeros till we reach 128x128 matrices
multiplication, where the complexity of standard multiplication is O(N?) = O(70%) =
343,000, so, the complexity of Strassen’s algorithm is 2.4 times the complexity of standard

multiplication, so Strassen’s algorithm has negative effect.

It is clear that the evaluations of intermediate values Pi, P>, P3, P4, Ps, Ps, and P7 are

independent and hence, can be computed in parallel.

Another drawback of Strassen’s algorithm is the communication between the processors
[44, 45, and 46]. Some other researches [47] focus on optimizing the communication
between processors at the execution of Strassen's algorithm, where they could obtain some
success at different ranges according to the size of the matrices and number of processors;

but they could not eliminate the communication among the processors to zero.

On the other hand, many researches have tried to extract parallelism from Strassen’s
algorithm, and standard matrices multiplication algorithm [48], and many researches have
tried to extract the algorithm on multi-core CPUs [49, 50, and 51] to exploit more
performance. In 2007, Paolo D’Alberto, Alexandru Nicolau [52] have tried to exploit
Strassen’s full potential across different new processors’ architectures, and they could
achieve some success for some cases, but still, they have to work with homogenous
processors. While in 2009, Paolo D'Alberto, Alexandru Nicolau have developed adaptive
recursive Strassen-Winograd’s matrix multiplication (MM) that uses automatically tuned
linear algebra software [53], to achieve up to 22% execution-time reduction for a single

core system and up to 19% for a two dual-core processor system.
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2.4. Parallel Matrix Multiplication Algorithms

Parallel algorithms of matrices multiplication are parallelization of the standard matrices

multiplication method.

2.4.1. Systolic Algorithm
One of the old parallel algorithms returns to 1970, but still active algorithm till moments
[54]. 1t is limited to square matrix multiplication only. In this algorithm, matrices A, B are
decomposed into submatrices of size VP X v/P each, where P is number of processors. The
basic idea of this algorithm is the data exchange and communication occurs between the

nearest-neighbors.

Matrix A Matrix B

ain]al,2)]af1,3) a4 8{1,1}|B{1,2}|B(3,3}|B{1.,4}
A{2,1}|A(2.2}|A{2,3})|A{2.4) B!2,1}|8(2,2}|8(2,3}|Bi2,4)
A13,13[A13,2)|A(3,3}|A(3,4) 8{3,1}/8(3,2}/8(3,3}|B{3,4)
Af4,1)|8(4,2)|Al4,3)|Al4.4) B8(4,1}|8{4,2}|B{4,3}|B{4.4}

4,4
A{4,3}|A13.4)
A{4,2)|A{3,3}|A(2,4)
a(4,13|A(3,2)| A(2,31| al2.4
A(3,1}{A(2,2)|A{1,3)
A(2,1}|Al1,2)
2{1,1)
ciraci,zl

8(1.41[8{2.3)[B(1.2)[B(1,1)
8{2,3}(8(2.3)8(2,2)|8(2.1}
8{3,4)(8(3.3)[B(3,2}[8(3,1)
[8t4,43|B(a,3)[8(4,21|B(4, 1)

C1LA)=AIL 11 BIL4)+A(1, 2)°B{2, A1+A(1,3) “B{3,4)+A{1,4)"B(4,4)

Figure 2-2 Systolic Algorithm
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Figure 2-3 Layout of the A and B matrices in the systolic matrix-matrix multiplication
algorithm for A4x4xB4x4 task mesh. The arrows show the direction of data movement
during execution of the systolic algorithm. [55]
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Table 2-1 The performance of the algorithm being studied by [33]

Task Execution time
Transpose B matrix 2n° t¢
Send A, B matrices to the processors 2mp te
Multiply the elements of A and B m?n t
Switch processors’ B sub-matrix n? te
Generate the resulting matrix n® te+ 0’ tc
Total execution time te(m* n + 3n? ) + te(4n?)

2.4.2. Cannon Algorithm
It is a memory efficient if the multiplied matrices are square. The blocks of matrix A to
rotate vertically while matrix B blocks to rotate horizontally, this can be handled using

circular shifts to generate the product matrix C. In fact, it replaces the traditional loop
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Vp-1
Ci,j = Z Ai,k X Bk,j
k=0
With the loop
Vp-1
Cij= Z A (i+j+i)modyp X Bli+j+modyp,j
k=0

The Pseudo-code for the Cannon Matrix multiplication algorithm
% p number of processors

% s size of the matrix

Fori=0top-1

A(, j)=A(,(i+)) mod p %lefi-circular-shift row 1 of A by i shifts
(skew of A)

Forj=0top-1
B(i, j)=B((i+j) mod p, j) Youp-circular-shift row j of B by j shifis (skew of B)

For (1=0to p-1) and (j =0 to p-1)

C(i,j) = C(i,j) + Xh_; AG,K) * B(k,))

A(, ))=A(,(i-j)) mod p % left-circular-shift each row of A by 1
B(, j)=B((i-)) mod p, j) % up-circular-shift each column of B by 1

A B initially A B after skewing A B after shiftk = 1 A B after shiftk=2

£{2,3) = ALZAYB(1,3) + A2,2)B(2,3) % A(2,3YB(3,3)

Figure 2-4 Cannon's algorithm layout for n = 3
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/I Skew A& N

for i=0tos-1 /s = sqre(p)
left-circular-shift row i of Abyi // cost=s*{u +n2p/B)
fori=0tos-1

up-circular-shift column i of B by i i cost=s*a + n2/p/P)

/1 Multiply and shift

for k=0 to s-1
local-multiply / cost = 2%(n/s)3 = 2*n3/p3/2
left-circular-shift each row of A by 1 Heost=a+n2p/P

up-circular-shift each column of Bby 1 // cost = + n2/p/p

e Total Time =2*n3/p + 4* s*a + 4*B*n2/s
e Parallel Efficiency =2*n3/(p * Total Time)
=1/(1+a*2%s/m)3+B*2%(s/n))
= 1/(1 + O(sqrt(p)/n))
e Growstol asn/s = n/sqﬁ(p) = sqrt(data per processor) grows
e Better than 1D layout, which had Efficiency = 1/(1 + O(p/n))

Table 2-2 The performance of the algorithm being studied by [56]

Task Execution time
Shift A, B matrices 4n’ ¢
Send A, B matrices to the processors 2051
Multiply the elements of A and B n? tr
Shift A, B matrices 2(mn tc + 2m* n t9)
Generate the resulting matrix n’ tet+ 0’ te
Total execution time t(Sm* n + 5n% ) + tc(2n* + 2mn)

2.4.3. Fox and Otto’s algorithm
Fox's algorithm for multiplication organize C =A x B into submatrix on a P processors. The

algorithm runs P times, in each turn, it broadcasts corresponding submatrix of A on each
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row of the processes, run local computation and then shift array B for the next turn

computation. The main disadvantages, it is applied only for square matrices.

This algorithm being written in general in HPJava, we still use Adlib.remap to broadcast

submatrix, matmul is a subroutine for local matrix multiplication. Adlib.shift is used to shift

arraylﬁ, and Adlib.copy copies data back after shift, it can also be implemented as

nested over and for loops.

Group p=new Procs2(P,P);

Range x=p.dim(0);
Range y=p.dim(1l);

on(p) {
//input
float
float

float
float

for (int k=0;
over (Location i=x]:) {

//Cyciic

[[#,#,
[#,#,

erc

, 11 a new float [[x,vy,B,Bl];
]11] b = new float [[x,y,B,B]l;

» 1l ¢ = new float [[x,Y,B,Bl];
;, 1] temp = new float [[x,y,B,Bll;

k<p; k++) {
float [[,]] sub = new float [[B,Bl]:

in ‘*a

(1+k) 3P, z, zll1):;

f v m ot o= vy = 5 ]
//podGCast SUDMmacrix

Adlib.remap(sub, alli,
over (Location j=yl:) {

/ = - o e e P 3 e e T ey e o
//Local matrix multiplication

matmul (c[[1, J, 2, z]], sub, b[[i, J, 2z,

}

a4 £

501

fr 'h' in ‘y' dimension

Adlib.shift (tmp, b, 1, 0, 0); // dst, src, shift, dim,

mode;

Adlib.copy (b,

tmp) ;
}



23

“Two efforts to implement Fox's algorithm on general 2-D grids have been made: Choi,
Dongarra and Walker developed 'PUMMA' [50] for block cyclic data decompositions, and
Huss-Lederman, Jacobson, Tsao and Zhang developed "BiMMeR' for the virtual 2-D torus

wrap data layout”[57].

2.5.Conclusion

In this chapter I have addressed the use of matrix multiplication as benchmark and the

definition of matrix multiplication, serial algorithms and parallel algorithms.

Parallel algorithms for carrying out matrix multiplication in different architecture since
1969 had been studied and analyzed. Parallel algorithms for matrix multiplication have
common mode, it is subdividing the matrices into small size matrices and distributing them

among the processors to achieve faster running time.

We found out that although so many parallel matrix algorithms have been developed since
Cannon Algorithm and Fox algorithm four decades ago, all these algorithms — described in
Appendix B — still use the same methodology and framework of Cannon and Fox
algorithms in term of data decomposition and communication among the processors. On
addition, all these algorithms could not achieve a distinguished performance against both
Cannon and Fox algorithms, which keep both algorithms as bench mark algorithms in

parallel matrix multiplication.

Finally, Identification of BLAS, and the development till considering multi-core

architecture had been shown in Appendix A.
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Chapter 3 - ITPMMA algorithm for Parallel Matrix
Multiplication (STMMA)

3.1.Introduction

Several parallel matrix multiplication algorithms had been described and analyzed in the
previous chapter. All paralle]l matrix multiplication algorithms based on decomposing the
multiplied matrices into smaller size blocks of data, the blocks will be mapped and
distributed among the processors, so each processor run matrix multiplication on the
assigned blocks; this will reduce the whole time of the matrix multiplication operation to
less than the time needed to complete this operation by utilizing one processor. All existing

parallel matrix multiplications algorithms suffer from four drawbacks:

1. To define the optimal size of the block of the decomposed matrices, so the whole
operation can be produced by the minimum time. For example, multiplying matrices of size

64x64 over 4 processors, should the block size be 4x4 or 8x8 or 16x16.

2. The number of exchanged messages between the processors are highly time
consuming; it is proportional to the number of the processors. On the other hand, the time

of forwarding the messages relays partly on the network structure.

3. Data dependency between the processors, where some processors will stay idle
waiting an intermediate calculation results from other processors. Data dependency

increases as number of blocks/processors increases.

4. Some algorithms suffer from another drawback, which is the load balance,

especially with non-square matrix multiplications.
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In this chapter, new parallel matrix multiplication algorithm will be introduced, to
overcome the above four drawbacks, which returns in vast difference in the performance in
terms of processing time and load balance. For example, for a matrices multiplication of
5000x5000, it consumes 2812 seconds using cannon algorithm, while only 712 seconds
needed using the new algorithm, which implies 4 times faster. I have implemented the
algorithm initially using Microsoft C++ ver. 6, with MPI Library. I have execute it at
Processors Intel(R) Core(TM) iS5 CPU 760 @2.80GHz 2.79 GHz, the installed memory
(RAM) was 4.00 GB, System type: 64-bit Operating System, Windows 7 Professional.
Later I have implemented the algorithm using CLUMEQ supercomputer, where I have used

up to 128 processors in parallel.

I will reference to the new algorithm by the name ITPMMA algorithm. The basic concepts
of ITPMMA algorithm were published on "Sub Tasks Matrix Multiplication Algorithm

(STMMA)", [59].
3.2.ITPMMA algorithm for Parallel Matrix Multiplication (STMMA)

Unlike previous algorithms, ITPMMA Algorithm for Parallel Matrix Multiplication does
not define new data movement or circulation; instead, it generates independent serial tasks

follows the serial matrix multiplications shown below:

1: for|| I=0 to s-1 {

2: for J=0to s-1 {

3: for K=0 to s-1 {

4; ClU=Cl+ AIK xBKJ }}}

ITPMMA Algorithm decomposes the parallel matrix multiplication problem into several
independent vector multiplication tasks, keeping the processing details of each independent

task to the processors, which are multicore processors, so I am utilizing the modern
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architecture processors’ capabilites. ITPMMA Algorithm has the advantage to utilize the
up-to-date processor architecture features in terms of multicores and cache memories. In
fact, ITPMMA Algorithm defines each independent task as set of instructions to produce
one element of the result matrix. Each single set is fully independent of production of any
other set, or independent task. Each single independent task is being processed by one
single processor. Once each processor has completed the independent task been assigned to
it, and produced an element of the result matrix, it processes the next independent task, to

produce the next element, and so on. ITPMMA Algorithm implies:

1. Zero data dependences so better processors’ utilization since no processor stays on
hold, waits for other processors’ output,

2. Zero data transfer among the processors of the cluster, so faster processing.
Communications in ITPMMA Algorithm is limited to the time needed to send the
independent tasks lists by the server node processor to different processors, and to the
time needed to receive back alerts and results by the other processors to the server node

Processor.

In this context ITPMMA Algorithm has advantages of efficient use of the processors’ time.
Figure 3-1 simulates the serial matrix multiplication using one single core processor. Figure
3-2 simulates the previous parallel algorithms. It is clear that both processors P2 and P3 are
on hold, till processor P1 over and switch to idle status. On addition, processors P4 will not
start processing till both P2 and P3 over. The efficiency of using the processors' time is so
poor. Each processor computes for 4 units of time and 3 units for communication, and been
on hold or idle for 9 units of time. So the computing efficiency of each processor is 4/16

=25%. On the other hand, figure 3-3 simulates parallel multiplication using new algorithm
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which is called Independent Tasks Parallel Matrix Multiplication Algorithm (ITPMMA).
Instead of decompose the data among the processors; we distribute the independent tasks
among the processors. So, processor P1 should produce the first row of Matrix C shown in
figure 2, while processor P2 should produce the second row of Matrix C, and processor P3
should produce the third row, finally processor P4 should produce the fourth row of Matrix
C. For that, we need only 4 units of time to accomplish the tasks, in addition, no
communication among the processors, also, no time for assembling the results, only to
deliver it. One of the major advances of ITPMMA algorithm is efficiency of using the
processors, no processor gets on hold or idle. The efficiency of each processor is 4/5 =

90%.

Matrix A 4x8 Matrix C 4x4
Matrix B 8x4
P1
11234 |5 |6 |7 |89 ([10[11]12]13]14]| 15|16
-Computation Time

Figure 3-1, Serial Matrix Multiplication
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Matrix A 4x8 Matrix C 4x4

Matrix B 8x4
P4 on hold, is waiting for P2 and P3
P2 and P3 on hold, P3 idle
are waiting for P1 P2 idle
P1 idle )
Time
1234567 ]e]afro]n]r2]13]14]15]18

Computation Time
Communication Time - among processors
Communication Time - assembling and delivering data

Figure 3-2 Simulation of pre ITPMMA Algorithms

Matrix A 4x8 Matrix C 4x4

Matrix B 8x4

Computation Time
Communication Time - delivering data

=

Figure 3-3 Simulation of ITPMMA Algorithm
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3.2.1. ITPMMA flowchart
ITPMMA Algorithm for parallel matrix multiplications, on the contrary of other parallel
matrix multiplication algorithms, it depends on reformatting the matrix multiplication
process into many independent vector multiplication operations, each vector multiplication
operation will be carried out by single processor, to avoid any data dependency and
processor-to-processor data transferring time. Figure 3-3 shows ITPMMA Algorithm

flowchart.
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Figure 3-4 ITPMMA Algorithm flowchart
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ITPMMA Algorithm uses MPI library to define the number of active processors on the

cluster and rank them. In addition, MPI library is used to transfer the lists of tasks to the

processors and to forward task completion alerts from different processers to the node

processor. So the server node: received bird sow

1.

2.

Defines the processors available in the parallel cluster and to rank them.

Generate the the independent tasks, so produce an element of the result matrix is
considered as independent task.

Divides the last of independent tasks by the number of active processors in the cluster.
So for the output matrix of size 7000x7000 and number of processors is 128 active
processors, (7000x7000)/128=382812.5, so 64 processors produce 382,812 independent
tasks and 64 processors produce 382,813 independent tasks. So the time needed to
process 7000x7000 matrix multiplication in parallel of 128 processors is equivalent
process 620x620 in one processor.

Sends for each processor list of independent tasks to be carried out.

Receives from each processor alert of completion when all assigned tasks have been
carried out.

Redistributes the processor of any faulted processor(s) to other active ones by sending
extra tasks for the high computing power processors, once the initial sent list of tasks of
these processors had been carried out. Redistribution includes shifting tasks from the
over queued low computing power processors to the high computing ones; so this

algorithm address the hetregenious enviroment.



32

MPI library will not be used to exchange any data at all, as all tasks are independent, so, no

processor receives any data from another processor to be able to complete its work, nor any

processor communicate with non-server node processor.

I will explain the algorithm using different four examples:

1.

Square Matrix multiplication, and the size of the result matrix is multiple of the
number of processors being used in parallel, like A4xa * Baxa = Caxa, for four
processors in parallel; well, the size of the result matrix is 4x4, is multiple of the

number of processor in use, which is 4.

Square Matrix multiplication, and the size of the result matrix is not multiple of the
number of processors being used in parallel, Aizxi2 X Biaxiz = Cizx12, for eight

processors in parallel; it is obvious that 12 is not multiple of 8.

Non Square Matrix multiplication, and the size of result matrix is multiple of the
number of the processors being used in parallel, like Ai2x12 X Bi2xis = Ci2x16, for four

processors in parallel; it is obvious that both 12 and 16 are multiple of 4.

Non Square Matrix multiplication, and the size result matrix is not multiple of the
number of the processors being used in parallel, like Ai2x12 X Biaxig = Ciaxis, for

four processors in parallel; it is obvious that 18 is not multiple of 4.

The second and the fourth example will help me to show how ITPMMA algorithm will

address the problem of load balance to be very obvious. On the other hand all previous

algorithms for parallel matrix multiplication are limited to square matrix multiplication

only.
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3.3.ITPMMA applied to different matrices sizes

3.3.1. Square Matrix multiplication, size of the result matrix is multiple of the number
of processors in parallel

In this example, A4x4 X Baxs being executed on four processors Po, P1, P2, and P3, matrix A
will be sent to all processors, while one single column of matrix B will be sent to each
matrix, so each processor produces part of the matrices multiplication result as shown of

Figure. 34.

Processor

BAgns Bava Cant
Processorl

Aot B Cina
Processor 2

Agng B Chms
Processor3

Agnd Buns Cins

Figure 3-5 Task distribution of A4xs x Baxs, where each processor will produce part of the
result matrix Caxq

Each processor processes separate independent tasks, so no messages of intermediate
results will be exchanged, instead each processor produces what it needs when needed, that

is to reduce the time consumed for exchange intermediate results between the processors
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and to avoid data dependencie which put the processor on hold waiting results from other

processors. So, Po will execute the code shown in Figure 3-5:

i1: for J=0 to 34

2z for BE=0 to 3 ¢ .
3= Cao = Cso + Azg %Bgg
4 3 '
5: 3

L e e N e

Figure 3-6: Pseudo code executed by processor PO

While Py will execute the code shown in Figure 3-6:

Figure 3-7: Pseudo code executed by processor P1

While P2 will execute the code shown in Figure 3-7:

: for J=0 to 3 ¢
: for B=0 to 3 ¢
Czz = Cgz + HAzx XBgg

i
Z
3:
4 : }
o)

: ¥

Figure 3-8: Pseudo code executed by processor P2

While P3 will execute the code shown in Figure 3-8:
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1: for J=0 to 34

2z for K=0 to 3 {
3= Cgz = Cig3 + Aszx XBrgs
4 : ¥

5: }

Figure 3-9: Pseudo code executed by processor P3

As we can see, no processor waits its entries from another processor(s), and no processor
sends some results to other processor, so we could reduce the data dependency and
exchanged messages to zero, which has played backward role on the performance of the
previous parallel matrix multiplications. To generalize the case mentioned above, for
different matrices size, [ will use the example of Aj2x12 X Biaxi2 = Ciaxiz, for four parallel
processors. So, each processor will produce three columns of the matrix C, processor Po
will produce three columns, these are the first and fifth and ninth columns of the matrix

Ci2x12, Figure 3-9 shows task distribution of A12x12 X Biax12 = Ciax12.
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Processor O

A1ze12 Bize12 Ca2x12

Figure 3-10 Task distribution of Ai2x12 X B12x12, where each processor will produce part of
the result matrix Cizx12

Processor 0 executes the code shown in Figure 3-10, to produce the first and the fifth and

the ninth columns of the result matrix Ciax12.
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i: for J=0 to 11 {

2: for R=0 to 11 ¢

3: Cso = Cgo + Zpox XByg
4: 3

5: 3

i1: for J=0 to 11 {

2z for K=0 teo 131 {

3: Css = Crs + Agy XBgs
4: ¥

5: H

Figure 3-11: Pseudo code executed by processor PO, to produce the first and the fifth and
the ninth columns of the result matrix Ci2xi2

While processor P produces different three columns, these are the second and sixth and
tenth columns of the matrix Ci2x12, and so on for the remaining processors. Figure 3-11
shows the details of ITPMMA algorithm for the multiplication of Aj2x12 % Bi2x12, using four

processors in parallel.
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The first processor will
produce the first and fifth
and ninth columnsof the
result matrix, that is
C[0][0]— C[11]{0], and
C[0][4] — C[11][4]. and
C[0][8] — C[11][8]

The second processor
will produce the second
and sixth and tenth
columnsof the result
matrix, that 1s C[0][1]—
C[11][1]. and C[0O][5] —
C[11][5], and C[O][9] —
C[11][9]

The third processor will
produce the third and
seventh and eleventh
columnsof the result

matrix, that is C[0][2]—

C[11][2], and C[0]{6] —

C[11][6]. and C[0][10}
— C[11][10]

The fourth processor will
produce the fourth and
eighth and twelfth
columnsof the result
matrix, that is C[0][2]—
C[11]{2]. and C[O][7] —
C[11][7], and C[0]{11]
— C[11][11]

Resuie of the first processor

Resuit of the second processer

Resuit of the third processor

Result of the fourth processor

Figure 3-12: Aj2x12 X Biaxi2 using ITPMMA algorithm for parallel matrix multiplication
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The tasks are fully independent tasks — so no processor needed to exchange data with other
processors — so there was no time being wasted by exchanging messages, and no processor
has stayed idle waiting its input from other processors, well, this is the essence of ITPMMA
algorithm.

3.3.2. Square Matrix multiplication, size of the result matrix is not multiple of the
number of processors in parallel

For this case, the size of the multiplied matrices is not multiple of the number of the
processor. In this example, we are to multiply Aizxiz X Biaxi2, while the number of
processors is eight, where 12 is not multiple of 8. In this case, we have to overcome this
issue, and schedule the independent tasks between the processors equally, so the load is
balanced, and no processor will stay idle while other processors still overloaded. So, we can

run the schedule shown in Table 3-1, which satisfy the criteria of ITPMMA algorithm.

Table 3-1 Tasks to be performed by each processor

Processor Tasks to be performed
PO C[0][0]>C[11][0] C[0][8]>C[5][8]
P1 C[O][11>C[11][1] C[6][8]>C[11][8]
P2 C[0][2]>C[11][2] C[0][9]>CI51[9]
P3 C[0][3]>C[11][3] C[6][9]1=>C[11][9]
P4 C[0][4]=>C[11][4] C[0][10]>C[5][10]
PS5 C[0][5]>C[11][5] C[6][10]=>C[11][10]
P6 C[o][6]=>C[11][6] Cl[o][11]=>C[5][11]
P7 C[0][71>C[11][7] CleJ[111>Ci1]in

Each processor produce 18 elements of the output matrix C, which satisfies the load
balance between the processors, also, each task — and so each processor — is independent
from any other tasks, and so, there is no exchanged messages. Figure 3-12 (A) shows the
time chart for the eight processors for this example Aiaxi2 X Biaxi2 = Ciaxiz , it is obvious
that all processors working, and no processor is idle, and no processor finishes its tasks

before the others, which implies the highest efficiency of using the processors and the
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highest load balance been achieved. On the other hand, Figure 3-12 (B) shows the map of

between the elements of the output matrix Ci2x12, and the processor that will produce each.

Finally, Figure 3-12 (C) shows the total number of tasks being produced by each processor.

Total elements bemg
produced by a processor

PO 18

Pi 18

P2 18

P3 18

P4 18

Ps 18

clojio}—C[11)io] Clo][8]—C[5]i8] P6 18

12 3 4 5 6 7 & 9% 10 11 12 Time P7 18

{A) Tasks distributed per processor per time (C) Toral tasks per each

9 1 2 3 4 3 6 7 8& o6 10 1 processor

(B) Elements of Matrix C12x12, mapped per processor where
each element being produced

Figure 3-13 Tasks to be performed by each processor of the eight processor to produce the

matrix Ciax12
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3.3.3. Non - square Matrix multiplication, size of the result matrix is multiple of the
number of processors in parallel

First of all, the previous parallel matrix multiplication algorithms avoided non-square
matrices multiplications, as they cannot perform it proper, some algorithms pad zeroes to
make the matrices square, and then execute the multiplication. The main point here is to

define and schedule the tasks within the three constraints:

1. Task independency, implies no processor will get intermediate results from another

processor, to process its tasks.

2. Load balance, implies all processors will execute same size of tasks in term of

number and size of math operations.

3. Processor efficiency, which implies no processor, will stay idle while another

processors still over queued with tasks.

I will use the example of multiplying Ai2x12 X Biaxi6 = Ciaxi6 at four processors. The tasks
distribution is shown in Figure 3-13. In this case, the algorithm defines producing each
element of the result matrix as an independent task, so total number of the independent
tasks is 12x16= 192, so each processor produces 192/4=48 independent tasks, which is

equavelent to four columns.

The first processor will produce the first and fifth and ninth and the thirteenth columns of
the result matrix, that is C[0][0]— C[11][0], and C[0][4] — C[11][4], and C[O0][8] —
C[11][8] and C[0][12] — C[11][12].

The second processor will produce the second and sixth and tenth and the fourteenth

columns of the result matrix, that is C[0][1]— C[11][1], and C[O][5] — C[11][5], and

C[0][9] — C[11][9] , and C[0][13] — C[11][13].
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The third processor will produce the third and seventh and eleventh and fifteenth columns
of the result matrix, that is C[0][2]— C[11][2], and C[0][6] — C[11][6], and C[0][10] —
C[11][10], and C[0][14] — C[11][14].

The fourth processor will produce the fourth and eighth and twelfth and sixteenth columns
of the result matrix, that is C[0][2]— C[11][2], and C[0][7] — C[11][7], and C[O][11] —

C[11][11], and C[0][15] — C[11][15].

Praocessor G
Atz Bizas Cizx1s
|
Processor 1
Atz Bizdas Cizxie
|
Processor 2
Az Bizas C1zxa6
|
Processaor 3
A1z Bizas Cixas

Figure 3-14 Task distribution of Ai2x12 X Bi2x16, Where each processor will produce
different part of the result matrix Cixi6



43

3.3.4. Non - square Matrix multiplication, size of the result matrix is not multiple of
the number of processors in parallel ‘

The other case that to test, is the matrix multiplication where the size of the multiplied
matrices is not multiple of the number of the processors, so distribution of the independent
and equal tasks will take different way. I will use the example of multiplying Aj2x12 X Bi2xis
= Ci2x18 at four processors. Figure 3-14 shows task distribution of the tasks to multiply
Ai2x12 X Biaxig in parallel using 4 processors. So, we have 12x18=216 independent tasks,
each processor should process 216/4=54 tasks. The output matrix has 18 columns each of
12 elements or independent tasks. So, 54/12=4.5, so each processor of the four processors
produces 4 columns (each column of 12 elements) of the result matrix Cjzxs, plus six
elements, this makes the total number of elements is 4x12+6=54 elements. Each element
will be produced by single one processor from A to Z, which implies the independency, so

no intermediate values to be exchanged.

Last example in this subsection, for multiplying matrices A(3 x 3) * B(3 x 5) = C(3 x 5)
and we have 3 processors. So we have 3 x 5 = 15 independent tasks for 3 processors, so 15

(independent tasks) / 3 (processors) = 5 independent tasks to be processed by each

processor.

QOutput Matrix C(3 x 3}

Cells will be processed by Processor §
| Cells will be processed by Processer 2
Cells will be processed by Processor 3

Figure 3-15 Multiplions of matrices A(3 x 3) * B(3 x 5) = C(3 x 5) using 3 processors
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Processar O

Alzx12 Bizas Cizas

Processor 1

A2z Bizxis Cizas

Processor 2

Alzxaz Bizxis Cizas

Processor 3

Alzx12 Bazxis Cizs

Figure 3-16 Task distribution of Ai2x12 X Bi2x18, where each processor will produce part of
the result matrix Cizxs.

3.4.ITPMMA properties

In ITPMMA Algorithm:
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1. No processor stays idle to wait output of some processor else. Since all tasks are
independent tasks, and equal in size, in term of number and size of the mathematical

operations.

2. No communication time cost among the processors in term of data movement;
communication is only between the server node processor and other processors to

define the rank of each processor, and to send the tasks lists.

3. Each processor utilizes its full capabilities, like the multicores and cache memory,
to complete the current task as fast as possible. This implies ITPMMA algorithm
consider the up-to-date structure of the processor to complete the task in shortest

time.

4. Load balanced as»the tasks already balanced among the processors. In case a
processor completed its tasks before other processors, the server node processor will
be alerted, so, the server node processor may redirect some other's over queued
task(s) to it. The over queue phenomenon could happen when different processors

architectures of different capabilities are involved in the parallel cluster.

3.4.1. ITPMMA Complexity
ITPMMA Algorithm execution time equals to (Serial matrix multiplication time divided

by number of processors) — time for creating and distribution the lists of tasks.

T, (calc) = ("5) 2n—-1).1 Fq.3-1

Multiplying two N x N matrices requires N multiplications and N — 1 additions

operations for each element of the result matrix. Since there are N2 elements in the
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matrix this yields a total of N (2N — 1) floating-point operations, or about 2N? for large

N.

So for multiplying two matrices of 10x10 each, total number of operations is 102 (2x10
— 1) = 1900 floating-point operations (FLOP). For N = 1000, 2N* =2 megaFLOP
(million floating point operations). For N = 32768, Number of float point operations is
105,553,116,266,496 =~ 100 teraFLOP (trillion floating point operations). Using
ITPMMA algorithm, for 16 processors in the cluster, this number of operations must be
divided by 16 which yield 6,597,069,766,656 = 6 teraFLOP. So, the speedup is
100/6=15. The experiment in Table 3 shows the speed up of 13, with less of 2 times,
which is result of time to upload the required data and the time which the server node

needs to create and distribute the independent tasks.

On the other hand, the analytical solution of ITPMMA Algorithm shown in equation 3
— 1, implies the communication time is negligible, since the communication through the
cluster is limited to sending the list of tasks to the processors, and neither the elements
of the multiplied matrices nor the intermediate results to be transmitted between the
processors. By comparing ITPMMA analytical solution with the analytical solutions of
Fox algorithm and Cannon algorithm developed at the experiments have been carried
out on 2005 at Lobachevsky State University of Niznhi Novgorod [60] where the total

execution time of Fox algorithm is

T, =q[(n;2-).(%n—1)+(%2)-r+(q logzq+(q—1)(a+@) Eq.3-2

And the total time of Cannon algorithm is
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Tp=q[(n?z).(%n—l)+(n{)-‘r+(2q+2)(a+%%)) Eq.3 -3

Equations 3-1 and 3-2 and 3-3 are compatible with the experiments we carried out in

next section.

3.4.2. ITPMMA Load Balancing

Multi-core processors have very high specifications were not familiar before:
1. ~1 TFLOP of compute power per core
2. 61+ of cores, 100+ hardware threads

3. Highly heterogeneous architectures (cores +  specialized cores +

accelerators/coprocessors)
4. Deep memory hierarchies.

The pre ITPMMA Algorithms had been developed before the availability of these
specifications, and so, these specifications have never been utilized before. In ITPMMA
Algorithm, we decompose the parallel matrix multiplication into independent serial tasks to
be executed in parallel, so each serial task utilizes new modem processor architecture.
ITPMMA Algorithm does not interfere how each processor should process its task. The
modemn multicore processors have its own management algorithm to decompose the tasks
into smaller tasks and distribute these tasks in parallel among the cores of the processor,
also, it has own algorithm to use different levels of cache memory. The pre ITPMMA
Algorithms allow each processor in the cluster to process simple equal multiplication or
addition tasks using only one single core. In addition, these tasks are simple, so it does not

utilize the multiple cores or cache memory at all. In addition, the modem processors
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implement the concept of multithreading, which results in better speed up levels, and it is

used when the modem processor to process huge tasks.

ITPMMA Algorithm utilizes the new features of the modem processors in terms of their
ability to process huge size and complicated tasks faster than old processors — single core
and without cache — which implies that the concept that has been used long by all previous
parallel algorithm which states that the smaller block size the much faster parallel
processing speed is not valid anymore. Instead, the smaller block size, where there is less
number of mathematic operations, is the less utilizing the modem processors’ capabilities.
Figure 3-2 simulates Block-Striped Decomposition parallel matrix multiplication algorithm,
where processor P1 and P4 are idle, while processor P2 and P3 still working. Figure 3-3

simulates [ITPMMA Algorithm, where most of the processors become idle at the same time.

3.4.3. ITPMMA Communication Cost

Communication cost between processors in ITPMMA Algorithm among the processors
equals to zero. There is no communication to take place between processors. Processors
receives list of tasks to be executed from the server node processor, once they executed
individually, they alerts and server node processor using MPI libraries. The tasks all are

independent, so no data dependency needs any communication among the processors.

3.4.4. ITPMMA algorithm (STMMA) Efficiency
We will consider the below equation to calculate the efficiency of ITPMMA (STMMA)

algorithm:
Cmxa=Amxk X Bioxn Eq 34

Sequential time of matrix multiplication algorithm Tszg is N? (in case of square matrix

multiplications where m=n=k=N). The parallel time of multiplying the same square
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matrices using ITPMMA (STMMA) algorithm Tpg; is N°/p, while p is number of

processors being used in the parallel processing.
The startup cost or latency is to be neglected in the network of sufficient bandwidth.
The speed up is the Sequential Time Tsep to parallel time Trre
Speed up = Tseg/ Trre
While

Efficiency (1) = Speedup / p

3.4.4.1. Comparisons of ITPMMA with selected algorithms
In this part, I will compare analytically between ITPMMA algorithm and selected parallel

matrix multiplication algorithms. The comparison of ITPMMA (STMMA) algorithm will

consider the following algorithms:
1. Systolic algorithm,
2. Cannon’s algorithm.
3. Fox’s algorithm with square decomposition.
4. Fox’s algorithm with scattered decomposition

While the comparison of ITPMMA (STMMA) algorithm with the algorithms PUMMA

(MBD2), SUMMA and DIMMA will be shown in Appendix C.

The above selected algorithms being compared theoretically and experimentally on so
many journal and conference papers, also, it appears on so many literature and books which

target parallel matrix multiplication.
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Through the theoretical analysis, the following symbols will be used':
e f=number of arithmetic operations units
e tf=time per arithmetic operation << tc (time for communication)
e ¢ =number of communication units
e q=1{f/caverage number of flops per communication access
e Minimum possible time = f* tf when no communication
. Efficiency(speedup) SP=q*(tf/tc)
o f¥tf+c*¥tc=Ff*tf*(1+tc/tf*1/q)
e m2=n2/p

I will summarize the ITPMMA (STMMA) algorithm's tasks and execution time in Table 3-
4. As it is shown, there is no tasks like shift or transpose or broadcast or switch as it is on
the other algorithms shown on the tables 3-5 till Table 3-11. ITPMMA (STMMA)
algorithm implies send the matrices to the processors, each processor will generate the
result matrix elements by perform multiplication and addition operations on the matrices
being transferred to it, finally the results will be collected from different processors to have

on single complete result matrix.

Table 3-2 ITPMMA (STMMA) algorithm's tasks and execution time [59]

Task Execution time

! These definitions appeared in several literatures.



Send A, B matrices to the processors 2mnp t;
Multiply A and B m?n te
Generate the resulting matrix 2mn te

Total execution time

2mnte (1 +p)+mint

Table 3-3 Systolic Algorithm [61]

Task Execution time ITPMMA (STMMA)

Transpese B matrix 2n® ty 0
Send A, B matrices to the

2m%p t 2m%p t
processors
Multiply the elements of A

m’n te m’n t;
and B
Switch processors’ B sub-

n° tc 0

matrix
Generate the resulting matrix n? te+n® t 2mn t

Total execution time

t(m? n+ 3n% ) + te(dn?

)

2ot (1+p)+mint
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Table 3-4 Cannon’s Algorithm [62]

Task Execution time ITPMMA (STMMA)
Shift A, B matrices 4n? ty 0
Send A, B matrices to the
7t 2mnp te
processors
Multiply the elements of A
n? ty n’ &
and B
Shift A, B matrices 2(mn t. + 2m? n tg) 0
Generate the resulting matrix e+ n’t 2mn t,

Total execution time

t(Sm? n + 5n° ) + t(2n?

2mnt (1+p)+mw

elements of A

-+ 2mn) tr
Table 3-5 Fox’s Algorithm with square decomposition [63]
Task Execution time ITPMMA (STMMA)
Send B matrix n? te 2mnp te
Broadcast  the diagonal
mup te 0

52



Multiply A and B m?n te n? t¢
Shift A, B matrices ma te + 2m’ nte 0
Generate the resulting matrix n’ e+ 0t 2mn .

Total execution time

t(3m? n +n?) + t(2n?

+mn(pt+l)

2mnte {1 +p)+minty

Table 3-6 Fox’s Algorithm with scattered decomposition, [64]

Task Execution time ITPMMA
(STMMA)
Scatter A ik 0
Broadcast the diagonal
mnp te 2mnp
clements of B
Multiply A and B mn tr n? tg
Switch processors’ A submatrix mn te 0
Generate the resulting matrix n® tp+n? t 2mn t
Total execution time t(m’n+0% )+ t(20%+ | 2mnt. (1+p)+m’n
2m® n + mnp) tr
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By summarizing the above tables (Table 3-4 till Table 3-11) I will conclude the following

execution time table for all algorithms, Table 3-12.

Table 3-7 Algorithms' execution time summary table

Algorithm Execution Time
ITPMMA (STMMA) Algorithm 2mntc (1+p)+mnts
Systolic Algorithm t(m?® n + 3n%) + t(4n?)
Cannon Algorithm j t{Sm? n + 5n?) + t.(2n% + 2mn)
Fox’s Algorithm with square decomposition t((3m? n + n?) + t,(2n% + mn(p+1)

Fox’s Algorithm with scattered decomposition | t{m?n+ n?)+ t(2n* + 2m? n + mnp)

PUMMA (MBD?2) te(m 2n + n? ) + t(2n? + m%root(p)(p+1))
SUMMA , to(m 2n + n? ) + te(n? + 2mnp)
DIMMA tf(m 2n + n2 ) + t(n? + 2mnp)

It is so obvious that [TPMMA (STMMA) algorithm has the minimum execution cost.
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3.5.Conclusion

In this chapter, I have introduced new parallel matrix multiplication algorithm, ITPMMA
algorithm, which is faster than the previous parallel matrix multiplication in term of

analytical analysis against Cannon Algorithm and Fox algorithm.

On the other hand, ITPMMA algorithm had been compared analytically against PUMMA,

SUMMA, and DIMMA as shown in Appendix C.
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Chapter 4 - ITPMMA Analysis and Results

4.1. Introduction

In this chapter, I will implement and execute ITPMMA algorithm into two different real

parallel environments:

l.

Simple parallel environment of four PCs, and then sixteen PCs connected via
Ethernet card. The PCs exchange the data using MPI library. The PCs processors
are Intel(R) Core(TM) 15 CPU 760 @2.80GHz 2.79 GHz, installed memory (RAM)
is 4.00 GB, System type: 64-bit Operating System, Windows 7 Professional. This
environment is considered as heterogeneous environment since all PCs been
assembled by different vendors and no consideration of homogeneity has been
considered in assembling the PCs.

CLUMEQ supercomputer homogenous environment to be utilized here to test the
algorithm in big size environment in term of number of processors. CLUMEQ is a
Supercomputer Consortium Laval UQAM McGill and Eastern ITPMMA based in
McGill University founded in 2001. It has three clusters, Colosse, Krylov, and
Guillimin. I have used Guillimin Cluster in this thesis. Guillimin is a compute
cluster comprised of 1200 compute nodes and 34 infrastructure nodes. These nodes
are each a pair of Inte] Westmere-EP processors each with 6 cores and 24, 36 or 72
G Bytes of RAM memory per node. In total, Guillimin consists of 14400 cores and

46 T Bytes of memory. All nodes are connected via a high-performance QDR
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InfiniBand network. Guillimin is also connected to the outside world via a 10
Gigabit Ethernet network. A parallel file system (GPFS) provides a usable capacity

of 2 P Bytes, [65].

ITPMMA algorithm will be tested against both Cannon Algorithm and Fox Algorithm. The
advantages of ITPMMA algorithm like reducing the exchanged messages among
processors to zero will be explored. The load balance mechanism of ITPMMA algorithm
will be explored against the other two algorithms, especially in the case of non-square
matrix multiplication. The speedup and the efficiency of ITi)MMA algorithm will be

explored lively.

4.2.Simple parallel environment

I have executed both algorithms, ITPMMA and Cannon for three square matrices size,
100100, and 500x500, and 5000x5000. And I have executed each experiment twice, one
time for four processors, and the second time for sixteen processors. The reading of these

experiments and the calculations are shown in Table 4-1.

Table 4-1 Comparison between the performance of ITPMMA (STMMA) and Cannon
Algorithms for matrices of 100x100, 500x500, and 5000x5000

Test ID 1 2 3 4 5 [ 9 10

Algorithm Cannon STMMA Cannon Cannon
Matrix Size(n) | 100 | 100 | 100 100 | 500 | 500 5000 [ 5000
Decomposition

(number of 4 16 - - 4 16 4 16

blocks)
Number of
processor 4 16 4 16 4 16 4 16
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Ts
(1 processor) 43

(ms)

Tp (ms) 39 | 154 | 31 25 | 594 | 601
Speed up 1.1 | 028 139 | 1.72 | 148 | 1.45
Efficiency(1-2) | 27.5( 1.75 | 34.75 | 10.75 | 9.25 | 9.06

The table above shows the following facts:

1. Speedup for Cannon algorithm is:

a. For 4 processors, speedups obtained are: 1.1, 1.48, and 2.7.

b. For 16 processors, speedups obtained are 0.28, 1.45, and 3.95.

2. Speedup for ITPMMA algorithm is:

a. For 4 processors, speedups obtained are: 1.39, 2.8, and 3.68.

b. For 16 processors, speedups obtained are: 1.72, 3.9 and 15.62.

It is so clear, that ITPMMA algorithm exceed Cannon algorithm by several times ranging

between 1.72/0.28 =~ 6 times to 3.9/1.45 = 2 times at test IDs 4 and 8 respectively.

ITPMMA algorithm is 15.62/3.95 = 4 times better than cannon algorithm, obtained at test

ID 12, where ITPMMA algorithm completed the matrix multiplication of 5000 matrix size

at 16 parallel processors at 712 seconds, where Cannon algorithm completed the same

operations at 2812 seconds. Figure 4-1 shows a chart of the speedup of both ITPMMA and

Cannon algorithm.
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Figure 4-1 Speed up of ITPMMA compared with Cannon

The chart above on figure 4-1 shows ITPMMA algorithm for 4 processors is better than

Cannon algorithm for 16 processors in case matrix size of 100 and 500.

Another distinguished point is clear in the chart that Cannon algorithm for 4 processors —
figure 4-1 — is better that Cannon algorithm itself for 16 processors for matrix size 100 in
term of speed up. It is shown in test ID 2, where the speedup is less than one, which implies
the serial test is faster than the parallel one. That happened at Cannon algorithm when
multiplying two matrices at size 100, at 16 parallel processors, it takes 154 seconds while
the serial multiplication takes only 43 seconds. This low speedup shows the high
dependency of several calculations on other calculations. In Cannon algorithm, matrix of
100 size — figure 4-3 — divided between 16 processors, that means, each processor of the 16

processors did some task (addition and multiplication) on producing each element of the
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result matrix; that means the total 100 operations of multiplication and the total 100
operations of addition to produce one single element of the output matrix being distributed
among the 16 processors, so fifteen processors will not be able to complete their tasks
unless each receives output from the adjacent processor. Figure 4-2 and 4-3 show the speed

up charts for 4 and 16 processors respectively.

Speedup for 4 parallel processors

. ol
2 / s / s | TRV,

L = Cannon
1 P 2 05 §
{
05 IS S -
0 i
100 500 5000
Mairix Size

Figure 4-2: Speed up comparison for 4 processors between ITPMMA Cannon algorithms
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0
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Figure 4-3: Speed up comparison for 16 processors between ITPMMA Cannon algorithms
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Another point, the comparison between both algorithms in terms of speedup is varying,
which I will return it to the PCS I have used and to the compatibilities between the
hardware parts. This point will fade when using CLUMEQ supercomputer, when the

compatibility between the hardware parts is high.

4.3. Guillimin Cluster at CLUMEQ supercomputer environment

In this subchapter, I will analyze four groups of experiments being carried out on Guillimin
Cluster at CLUMEQ supercomputer. That is to address the speedup, efficiency, load
balance and the performance of ITPMMA algorithm, against both Cannon Algorithm, and

Fox Algorithm. These four groups are:

1. Several sizes of matrices, where the matrices size is multiple of the number of
processors, to address the speedup aspects, Table 4-2.

2. Several sizes of matrices, where the matrices size is not multiple of the number of
processors, to address the load balance aspects, Table 4-3 and Table 4-4.

3. Non-square matrices with different number of processors, to address the load
balance aspects, and to address the advantages of ITPMMA algorithm over other
algorithms in dealing with this case, non-square matrices multiplication, Table 4-5.

4. Fixed sizes of matrices with different number of processors, where the matrices size
is multiple of the number of processors, to address the performance, where fewer
resources (number of processors) are needed by ITPMMA algorithm less than

resources needed by other algorithms to do the same task, Table 4-6.
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4.3.1. Speedup calculations

Speed up of a parallel algorithm is the time consumed in execution the parallel algorithm
divided by the time consumed in executing the same problem in serial mode. In this test, I
have used different sizes matrices and multiplied them in serial first, then in parallel.
Parallel execution repeated three times, the first time, I have used ITPMMA algorithm,
while the second time I have used Cannon Algorithm, and the third time I have used Fox
Algorithm. In this test, I have used the matrices size as multiple of the number of the
processors to guarantee equaled distribution of the data blokes on the processors for both
Cannon and Fox Algorithms, to guarantee full efficiency of both algorithms, while this is
not the case for ITPMMA algorithm to guarantee equaled distribution of the data. These
tests show the speed of ITPMMA algorithm over both Cannon and Fox Algorithms. Table

4-2, shows the readings of these tests.

For matrix multiplication of size 32768%32768 and double precision floating point type —
each element of the matrix occupy 8 bytes, ITPMMA algorithm needs 1098 seconds to
complete this operation over 16 processors. While, Cannon Algorithm needs 6010 seconds,
Fox Algorithm needs 7150 seconds, over the same conditions and same number of
processors. Full comparison of the time consumed for different matrices size for the
different algorithms, and the speed up are shown on Table 4-2. In figure 4-4 speed up of

ITPMMA algorithm against both Cannon and Fox Algorithm.
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Table 4-2 Different sizes of matrices with 16 processors in parallel, where the matrices size
is multiplicand of the number of processors.

Algori Matrix Size
128 | s12 [ 1024 | 2048 | 409 | 8192 | 16384 | 32768
Processing Time
Serial 40,00 - 222,00 535,00 998.00 1900,00 381000 900,00 16300.00
TTPMMA 3.00 17,00 40,00 75,00 130,00 251,00 495,060 1098 00
Camnen 11,00 65.00 152,00 32000 605,00 1400.00 2700,00 6010,00
Fox 14,00 83.60 21200 430,00 820,00 1701.00 398060 7130,00
TTPAMMA
Task- 0 S 112 181 356 435 563 601
Adpstment
Speed up
ITPMMA 13.33 13.66 1338 13.31 14,62 13,18 15,83 14,83
Cannon 3,64 342 3.32 3,12 3,14 272 293 2,71
Fox 2,86 2.52 2.52 232 232 224 1.98 228
Speed up
18 -
12
10
weman [ TPMMA
8
= Cannon
6 E—e)t
4
5 e .
0
128 512 1024 2048 4096 8192 16384 32768
Matrix Size

Figure 4-4 ITPMMA Algorithm Speed up against both Cannon Algorithm, and Fox
Algorithm where the matrices size is multiplicand of the number of processors

From Table 4-2 we can notice that the processing time at small size matrices are close to
each other for all algorithms, then it diverges as the size of the matrices increases. It is quite

clear the differences between the results of ITPMMA algorithm against both Cannon
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Algorithm, and Fox Algorithm. The resources and the data — the matrices — are identical in
this test; it is only the way of processing. For ITPMMA algorithm, each element of the
result matrix will be produced by one single processor, while this is not the case for the
other two algorithms, where several processors will work in producing each element of the
result matrix. To produce one element of the result matrix in case of Aszz76s, 32768 X B3276s,
32768, @ raw of matrix A to be multiplied by a column of matrix B, element by element and
then to sum up the results to produce the result matrix element, that is total of 32,768
multiplication operations and 32,768 addition operations, with total of 65,536 operations,
utilizing its advanced capabilities of multicore and different level of cache memories. In the
case of ITPMMA algorithm, one single processor will be processing these 65,536
operations, while the other two algorithms, several processors will share these operations as
each processor will work on a small block size of matrix A and B, and then, each processor
will send its local results to other processor — which could be on hold waiting the results of
other processors because of the high data and functionally dependencies of Cannon and
FOX algorithms — to complete the processing of several elements of the result matrix once.
Sending the local result of each processor to other processor(s) it is time consuming, in
addition to that, some processor will complete processing its current block, and then staying
on hold till it receives the local result of other processor(s). So I conclude here that the

difference between ITPMMA algorithm and Cannon and Fox algorithms are:

1. The time consumed in sending local results to other processors in both Cannon and
Fox algorithms increases as number of processors increases and as number of

blocks increases, while it is zero in ITPMMA algorithm.
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2. The time, where some processors stay on hold waiting local results of other
processor(s) to complete its task, or to start new tasks in both Cannon and Fox
algorithms fluctuate from time to time and from processor to processor, while it is

zero in [TPMMA algorithm.

Finally, the above two advantages of ITPMMA algorithm make it faster than Cannon and

Fox algorithms.

4.3.2. Load balance calculations

Load balance implies all processors will do the same size of work, for example, same
number of same types of operations on same type of data. In heterogeneous parallel
environment, the above definition is not fruitful as long as the processors of the
environment have different capabilities in term of computing power, nodes, and cache
levels and sizes; so we are interested in keeping all processors working, and not turned idle
as long the whole operation of matrix multiplication is not completed yet. In this sub

chapter, I will consider two groups of experiments:

1. Different sizes matrices being multiplied by different algorithms with same number
of processors, where the matrices size is not multiple of the number of processors.
In this case, the load of data is not multiple of the number of processors, this issues
being solved for both Cannon and Fox Algorithms by padding zeroes to the
multiplied matrices, so its size is multiple of the number of processors, so each
matrix will be divided in several blocks where each block size is N/p, where N is
the size of the matrix and p is the number of the processors in use. This implies

multiplying more size matrices — with extra data to be multiplied, while these data is
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not needed — in case of Cannon and Fox Algorithms, more than the size of the
multiplied matrices in case of ITPMMA algorithm. This experiment will show the
vast differences between the time needed to carry out the matrices multiplication of
the three algorithms, to show the poorness of the load balance strategy used by both
Cannon and Fox Algorithms, which implies padding zeros to have the optimized

matrices sizes, which will consume same time as matrix have adjusted size.

2. Non-square matrices with different number of processors, to show much worse case
for both Cannon and Fox Algorithms, where the multiplied matrices are not square
too, which implies padding more zeroes to adjust the both number of columns and
number of rows of the multiplied matrices to be multiple of the number of the
processors in use. Again we will see vast difference between the results of
ITPMMA algorithm and Cannon and Fox Algorithms. This experiment in addition
the previous experiment, shows the absent of load balance concept and strategy at
both Cannon and Fox Algorithms, while it is a default concept at ITPMMA

algorithm.

Table 4-3 multiplying different sizes of matrices on 16 processors, where the matrices size
is not multiplicand of the number of processors (balanced load will be clear with

ITPMMA algorithm).
. Matrix Size
Algorithm 1006 | s | 700 | 1000 | 1200 [ 2000 | 3000 | 5000
Processing Time
Serial 39 210 322 525 645 978 1499 2494
ITPMMA 2.50 14.00 21.00 34.00 42.00 63.00 98.00 166.00
Cannen 11.00 66.00 150.00 150.00 270.00 270.00 389.00 700.00
Fox 16.00 80.00 210.00 210.00 391.00 391.00 588.00 978.00
Speed up

ITPMMA | 15.60 15.00 15.33 1544 15.36 15.52 15.30 15.02

Cannon 355 3.18 2.15 3.50 2.39 3.62 3.85 3.56

Fox 2 44 263 153 2.50 1.65 2.50 255 255
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Figure 4-5 Speed up of ITPMMA algorithm against both Cannon Algorithm, and Fox
Algorithm where the matrices size is not multiple of the number of processors

The differences between the above tests are so clear concerning time of execution, since
some processors in case of Cannon and Fox Algorithms are busy with multiplying extra
zeroes data being padded to matrices to fix its sizes, to let the processors accept the blocks
have some actual data, while the remain of the block data is just zeroes to complete the
block to the defined size. Different block sizes can have better effects for both Cannon and
Fox Algorithms. For example for matrices size 100 and number of 16 processors in parallel,
to calculate the block size 100/16 = 6.25, so both multiplied matrices to be padded by extra
zeroes to be able to generate blocks of 7 size, so the matrix size will be 7 * 16 = 112, so all
processors will keep busy all the time of the multiplication operation of matrix size of 112

instead of 100 for both Cannon and fox algorithms but not for ITPMMA algorithm.
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Table 4-4 comparison between different size matrices multiplication, where the size of the

matrices are multiple and non-multiple of the processors.

. Matrix Size
Algorithm
128 512 1024 2048 4096 8192 16384 32768
3 A7 b & | 75 130 251 499 1089
11 65 | i5E 1 320 605 1400 2700 6010
Fox 14 88 | 22| 4% 820 1701 3980 7150
Matrix Si
Algorithm aTE o
100 500 700 1000 1200 2000 3000 5000
2.5 14 21 4 | » 63 98 166
11 66 150 | 150 | 270 270 389 700
" Fox | 16 80 210 | 210 | 391 391 588 978

By having a look at Table 4-4, data being summarized from Table 4-2 and Table 4-3, it so

obvious that Cannon algorithm needed 11.0 seconds to multiply matrices of size 128 at 16

processors, which is equal the time needed 11.0 seconds to multiply a smaller matrix size of

100, at the same number of processors. While the case is different when ITPMMA

algorithm is used, where 3 seconds where enough to multiply 128 matrices sizes while 2.5

seconds were needed for multiplying 100 matrices sizes at the same number of processors.

Similar cases could be noticed at the matrices of size 512 and 500, 1024 and 1000, 2048

and 2000, as shown in Table 4-4 and Figure 4-6.

On the other hand, multiplying matrices of sizes 700 and 1000 consumed 150 seconds by

Cannon and 210 seconds by Fox algorithms, while multiplying matrices of sizes 700

consumed only 21 seconds using ITPMMA algorithm, and multiplying matrices of sizes

1000 consumed only 34 seconds, which implies the successful load balance strategy

applied by ITPMMA algorithm, Table 4-3, Figure 4-5.
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Figure 4-6 Matrices multiplication of size multiple and non-multiple of the processors in
use '

The third and fourth groups of experiments hold in this sub-chapter are shown in Table 4-5
and Figure 4-7. Here, I have considered more limitation of both Cannon and Fox algorithm
for generating the blocks when the matrices in is non-square plus its sizes is not multiple of

number of processors in use.

Table 4-5 Non-square matrices — 750 x 700 — with different number of processors
Number of Processors

Algecin 2 5 16 32 64 128
ITPMMA 112 53 30 16 9 5
Casnem 589.00 | 297.00 | 15200 | 12000 $5.00 65.00
Fox 75600 | 40000 | 21200 | 135.00 92.00 75.00
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Figure 4-7 Parallel Processing Time ITPMMA algorithm against both Cannon Algorithm,
and Fox Algorithm where the matrices size of 750x700 is not multiple of the
number of processors

Last two tests show clearly that multiplying two matrices of size 750%700 using Cannon or
Fox Algorithms needs same time as multiplying two matrices of size 1024%1024 using the
same algorithm. while the result was completely different when using ITPMMA algorithm,
where the time needed for multiplying two matrices of size 750700 is less than the time
needed to multiply two matrices of size 1024x1024 by about 4/34=11.7%, while the for
both Cannon and Fox algorithms, the time consumed to multiply two matrices of size
1024x1024 on 16 processors is 152 and 212 seconds respectively, which is the same time
consumed by both algorithms to multiply t§vo matrices of size 750x700 on 16 processors.
The test been conducted for several different numbers of processors, where it is so obvious

in figure 4 -8, A, B, C.
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Processing TIME for ITPMMA for different matrix size
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Figure 4-8 Parallel Processing Time for matrices multiplication of two different sizes
750%700, and 1024x1024. A: ITPMMA algorithm, B: Cannon Algorithm, C: Fox
Algorithm



4.3.3. Efficiency Calculations

The efficient implementation of certain algorithm imprlies the maximum utilization of the
resources, which are the processors in parallel processing. In the test below, I have applied
same matrix data and size at several numbers of processors for the three algorithms,
ITPMMA, Cannon and Fox Algorithms, so the mathematic operations will be same in
number and size, since I am using the same matrices. So the different in processing time is

result of time consumed in non-common tasks — in both Cannon and Fox algorithms —

where it is absent in ITPMMA algorithm, like:

1. Podcasting the data blocks over the parallel environment using MPI library.

2. Communication among processors and sending the local results of each processor to

the adjacent processors, so it carries out its tasks.

3. The time that some processors stay on hold as a result of data dependencies, which

is fluctuate from case to case.

4. The time that some processors turned idle, as no more tasks to be executed.

After processing the matrix multiplication of matrices of size 1024 using the three

algorithms Cannon and Fox and ITPMMA, on different number of processors, time of

execution is summarized in Table 4-6, and Figure 4-9.

Table 4-6 Fixed size of matrices with different number of processors, where the

matrices size is multiple of the number of processors

Algorithm A Number of Processors
2 4 16 32 &4 128
ITPMMA 180.00 79.00 40.30 20.30 10,10 5.06
Cannon 589.04 29700 [52.00 120.00 85.00 65.00
Fox 756.00 0000 21200 133.00 92.00 7500
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Figure 4-9 Parallel Processing Time for ITPMMA algorithm against both Cannon
Algorithm, and Fox Algorithm where the matrices size is multiple of the number of
processors for matrices of 1024x1024

In fact, calculating the exact time consumed on non-common tasks listed above was not
possible because of the lack of functions provided by the operating system of Guillimin

cluster at CLUMEQ super computer.

4.3.4. Performance calculations

In performance calculation, I will compare the performance of ITPMMA algorithm by
Cannon and Fox algorithm using the time of execution only. Unfortunately, I do lack for
the tools to calculate the size of memory — RAM and Cache - utilized for each execution.
Also, I do not have tools at CLUMEQ to calculate the utilization of the processors time,
wither as whole or individually. For that, I will consider the start and end time of the whole
execution, supposed the same resources — same hardware — have been used in all

executions. For example, for multiplying matrices of 1024 size using Cannon Algorithm on
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64 processes needs 85 seconds, while same job - multiplying matrices of 1024 size -
could be achieved using ITPMMA algorithm on 4 prncessors at 79 seconds. So I would say
that ITPMMA algorithm performance is 64/4= 16 time over Cannon Algorithm, in this
case, according to Table 4-6. Figure 4-10 uses bubbles to show the execution time for
multiplying matrices of 1024 size using the three algorithms, ITPMMA, Cannon and Fox,
at different number of processors that is 2, 4, 16, 32, 64, and 128 processors. It is obvious
that the green blue at processor 64 is close to the red bubble at processor 4, which confirms
that ITPMMA algorithm needs fewer resources than what Cannon algorithm needs to

complete same tasks at same time.

Execution time for multiplying two matrices of size 1024 over different number
of processors using ITPMMA Cannon, and Fox algorlthms

i
i
Seconds

: Cannon; 64; 85 =

CaniZS 65 % : g :

Cannon [TP : . _
64, 10,1 I ™

\JTPM‘B 5, Y, ]“ e X 2

ITPMMA i

i 16
I 32
64
128
Number of the processors
128 64 32 16 4 2

@ [TPMMA 5,06 10,1 20,3 40,5 79 180
#@ Cannon 65 85 120 152 297 589
# Fox 75 92 135 212 400 756

Figure 4-10 Execution time per processor for ITPMMA, Cannon, and Fox algorithms
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The performance of ITPMMA algorithm shown in the last experiment implies its

advantages of other two algorithms, Cannon and Fox.

4.4.Conclusion

In this chapter, I have applied several experiments on CLUMEQ supercomputer, to
evaluate the speedup, efficiency and the performance of ITPMMA algorithm against very

well-known algorithms in parallel matrix multiplication, Cannon and Fox algorithms.

The experiments showed obviously the vast differences between the three
algorithms in terms of speedup, efficiency and the performance. In fact, this vast difference
return to the fact, that both Cannon and Fox algorithms which being developed about four
and half decades ago, both algorithms do not consider the development and the advances in
computer architecture which added to the computer different level of cache memories, and
different number of cores; also, the vast size of RAMs available nowadays for use, in
addition to the new address bus mother boards, which has reached 64 bits. Another basic
reason is the communication time between the processors which consume time more than

the time for execution the multiplication.

Finally, I would like to state, upon the experiments being hold in this chapter, and
upon the results being obtained, that Cannon Algorithm and Fox Algorithm, and other
algorithms based on blocking the input data onto smaller blocks, these algorithms which
have been developed based on poor computer architecture in term of RAM and single core
and absent of cache memories, these algorithms become part of the past. While new era

will be open for ITPMMA algorithm, and for algorithms base on defining the problem in
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term of smaller size problem, to avoid data exchanged between processors and to avoid
dependency of some processors, let us call them x processors, on the output of other
processors, let us call them y processors, which if y processors fail, the whole algorithm

will fail.
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Chapter S - The clustered 1 Dimension decomposition
technique

Implementing all numerical problems as independent tasks is not within hands
always. So, within the novel frame work for parallel processing we developed new data
decomposition technique, called clustered 1-dimension decomposition technique, to
overcome the limitation of different data decomposition techniques which have been
utilized by different parallel algorithms, which were the primary idea behind the parallel
processing, and to reduce communication time among processors. One dimension and two
dimensions’ data decomposition techniques dominate since the start of parallel algorithm

on 1969. Data decomposition techniques imply performing two tasks:

a. Mapping array of processes into n-dimensional grid.

b. Distributing data over process grid

5.1.Previous work

Over the last few years, a lot of attention was paid to load balancing for linear
algebra kernels. One-dimensional data decomposition is used in different applications and
computational kernels [66, 67]. Some few customizations for linear algebra problems were

proposed in [68, 69].

Kalinov and Lastovetsky [70, 71] proposed extension of two-dimensional data
decomposition. Their data decomposition technique has the same disadvantage as the

technique of Crandall and Quinn and Kaddoura et al. Barbosa at al [72].
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Beaumont at al [69, 73] stressed attention on intercoupling of mapping of processes
into 2D grid and data distribution. Crandall and Quinn [74] have developed three-

dimensional decomposition technique, which suffers from heavy data dependences.

5.2. One and two dimensions’ data decomposition techniques

One and two dimensions’ data decomposition techniques dominate on parallel
algorithms since 1969. The best way to present these techniques is to solve Laplace

Equation using Gauss-Seidel method shown in equation 5-1.
= %[fiil,j R+ fle + ) Eq. 5-1
Can be solved using Gauss-Seidel algorithm using the following serial pseudocode

repeat until convergence
for i from 1 until n do

C €0
for j from 1 until n do
if J # 1 then
C€C+Ai3*Cy
end if
end (j-loop)
Ci€>(b;—0)
Aji

end (i-loop)
check if convergence is reached
end (repeat)
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blue are interior points

Figure 5-1 Laplace Equation problem presentation, reds are boundary points while

Figure 5-1 present Laplace Equation problem, where red color are the boundary

One-dimension data decomposition, shown in Figure 5-2.

points and it is given, while the blue points to be calculated using equation 5-1. For parallel
a.

solution, the matrix of Laplace equation be decomposed and distributed among the

processors. For that we have two classic techniques:

b. Two dimensions’ data decomposition, shown in Figure 5-3.

Figure 5-2 1D Decomposition
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Figure 5-3 2D Decomposition

2D decomposition suggests better performance since processors 2 and 3 work at the
same time, so, processorl starts working, once it is over, processors 2 and 3 start
immediately since all input data, including boundary points, are available. Figure 5-4 shows

the Data Dependency in 2D decomposition algorithm.

P3 P P4

[ -
I |

E ]
rr | II== P2

Figure 5-4 Data dependency of 2D Decomposition

Table 5-1 shows the results of several experiments being conducted on 2
dimensions’ algorithm. Still, while processor 1 is working, other three processors are idle,
and while processors 2 and 3 are working, processors and 4 are idle, and while processor 1

is working, other three processors are idle, which implies poor resource utilization.
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Table 5-1 Parallel Laplace’s Equation Solution using Gauss-Seidel Iterative method on 2D

Teat ID 1 2 3 4 5 6
Matrix Size (n) 48 96 192 48 96 192
Number of processors
(nproc=nblock*nblock) 4 4 4 16 16 16
Decomposition (Number of
the blocks) 4 4 4 16 16 16
Node edge (nodeedge) 24 48 96 12 24 48
ts (Serial processing time) 1 2 8 1 2 8
i (Parall'el ey 0.866 3.192 5.239 | 30.845 | 166.303 254.562
time)
Speed up 1155 0.626 1.527 0.032 0.012 0.031
Efficiency 0.288 0.156 0.381 0.002 | 7.50E-04 0.002

5.3.Clustered one-dimension data decomposition technique

The new decomposition technique guarantees better resources utilization, so idle

time of processors will be reduced. In 1D decomposition computing power is %25 since

one processor works at a time, and the speed up equals to zero, as shown in Figure 5-5.
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Figure 5-5 1D decomposition technique, total time units is 196 units
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While computing power is better in 2D decomposition, since processors 2 and 3
work at same time, the speed up is 1.33, so the job will be completed within %75 of the
serial processing time, as shown in figure 5-6. But we should expect 4 speed up since we
use 4 processors. In the suggested algorithm, we reached speed up of about 3.5 times.
Figure 5-7 shows the data decomposition of the new algorithm, and figure 5-8 shows the

processors utilization of the new data decomposition technique.

Processor 3 : Processor 4

e iy 8 s 8 R % 8
141 142 143 144 145 146 147| »
134 135 136 137 138 139 140 »
127 128 129 130 131 132 133 »
120 121 122 123 124 125 126| »
{113 114 115 116 117 118 119|
106 107 108 109 110 111 112] »
e 150 51 52 Hm%mmmmmmo
» 143 44 45 46 47 48 49/92 93 94 95 96 97 98| *
*» 136 37 38 39 40 41 42|85 86 87 88 89 90 91 ¢

83

76

96
89
¢ [29 30 31 32 33 34 35,78 79 80 81 82 83 84 »
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51 54

L L ]
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Processor 1 Processor 2

Figure 5-6 2D decomposition technique, total time units is 147 units
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Figure 5-8 Clustered 1D decomposition processors utilization

5.4.Analytical Analysis

For 1D decomposition, each process holds n X n/p sub-grid, while for 2D
decomposition each process holds n/\/E xn/\/E sub-grid. For clustered 1D

decomposition each process holds n X c, repeatedly, where c is the cluster size. In fig 4, c

equals to 3.
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Sequential time Tg = (N — 2)? X tcg), where tg,c equals the time to calculate the
value of one element in the grid.
5.5.Experimental Results

Several experiments have been carried out on the clustered 1-dimension data
decomposing the same tests being carried out into 2 dimensions data decomposition

technique. The results are shown in the table below:

Table 5-2 Parallel Laplace’s Equation Solution using Gauss-Seidel Iterative method on

Clustered1D
Teat ID 7 8 9 10 1 12
Matrix Size (n) 48 96 192 48 96 192
Number of processors
(nproc=nblock*nblock) 4 4 4 16 16 16
Decomposition (Number of _
the blocks) 48/12=4 | 96/12=8 | 192/12=16 | 48/12=4 | 96/12=8 | 192/12=16
Node edge (nodeedge) 96 384 1536 24 96 384
ts (Serial processing time) 1 2 8 1 2 8
tp (Parallel processing
tifrie] 0.61 1.076 3.61 0.204 0.448 1.569
Speed up 1.637 1.858 2.216 4.902 4.464 5.099
Efficiency 0.409 0.465 0.554 0.306 0.279 0.319

Figure 5-9 shows the speedup and efficiency of parallel gauss-seidel iterative
solution of Laplace's equation in 2 dimensions, where the speedup and efficiency drop
when matrix size increased to 96 for the half, and raised up when matrix size increased to
192. Figure 5-10 shows the same parameters of speedup and efficiency of parallel gauss-
seidel iterative solution of Laplace’s equation in clustered 1-dimension data decomposition,
where we can see the advantages of the in clustered 1 dimension data decomposition
technique. Figure 5-11 and 5-12 compare the speed up of the parallel gauss-seidel iterative

solution of Laplace's equation over both data decomposition techniques, on 4 processors

and 16 processors respectively.
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2 Dimension Decomposition

wes Speed up - 4 processors = Efficiency - 4 processors

e Speed up - 16 processors = Efficiency - 16 processors
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Figure 5-9 Speed up and efficiency of parallel gauss-seidel iterative solution of Laplace’s
equation in 2 dimentions

Better speedup has been achieved. Speed up of 42%, 296%, and 180% at 4
processors for matrix size of 48, 96, 192 respectively, as shown in figure 11. While at 16
processors, better speedup has been achieved, it was about 5 using clustered 1-dimension
data decomposition, while there was no any speed up using 2 dimensions data
decomposition, where the serial algorithm is faster than the parallel algorithm, as shown in

figure 12.

It is noticed that the speed up at clustered 1 dimension data decomposition using 16
processors at 96 matrix size is less than in case of matrix size is 48 or 192, which is a direct
result of more overhead communication between the processors, where it has been reduced
when the matrix size is more huge in size, which implies the scalability of the parallel
gauss-seidel iterative solution of Laplace’s equation in clustered 1 dimension data

decomposition.
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Clustered 1 Dimension Decomposition
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e Sneed up - 16 processors === Efficiency - 16 processors

5089 e 4.902
2. 216.
= 1637
=43 458 8:468
96 48

192

Figure 5-10 Speed up and efficiency of parallel gauss-seidel iterative solution of
Laplace's equation in clustered 1 dimensional decomposition
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Figure 5-11 Speed up of parallel gauss-seidel iterative solution of Laplace’s
equation in both data decomposition techniques at 4 processors
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Figure 5-12 Speed up of parallel gauss-seidel iterative solution of Laplace’s
equation in both data decomposition techniques at 16 processors

Figuré 5-13 and 5-14 show comparison of the speed up and efficiency of parallel gauss-
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seidel iterative solution of Laplace’s equation in clustered 1D vs Decomposition 2D, for

four and sixteen processers respectively.

4 processors

z5
216
e BSE
15 L 1527
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Efficiency - Decomposition 2D 0288 £.156 0.381
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Figure 5-13 Speed up and efficiency of parallel gauss-seidel iterative solution of Laplace's
equation in clustered 1D vs Decomposition 2D, for four processers
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Figure 5-14 Speed up and efficiency of parallel gauss-seidel iterative solution of Laplace's
equation in clustered 1D vs Decomposition 2D, for sixteen processers

Finally, I have carried out the tests for very large matrices sizes on 128 processors, where
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we have used matrices of size 1024, 4096, 16384, 65536, 262,144 and 1,048,576. The tests
been carried out using both algorithms Decomposition 2D and clustered 1D, as shown in
Figure 17 and 18 respectively, while figure 19 shows the comparison between them, where

the speed up vary from 11 times to 197 times.

Table 5-3 Speed up and efficiency of parallel gauss-seidel iterative solution of Laplace's equation
in Decomposition 2D, for 128 processers, for very large matrices sizes

Test ID 13 [ lasle 1Be e .. 17 [ 1B
Algorithm Decomposition 2D
Matrix Size 1024 4096 | 16384 | 65536 | 262144 | 1048576
Number of processors 128 128 128 128 128 128
Decomposition 1024/8=128 | 512 | 2048 | 8192 | 32768 | 131072
(number of blocks)
Node edge
Ts (serial processing 55 229 | 1647 | NA | NA | NA
time)
Tp (Parallel processing 8 101 | 135 |25847| NA | NA
time)
Speed up 6.77 228 | 122 | NA | NA NA
Efficiency 0,054 0,018 0,095 | NA | NA NA

Table 5-4 Speed up and efficiency of parallel gauss-seidel iterative solution of Laplace's
equation in Clustered 1D, for 128 processers, for very large matrices sizes

Test [D 19 e e T - - T

Algorithm Clustered 1D

Matrix Size 1024 4096 | 16384 | 65536 | 262144 | 1048576

Number of 128 128 | 128 | 128 | 128 128

pI'OCGSSOI'S

Decomposition 1024/8=128 512 | 2048 | 8192 | 32768 | 131072
(number of blocks)

Node edge 16 64 | 256 | 1024 | 4096 | 16384
Ts (serial processing 55 229 | 1647 | NA | NA | NA

time)

Tp (Parallel 0.75 23 | 66 | 131 | 399 | 958
processing time)




Speed up

73

10

25

NA

NA

NA

89

Efficiency

0.57

0.07

0.19

NA

NA

NA

Table 5-5 Speed up comparison for clustered 1D vs Decomposition 2D for parallel gauss-seidel
iterative solution of Laplace's equation in, for 128 processers, at very large matrices size

over Decomposition 2D

Matrix Size | 1024 | 4096 | 16384 | 65536 | 262144 | 1048576
Ip (Decomposition 2D 8 | 101 | 135 |25847| NA | NA
parallel processing time
Tp (Clustered 1D parallel | 75 | 23 | 66 | 131 | NA | NA
processing time
Speed up of clustered 1D 1 4 ) 197 NA NA

It is obvious that clustered 1D is scalable compared with Decomposition 2D technique.

5.6.Conclusion

The advantages of clustered 1 dimensional decomposition technique over 2D

decomposition are quite obvious. It reduces the communication among the processors, on

the other hand, it utilizes the processors time better, which results in higher efficiency than

before. The speed up of clustered 1 dimensional decomposition ranges between 1.5 and 5

while efficiency ranges 30% and 55%. For 2D decomposition, the speed up ranges between

0.012 and 1.527 while efficiency ranges 0.075 % and 38.1%.
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On the other hand, the scalability of clustered 1D decomposition technique for
carrying the calculation at very large matrices size exceeded 1 million elements, is very
obvious; 2D decomposition algorithm technique could not carry out the calculations and

there were no results.
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Chapter 6 - Conclusion and Recommendation

The factors to be considered when evaluate parallel algorithms are:
2. Accuracy, where the result of the serial and parallel are same.
3. Efficiency, which implies the full successful utilization of the resources.
4. Stability for different type and size of resources.
5. Portability, which is hardware independent.

6. Maintainability, where the algorithm can solve different sizes of the problem at

different number of resources.
To gain high parallel efficiency, three figures must be minimized:

1. Communication costs.
2. Load imbalance level.

3. Dependency level.

ITPMMA could minimize these three figures by redefining the problem in terms of several
independent problems, as much as we can, keeping the three figure at lowest, so we grantee

full successful utilization of the resources.

The term defining the problem in terms of several independent problems is requiring full
understand of the hardware resources, which include the amount of cache memory

available , size of RAM in use, motherboard address system, 32 or 64 bits, number of cores
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in the processor. Also, the operating system methodology for managing the users' tasks is

important to manage distributing cost of the data to the different processors.

In this thesis, several parallel matrix multiplication algorithms have been studied in details,
and an advanced algorithm has been developed to address the drawbacks of the existing
algorithms and address the advances in the modern processors architecture, which use multi
cores per processor, plus the advances in the availability of several levels of cache memory,

on one single chip.

In summary, I have addressed four essential issues in the design of parallel independent

subtask algorithms:

1. Reform the problem in terms of independent tasks, to reduce the communication

time to zero.
2. Load balancing.
3. Efficiency of the processors.

4. Compatibility with both homogenous and heterogeneous environment of processors,
so the algorithm does not require certain amount of cache memory for example, or

any certain hardware requirement.

On the other hand, for numerical problems that we could not redefine it in term of
independent tasks, new data decomposition techniques has been developed to minimize the

three figures of:

1. Communication costs.

2. Load imbalance level.
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3. Dependency level.

6.1.Future Research Directions

Large-scale computing clusters of parallel heterogeneous nodes equipped with multi-core
processing units are getting increasingly popular in the scientific community as well as in
commercial community since it provides mainframe computing power at low price. To
advance the developing of parallel programming algorithms, a lot of work to be done in this

filed, and this could be summarized as following:

1. Common intermediate results to be executed at certain server and to be broadcasted.
The communication between processors are eliminated in ITPMMA algorithm, while
the intermediate results, which was material of exchange messages, will be generated
locally at each processor needs any, as the time consumed in generating these
intermediate result is less, and cannot be compared by the time of communication,
especially in light of the high in-cache memory available with modern processors. But
still, there is enough room to analyze this issue and study it, so the intermediate results
to be utilized and to be transferred to the processors that it need it, while these
processors are busy executing another operation. I have utilized intermediate results in

solving Laplace equation using Jacobi iteration — which is shown in chapter 5.

2. To consider the new architecture of the dual cores, and quad cores and multi cores.
When looking at Strassen’s matrix multiplication [52], Strassen achieved success in his
algorithm by replacing computationally expensive MMs with matrix additions (MAs).
For architectures with simple memory hierarchies, having fewer operations directly

translates into an efficient utilization of the CPU and, thus, faster execution. However,
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for modern architectures with complex memory hierarchies, the operations introduced
by the MAs have a limited in-cache data reuse and thus poor memory-hierarchy
utilization, thereby overshadowing the (improved) CPU utilization, and making
Strassen’s algorithm (largely) useless on its own. Well, we do need to consider the new
modern architectures with complex memory hierarchies, as there is new approach

recently started recently targeting new processors architecture as in [44, 46, 75]

. Memory allocation for huge matrices. Another issue to be addressed in matrices
multiplication and any other algorithms deal with massive amount of data. This issue is
being addressed in [76]. In fact, a lot of work to be done in this field, when we take the

architecture of the modern processors, which has a lot of in-cache memory.

. Data flow and data decomposition techniques to be advanced, by following backward
view strategy that is to look at the result of the numerical problem and to divide it to

smaller tasks.

. Finally, this topic, parallel processing is not limited for matrix multiplication, it is
being used heavily in so many classic field as mentioned in the introduction; in fact, it
extended recently on the world of database, where billions of records to be

manipulated, and it is so compatible with independent tasks.
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Appendix A- Basic Linear Algebra Subroutine (BLAS)

In 1973, Hanson, Krogh, and Lawson adopted a set of basic routines for problems in linear
algebra, which known later as basic linear algebra subprograms (BLAS) fully described in

[77, 78].

It contains subprograms for basic operations on vectors and matrices, to achieve high
performance for calculations involving linear algebra. So, instead of processing one
multiplication or one addition operation, the compiler will send block of data (vector or
matrix) to the processor to be executed. Linear Algebra Package (LAPACK) is a higher-

level package built on the same ideas. There are three levels of BLAS subroutines:

1. Level 1 (or L1 BLAS): for operations between vectors, such as y = ax + y, where the
complexity O(n ) operations.

2. Level 2 (or L2 BLAS): for operations with matrices and vectors, such as in the
equation y = aAx + by, where the complexity O(n?) operations. [79, 80].

3. Level 3 (or L3 BLAS): for operations with matrices, such as C = aAB + bC, where

the complexity O(n’) operations.

The performance obtainable by each subroutine of level 3 BLAS is similar to the one that

can be obtained with matrix multiplication. [81].

Unfortunately, this approach of software construction is often not well suited to computers
with a hierarchy of memory (such as global memory, cache memory, and vector registers)

and true parallel-processing computers, like multi cores (dual and quad cores) computers;
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Linear algebra algorithms have to be reformulated or new algorithms have to be developed

in order to take advantage of the architectural features on these new processors, [82].

New functions to be included afterwards in level 3 BLAS, to consider the multi-core
processors, like the function xGEMM (matrix multiplication) multi-core implementation
being presented on BittWare’s Anemone floating-point FPGA co-processor that has 16-

core Epiphany cores on an eMesh, [83].
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Appendix B- Parallel Matrix Multiplication Algorithms

B.1. PUMMA (Parallel Universal Matrix Multiplication)
PUMMAJ84], SUI\/ﬂVIA, and DIMMA are numerical algorithms for dense matrices on
distributed- memory concurrent computers are based on a block cyclic data distribution
[85]. The three algorithms have the same matrix-point of-view and processor point-of-view

as shown in the figure below:

s i nm ng

Figure B-0-1 matrix-point of-view and processor point-of-view for PUMMA, SUMMA,
and DIMMA

The figure above shows that processor P; will produce the yellow cells of the result matrix,
while processor P> will produce blue cells of the result matrix, and processor P3 will
produce orange cells of the result matrix, and so on. So, each processor has several blocks
of the matrices A and B, need to be passed to the processors, PUMMA [86] suggested three

variant distributions of the algorithm:

1. Single Diagonal Broadcast: Only one wrapped diagonal is column cast in each

stage. In implementing the algorithm, the size of the sub matrices multiplied in each
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processor should be maximized to optimize the performance of the sequential
xGEMM routine, as shown in the figure below, where the broadcasted column is

shown in gray, in the two adjacent broadcasting steps shown.
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3/415/3/4/5]314/5[3/4|5 31415/3/4/5/3/4/5/3/4|5
0[1(2{0/1]2]|0[1]2]0]1]2 0l1]{2|oj1]|2[{0|1]|2]|0]|1]2
31415131415(314/5[3(4]5 31415/3/4/5[3/4|5|3/4/5
0[1/2|0f1]2[0[1]2|0[1]2 o|1/2|0/1|2[{0]1]2]|0|1]2
314/5/3(415{3(4(5|3/4[5 314/5|3]415[3/4|5|3/4/5
0/1]/2]0/1]2]0{1]2]0]1]2 0|1]2|ol1|2{0[1]2]|0|1]2
314/5/3/4|5(3[4(5]|3/4(5 314(5|3/4|5[3/4[5]|3/4]5
0[1/2]0|1]2f0[1]2]0[1][2 0/1/2{0l1]{2[0f1]2]0[1]|2
314|/5/3/415(3[4(5]|3/4(5 314/5|3/4|5[3(4]5|3/4]5
o|1]2|o|1|2]0]1]2]|0[1]2 0|1]2|0[1|2[0]1]2|0]1]2
3141513/415[3/4]5]13/4]5 1314/5[314/513/4(5(3(415

Figure B-0-2 PUMMA Single Data Broadcasting

2. Multiple Diagonal Broadcast 1 (MDB1).

PUMMA algorithm utilize the concept of Lowest Common Multiplicand (LCM) to find an
optimal size of the block where each processor can process, optimal conceming the size of
the multiplied matrices and number of processors, so the algorithm belong to certain
processor concerning certain block, need not to be changed for another block, i.e. each
processor will have program to process certain cells of the input matrices, while the input
matrices will be broadcast in what is called Multiple Diagonal Broadcast 1 as shown in the

figure below, this will result in better performance as it reduces the communication latency.
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Figure B-0-3 PUMMA Multiple Data Broadcasting 1

3. Multiple Diagonal Broadcast 2 (MDB2).

In this algorithm, the granularity if the algorithm is increased [86] and this can be
achieved by broadcasting more diagonals to feed more processors, avoiding keep
some of them idle waiting data of next operation. So and according LCM

computation, the figure below shows MDB2 broadcasting diagonals.



110

0/1l2]0/1]2/0]1({2[0[1]2 0/1/210/1]2/0[1]210]1/2
3/4/5|3|4/5/3|4|5|3/4(5 314|513(4|5/3(4|5|3|4]5
0l1/210(1l2(0]1{2{0]|1[2 0(112/0§1]/2/0f1|2]|0}1]2
3(4]5|3(4/5|3(4|5[3(4|5 314|5(3]4/5|3/4|5/3|4]5
ol112]0|1({2]|0]1]{2[0]1]2 0[1/2(0(1]|2l0/1]2]|0]1]2
314|5(3|4|5/3]4|5(3|4(5 314/5|3|4|5|3}4|5(3]4|5
011/2/0(1(210(1]2]0]1]2 0/1/210/11210[1}2]0/1]2
3|14/5/3|4(5|3[4]|5(3/4]|5 314|5(3(4|5/3(4]5]|3]4(5
0l1/2]0(1]|2/0/1/2]0]|1]2 ol1/2]0l1]2]|0}1]2]|0[1]2
3|4/5|3|4|5|3|4/5|3|4]|5 3|4|5(3|4|5/3(4/5|3/4|5
0f1|2]of1]2/0f1{2]0}1]2 011/2[011]2]0{1]2/0]1]2
3.14101314/251314/2/314] 314151314/5/3{4/5/3[4

Figure B-0-4 PUMMA Multiple Data Broadcasting 2

However, PUMMA makes it difficult to overlap computation with communication since it
always deals with the largest possible blocks for both computation and communication, and
it requires large memory space to store them temporarily, which makes it impractical in real
applications. On the other hand, PUMMA, SUMMA, and DIMMA like other algorithms,

are not utilizing the parallel structure of the new processors like dual core processors.

B.2. SUMMA (Scalable Universal Matrix Multiplication)
Agrawal, Gustavson and Zubair [87] proposed another matrix multiplication algorithm by
efficiently overlapping computation with communication on the Intel iPSC/860 and Delta
system. Van de Geijn andWatts [88, 89] independently developed the same algorithm on

the Intel paragon and called it SUMMA.

In SUMMA, matrices A and B are divided into several columns and rows of blocks,

respectively, whose block sizes are kb. Processors multiply the first column of blocks of A
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with the first row of blocks of B. Then processors multiply the next column of blocks of A

and the next row of blocks of B successively.

k j /B(k,j)
k
|| /L(‘"\ * l -
2NN
A 7
AG K e

Figure B-0-5 SUMMA algorithm

While this equation will take place

C(,j) = c(i,j) + ZkA(i. k) * B(k,j)
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Figure B-0-6 SUMMA Algorithm iterations

As the snapshot of the figure above shows, the first column of processors P1 and P4 begins

broadcasting the first column of blocks of A (A(:; 1)) along each row of processors .
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The same time, the first row of processors, P1, P2, and P3 broadcasts the first row of blocks
of B (B(0; :)) along each column of processors. After the local multiplication, the second
column of processors, P2 and PS5, broadcasts A(:; 2) rowwise, and the second row of
processors, P4, P5, and P6, broadcasts B(2; :) columnwise. This procedure continues until

the last column of blocks of A and the last row of blocks of B.

In 2009 Martin D. Schatz, Jack Poulson, and Robert A. Van De Geijn [90] have extended
SUMMA to SUMMA 3D, where each processor will multiply vector by vector and rather
than multiplying cell by cell, this results in minimizing the communication time
significantly. This development synchronize with the new architecture of multi-code
processors, where the vectors multiplication will be parallelized between the cores of the
processors, Yet, I will have extra development in my ITPMMA algorithm rather than to
consider the new architecture of multi-code processors to reduce the communication time, I
have independent sub tasks, where it is not the case in SUMMA 3D, also, I will not be able
to apply vector multiplication in different problem like solving Laplace equation using

Jacobi iteration.

B.3. DIMMA (Distribution Independent Matrix Multiplication)

DIMMA algorithm is based on two new ideas [91]:

1. It uses a modified pipelined communication scheme to overlap computation and

communication effectively.

2. Exploits the LCM block concept —where the size of the block will be the lowest
common multiplier of the matrices size — to obtain the maximum performance of

the sequential BLAS - Basic Linear Algebra Subprograms - routine in each
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processor even when the block size is very small as well as very large. Basic Linear
Algebra Subprograms (BLAS) is API which performs matrix multiplication. This

includes:

1. SGEMM for single precision,
2. DGEMM for double-precision,
3. CGEMM for complex single precision, and

4. ZGEMM for complex double precision.

GEMM is often tuned by high-performance computing vendors to run as fast as possible

because it is the building block for so many other routines.

The figure below shows how this -DIMMA - algorithm works. The numbered squares
represent blocks of elements, and the number indicates the location in the processor grid -
all blocks labeled with the same number are stored in the same processor. The slanted
numbers, on the left and on the top of the matrix, represent indices of a row of blocks and
of a column of blocks, respectively. Figure 1(b) reflects the distribution from a processor

point-of-view, where each processor has 6x4 blocks.
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Figure B-0-7 DIMMA Algorithm

With this modified communication scheme, DIMMA is implemented as follows. After the
first procedure, that is, broadcasting and multiplying A(:; 0) and B(0; :), the first column of
processors, PO and P3, broadcasts A(:; 6) along each row of processors, and the first row of
processors, PO, P1, and P2 sends B(6; :) along each column of processors, as shown in

Figure 6. The value 6 appears since the LCM of P=2and Q=3 is 6.

For the third and fourth procedures, the first column of processors, PO and P3, broadcasts
row wise A(:; 3) and A(:; 9), and the second row of processors, P3, P4, and P5, broadcasts
column wise B(3; :) and B(9; :), respectively. After the first column of processors, PO and
P3, broadcasts all of their columns of blocks of A along each row of processors, the second

column of processors, P1 and P4, broadcasts their columns of A.

The parallel matrix multiplication requires O (N3) ops and O (N2) communications, i.€., it

is computation intensive. For a large matrix, [91] the performance difference between
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SUMMA and DIMMA may be marginal and negligible. But for small matrix of N = 1000

on a 16x16 processor grid, the performance difference is approximately 10%.

DIMMA algorithm depend in dividing the matrices into small blocks, small enough to be
utilized by the upper levels of the memory hierarchy like registers, cache, which is faster

than to data in lower levels memory like RAM or any shared memory else.

The absent point here is, the advance in the development of operating systems take this
point in its duties, while keep transferring the data between the processors is more time
consuming, which will result in massive success my algorithm [TPMMA.

B.4. SRUMMA a matrix multiplication algorithm suitable for clusters and scalable shared
memory systems (2004).

SRUMMA algorithm [92] create list of tasks where a task computes each of the AikxBkj

products, corresponding to the block matrix multiplication equation

Tl,p
Cij = Z A By
k=1
Reorder the task list according to the communication domains for processors at which the
Aik*Bkj are stored. The “diagonal shift” algorithm is used to sort the task list so that the
communication pattern reduces the communication contention on clusters. The processor
start producing the products, then each processor will gather the results from the other

processors to perform the summation procedure and to produce the final matrix result.
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The main advantage of this algorithm will appear with shared environment where the
shared memory will be available like Cray X1 and the SGI Altix, where the communication

time between processors will be reduced to almost zero.

In clustered parallel environment, SURMMA algorithm has no significant advance. Also, it

is not considering the new multi core CPUs, where it is parallelized.

After three months, Manojkumar Krishnan and Jarek Nieplocha advanced their SURMMA
algorithm [93] to improve its performance over transpose and rectangular matrices; it
differs from the other parallel matrix multiplication algorithms by the explicit use of shared
memory and remote memory access (RMA) communication rather than message passing.
The new advances in SURMMA algorithm was succeful for some cases shown in the paper
[93], but still suffers from Shared memory model characteristic, which is much easier to use
but it ignores data locality/placement. Given the hierarchical nature of the memory
subsystems in modern computers this characteristic can have a negative impact on
performance and scalability. Careful code restructuring to increase data reuse and replacing
fine grain load/stores with block access to shared data can address the problem and yield

performance for shared memory that is competitive with message-passing [94, 95, 96].

B.5. Coppersmith and Winograd (CW) Algorithm

This algorithm have been developed in 1987 [97] by Don Coppersmith and Shmuel
Winograd, then being advanced later on, mainly by them [98, 99, 100]. The algorithm
running time has improved to O (n?3®). The basic idea behind this algorithm is to apply
Schonhage Theorem [101, 102], which implies embedding the matrices as elements of

group algebra
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(£g9-94)-(g9.bg) = T49.c4 where cg = ¥y i j=g ;. b

The algorithm outlined by Jenya Krishtein as following:
e Embed matrices A,B into the elements 4, B of the group algebra C[G]

e Multiplication of 4, B in the group algebra is carried out in the Fourier domain after

performing the Discrete Fourier Transform (DFT) of 4, B
e The product A B is found by performing the inverse DFT
e Entries of the matrix AB can be read off from the group algebra product AB .

This algorithm being refined in 2010 by Henry L. Cohn, Baldzs Sxegedy, Christopher M.

Umans [103] as shown in the following fig. [3-12][3-13]
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Well, this algorithm was an open in developing new approach having different terms rather
than the terms of Systolic Algorithm, which result in less running time of O (n?3%), rather

than running time of Systolic Algorithm which is O (n>8%7),

Here, in this thesis, I am introducing new approach by ITPMMA algorithm, as I am not
using the terms of any previous approach; instead I am defining new approach that has
several independent tasks to eliminate the consuming time for waiting intermediate results
and consuming time for transferring the intermediate results between the processors. Also,

the both previous approaches suffering from non-optimized load balance.

The remaining sections of this chapter will give the reader ideas about the algorithms being

advanced (CW) Algorithm.

B.6. Group-theoretic Algorithms for Matrix Multiplication

In 2003, Cohn and Umans [104] introduced a new, group-theoretic framework for
designing and analyzing matrix multiplication algorithms. In 2005, together with Kleinberg
and Szegedy [105], they obtained several novel matrix multiplication algorithms using the

new framework; however they were not able to exceed running time of O (n2376),

B.7. NGUYEN et al Algorithms for Matrix Multiplication

In 2005, NGUYEN et al. [106] combined the use of Fast Multipole Method (FMM)
algorithms and the parallel matrix multiplication algorithms, which gave remarkable
results. Nevertheless, the algorithm still suffers data dependency and high communication
cost among the processors. Moreover, the algorithm does not address heterogeneous

environments.
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B.8. Pedram et al Algorithms for Matrix Multiplication

On 2006, Pedram et al. [107], have developed high-performance parallel hardware engine
for matrix power, matrix multiplication, and matrix inversion, based on distributed
memory. They have used Block-Striped Decomposition algorithm directly to implement the
algorithm hardware wise. There was obvious drawback in term of speed up of efficacy of
using the processors; instead the algorithm reduces memory bandwidth by taking advantage

of reuse data, which increases the data dependencies.
B.9. James Demmel Algorithms for Matrix Multiplication

On 2008 James Demmel developed a new algorithm to minimize the gap between
computation and communication speed, which continues to widen [108]. The performance
of sparse iterative solvers was the aim of this algorithm, where it produced speedup of over
three times of serial algorithm. In fact, the increasing gap between computation and
communication speed, is one of the main points to be addressed by reducing the
communication between processors as much as possible. The algorithm is still suffering

data dependency and communication; especially for large matrices sizes.
B.10. Cai and Wei Algorithms for Matrix Multiplication

On 2008 Cai and Wei [109] developed new matrix mapping scheme to multiply two
vectors, a vector and a matrix, and two matrices which can only be applied to optical
transpose interconnection system (OTIS-Mesh), not to general OTIS architecture, to reduce
communication time. They have achieved some improvements compared to Cannon

algorithm, but it was expensive.
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B.11. Sotiropoulos and Papaefstathiou Algorithms for Matrix Multiplication

On 2009, Sotiropoulos and Papaefstathiou implement Block-Striped Decomposition
algorithm using FPGA device [110]. There is no achievement in terms of reducing data

dependencies and communication cost.

B.12. Andrew Stothers 2010

In his PhD thesis [111], Andrew Stothers worked in the complexity of matrix
multiplication algorithms generated by CW and the advanced algorithms of CW, and he

conclude it is likely that any gains obtained in reducing running time will be very small.
B.13. Breaking the Coppersmith-Winograd barrier 2011

Virginia Vassilevska Williams [112] has developed new tools for analyzing matrix
multiplication constructions similar to the Coppersmith- Winograd construction, and obtain

a new improved bound on O (n>372%),

B.14. Nathalie Revol and Philippe Théveny 2012

On 2012, Nathalie Revol and Philippe Théveny developed new algorithm, called ‘“Parallel
Implementation of Interval Matrix Multiplication” to address the implementation of the
product of two dense matrices on multicore architectures [113]. The algorithm produced

accurate results but the performance was poor.
B.15. Jian-Hua Zheng 2013

On 2013 Jian-Hua Zheng [114] proposed new technique based in data reuse. It suffers from

a lot of data dependency and high communication cost.
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B.16. Fast matrix multiplication using coherent configurations 2013

Henry Cohn and Christopher Umans [115] found that running time of matrix multiplication
could be reduced by embedding large matrix multiplication instances into small

commutative coherent configurations.
B.17. Square-Corner algorithm 2014

Another research has been conducted on 2014 [116], a new decomposition technique called
Square-Corner instead of and Block Rectangle partition shapes to reduce the
communication time is proposed. The research was limited to only three heterogeneous
processors. For some cases, they have reported less communication time and therefore

showed a performance improvement.
B.18. Khalid Hasanov algorithm 2014

Also, on 2014 Khalid Hasanov [117] introduced hierarchy communication scheme to
reduce the communication cost to SUMMA algorithm. Although achieved some better
performance, pre ITPMMA algorithm drawbacks like data dependency and communication

cost are still there. Moreover, this algorithm is for homogenous environment.
B.19. Tania Malik et al algorithm 2014

On 2014, Tania Malik et al. [118] proposed new network topology to decrease
communication time among the processors. The algorithm suffers from more data

dependencies between the processors.



Appendix C- ITPMMA execution time vs different

Parallel Algorithms

Table C-0-1 PUMMA (MBD2), [119]
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Task Execution time ITPMMA (STMMA)

Scatter A mp te 0
Broadcast the diagonal

npte 0
elements of B
Multiply A and B mn te n* tr
Switch processors’ A submatrix m? root(p) te 0
Generate the resulting matrix n® te+n2 te 2mn t

Total execution time

t{m 2n + n?) +t(2n* +

m*root(p)(p+1))

2mnt(1+p)+mwn

tr

Table C-0-2 SUMMA, [120]

Task Execution time ITPMMA (STMMA)
Broadcast A and B 2mnp t; 2mup t
Multiply A and B m®n t m™n 1
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Generate the resulting matrix |

n? tr+n? te

2mn te

Total execution time

t{m 2n + 0° ) +e(n? +

2mnt (1+p)+m™

2mnp) te
Table C-0-3 DIMMA, [121]
Task Execution time ITPMMA (STMMA)
Broadeast A and B 2mnp te 2mnp te
Multiply A and B m’n tg m’n t¢
Generate the resulting matrix n? te+ 0 t 2mn t
Total execution time t(m 20+ 02 ) (o + | 2mmt (1 +p)+mPn
2mnp) te
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Appendix D- ITPMMA Algorithm pseudocode

ITPMMA pseudocode for four processor and the multiplied and multiplicand matrices are square of size
12,

int numprocs, myrank;
int ML = 12; //matrix length

MPI_Init(&argc, &argv)
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, & myrank);
MPI_Status status;

if (myrank == 0) {

/{ T.oad Matrix A from a file
For (int i=0; i< ML, i++)

For (int k=0, k< ML k++)
Load A[i][k];

/* Load the required columns of matrix B, that is colummns B{1{0], B{1{4], BI[8]
Lt i (1]

*
/

For (int i=0; i< ML, i++)

For (int k= myrank, k< ML k=k+ numprocs)
1

I3

BB[i] = Bli]lk];

/" multiply the loaded matrices™

for |1 J=0 to ML {

for K=0 to ML {
Coj = Coy + Aok xBBj
N
}

/] Send the result to the

{/ server node of processor 0 using batch command, so we do
/{ not need to use the MPI_Send and MPI_Receive as

// these data is matured and not to be processed any more.

}
if (myrank == 1) {
// Load Matrix A from a file

For (int i=0; i< ML, i++)
For (int k= 0, k< ML k++)
Load A[i][k];

/f Load the required columns of matrix B, that is columns //B[][0], B[][{4], B[18]
For (int i=0; i< ML, i++)
For (int k= myrank, k< ML k=k+ numprocs)
{
BB[i] = B[i][k];
/ multiply the loaded matrices*/
for Il J=0to 3 {

for K=0 to 3 {

Cy=Cy+ Ak xBB;y
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1}
1
/] Send the result to the
// server node of processor 0 using batch command, so we do
// not need to use the MPI_Send and MPI_Receive as
// these data is matured and not to be processed any more.

1

if (myrank = 2) {
/f Load Matrix A from a file
For (int i=0; i< ML, i++)
For (int k= 0, k< ML k++)
Load Ali][k];
/f Load the required columms of matrix B, that is columns /B[]
For (int i=0; i< ML, i++)
For (int k= myrank, k< ML k=k+ numprocs)
{
BB[i] = Blil(kl;
7 multiply the loaded mmatvices™/
for 11 J=0to3{
for K=0to 3 {
Cy = Cy + Ax xBaj}}
}
// Send the result to the
// sexver node of processor 0 using batch command, so we do
// not need to use the MPI_Send and MPI_Receive as
// these data is matured and not to be processed any more.

}

if (myrank = 3) {

// Load Matrix A from a file
For (int i=0; i< ML, i++)

For (int k=0, k< ML k++)
Load A[i][k];

0], B{I[4], B[[8]

// Load the required columns of matrix B, that is colununs //B[1[0}, B[1{4], B{1{8]

For (int i=0; i< ML, i++)
For (int k= myrank, k< ML k=k+ numprocs)
{
BBIi] = Bfil[kl;
P multiply the loaded matrices™/
for 11 J=0 to 3{

for K=0to3{

Cy=Cy+ Asx xBB)}}

}
// Send the result to the
/] server node of processor 0 using batch command, so we do
// not need to use the MPI_Send and MPI_Receive as
// these data is matured and not to be processed any more.
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Annexe E - Résumé détaillé

Dans cette thése, un nouveau cadre pour le traitement parall¢le est introduit. L'objectif
principal est de considérer I'architecture modeme des processeurs et de réduire le temps de

communication entre les processeurs de l'environnement parall¢le.

Plusieurs algorithmes parall¢les ont été développés dans les quatre demiéres décennies, en
se basant sur une décomposition des données et un traitement paralléle. Ces algorithmes

souffrent de deux groupes d'inconvénients:

1. Tous les algorithmes n’utilisent pas les avancées dans l'architecture des processeurs
modernes, comme des noyaux multiples et le niveau de mémoire cache différent.
Lorsque chaque processeur est capable de traiter plusieurs multiplications simples et
sommations. Les processeurs (a cette époque) ne disposaient pas d’un nombre élevé

de processeurs et une grande quantité de mémoire cache.
2. Tous les algorithmes ne présentent pas de solution optimale en termes de :
a. La définition de la taille optimale de bloc de matrices a décomposer.

b. Le temps de communication des messages échangés entre les processeurs,
qui est proportionnelle au nombre de processeurs et le nombre de blocs des

matrices décomposées, qui dépasse parfois le temps de calcul.

c. La dépendance des données entre les processeurs, par conséquent plusieurs
processeurs demeurent en attente jusqu'a ce qu'il obtenir les résultats des

processeurs précédents.

d. Mauvais équilibre de charge, en particulier avec des matrices non carrées.
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Le nouveau cadre pour le traitement paralléle qui est proposé dans cette thése permettra de
surmonter les inconvénients ci-dessus. Pour cela, le nouveau cadre est basé sur le

développement de deux techniques:

1. Une technique pour reconstruire le probléme a exécuter en paralléle dans la nouvelle
structure qui se compose d’un ensemble de tiches indépendantes. Donc, chaque
processeur exécute certaines de ces tdches de maniére indépendante. La nouvelle
structure réduit les dépendances entre les processeurs, de sorte que le temps de
communication est réduit.

2. Une nouvelle technique de décomposition de données. Certains problémes numériques
comme 1’équation de Laplace ne pourraient pas étre reconstruites en ensemble de
taches indépendantes. Pour cela, afin de réduire le temps de communication entre les
processeurs, nous utilisons une nouvelle technique de décomposition de données,

appelée la technique « clustered one dimension decomposition »

La premiére technique sera mise en ceuvre sur les multiplications de matrices paralléles. En
fait, la multiplication des matrices paralléles été utilisée comme probléme référence pour
tous les algorithmes parall¢les. Il est 'un des problemes numériques les plus fondamentaux
dans les sciences et l'ingénierie; en commengant par les transactions quotidiennes de base
de données dans les index, les prévisions météorologiques, l'océanographie,
l'astrophysique, la mécanique des fluides, le génie nucléaire, le génie chimique, la
robotique et l'intelligence artificielle, la détection de pétrole et de minéraux, la détection
géologique, le recherche médicale et I'armée, la communication et télécommunication,
analyse de 'ADN matériel, les simulations du tremblement de terre, 'extraction de données

et le traitement de l'image.
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Dans cette thése, un nouvel algorithme paralléle de multiplication de matrice a été
développé en utilisant un nouveau cadre qui implique de générer des taches indépendantes
entre les processeurs, de réduire le temps de communication entre les processeurs a zéro et
d'utiliser ’architecture moderne des processeurs pour des résultats d’efficacité a 97%

contre 25% précédemment.

D'autre part, la seconde technique, « clustered one dimensions decomposition » a été mise
en ceuvre et appliquée a la résolution de 1'équation de Laplace en utilisant la méthode de
Gauss-Seidel. Ainsi, la décomposition des données lors de la résolution de I'équation de
Laplace, en utilisant la nouvelle technique de décomposition en réduisant le cofit de la
communication entre les processeurs; se traduit par un taux d’efficacité de 55% contre 30%

pour la technique de décomposition de données a deux dimensions.

Les algorithmes de traitement paralléle précédents

Tous les algorithmes paralléles basés sur la décomposition d’un produit de matrices en
blocs de données de taille plu petite, les blocs seront bien assortis et répartis entre les
processeurs, de sorte que chaque processeur exécute une partie du calcul. Ceci réduit le
temps de calcul entier. Dans le cas de tous les algorithmes paralléles de produit de matrices,
nous avons utilisé la multiplication de matrices comme un probléme de référence, car il
avait été utilisé historiquement a cet objectif. D'autres facteurs influencent également la

performance de ce genre d’algorithmes:

1. La taille optimale de blocs de matrices décomposées, de sorte qu’on minimise le

temps d’exécution.

2. Les messages échangés entre les processeurs sont trés gourmands en terme de temps

d’exécution, et il dépend grandement de la structure du réseau. Le temps de
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communication est proportionnel au nombre de blocs et le nombre de processeurs,

ce qui dépasse en général le temps requis d’exécution.

3. La dépendance de données entre les processeurs ou certains processeurs demeurent

en attente le temps que les calculs intermédiaires des autres processeurs se fassent.

4. Certains algorithmes souffrent d'un autre inconvénient, qui est 1'équilibrage de

charge, en particulier avec les multiplications de matrices non carrées.

Figure E-1 ci-dessous simule la multiplication de matrices en série a l'aide d'un seul
processeur. La Figure E-2 montre le comportement des algorithmes paralléles précédents. 11
est clair que les deux processeurs P2 et P3 sont en attente, jusqu'a ce processeur P1 passe a
I'état de repos. P4 ne pourra commencer le traitement avant que P2 et P3 ne completent
leurs taches. L'efficacité du temps des processeurs est ainsi affectée grandement.

L'efficacité de calcul de chaque processeur est 16/4 = 25%.

Matrix A 4x8 Matrix C 4x4

Matrix B 8x4

P1

-Computation Time

Figure E - 1 Multiplication de matrice en série
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Matrix A 4x8 Matrix C 4x4
Matrix B 8x4
P4 P4 on hold, is waiting for P2 and P3
P3 (P2 and P3 on hold, P3 idle
P2 | are waiting for P1 P2 idle

P1 idle
6 |78 ]al1o[1n]12]13]14]15] 16

Time

Computation Time
Communication Time - among processors
Communication Time - assembling and delivering data

Figure E - 2 Schématisation des Algorithmes pré ITPMMA

Nouveau cadre pour le traitement paralléle

Dans cette thése, un nouvel algorithme paralléle est proposé pour la multiplication paralléle
des matrices basée sur la reconstruction du probléme de multiplication en un ensemble de
taches indépendantes, de sorte que chaque processeur ne repose pas sur un autre processeur
pour traiter certaines tiches, car chaque tache est indépendante. Figure E-3 schématise la
multiplication paralléle en utilisant le nouvel algorithme qui est appelé « Independent Tasks
Parallel Matrix Multiplication Algorithm » (ITPMMA). Au lieu de décomposer les données
entre les processeurs; nous distribuons les tiches entre les processeurs. Alors, le processeur
P1 devrait produire la premiére ligne de la matrice C (voir Figure E-2), tandis que le
processeur P2 devrait produire la deuxiéme ligne de la matrice C, le processeur P3 devrait

produire la troisiéme, enfin processeur P4 devrait produire la quatriéme ligne de la matrice
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C. Pour cela, nous avons besoin de seulement 4 unités de temps pour accomplir les taches.
Il est & noter qu’il n’y a pas de communication entre les processeurs et pas de temps pour
assembler les résultats; seulement pour le livrer. L'une des avancées majeures de
l'algorithme ITPMMA est l'efficacité de l'utilisation des processeurs, aucun processeur

n’est en attente ou inactif. L'efficacité de chaque processeur est 4/5 = 90%.

Matrix A 4x8 Matrix C 4x4

Matrix B 8x4

Computation Time
Communication Time - delivering data

Figure E - 3 Schématisation de 1’ Algorithme ITPMMA

ITPMMA

ITPMMA est un algorithme pour la multiplication parall¢le de matrices. Contrairement aux
autres algorithmes de multiplication de matrice parall¢les présents dans la littérature,
I’'ITPMMA propose un reformatage du processus de multiplication de matrice en plusieurs

opérations indépendantes de multiplications vectorielles. Chaque opération de
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multiplication vectorielle est affectée a un seul processeur, afin d'éviter toute dépendance
de données et temps pour transfert de données processeur a processeur. La figure E-4

montre 1’organigramme de 'ITPMMA.
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Start ITP MMA Algorithm
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completion of all tasks. |
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generate the resultant matrix of result matrix to Server
No}de}, _pv\_(if.hmt using MPI

§{ End TPMMA Algarithm }

Figure E - 4 organigrammes de I’ Algorithme ITPMMA
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L’algorithme ITPMMA utilise la bibliothéque MPI pour définir le nombre de processeurs
actifs sur le cluster et les classer. En outre, la bibliothéque MPI est utilisée pour transférer
les listes de tdches a des processeurs et de transmettre des alertes d'accomplissement des

taches de différents transformateurs au processeur de nceud. Ainsi, le nceud de serveur:

1. Définit les processeurs disponibles dans le cluster paralléle et les classes.

2. Envoie pour chaque liste de processeurs des taches a effectuer.

3. Regoit une alerte d'achévement de chaque processeur lorsque toutes les tiches assignées
sont effectuées.

4. Envoie des taches supplémentaires pour les processeurs possédant une grande puissance
de calcul, une fois la liste initiale des tdches transmises & ces processeurs ait été
effectuée. Ces tiches seront transférées a partir de processeurs a faible vpuissance de

calcul.

La bibliothéque MPI ne sera pas utilisée pour échanger les données, car toutes les taches
sont indépendantes. Aucun processeur ne regoit des données d'un autre processeur pour
compléter ses travaux. Aucun processeur ne communique non plus avec le processeur de

nceud non-serveur.
Quatre cas différents peuvent se manifester :

1. Multiplication de matrices carrées avec une taille de la matrice résultante qui est un
multiple du nombre de processeurs utilisés en paralléle. Par exemple, A4x4 x B4x4

= (C4x4, en utilisant quatre processeurs en parall¢le.
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2. Multiplication de matrices carrées avec une taille de la matrice résultante qui n’est
pas un multiple du nombre de processeurs utilisés en paralléle. Par exemple,

A12x12 x B12x12 = C12x12, et pour huit processeurs en parall¢le.

3. Multiplication de matrices non carrées, et la taille de la matrice résultante est un
multiple du nombre de processeurs utilisés en parall¢le. Par exemple, A12x12 x

B12x16 = C12x16, en utilisant quatre processeurs en parallele.

4. Multiplication de matrices non carrées avec une taille de la matrice résultante qui
n’est pas un multiple du nombre de processeurs utilisés en paralléle. Par exemple,

A12x12 x B12x18 = C12x18, pour quatre processeurs en parallele.

Les deuxiéme et quatriéme exemples aideront a montrer comment l'algorithme
ITPMMA abordera le probléme de 1'équilibre de charge. D'autre part, tous les
algorithmes précédents pour la multiplication paralléle de matrices sont optimisés dans

le cas de multiplication de matrices carrées.

Multiplication de matrice carrée, la taille de la matrice résultante est
multiple du nombre de processeurs en paralléle

Figure E - 5 montre la mise en ceuvre de I’ITPMMA dans le cas du produit A12x12 x
B12x12 = C12x12, en utilisant quatre processeurs parall¢les. Chaque processeur produira
trois colonnes de la matrice C. Le processeur PO produira trois colonnes : la premiére, la
cinquiéme et la neuviéme colonne de la matrice C12 x 12. Le processeur P1 produira la
deuxiéme, la sixiéme et la dixiéme colonne. P2 produira la troisiéme, la septieme et la

onziéme colonne. Enfin, P3 produira la quatriéme, la huiti¢me et la douziéme colonne.



Mafrix A12=12

Matrix Bi2x12

Matrix Ci12x12

The first processor will
produce the first and fifth
and ninth columnsof the
result matrix, that is
C[0][0]— C[11][0], and
C[0][4] — C[11][4]. and
C[o][8] — C[11][8]

The second processor
will produce the second
and sixth and tenth
columnsof the result
matrix, that is C[0][1]—
C[11][1], and C[0O][5] —
C[11][3], and C[0][9] —
Cc[11][9]

The third processor will
produce the third and
seventh and eleventh
columnsof the result

matrix, that is C[0][2]—

C[11]{2], and C[0][6] —

C[11][6], and C[O][10]
— C[11][10]

The fourth processor will
produce the fourth and
eighth and twelfth
columnsof the result
matrix, that is C[0][2]—
C[11][2], and C[O][7] —
C[11][7], and C[0][11]
— C[11][11]

Rasult of the first processor

Result of the second processer

Result of the third processor

Result of the fourth processor
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Figure E - 5 x A12x12 B12x12 utilisant l'algorithme ITPMMA pour une multiplication matricielle
en parallele

D’autres exemples sont présentés dans les chapitres 3 et 4.
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Propriétés de 'ITPMMA

1.

Aucun processeur ne reste inactif a attendre la sortie de d'autres processeurs sachant

que toutes les tiches sont indépendantes.

Aucun cofiit pour le temps de communication entre les processeurs en terme de
transfert de données. La communication est seulement entre le processeur de nceud

du serveur et d'autres processeurs pour I’envoi de la liste des taches.

Chaque processeur utilise sa pleine capacité, comme les noyaux multiples et la
mémoire cache, pour compléter la tdche actuelle, aussi vite que possible. Cela
implique que I’algorithme ITPMMA prend en charge la structure des processeurs

afin d’accomplir la tdche dans le temps le plus court.

La charge est équilibrée sachant que les tdches sont déja équilibrées entre les
processeurs. Dans le cas ou un processeur a terminé ses tdches avant d'autres
processeurs, le processeur serveur sera alerté et pourra rediriger des taches (s). Le
phénomene de sur file d'attente pourrait se produire lorsque des processeurs
d’architectures différents avec différentes capacités sont impliqués dans le cluster

paralléle.

Accélération des calculs a I'aide de I'algorithme ITPMMA

En effectuant plusieurs expérimentations sur CLUMEQ supercomputer, nous avons obtenu

les résultats suivants. Tableau E - 1 et Figure E-6 montrent des résultats de multiplication

de matrices de tailles différentes sur 16 processeurs, ou la taille des matrices est un multiple

du nombre de processeurs.
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Tableau E - 1 Différentes tailles de matrices avec 16 processeurs en paralléle, ou la taille
des matrices est un multiple du nombre de processeurs

Algorit _ Matrix Size .
128 | 512 | 1024 | 2048 | 4096 8192 16384 | 32768
Processmg Time
Serial 40,00 222,00 53500 998,00 1900,00 381000 900,00 16300.00
ITPMMA 300 17.00 46,00 75.00 130,00 25100 49900 1098,00
Cannen 11.00 65,00 152,00 320,60 605,00 1400.00 2700.00 601000
Fox 14,00 88,00 212,00 430,00 820,00 1701,00 3980.0C 7130.00
ITPMMA
Task- 0 s 112 181 336 $55 565 601
Adjustment
Speed up
ITPMMA 13.33 13,66 1333 1331 14,62 15,18 15,83 14,85
Cannen 3,64 3,42 3.52 3,12 3,14 272 2.93 2,71
Fox 2,86 2352 252 232 232 224 1.98 2,28
Speed up
18
16
14
12
10
s | TPMMA
8 e R
=ammm C3NNON
6 e FQX
4
5 il m -
0
128 512 1024 2048 4096 8192 16384 32768
Matrix Size

Figure E - 6 Comparaison des performances dans le cas ou la taille des matrices est un multiple du
nombre de processeurs.

Tableau E - 2 et Figure E-7 montrent les résultats de multiplication de matrices de tailles
différentes sur 16 processeurs, ou la taille des matrices n’est pas un multiple du nombre de

processeurs (équilibrage de charge sera pris en charge par l'algorithme ITPMMA).
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Tableau E — 2 multipliant les matrices de tailles différentes sur 16 processeurs, ou la taille
des matrices n’est pas un multiple du nombre de processeurs

Algorit = Matrix Stze
100 ] 500 700 1000 1200 2000 3000 5000
Processing Time
Serial 39 210 322 525 645 978 1499 2494
ITPMMA 2.50 14.00 21.00 34.00 42.00 63.00 98.00 166.00
Cannon 11.00 66.00 15000 150.00 270.00 270.00 389.00 706.00
Fox 16.00 80.00 210.00 210.00 391.00 391.00 588.00 978.00
Speed up
ITPMMA 15.60 15.00 15.33 15.44 15.36 15.52 15.38 15.02
Cannen 3.55 3.18 2.15 350 2.39 3.62 3.85 3.56
Fox 244 2.63 1.53 2.50 .63 2.30 2.55 2.55
Speed up
16 — = —
12
e CRA NGN
8
WEREE FO’J":
& _
o
180 5CC 700 100G 1z00 2000 300 5000

Matrix Size

Figure E - 7 Comparaison des performances dans le cas ol la taille des matrices n’est pas un multiple
du nombre de processeurs.

Les troisiéme et quatriéme groupes d'expérimentation sont présentés dans le Tableau E - 3

et la figure E-8. Nous avons considéré davantage de restriction aux algorithmes de Cannon

et Fox pour générer des blocs lorsque les matrices sont non carrées et en plus, la taille des

matrices n’est pas un multiple du nombre de de processeurs utilisés.



Tableau E — Produit de matrices non carrées - 750 x 700 - avec un nombre différent de

142

processeurs
Algorithm . Nmba of Processors
2 4 16 32 64 128
ITPMMA 112 58 0 16 9 5
Camnon 28900 297 .00 152400 12000 33.00 65 .00
Fox 756.00 400 00 21200 135.00 92.00 75.00

PARALLEL PROCESSING TIME FOR MATRIX SIZE OF

750x700
" ET TR AR 4 o {2 TS 1 - F ey
wonipes {1 PRAMA oo Cannon e PO
BOO
700
&00 ﬁ_ﬁ
L™ N
£ A
g
3 . b
200 T e
R —
- ~— | “‘g”“ o .
i ———— #
— S— - "
S ’ ¥ 4” 2
; , &4 128

Figure E - 8 Délai de traitement parallé¢le ITPMMA algorithme contre les deux 1’algorithme Cannon,

et I’ Algorithme Fox ot la taille des matrices de 750 x 700 n’est pas multiple du
nombre de processeurs

Les deux derniers tests montrent clairement que la multiplication de deux matrices de taille

750 x 700 en utilisant 1’algorithme proposé [ITPMMA présente de meilleurs résultats que

les algorithmes Cannon et Fox. La Figure E-9 montre également I’efficacité¢ de la

proposition lorsque la taille des matrices est augmentée; et ceci pour différents nombres de

processeurs..
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Processing TIME for ITPMMA for different matrixsize
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Figure E - 9 Délai de traitement paralléle pour les multiplications de matrices de deux tailles
différentes de 750 x 700 et 1024 x 1024. A: L’ algorithme ITPMMA, B:
L’ Algorithme Cannon, C: L’ Algorithme Fox.
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Pour les calculs d'efficacité, le Tableau E-4, la Figure E-10 et Figure E-11 présentent les

résultats dans le cas d’une multiplication de matrices carrées avec un nombre de

processeurs multiple de la taille des matrices.

Tableau E - 4 matrices de taille fixe avec un nombre différent de processeurs, ou la taille

des matrices est multiple du nombre de processeurs

Algorithm Number of Processors ‘
2 4 16 32 64 128
ITPMMA 180.00 7900 4050 2030 10,10 506
Cannon 589.00 29700 152.00 120.00 85.00 §5.00
Fox F56.00 40000 21200 135 .00 92 .00 7500
PARALLEL PROCESSING TIME FOR MATRIX SIZE OF
1024x1024
e [TPMARE A e CAnnon Fox
800
700
g
i T,
~ 500 g,
c iy,
O 400 B
N 300 h
"'\-9'!@
1640 o éﬁ
) 3 4 i6 32 5.-‘ 138

MUMBER OF PROCESSORS

Figure E - 10, Temps pour traitement paralléle de 1'algorithme ITPMMA contre 1’algorithme Cannon
et I’Algorithme de Fox ou la taille des matrices est multiple du nombre de
processeurs pour les matrices de 1024 x 1024.

Par exemple, pour multiplier les matrices de la taille 1024 en utilisant I'algorithme Cannon

sur 64 processus, 85 secondes sont nécessaires. Alors que I'algorithme proposé permet

d’exécuter le méme produit matriciel en seulement 79 secondes et en utilisant que 4
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processeurs. Dans ce cas, |'algorithme ITPMMA présente une efficacité 64/4 = 16 fois plus

grande.

Execution time for multiplying two matrices of of size 1024 over
different number of processors using ITPMMA, Cannon, and Fox
algorithm‘sm o

800
700
600
500
400
300
200
100

Seconds

Figure E - 11 Le temps d'exécution par processeur pour ITPMMA, Cannon, et Fox.

La technique de décomposition 1D en grappe

Une mise en ceuvre de tous les problémes numeériques en tdches indépendantes n’est pas
toujours possible. Nous avons développé une nouvelle technique de décomposition de
données, appelé «cluster l-dimension decomposition technique» pour surmonter la
limitation de différentes techniques de décomposition de données qui ont été utilisées par
différents algorithmes paralléles. Les techniques de décomposition & une dimension (1D) et
a 2 dimensions (2D) dominent depuis le début des propositions d’'algorithmes paralléles.

Les techniques de décomposition de données impliquent deux taches:

a) Mise en correspondance de tableau processus en grille de n-dimensions.
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b) Distribution des données sur la grille de processeurs.
Equation de Laplace en utilisant la méthode itérative Gauss-Seidel en grappe 1D

La résolution de I'équation de Laplace en utilisant la méthode de Gauss-Seidel sera utilisée
comme méthode de référence dans le domaine de la décomposition de données. Figure E-
12 montre la décomposition de données en 2D. L’équation est résolue en utilisant la
méthode de Gauss-Seidel en deux environnements paralleles, 4 processeurs et 16
processeurs. Le Tableau E - 5 montre les résultats du calcul de I'équation de Laplace en
utilisant la méthode de Gauss-Seidel utilisant la matrice de données de 48, 96 et 192, et en
utilisant 4 et 16 processeurs en parallele. On constate principalement la dépendance des

données.

Processor 3 Processor 4
. 9 L cao “hiire S BRI BEGE RO T
el : . L] » * . L] L ] L] L]
- * L] - L] . L -
* » L 3 . L 3 . L] L
- » L 2 L] L] » L L
L] [ 2 L ] L] * * * *
L] L ] [ ] . L ] - L ] »
* » & L 4 * . * -
® - L] L ] L ] L ] . L] - - L ] L 2 L] L] L] *
- - L] * * L] L] L] L 3 L ] . -* L] L] L] *
® L ] L ] . L * . L] - . L L ] (] L] L] *
L] ] ] . . . L] ] 2 * ] . ] ] L] .
L4 * . L] » L L ] * * L] L] L L] *® L] L
* - L] L] L] * L] L ] L] L ] [ ] - L] . L] -
* * L ] [ ] (] L] L ] L] L] L] ] L 4 - . [ 3 L]
» - * - L L] L] - * - = L L] . » *
Processor: Processor 2

Figure E - 12, décomposition 2D.
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Tableau E - 5 La Solution paralléle de I’équation Laplace en utilisant la méthode itérative

de Gauss-Seidel sur 2D

98 |141 142 143 144 145 146 147, «

77120 121 122 123 124 125 126/ »

63 |106 107 108 109 110 111 112]
| 99 100 101 102 103 104 105] »

134 135 136 137 138 139 140] »
1127 128 129 130 131 132 133| »

) |113 114 115 116 117 118 119| «

92 93 94 95 96 97 98 =
85 86 87 88 89 90 91] +
78 79 80 81 82 83 84
71 72 .73 78 75 76 77| ¢
64 65 66 67 68 69 70| *
57 58 59 60 61 62 63| ¢
50 51 52 53 54 55 56 *

Processor 1

Figure E - 13 La technique de décomposition 2D, les unités de temps total est 147 unités.

- * . - * . * »

Processor 2

Teat ID 1 2 3 4 5 6
Matrix Size (n) 48 96 192 48 96 192
Number of processors
(nproc=nblock*nblock) 4 4 4 16 16 16
Decomposition (Number of
the blocks) 4 4 4 16 16 16
Node edge (nodeedge) 24 48 96 12 24 48
ts (Serial processing time) 1 2 8 1 2 8
tp (Parall i
B ar .el peEEesmag 0.866 3.192 5.239 | 30.845 | 166.303 254.562
time)
Speed up 1155 0.626 1.527 0.032 0.012 0.031
Efficiency 0.288 0.156 0.381 0.002 | 7.50E-04 0.002
Processor 4

Figure E - 14, schématise 1’algorithme proposé. Les unités du temps de traitement

pour chaque processeur utilisant «cluster 1D technique de décomposition». Le nombre

d’unités de temps est de 73 au lieu de 147. Figure E - 15 montre l'utilisation de chaque

processeur. La vitesse est jusqu'a 196/73 = 2,31, donc l'efficacité¢ = 2,31 / 4 = 57,9. Le
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Tableau E - 6, montre les résultats du calcul de 1'équation de Laplace en utilisant la
méthode de Gauss-Seidel sur 1D cluster, en utilisant trois dimensions de la matrice de
données de 48, et 96 et 192, en 4 et 16 processeurs en paralléle. Les avantages de la
technique de décomposition cluster 1-dimensions pa rapport a la décomposition 2D sont

évidents.

» * * * * % * - * * * » % E * ]
« 46 47 48|52 53 54 58 59 60 67 68 69|72 73, e
* 43 44 45|49 50 51 55 56 57 64 65 66|70 71| »
'+ 134 35 36|43 44 45|52 53 54 61 62 63|68 69| o
« 131 32 33|40 41 42 49 50 51 58 59 60|66 67| ¢
. -zs 30|37 38 39 46 47 48 55 56 57|64 65| »
e 25 26 27|34 35 36 43 44 45 52 53 54|59 60| »

« 122 23 24(31 32 33 40 41 42 49 50 51|57 58
. 20 21|28 29 30137 38 3946 47 48|55 56 °
e 116 17 18|25 26 27 34 35 36 43 44 45|50 51| »
« (13 14 15|22 23 2431 32 33 40 41 4248 49! »
a.n; 1219 20 2128 29 30 37 38 39/46 47 »

s17 5 9(16 17 18 25 26 27 34 35 3641 42 »
+14 5 6(13 14 15 22 23 24 31 32 33|39 40| »
« B 2 3|10 11 12 19 20 21 28 29 30[37 38
* * * * * * * * * *® * » * *® * »
Pracessor 1 . Processor3
Processor 2 : Processor 4

54 Duigy tor Giata £PU sty workieg
e GEDENGETOEY i

Figure E - 14,« cluster 1D technique de décomposition» les unités de temps total est 73 unités
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Figure E - 15 Cluster 1D décomposition - utilisation de processeurs.
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Tableau E - 6, La Solution parall¢le de 1’équation Laplace utilisant méthode itérative de
Gauss-Seidel sur 1D cluster

Teat ID

7 8 9 10 1 12
Matrix Size (n) 48 96 192 48 96 192
Number of processors
(nproc=nblock*nblock) 4 4 4 16 16 16
Decomposition (Number of
the blocks) 48/12=4 | 96/12=8 | 192/12=16 | 48/12=4 | 96/12=8 | 192/12=16
Node edge (nodeedge) 96 384 1536 24 96 384
ts (Serial processing time) 1 2 8 1 2 8
tp (Parallel processing
e 0.611 1.076 3.61 0.204 0.448 1.569
Speed up 1.637 1.858 2.216 4.902 4.464 5.099
Efficiency 0.409 0.465 0.554 0.306 0.279 0.319
2 Dimension Decomposition
Speed up - 4 processors == Efficiency - 4 processors
---------- Speed up - 16 processors ~~ Efficiency - 16 processors
1.527
1155
526
M 0.288
8082 9:00t-04 B.693
192 96 48

Figure E - 16 L’accélération et l'efficacité de la solution itérative Gauss-Seidel parall¢le de 1'équation

Laplace en 2 dimensions
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Clustered 1 Dimension Decompasition

= Speed up - 4 processors Efficiency - 4 processors

------- Speed up - 16 processors === Efficiency - 16 processors

w5099,

............._,...n.\-..vox.\.wu e 4.902
e e i 1e7.
e 16,
° 1.637
192 96 .8

Figure E - 17 L’accélération et l'efficacité de la solution itérative Gauss-Seidel paralléle de 'équation
Laplace en 2 dimensions

Speed up at 4 processors

s ) [} e Clustered 1 D

1637
1.155

192 96 48

Figure E - 18 Accélération de la solution paralléle Gauss-Seidel itérative de I'équation Laplace avec
les deux techniques de décomposition de données a 4 processeurs.

Speed up at 16 processors

e 7 [) Clustered 1 D
b0 . 4.902
&$.3404
8-63% 0012 0.032
192 96 48

Figure E - 19 Accélération de la solution paralléle Gauss-Seidel itérative de I'équation Laplace avec
les deux techniques de décomposition de données & 16 processeurs



